Journal of Machine Learning Research 7 (2006) 603-624 Submitted 10/05; Published 4/06

A Direct Method for Building Sparse Kernel Learning

Algorithms
Mingrui Wu MINGRUIL.WU@TUEBINGEN.MPG.DE
Bernhard Scholkopf BERNHARD.SCHOELKOPFQTUEBINGEN.MPG.DE
Gokhan Bakir GOEKHAN.BAKIRQTUEBINGEN.MPG.DE

Mazx Planck Institute for Biological Cybernetics
Spemannstrasse 38
72076 Tibingen, Germany

Editor: Nello Cristianini

Abstract

Many kernel learning algorithms, including support vector machines, result in a kernel
machine, such as a kernel classifier, whose key component is a weight vector in a feature
space implicitly introduced by a positive definite kernel function. This weight vector is
usually obtained by solving a convex optimization problem. Based on this fact we present
a direct method to build sparse kernel learning algorithms by adding one more constraint
to the original convex optimization problem, such that the sparseness of the resulting ker-
nel machine is explicitly controlled while at the same time performance is kept as high as
possible. A gradient based approach is provided to solve this modified optimization prob-
lem. Applying this method to the support vectom machine results in a concrete algorithm
for building sparse large margin classifiers. These classifiers essentially find a discriminat-
ing subspace that can be spanned by a small number of vectors, and in this subspace,
the different classes of data are linearly well separated. Experimental results over several
classification benchmarks demonstrate the effectiveness of our approach.

Keywords: sparse learning, sparse large margin classifiers, kernel learning algorithms,
support vector machine, kernel Fisher discriminant

1. Introduction

Many kernel learning algorithms (KLA) have been proposed for solving different kinds of
problems. For example the support vector machine (SVM) (Vapnik, 1995) have been widely
used for classification and regression, the minimax probability machine (MPM) (Lanckriet
et al., 2002) is another competitive algorithm for classification, the one-class SVM (Scholkopf
and Smola, 2002) is a useful tool for novelty detection, while the kernel Fisher discriminant
(KFD) (Mika et al., 2003) and the kernel PCA (KPCA) (Scholkopf and Smola, 2002) are
powerful algorithms for feature extraction.

Many kernel learning algorithms result in a kernel machine (KM) (such as a kernel
classifier), whose output can be calculated as

Nxv

7(x) = Z & K (%3, %) + b, (1)

(©2006 Mingrui Wu, Bernhard Schélkopf and Gokhan Bakir.

WU, SCHOLKOPF AND BAKIR

where x € X C R? is the input data, X is the input space, x; € X, 1 < i < Nxy, are
called expansion vectors (XVs) in this paper,’ Nyy is the number of XVs, &; € R is the
expansion coefficient associated with x;, b € R is the bias and K : X x X — R is a kernel
function.

Usually K is a positive definite kernel (Scholkopf and Smola, 2002), which implicitly
introduces a feature space F. Let ¢(-) denote the map from X to F, then

K(x,x') = (¢(x), p(x")), vx,x' € X.

Hence (1) can also be written as a linear function

7(x) = (W, ¢(x)) + b, (2)
where
Nxv
W= &%) 3)
i=1

is the weight vector of the KM and it equals the linear expansion of XVs in the feature
space F.

For all the KLLAs mentioned above, the vector w is obtained by solving a convex opti-
mization problem. For example, the SVM can be formulated as a quadratic programming
problem (Vapnik, 1995), in (Mika et al., 2003), a convex formulation is proposed for KFD
and a least squares SVM formulation is established for KPCA in (Suykens et al., 2002).

From the above description, we can see that although many KLLAs are proposed for solv-
ing different kinds of problems and have various formulations, there are three widely known
common points among them. First, each of them results in a KM whose key component is a
weight vector w, which can be expressed as the linear expansion of XVs in the feature space
F. Second, the vector w is obtained by solving a convex optimization problem. Third, the
output of the resulting KM is calculated as (1) (or (2)).

When solving practical problems, we want the time for computing the output to be
as short as possible. For example in real-time image recognition, in addition to good
classification accuracy, high classification speed is also desirable. The time of calculating
(1) (or (2)) is proportional to Nxy. Thus several sparse learning algorithms have been
proposed to build KMs with small Nxy .

The reduced set (RS) method (Burges, 1996; Scholkopf and Smola, 2002) was pro-
posed to simplify (1) by determining N, vectors zi,...,zy, and corresponding expansion
coefficients (1, ..., Oy, such that

N
lw =" Bjé(z) |I” (4)
j=1

is minimized. RS methods approximate and replace w in (2) by Z;V:ZI Bjé(z;), where
N, < Nxy. The objective of RS method does not directly relate to the performance of the

1. The %x;, 1 < i < Nxv have different names in different kernel learning algorithms. For example, they
are called support vectors in the SVM, and relevance vectors in the relevance vector machine (Tipping,
2001). In this paper we uniformly call them expansion vectors for the sake of simplicity.

604

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

KM it aims to simplify, and in order to apply RS methods, we need to build another KM
in advance.

In (Lee and Mangasarian, 2001), the reduced support vector machine (RSVM) algorithm
is proposed, which randomly selects N, vectors from the training set as XVs, and then
computes the expansion coefficients. This algorithm can be applied to build sparse kernel
classifiers. But as the XVs are chosen randomly, and may not be good representatives of
the training data, good classification performance can not be guaranteed when NV, is small
(Lin and Lin, 2003).

The relevance vector machine (RVM) (Tipping, 2001) is another algorithm which leads
to sparse KMs. The basic idea of the RVM is to assume a prior of the expansion coefficients
which favors sparse solutions.

In this paper, based on the common points of KLAs mentioned before, we present a
direct method to build sparse kernel learning algorithms (SKLA). In particular, given a
KLA, we modify it by adding one more constraint to its corresponding convex optimization
problem. The added constraint explicitly controls the sparseness of the resulting KM and
a gradient based approach is proposed to solve the modified optimization problem. We
will also show that applying this method to the SVM will result in a specific algorithm for
building sparse large margin classifiers (SLMC).?2

The remainder of this paper is organized as follows. In section 2, we describe a direct
method for building SKLAs. After this, we will focus on a particular application of this
method to the SVM algorithm, leading to a detailed algorithm for building SLMC. The
SLMC algorithm is presented in section 3, where we will also point out that it actually
finds a discriminating subspace of the feature space F. Some comparisons with related
approaches are given in section 4. Experimental results are provided in section 5 and we
conclude the paper in the last section.?

2. A Direct Method of Building SKLAs

In this section, we propose a direct method for building SKLAs.

2.1 Basic Idea

As mentioned before, many KLAs can be formulated as an optimization problem, which
can be written in a general form as follows:

min fw,h.6) ®)
SUbjeCt to gl(w’ bag) < 07 1<:< Ng7 (6)

h](wvb75)207]-S]SNh) (7)

where f(w, b, £) is the objective function to be minimized, w € F and b € R are respectively
the weight vector and the bias of the KM to be built, & = [£1, ... ,ng]T € RNe is a vector
of some auxiliary variables (such as the slack variables in the soft margin training problem),

2. Here we don’t use the phrase “sparse SVM” because the XVs of the resulting classifier are not necessarily
support vectors, i.e. they may not lie near the classification boundary.
3. This paper is an extension of our previous work (Wu et al., 2005).

605

WU, SCHOLKOPF AND BAKIR

N¢ is the number of auxiliary variables, Ny is the number of inequality constraints specified
by gi(w,b, &), while N}, is the number of equality constraints specified by h;(w, b, §).

Our objective is as follows: given a KLA and a positive integer V., we want to modify
the given KLA such that the number of XVs of the resulting KM equals N, while at the
same time the performance of the KM should be kept as well as possible. To achieve this,
we propose to solve the following problem:

i b
i, f(w,b,8), (8)
subject to g;(w,b0,§) <0, 1<i< N, (9)

hj(w,b,€) =0, 1<j< Ny, (10)

N.
w=> ¢(z)5, (11)
=1

where (8)-(10) are exactly the same as (5)—(7), while Z = [z1,...,2zn.] € RPN+ is the
matrix of XVs and 8 = [f1,...,0 NZ}T € RN= is the vector of expansion coefficients.

It can be seen that the above problem is the problem (5)—(7) with one added constraint
(11) saying that the weight vector of the resulting KM equals the expansion of the ¢(z;),
1 <¢ < N,. Note that the z; are also variables, so they need to be computed when solving
the optimization problem.

Due to the constraint (11), solving the problem (8)—(11) will naturally lead to a sparse
KM. Further more, since the objective function of the problem (8)—(11) is exactly the same
as the original problem (5)—(7), so in principle the performance of the resulting KM can be
kept as well as possible.

Because of the non-convex constraint (11), it is difficult to obtain the global optimum
of the above problem, thus we propose a gradient based approach. However, our gradient
based minimization will be performed only on the expansion vectors Z but not on all the
variables. To this end, we define the following the marginal function W (Z) which is obtained
by keeping the expansion vectors in problem (8)—(11) fixed, i.e. :

W(Z) := min_ f(w,b,8), (12)
subject to gi(w,0,€) <0, 1<i<Ng, (13)
hj(w,b,€) =0, 1<j <Ny, (14)

N
and w=) ¢(z)B (15)

=1

The above problem is the same as problem (8)—(11) except that Z is not variable but fixed.

Clearly any global (or local) minimum of W(Z) is also a global (or local) minimum of
problem (8)—(11), which means that the minima of the original problem (8)—-(11) can be
found by computing the minima of function W (Z). Here we propose to minimize W(Z) by
the gradient based algorithm. To this end, at any given Z € R4N=_ we need to calculate
both the function value W(Z) and the gradient VW (Z). These two problems are discussed
in the next subsection.

606

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

2.2 Computing W(Z) and its Gradient VW (Z)

To compute the function value of W(Z) at any given Z, we need to solve the optimization
problem (12)—(15). Obviously this is a problem dependent task. However as mentioned
before, the original optimization problem (5)—(7) of many current KLAs are convex, and
(15) is just a linear constraint once Z is fixed. Therefore the problem (12)-(15) is still
convex, which means its global optimum, and thus the function value of W(Z), can be
readily computed.

Next we turn to consider how to compute VW (Z), which requires more carefulness
since in general W (Z) is not necessarily differentiable. According to the constraint (11),
the weight vector w can be completely determined by 3 and Z, so the functions f, ¢g; and
hj can be regarded as functions of b, £, 3 and Z. Without causing confusions, we write
them as f(x,Z), gi(x,Z) and h;(x,Z) in the following, where x := [b, £T,8"".

Substituting (15) into (12)—(14), we have

min f(x,Z), (16)

X
subject to gi(x,Z) <0, 1<i< Ny, (17)
hj(x,Z) =0, 1<j <N, (18)

and W(Z) is the optimal value of the above optimization problem.
To compute VW (Z), we can apply the following lemma which gives both the conditions
when W(Z) is differentiable and an explicit form of the derivative:

Lemma 1 (Gauwvin and Dubeau, 1982): Assume that all the functions f, g; and h; in
problem (16)—(18) are continuously differentiable and suppose that problem (16)-(18) has a
unique optimal solution X at Z = Z. Furthermore let &; and Bj be the unique corresponding
Lagrange multipliers associated with g; and h; respectively, 1 < 7 < Ny, 1 < j < Np,.
Assume further that the feasible set of problem (16)-(18) is uniformly compact at Z and
that, the optimal solution X is Mangasarian-Fromovitz reqular, then the gradient of W (Z)
exists at Z and equals

Ny Np
VW(Z)|g—z = V2f (X, D)lgez + > _ 0 Vzgi(X, L)lg—z + > _ B Vzhj(%,Z)|5_5, (19)
i—1 =1

where Vzf(X,Z)|,_5 denotes the gradient of f(x,Z) with respect to Z at Z = Z while firing
X at X.

As can be seen that in addition to the uniqueness of the optimal solution and its cor-
responding Lagrange multipliers, lemma 1 also requires the feasible set to be uniformly
compact and the optimal solution to be Mangasarian-Fromovitz regular. The formal def-
initions of the last two conditions are given in appendix B. Since the properties of the
feasible set and the optimal solutions depend on the specific KLA, we will discuss all these
conditions for some particular KLAs in subsection 3.3 and appendix A. We will see that
the conditions of lemma 1 are very mild for many current KLAs.

607

WU, SCHOLKOPF AND BAKIR

3. Building an SLMC

Having described our direct method for building SKLAs, we will focus on a concrete ap-
plication of this method in the rest of this paper. In particular, we will apply this method
to SVMs in order to obtain an algorithm for building SLMCs. We will also analyze its
properties and compare it with other related approaches. In this section, we will present
the SLMC algorithm by closely following the discussions of section 2.

3.1 Objective

Now we begin to consider the binary classification problem, where we are given a set of
training data {(x;,y;)}Y ,, where x; € X is the input data, and y; € {—1,1} is the class
label.

Our objective is as follows: given a training data set and an positive integer N,, we
want to build a classifier such that the number of XVs of the classifier equals N, and the
margin of the classifier is as large as possible. This way we build a large margin classifier
whose sparseness is explicitly controlled.

Based on the direct method described in the last section, we need to solve the problem
(8)—(11) to achieve this goal. For the moment, (8)—(10) become the SVM training problem
and the constraint (11) controlls the sparseness of the resulting classifier. So we should
solve the following problem

N
. 1
55 PEEE M ARD)
subject to yi(w'(x;) +b) >1—¢&, Vi, (21)
& >0, Vi (22)

N.
W= 6z, (23)
=1

where C' is a positive constant, w € F is the weight vector of the decision hyperplane in
feature space, b € R is the bias of the classifier, & = [£1,...,&n] T € RY is the vector of slack
variables, Z = [z1,...,zy.] € RYM= is the matrix of XVs and B = [31,...,8n.]" € RY: is
the vector of expansion coefficients.

Following our proposed method, to solve the above problem, we turn to minimize the
marginal function W(Z) defined in problem (12)—(15). For the current problem, the value
of W(Z) is the minimum of the following optimization problem,

N
. 1 T

- +C i) 24
wr,%,llf}ﬁ 2W w ;5 (24)
subject to yi(wlo(x;) +b) >1—¢&, Vi, (25)
& >0, Vi (26)

N,
w = 6(z)p (27)

=1

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

The above problem is the same as problem (20)—(23) except that Z is not variable but fixed.

Following the discussion in section 2.1, the (local) minimum of the original problem
(20)—(23) can be found by computing the (local) minimum of function W(Z) and we will
use the gradient based algorithm to do this. In the following two subsections we will discuss
how to compute the function value W(Z) and the gradient VW (Z) respectively.

3.2 Computing W(Z) and 3

To compute the function value of W(Z) at any given Z, we need to solve the convex
optimization problem (24)—(27), which is actually a problem of building an SVM with
given XVs zj,...,zy,. This problem has already been considered in the RSVM algorithm
(Lee and Mangasarian, 2001; Lin and Lin, 2003). But in the RSVM algorithm, only an
approximation of the problem (24)—(27) is solved. Here we will propose a different method
which exactly solves this problem. (See section 4.2 for a discussion and section 5.5 for a
comparison of the experimental results of these two methods.)

Substituting (27) into (24) and (25), we have

N
. 1 Tyerz .
min 5BTKB+C ZZ; &, (28)
subject to (B () +b) > 1 =&, Vi, (29)
where
V. (%) = [K(21, %), ... ,K(zNz,xi)]T (31)

is the empirical kernel map (Scholkopf and Smola, 2002) and K~# is the kernel matrix of z;,
Le. Kf; = K(zi,2)).

Note that when N, = N and z; = x;, 1 < ¢ < N, this is the standard SVM training
problem. In contrast, the problem (28)—(30) is to train a linear SVM in a subspace spanned
by ¢(z;), 1 <i < N,, where z; are are not necessarily training examples.

Now we investigate its dual problem. To derive it, we introduce the Lagrangian,

L(&,b,8,a,7) (32)

1 N N
= BTKB+CY G- X;m

=1 =

N
- Z iy (BT a(xi) +b) — 1+ &,

i=1
with Lagrange multipliers v; > 0 and «; > 0.

609

WU, SCHOLKOPF AND BAKIR

The derivatives of L(€,b, 3, a,~y) with respect to the primal variables must vanish,

oL Al
95 ~KB- > aiyitp(xi) =0, (33)
=1
N
= i =0, Vi, (34)
=1
oL .
67&—0_041_'72‘—07 Vi. (35)
Equation (33) leads to
N
= (K™Y aigitda(xi). (36)
=1

Substituting (33)—(35) into (32) and using (36), we arrive at the dual form of the opti-
mization problem:

N
ma; 04z - — ;00 Y; (X, % 37
Al 2. ;jzl juiyi K i) (37)
subject to Z yicy; = 0, (38)

i=1

and 0<q; <C, Wi, (39)

where R
K (xi,%5) = s (xi) T (K*) 7 a(x;). (40)

The function K (-,-) defined by (40) is a positive definite kernel function (Scholkopf and
Smola, 2002). To see this, consider the following map,*

¢z(xi) = T¢z(xi)a (41)
where 1, (-) is defined by (31) and

T=A2V', (42)

where A is a diagonal matrix of eigenvalues of matrix K# and V is a matrix whose columns
are eigenvectors of K*. So
T'T=VAlV= (KL (43)
Combining equation (41)and (43) we have
(02(x0), 92(37)) = = (3x0) T (KZ) ™Mz (x5) = K (i, ;).
It can be seen that problem (37)-(39) has the same form as the dual of an SVM train-
ing problem. Therefore given Z, computing the expansion coefficients of SVM with kernel

4. The map defined in (41) is called the “whitened” empirical kernel map or “kernel PCA map” (Scholkopf
and Smola, 2002).

610

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

function K is equivalent to training an SVM with a modified kernel function K, defined by
(40).

Since problem (37)-(39) is the dual of problem (24)-(27), the optima of these two
problems are equal to each other. So given Z, assuming o7,1 < i < N are the solution of
(37)-(39), then we can compute W(Z) as

Za — 72204 a5 ylyj 2(%i,%5). (44)

)

According to (36), the expansion coefficients B can be calculated as

N
7Y afyia(xi) = (K7)THKT) Yo, (45)
i=1
where ¢, (-) is defined by (31), K** is the matrix defined by K7 = K(z;,x;), Y is a diagonal
matrix of class labels, i.e. Yy = y;, and o = [of, ... ,af\,}T.

3.3 Computing VW (Z) of SLMC

To compute VW (Z), we can apply lemma 1 to the soft margin SVM training problem
(37)—(39) and yield the following result.

Corollary 2 In the soft margin SVM training problem (37)-(39), assume that the kernel
function Kz(-, -) is strictly positive definite and the resulting support vectors come from
both positive and negative classes,® then the derivatives of W (Z) with respect to zy,, which
denotes the v-th component of vector z,, 1 <u < N,,1 < v < d, exists and can be computed
as follows:

(X'7X')
=—— Z i o’ yzyj#, (46)
7] 1 uv

where o, 1 < i < N denote the solution of problem (37)-(39). In other words, VW (Z)
can be computed as if o* did not depend on 7.5

sz

The proof of corollary 2 is given in appendix C.

As can be seen in corollary 2, to apply lemma 1 to calculate VW (Z), we only need to
make two assumptions on problem (37)-(39): The kernel function K (-,-) is strictly positive
definite and the resulting support vectors come from both classes. Certainly these are not
strict assumptions for most practical applications. Similarly one can verify that lemma 1
can also be applied to many other KLLAs with mild assumptions, such as the one-class SVM.

5. Let «f, 1 < i < N denote the optimal solution of problem (37)—(39), support vectors are those input
data x; whose corresponding «; are larger than 0 (Vapnik, 1995).

6. In corollary 2, of is bounded above by C' as shown in (39). A similar conclusion is proposed in (Chapelle
et al., 2002) for the hard margin SVM training problem, where there is no upper bound on «;. This
implies that the feasible set is not compact, hence lemma 1 can not be applied any more. Actually
n (Chapelle et al., 2002), only the uniqueness of the optimal solution is emphasized, which, to our
knowledge, is not enough to guarantee the differentiability of the marginal function W (Z).

611

WU, SCHOLKOPF AND BAKIR

And we will show another example in appendix A on applying our direct method to sparsify
the KFD algorithm (Mika et al., 2003).
According to (40),

OK.(xi,%;) O(Xi)\ T gomr 1 , T ez —1 0%z (%)
oz, (78%@) (K%) 7 (%)) + ¥a(xi) (K) oz,
a(Kz)fl
+ @Z’z(xi)—r Oz ¢Z(Xj)a
where 8%22 - can be calculated as
a(KZ)_l _ z\—1 OK* z\—1
0%y —(K9 0Zy (K™

So at any given Z, W(Z) and VW (Z) can be computed as (44) and (46) respectively.
In our implementation, we use the LBFGS algorithm (Liu and Nocedal, 1989) to minimize
W (Z), which is an efficient gradient based optimization algorithm.

3.4 The Kernel Function K, and Its Corresponding Feature Space F,

The kernel function K, plays an important role in our approach. In this section, some
analysis of K, is provided, which will give us insights into how to build an SLMC.

It is well known that training an SVM with a nonlinear kernel function K in the input
space X is equivalent to building a linear SVM in a feature space F. The map ¢(-) from
X to F is implicitly introduced by K. In section 2.2, we derived that for a given set of
XVs zy,...,zyn,, training an SVM with kernel function K is equivalent to building an SVM
with another kernel function K, which is in turn equivalent to constructing a linear SVM
in another feature space. Let F, denote this feature space, then the map from the X to F,
is ¢,(+), which is explicitly defined by (41).

According to (41), ¢,(x) = Tv,(x). To investigate the role of the matrix T, consider
U~ defined by

U* = [¢(z1),...,6(zn.)] T .
Then
(U)TU? = TK*T' =1,

where I is the unit matrix, which means that T orthonormalizes ¢(z;) in the feature space
F. Thus the columns of U? can be regarded as an orthonormal basis of a subspace of F.
For any x € &, if we calculate the projection of ¢(x) into this subspace, we have

(U7 ¢(x) = Tip(z1), ..., 9(zn.)] ¢(x)
= T[K(zl,x),...,K(z]\/z,x)]T
= Ty.(x) = ¢.(x).

This shows that the subspace spanned by the columns of U? is identical to F,. As U?
are obtained by orthonormalizing ¢(z;), F. is a subspace of F and it is spanned by ¢(z;),
1<i<N..

612

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

Now that for a given set of XVs z;, building an SVM with a kernel function K is
equivalent to building a linear SVM in F,, in order to get good classification performance,
we have to find a discriminating subspace F, where two classes of data are linearly well
separated. Based on this point of view, we can see that our proposed approach essentially
finds a subspace F, where the margin of the training data is maximized.

4. Comparison with Related Approaches

In this section we compare the SLMC algorithm with related approaches.

4.1 Modified RS Method

In the second step of the RS method, after the XVs zy,...,zy, are obtained, the expansion
coefficients B are computed by minimizing (4), which leads to (Scholkopf and Smola, 2002)

B = (K*) (K" Ye, (47)

where K** and Y are defined as in (45), and « is the solution of building an SVM with
kernel function K on the training data set {(x;,y;)}Y,.

We propose to modify the second step of RS method as (45). Clearly (47) and (45) are
of the same form. The only difference is that in (47), a is the solution of training an SVM
with kernel function K, while in (45), @ is the solution of training an SVM with the kernel
function K, which takes the XVs z; into consideration. As B calculated by (45) maximizes
the margin of the resulting classifier, we can expect a better classification performance of
this modified RS method. We will see this in the experimental results.

4.2 Comparison with RSVM and a Modified RSVM Algorithm

One might argue that our approach appears to be similar to the RSVM, because the RSVM
algorithm also restricts the weight vector of the decision hyperplane to be a linear expansion
of N, XVs.

However there are two important differences between the RSVM and our approach. The
first one (and probably the fundamental one) is that in the RSVM approach, N, XVs are
randomly selected from the training data in advance, but are not computed by finding a
discriminating subspace F, . The second difference lies in the method for computing the
expansion coefficients 3. Our method exactly solves the problem (28)—(30) without any
simplifications. But in the RSVM approach, certain simplifications are performed, among
which the most significant one is changing the first term in the objective function (28) from
%,@TKZ,B to %BTB. This step immediately reduces the problem (28)—(30) to a standard
linear SVM training problem (Lin and Lin, 2003), where 3 becomes the weight vector of
the decision hyperplane and the training set becomes {1, (x;), ¥ }1v.;.

On the other hand, our method of computing 3 is to build a linear SVM in the subspace
F., which is to train a linear SVM for the training data set {¢.(x;), i }1¥;.

Now let us compare the two training sets mentioned above, i.e. {d.(x;), v}, and
{.(x:), y: }Y,. As derived in section 3.4, ¢,(x;) are calculated by projecting ¢(x;) onto a
set of vectors, which is obtained by orthonormalizing ¢(z;) (1 < j < N,), while ¢,(x;) is

613

WU, SCHOLKOPF AND BAKIR

calculated by computing the dot production between ¢(x;) and ¢(z;) (1 < j < N,) directly,
without the step of orthonormalization.

Analogous to the modified RS method, we propose a modified RSVM algorithm: Firstly,
N, training data are randomly selected as XVs, then the expansion coefficients 3 are com-
puted by (45).

4.3 Comparison with the RVM

The RVM (Tipping, 2001) algorithm and many other sparse learning algorithms, such as
sparse greedy algorithms (Nair et al., 2002), or SVMs with /;-norm regularization (Bennett,
1999), result in a classifier whose XVs are a subset of the training data. In contrast, the
XVs of SLMC do not necessarily belong to the training set. This means that SLMC can in
principle locate better discriminating XVs. Consequently, with the same number of XVs,
SLMC can have better classification performance than the RVM and other sparse learning
algorithms which select the XVS only from the training data. This can be seen from the
experimental results provided in section 5.5.

4.4 SLMC vs Neural Networks

Since the XVs of the SLMC do not necessarily belong to the training set and training
an SLMC is a gradient based process,” the SLMC can be thought of as a neural network
with weight regularization (Bishop, 1995). However, there are clear differences between
the SLMC algorithm and a feed forward neural network. First, analogous to an SVM,
the SLMC considers the geometric concept of margin, and aims to maximizes it. To this
end, the regularizer takes into account the kernel matrix K?. Second, SLMC minimizes
the “hinge-loss”, which is different from the loss functions adopted by neural networks.®
Therefore, both the regularizer and the loss function of SLMC are different from those of
traditional perceptrons.

Furthermore, the SLMC algorithm is just an application of our 'direct sparse’ method. It
is straightforward to apply this method to build sparse one-class SVM algorithm (Schoélkopf
and Smola, 2002), to which there is no obvious neural network counterpart.

On the other hand, analogous to neural networks, we also have an additional regular-
ization via the number N, determining the number of XVs, which is an advantage in some
practical applications where runtime constraints exist and the maximum prediction time is
known a priori. Note that the prediction time (the number of kernel evaluations) of a soft
margin SVM scales linearly with the number of training patterns (Steinwart, 2003).

5. Experimental Results

Now we conduct some experiments to investigate the performance of the SLMC algorithm
and compare it with other related approaches.

7. This is also similar to the recent work of (Snelson and Ghahramani, 2006) on building sparse Gaussian
processes, which was done at almost the same time with our previous work (Wu et al., 2005).

8. Note that the shape of the hinge-loss is similar to that of the loss function adopted in logistic regression,
where the logarithm of the logistic sigmoid function (Bishop, 1995) is involved. Here the logistic sigmoid
function refers to y(z) = So the shape of the hing-loss is different from that of the loss function
used by the perceptron.

_ 1
Tre—=-

614

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

5.1 Approaches to be Compared

The following approaches are compared in the experiments: Standard SVM, RS method,
modified RS method (MRS, cf. section 4.1), RSVM, modified RSVM (MRSVM, cf. section
4.2), relevance vector machine (RVM), and the proposed SLMC approach.

Note that in our experiments, RS and MRS use exactly the same XVs, but they compute
the expansion coefficients by (47) and (45) respectively. Similarly RSVM and MRSVM also
use the same set of XVs, the difference lies in the method for computing the expansion
coeflicients.

5.2 Data Sets

Seven classification benchmarks are considered: USPS, Banana, Breast Cancer, Titanic,
Waveform, German and Image. The last six data sets are provided by Gunnar Rétsch and
can be downloaded from http://ida.first.fraunhofer.de/projects/bench. For the USPS data
set, 7291 examples are used for training and the remaining 2007 are for testing. For each
of the last six data sets, there are 100 training/test splits and we follow the same scheme
as (Tipping, 2001): our results show averages over the first 10 of those.

5.3 Parameter Selection

A Gaussian kernel is used in the experiments:
K(x,x) = exp(—7 [| x =" ||?). (48)

The parameters for different approaches are as follows:

Standard SVM: For the USPS data set, we use the same parameters as in (Scholkopf
and Smola, 2002): C' = 10 and v = 1/128. For the other data sets, we use the parameters
provided by Gunnar Rétsch, which are shown on the same website where these data sets
are downloaded.”

RSVM and MRSVM: We perform 5-fold cross validation on the training set to select
parameters for the RSVM. MRSVM uses the same parameters as the RSVM.

RS method: The RS method uses the same kernel parameter as the standard SVM,
since it aims to simplify the standard SVM solution.

SLMC and MRS: In our experiments, they use exactly the same parameters as the
standard SVM on all the data sets.

RVM: The results for the RVM are taken directly from (Tipping, 2001), where 5-fold
cross validation was performed for parameter selection.

5.4 Experimental Settings

For each data set, first a standard SVM is trained with the LIBSVM software.!® (For the
USPS, ten SVMs are built, each trained to separate one digit from all others). Then the
other approaches are applied. The ratio N,/Ngy varies from 5% to 10%.

For the RSVM, we use the implementation contained in the LIBSVM Tools.!!

9. See http://ida.first.fraunhofer.de/projects/bench
10. From http://www.csie.ntu.edu.tw/"cjlin/libsvm
11. From http://www.csie.ntu.edu.tw/ " cjlin/libsvmtools

615

WU, SCHOLKOPF AND BAKIR

For the RS method, there is still no standard or widely accepted implementation, so we
try three different ones: a program written by ourselves, the code contained in the machine
learning toolbox SPIDER,'? and the code contained in the statistical pattern recognition
toolbox STPRTOOL.'3 For each data set, we apply these three implementations and select
the best one corresponding to the minimal value of the objective function (4).

5.5 Numerical Results

Experimental results are shown in Table 1, where the initial XVs of the SLMC are randomly
selected from the training data. In Table 1, Ngy stands for the number of support vectors
(SVs) of the standard SVM, N, represents the number of XVs of other sparse learning
algorithms.

’ Data Set \ USPS \ Banana \ Breast Cancer \ Titanic \ Waveform \ German \ Image ‘
SVM Ngy 2683 86.7 112.8 70.6 158.9 408.2 172.1
Error(%) 4.3 11.8 28.6 22.1 9.9 22.5 2.8
RS 4.9 39.4 28.8 374 9.9 22.9 37.6
N./Ngy MRS 4.9 27.6 28.8 23.9 10.0 22.5 19.4
=5% RSVM 11.6 29.9 29.5 24.5 15.1 23.6 23.6
MRSVM 11.5 28.1 29.4 24.8 14.7 23.9 20.7
SLMC 4.9 16.5 27.9 26.4 9.9 22.3 5.2
RS 4.7 21.9 27.9 26.6 10.0 22.9 18.3
N./Ngy MRS 4.8 17.5 29.0 22.6 9.9 22.6 6.9
=10% RSVM 8.2 17.5 31.0 22.9 11.6 24.5 14.2
MRSVM 8.0 16.9 30.3 23.9 11.8 23.7 12.7
SLMC 4.7 11.0 27.9 224 9.9 22.9 3.6
RVM N./Nsv(%) | 11.8 13.2 5.6 92.5 9.2 3.1 20.1
Error(%) 5.1 10.8 29.9 23.0 10.9 22.2 3.9

Table 1: Results on seven classification benchmarks. The test error rates of each algorithm
are presented. The Ngy for the last six data sets are the averages over 10 train-
ing/test splits. The best result in each group is shown in boldface. The number
of XVs of the RVM is not chosen a priori, but comes out as a result of training.
So for the RVM, the ratio N,/Ngy is given in order to compare it with other
algorithms. For each data set, the result of the RVM is shown in boldface if it is
the best compared to the other sparse learning algorithms.

From Table 1, it can be seen the classification accuracy of SLMC is comparable with
the full SVM when N, /Ngy = 0.1.

Table 1 also illustrates that SLMC outperforms the other sparse learning algorithms in
most cases. Also the SLMC usually improves the classification results of the RS method.
In some cases the improvement is large such as on Banana and Image data sets.

When comparing MRS with RS, and MRSVM with RSVM, the results in Table 1 demon-
strate that in most cases MRS beats RS, and similarly, MRSVM usually outperforms RSVM

12. From http://www.kyb.mpg.de/bs/people/spider
13. From http://cmp.felk.cvut.cz/ xfrancv /stprtool

616

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

a little. This means that for a given set of XVs, computing the expansion coefficients ac-
cording to (45) is a good choice.

5.6 Some Implementation Details

In table 1, we report the results obtained by random initialization. The K-means algorithm
has also been tried to choose the initial XVs and resulting classification results are similar.
To illustrate this quantitatively, in table 2, we present the results obtained by using the
K-means algorithm for initialization.

’ Data Set \ USPS \ Banana | Breast Cancer \ Titanic | Waveform \ German \ Image
N./Ngy | random 4.9 16.5 27.9 26.4 9.9 22.3 5.2
=5% k-means | 4.9 16.2 26.8 24.4 9.9 22.7 6.0
N./Ngy | random 4.7 11.0 27.9 22.4 9.9 22.9 3.6
=10% | k-means | 4.6 10.9 27.3 23.2 9.9 22.7 3.8

Table 2: Results of the SLMC algorithm, obtained by random initialization and k-means
initialization.

In our proposed approach, we need to compute the inverse of K* (see for example (45)).
Theoretically if the Gaussian kernel is used and z;, 1 < ¢ < N,, are different from each
other, then K? should be full rank, whose inverse can be computed without any problems.
However in experiments, we do observe the cases where K* was ill conditioned. But we find
out the reason for this is that there are some duplicated data points in the data sets, which
are accidentally selected as the initial XVs. For example, in the first training set of the
Image data set, the first and the 521st data point are exactly the same. So in experiments,
we remove the duplicated points as a preprocessing step.

5.7 Some Results on XVs

It is known that the XVs of standard SVM are support vectors, which lie near the classi-
fication boundary. Here we give two examples to illustrate what the XVs of SLMC look
like.

Example 1. Building an SVM involves solving problem (20)—(22), while building an
SLMC is to solve the same problem plus one more constraint (23). If we want to build
an SLMC with the same number of XVs as a standard SVM, namely N, = Ngy, then
the optimal solution of problem (20)—(22) is also a global optimal solution of problem (20)—
(23), since it satisfies all the constraints. So in this special case, the support vectors of the
standard SVM are also an optimal choice of XVs for SLMC.

Example 2. On the USPS data set, we built an SVM on training data with v = 1/128,
C = 10 to separate digit '3’ from digit ’8’. The resulting SVM has 116 SVs and a test error
rate of 1.8%. Then we built an SLMC with the same v and C, while Nz = 12 (i.e. about
10% of the number of SVs). The resulting SLMC also has a test error rate of 1.8%. As
shown in Figure 1, the images of the 12 XVs produced by SLMC approach look like digits.

617

WU, SCHOLKOPF AND BAKIR

MEHE
KEIAN
MEE b

Figure 1: Images of XVs for separating '3’ and ’8’.

5.8 Training Time of SLMC

Building an SLMC is a gradient based process, where each iteration consists of computing
the ¢.(x;), 1 < i < N, training a linear SVM over {¢.(x;),%:}¥,,'* and then computing
the gradient VW (Z).

Let Tsyar(N,d) denote the time complexity of training a linear SVM over a data set
containing N d-dimensional vectors, then the time complexity of training an SLMC is

O(n x (NN.d + Tsy (N, N,) + N2 + N2d)),

where n is the number of iterations of the SLMC training process. In experiments, we find
that the SLMC algorithm requires 20-200 iterations to converge.

We cannot directly compare the training time of SLMC with RS methods and RVM
(relevance vector machine), because we used C++ to implement our approach, while the
publicly available code of RS methods and the RVM is written in Matlab. Using these
implementations and a personal computer with a Pentium 4 CPU of 3GHz, one gets the
following numbers: On the USPS data set, SLMC takes 6.9 hours to train, while the RS
method takes 2.3 hours. On the Banana data set, SLMC training is about 1.5 seconds, and
RVM training is about 5 seconds.

Training an SLMC is time consuming on large data sets. However in practice, once the
training is finished, the trained KM will be put into use processing large amount of test
data. For applications where processing speed is important, such as real time computer
vision, sparse KMs can be of great value. This is the reason why several SKLLAs have been
developed although they are more expensive than the standard SVM algorithm.

Furthermore, some kernel learning algorithms are not sparse at all, such as kernel ridge
regression, KFD, KPCA, which means that all the training data need to be saved as the XVs
in the resulting KMs trained by these algorithms. Hence building sparse versions of these
algorithms can not only accelerate the evaluation of the test data, but also dramatically

14. Equivalently we can build an SVM with the kernel function K. over {x, yi}f\le. But this is much slower
because it is time consuming to compute K.(-,-) defined by (40).

618

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

reduce the space needed for storing the trained KM. An example of this will be given in
appendix A.

6. Conclusions

We present a direct method to build sparse kernel learning algorithms. There are mainly
two advantages of this method: First, it can be applied to sparsify many current kernel
learning algorithms. Second it simultaneously considers the sparseness and the performance
of the resulting KM. Based on this method we propose an approach to build sparse large
margin classifiers, which essentially finds a discriminating subspace F, of the feature space
F. Experimental results indicate that this approach often exhibits a better classification
accuracy, at comparable sparsity, than the sparse learning algorithms to which we compared.

A by-product of this paper is a method for calculating the expansion coefficients of
SVMs for given XVs. Based on this method we proposed a modified version of the RS
method and the RSVM. Experimental results show that these two modified algorithms can
improve the classification accuracy of their counterparts. One could also try this method
on other algorithms such as the RVM.

Possible future work may include applying the proposed method to other kernel learning
algorithms and running the direct method greedily to find the XVs one after another in
order to accelerate the training procedure.

Acknowledgments

We would like to acknowledge the anonymous reviewers for their comments that significantly
improved the quality of the manuscript.

Appendix A. Sparse KFD

We have derived the SLMC algorithm as an example of our direct sparse learning approach.
Here we will show another example to build sparse KFD (Mika et al., 2003).

In the KFD algorithm, we need to consider the following Rayleigh quotient maximization
problem (Schélkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).1°

wlAw

max 3
weF wBw + i ||w]

(49)

In (49), A and B are respectively the between-class and within-class variances of the training
data in the feature space F, while p is a regularization parameter. It can be seen that both
A and B are positive definite.

15. As mentioned before, convex formulations have been proposed for the KFD (Mika et al., 2003; Suykens
et al., 2002). Here we only consider the traditional non-convex formulation whose solution can be easily
obtained via eigen decomposition. This also illustrates that our method can also be applied to non-convex
optimization problems in some special cases.

619

WU, SCHOLKOPF AND BAKIR

The following is an equivalent form of (49)

min —w' Aw, (50)
weF
subject to w' Bw = 1, (51)

where B =B + pI, implying that B is strictly positive definite.
Following our proposed approach, in order to build sparse KFD (SKFD), we have to
solve the following problem:

min ~w' Aw, (52)
weF,BeRNz, ZeRIX Nz
subject to w'Bw = 1, (53)
N
w=> ¢(z)8 (54)
i=1
Substituting (54) into (52) and (53), we have
: T Az
min —-B A*Q3, 55
BERN= ZeRIX Nz p p (55)
subject to B'B*B' =1, (56)

where A% = (¢(Z))TA(¢(Z)) and B* = (¢(Z)) "B(4(Z)), where with a little abuse of
symbols, we use ¢(Z) to denote the matrix [¢(z1),...,d(zn.)]. Note that in the problem
(55)—(56), A* € RN=*N= is positive definite, while B> € RY=*"= is strictly positive definite.

As before, we define the marginal function W (Z) as the minimal value of the following
optimization problem:

. TAz
m -3 A*g3, 57
ﬁGRHIlVZ ()
subject to B8'B*B" =1. (58)

Note the above problem is the same as the problem (55)-(56) except that in the above
problem, Z is fixed rather than variable.

Now we need to consider how to compute W(Z) and VW (Z). To compute the function
value W(Z), we need to solve the problem (57)-(58). By the Lagrange multiplier method,
this problem can be solved by solving the following unconstrained optimization problem:

min J(8,)) = —-BTA*B+A\(B'B*B" - 1), (59)
BERNz AeR
with Lagrange multiplier A € R.
The derivative of J(8,\) with respect to 3 and A must vanish, leading to

A*3 = \B*j3, (60)
B BB =1. (61)
Equation (60) shows that 3 should be an eigenvector of the matrix (B#)~'A# and A should
be the corresponding eigenvalue. Left multiplying both sides of equation (60) by @' and

using (61), we have
BTA?B =\ (62)

620

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

Since —B"T A*B is the objective function (57) we are minimizing, we can see that its mini-
mal value should equal the negative of the largest eigenvalue of (B*)~'A*. Therefore the
function value W(Z) is obtained.

Let B and X denote the optimal solution and the corresponding Lagrange multiplier of
problem (57)-(58), as derived above, \ is the largest eigenvalue of (B*)"!A® and 3 is the
corresponding eigenvector multiplied by a constant such that equation (61) is satisfied.

As mentioned above, B? is strictly positive definite. Here we assume that that there
is an unique eigenvector corresponding to A. As equation (58) is the only constraint of
problem (57)-(58), the optimal solution 3 is Mangasarian-Fromovitz regular. And it is
straightforward to verify that the set of feasible solutions S(Z) is uniformly compact if B*
is strictly positive definite. Therefore according to lemma 1, the derivative of W (Z) with
respect to z,,, which denotes the v-th component of vector z,, 1 < u < N,,1 < v < d,
exists and can be computed as follows:

OW(Z) .TOA* .

__- OB -
——8' - —B+28'
0%y

o (63)

OZ

Now that both the function value W (Z) and the gradient VIW(Z) can be computed, the
(local) optimum of the problem (52)—(54) can be computed by the gradient based algorithm.

After obtaining the XVs z; by solving the problem (52)—(54), we can take the solution
B; of this problem as the expansion coefficients. However we can not get the bias b for
the resulting KM in this way (c.f equation (1)). As mentioned before, having z;, we can
apply our proposed method that the expansion coefficients and the bias can be calculated
by solving the problem (37)—(39).

Experimental results on six classification benchmarks for the proposed SKFD algorithm
are provided in table 3.

’ Data Set \ Banana \ Breast Cancer \ Titanic \ Waveform \ German \ Image ‘
SVM Ngy 86.7 112.8 70.6 158.9 408.2 172.1
Error(%) 11.8 28.6 22.1 9.9 22.5 2.8
KFD N, 400 200 150 400 700 1300
Error(%) 10.8 25.8 23.2 9.9 23.7 3.3
RS 21.9 27.9 26.6 10.0 22.9 18.3
N./Ngy MRS 17.5 29.0 22.6 9.9 22.6 6.9
= 10% RSVM 17.5 31.0 22.9 11.6 24.5 14.2
MRSVM 16.9 30.3 23.9 11.8 23.7 12.7
SKFD 10.8 25.5 23.5 9.9 23.5 4.0

Table 3: Results on six classification benchmarks. The SKFD is initialized with the k-
means algorithm. The best results among the sparse learning algorithms are in
boldface. Similarly as before, the results reported here are the averages over the
first 10 training/test splits, except for the KFD algorithm, whose results are taken
directly from (Scholkopf and Smola, 2002), which are the averages over all the 100
training/test splits. For the KFD algorithm, the number of expansion vectors NV,
is the same as the number of training data since KFD is not sparse at all.

621

WU, SCHOLKOPF AND BAKIR

The results presented in table 3 validate the effectiveness of the proposed SKFD algo-
rithm. Furthermore, the original KFD algorithm is not sparse all all, i.e. all the training
data need to be stored as the XVs. Therefore the proposed SKFD algorithm not only accel-
erates the test phase, but also significantly reduces the space needed for storing the resulting
KM. For example, the Banana data set contains 400 training data, implying that on average
only 86.7 x 10% = 8.7 XVs need to stored in the resulting KM trained by the SKFD, saving
about 1 — 8.7/400 = 97.8% storage compared with the orignial KFD algorithm.

Appendix B. Formal Definitions of the Two Conditions in Lemma 1

For each Z € R™N= let S(Z) denote the feasible set of problem (16)—(18)
S(Z) ={x| gi(x,Z) <0, 1 <i < N,j}N{x | hj(x,Z) =0, 1 <j < Np}.

Definition 3 (Gauvin and Dubeau, 1982) The feasible set S(Z) of problem (16)-(18) is
uniformly compact at Z if there is a neighborhood N(Z) of Z such that the closure of

Uzen(z) S(Z) is compact.

Definition 4 (Mangasarian, 1969) For any Z, a feasible point X € S(Z) of problem (16)-
(18) is said to be Mangasarian-Fromovitz reqular if it satisfies the following Mangasarian-
Fromowitz regularity condition:

1. There exists a vector v such that

v Vgi(%,Z)| g 0, ie{il|gi(xZ)=0}, (64)
v Vihij(x,Z)|,_, = 0, 1<j<Np, (65)

A

2. The gradients {Vxhj(x,Z)|, _., 1 < j < Ny} are linearly independent,

where Vy denotes the gradient with respect to the variables x.

Appendix C. Proof of Corollary 2

Proof The proof is just to verify all the conditions in lemma 1.

First, for the soft margin SVM training problem (37)—(39), it is known that if the kernel
function K »(+,) is strictly positive definite then the problem has an unique solution and
the corresponding Lagrange multipliers are also unique.

Second, it can be seen that at any Z € R¥N= the set of feasible solutions S(Z) is
compact and does not depend on Z, therefore S(Z) is uniformly compact at any Z € R4N=,

Third, obviously the second part of the Mangasarian-Fromovitz regularity condition
holds since there is only one equality constraint. Now we prove that the first part of
the Mangasarian-Fromovitz regularity condition also holds by constructing a vector v =
[v1,...,un]" € RN that satisfies both (64) and (65). For ease of description, we partition
the index set {1,..., N} into the following three subsets according to o (1 < i < N),
which are the solution of problem (37)-(39): S; = {i| & =0}, So = {i | of = C} and
S3 = {i| 0 < af < C}. Furthermore, for any vector t = [t1,...,tx]" € RY, we use ts,
(1 <k < 3) to denote the sub-vector of t that is composed of ¢; for i € S, 1 < k < 3.

622

A DIRECT METHOD FOR BUILDING SPARSE KERNEL LEARNING ALGORITHMS

First, to make (64) hold, we can simply assign an arbitrary positive value to v; if i € Sy,
and an arbitrary negative value to v; if j € Sp. To make (65) true, we distinguish two cases:
Case 1, |S3] > 0. In this case, the vector v, can be easily computed as

_ __Yss s
Vs3 = ViYi,

B 2
153 ll” se570s,

where y = [y1,. .. yN}T. The above equation results in vy = 0, which is the same as (65).

Case 2, |S3| = 0. In this case, all the resulting support vectors correspond to «; for
i € S3, which come from both classes according to the assumptions in corollary 2. Therefore
the left side of equation (65) equals

v'y Z%‘%Jr Z viYi + Z ViYi

1€S1 1€8S2, y;>0 1€S2, ¥;<0
= E ViY; + Z Vi — Z Vj. (66)
1€S] i€S2, ;>0 1€Sa, y;<0

Recall that we construct v such that v; < 0 for i € Sp. So if vy = 0, equation (65) already
holds. If vy > 0, we can always decrease the values (or equivalently, increase the absolute
values) of v; in the second term of equation (66) to make v'y = 0, while at the same time
to keep v; < 0 for i € Sy so that (64) still holds. Similarly, if vy < 0, we can decrease the
values of v; in the third term of equation (66).

Thus the first part of the Mangasarian-Fromovitz regularity condition also holds. Hence
the optimal solution of problem (37)-(39) is Mangasarian-Fromovitz regular.

Therefore all the conditions in lemma 1 are satisfied and (46) follows from (19) since the
constraints of problem (37)-(39) do not depend on Z, which means both the second and
the third terms in (19) are 0. []

References

K. P. Bennett. Combining support vector and mathematical programming methods for
classification. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods, pages 307-326. The MIT Press, Cambridge MA, 1999.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford,
UK, 1995.

C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Proc. 13th
International Conference on Machine Learning, pages 71-77. Morgan Kaufmann, 1996.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1-3):131-159, 2002.

J. Gauvin and F. Dubeau. Differential properties of the marginal function in mathematical
programming. Mathematical Programming Study, 19:101-119, 1982.

623

WU, SCHOLKOPF AND BAKIR

G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax
approach to classification. Journal of Machine Learning Research, 3:555-582, 2002.

Y. Lee and O. L. Mangasarian. RSVM: reduced support vector machines. In CD Proceedings
of the First SIAM International Conference on Data Mining, Chicago, 2001.

K. Lin and C. Lin. A study on reduced support vector machines. IEEE Transactions on
Neural Networks, 14:1449-1459, 2003.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Math. Programming, 45(3, (Ser. B)):503-528, 1989.

O. L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, 19609.

S. Mika, G. Réatsch, J. Weston, B. Scholkopf, A. J. Smola, and K.-R. Mueller. Constructing
descriptive and discriminative non-linear features: Rayleigh coefficients in kernel feature
spaces. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628,
2003.

P. B. Nair, A. Choudhury, and A. J. Keane. Some greedy learning algorithms for sparse
regression and classification with Mercer kernels. Journal of Machine Learning Research,
3:781-801, 2002.

B. Scholkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, MA,
2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural Information Processing
Systems 18, pages 1259-1266. MIT Press, Cambridge, MA, 2006.

I. Steinwart. Sparseness of support vector machine. Journal of Machine Learning Research,
4:1071-1105, 2003.

J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle. Least
Squares Support Vector Machines. World Scientific, Singapore, 2002.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211-244, 2001.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

M. Wu, B. Scholkopf, and G. Bakir. Building sparse large margin classifiers. In L. D. Raedt
and S. Wrobel, editors, Proc. 22th International Conference on Machine Learning, pages
1001-1008. ACM, 2005.

624

