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Abstract

We determine the asymptotic behaviour of the function computed by support vector machines
(SVM) and related algorithms that minimize a regularized empirical convex loss function in the
reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where the number
of examples tends to infinity, the bandwidth of the Gaussian kernel tends to 0, and the regular-
ization parameter is held fixed. Non-asymptotic convergence bounds to this limit in theL2 sense
are provided, together with upper bounds on the classification error that is shown to converge to
the Bayes risk, therefore proving the Bayes-consistency ofa variety of methods although the reg-
ularization term does not vanish. These results are particularly relevant to the one-class SVM, for
which the regularization can not vanish by construction, and which is shown for the first time to be
a consistent density level set estimator.

Keywords: regularization, Gaussian kernel RKHS, one-class SVM, convex loss functions, kernel
density estimation

1. Introduction

Givenn independent and identically distributed (i.i.d.) copies(X1,Y1), . . . ,(Xn,Yn) of a random vari-
able(X,Y) ∈ R

d ×{−1,1}, we study in this paper the limit and consistency of learning algorithms
that solve the following problem:

argmin
f∈Hσ

{
1
n

n

∑
i=1

φ(Yi f (Xi))+λ‖ f ‖2
Hσ

}
, (1)
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VERT AND VERT

whereφ : R → R is a convex loss function andHσ is the reproducing kernel Hilbert space (RKHS)
of the normalized Gaussian radial basis function kernel (denoted simply Gaussian kernel below):

kσ(x,x′) :=
1

(√
2πσ

)d exp

(−‖x−x′ ‖2

2σ2

)
, σ > 0 . (2)

This framework encompasses in particular the classical support vector machine (SVM) (Boser et al.,
1992) whenφ(u) = max(1−u,0) (Theorem 6). Recent years have witnessed important theoretical
advances aimed at understanding the behavior of such regularized algorithms whenn tends to in-
finity and λ decreases to 0. In particular the consistency and convergence rates of the two-class
SVM (see, e.g., Steinwart, 2002; Zhang, 2004; Steinwart and Scovel, 2004, and references therein)
have been studied in detail, as well as the shape of the asymptotic decision function (Steinwart,
2003; Bartlett and Tewari, 2004). The case of more general convex loss functions has also attracted
a lot of attention recently (Zhang, 2004; Lugosi and Vayatis, 2004; Bartlett et al., 2006), and been
shown to provide under general assumptions consistent procedure for the classification error.

All results published so far, however, study the case whereλ decreases as the number of
points tends to infinity (or, equivalently, whereλσ−d converges to 0 if one uses the classical non-
normalized version of the Gaussian kernel instead of (2)). Although it seems natural to reduce
regularization as more and more training data are available — even more than natural, it is the spirit
of regularization (Tikhonov and Arsenin, 1977; Silverman, 1982) —, there is at least one important
situation whereλ is typically held fixed: the one-class SVM (Schölkopf et al., 2001). In that case,
the goal is to estimate anα-quantile, that is, a subset ofR

d of given probabilityα with minimum
volume. The estimation is performed by thresholding the function output by the one-class SVM,
that is, the SVM (1) with only positive examples; in that caseλ is supposed to determine the quan-
tile level.1 Although it is known that the fraction of examples in the selected region converges to
the desired quantile levelα (Scḧolkopf et al., 2001), it is still an open question whether the region
converges towards a quantile, that is, a region of minimum volume. Besides, most theoretical re-
sults about the consistency and convergence rates of two-class SVM withvanishing regularization
constant do not translate to the one-class case, as we are precisely in theseldom situation where the
SVM is used with a regularization term that does not vanish as the sample size increases.

The main contribution of this paper is to show that Bayes consistency for the classification error
can be obtained for algorithms that solve (1) without decreasingλ, if instead the bandwidthσ of
the Gaussian kernel decreases at a suitable rate. We prove upper bounds on the convergence rate
of the classification error towards the Bayes risk for a variety of functions φ and of distributionsP,
in particular for SVM (Theorem 6). Moreover, we provide an explicit description of the function
asymptotically output by the algorithms, and establish converge rates towardsthis limit for theL2

norm (Theorem 7). In particular, we show that the decision function output by the one-class SVM
converges towards the density to be estimated, truncated at the level 2λ (Theorem 8); we finally show
(Theorem 9) that this implies the consistency of one-class SVM as a density level set estimator for
the excess-mass functional (Hartigan, 1987).

This paper is organized as follows. In Section 2, we set the framework ofthis study and state
the main results. The rest of the paper is devoted to the proofs and some extensions of these results.
In Section 3, we provide a number of known and new properties of the Gaussian RKHS. Section 4

1. While the original formulation of the one-class SVM involves a parameterν, there is asymptotically a one-to-one
correspondence betweenλ andν.
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CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

is devoted to the proof of the main theorem that describes the speed of convergence of the regu-
larizedφ-risk of its empirical minimizer towards its minimum. This proof involves in particular a
control of the sample error in this particular setting that is dealt with in Section 5.Section 6 relates
the minimization of the regularizedφ-risk to more classical measures of performance, in particular
classification error andL2 distance to the limit. These results are discussed in more detail in Sec-
tion 7 for the case of the 1- and 2-SVM. Finally the proof of the consistencyof the one-class SVM
as a density level set estimator is postponed to Section 8.

2. Notation and Main Results

Let (X,Y) be a pair of random variables taking values inR
d ×{−1,1}, with distributionP. We

assume throughout this paper that the marginal distribution ofX has a densityρ : R
d → R with

respect to the Lebesgue measure, and that its support is included in a compact setX ⊂ R
d. Let η :

R
d → [0,1] denote a measurable version of the conditional distribution ofY = 1 given X. The

function 2η−1 then corresponds to the so-calledregression function.
The normalized Gaussian radial basis function (RBF) kernelkσ with bandwidth parameterσ > 0

is defined for any(x,x′) ∈ R
d ×R

d by:2

kσ(x,x′) :=
1

(√
2πσ

)d exp

(−‖x−x′ ‖2

2σ2

)
,

the corresponding reproducing kernel Hilbert space (RKHS) is denoted byHσ, with associated
norm‖ .‖Hσ . Moreover let

κσ := ‖kσ ‖L∞ = 1/
(√

2πσ
)d

. (3)

Several useful properties of this kernel and its RKHS are gathered in Section 3.
Denoting byM the set of measurable real-valued functions onR

d, we define several risks for
functions f ∈M :

• The classification error rate, usually ref

R( f ) := P(sign( f (X)) 6= Y) ,

and the minimum achievable classification error rate overM is called the Bayes risk:

R∗ := inf
f∈M

R( f ).

• For a scalarλ > 0 fixed throughout this paper and a convex functionφ : R → R, theφ-risk
regularized by the RKHS norm is defined, for anyσ > 0 and f ∈ Hσ, by

Rφ,σ ( f ) := EP [φ(Y f (X))]+λ‖ f ‖2
Hσ

,

and the minimum achievableRφ,σ-risk overHσ is denoted by

R∗
φ,σ := inf

f∈Hσ
Rφ,σ ( f ) .

2. We refer the reader to Section 3.2 for a brief discussion on the relationbetween normalized/unnormalized Gaussian
kernel.
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Furthermore, for any realr ≥ 0, we know thatφ is Lipschitz on[−r, r], and we denote byL(r)
the Lipschitz constant of the restriction ofφ to the interval[−r, r]. For example, for the
hinge lossφ(u) = max(0,1−u) one can takeL(r) = 1, and for the squared hinge lossφ(u) =
max(0,1−u)2 one can takeL(r) = 2(r +1).

• Finally, theL2-norm regularizedφ-risk is, for any f ∈M :

Rφ,0( f ) := EP [φ(Y f (X))]+λ‖ f ‖2
L2

where,

‖ f ‖2
L2

:=
Z

Rd
f (x)2dx∈ [0,+∞],

and the minimum achievableRφ,0-risk overM is denoted by

R∗
φ,0 := inf

f∈M
Rφ,0( f ) < ∞

As we shall see in the sequel, the above notation is consistent with the fact that Rφ,0 is the
pointwise limit ofRφ,σ asσ tends to zero.

Each of these risks has an empirical counterpart where the expectation with respect toP is replaced
by an average over an i.i.d. sampleT := {(X1,Y1) , . . . ,(Xn,Yn)}. In particular, the following empir-
ical version ofRφ,σ will be used

∀σ > 0, f ∈ Hσ, R̂φ,σ ( f ) :=
1
n

n

∑
i=1

φ(Yi f (Xi))+λ‖ f ‖2
Hσ

Furthermore,f̂φ,σ denotes the minimizer of̂Rφ,σ over Hσ (see Steinwart, 2005a, for a proof of
existence and uniqueness off̂φ,σ).

The main focus of this paper is the analysis of learning algorithms that minimize the empir-
ical φ-risk regularized by the RKHS norm̂Rφ,σ, and their limit as the number of points tends to
infinity and the kernel widthσ decreases to 0 at a suitable rate whenn tends to∞, λ being kept
fixed. Roughly speaking, our main result shows that in this situation, the minimization of R̂φ,σ
asymptotically amounts to minimizingRφ,0. This stems from the fact that the empirical average
term in the definition of̂Rφ,σ converges to its corresponding expectation, while the norm inHσ of a
function f decreases to itsL2 norm whenσ decreases to zero. To turn this intuition into a rigorous
statement, we need a few more assumptions about the minimizer ofRφ,0 and aboutP. First, we
observe that the minimizer ofRφ,0 is indeed well-defined and can often be explicitly computed (the
following lemma is part of Theorem 26 and is proved in Section 6.3):

Lemma 1 (Minimizer of Rφ,0) For any x∈ R
d, let

fφ,0(x) := argmin
α∈R

{
ρ(x) [η(x)φ(α)+(1−η(x))φ(−α)]+λα2} .

Then fφ,0 is measurable and satisfies:

Rφ,0
(

fφ,0
)

= inf
f∈M

Rφ,0( f )
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Second, let us recall the notion of modulus of continuity (DeVore and Lorentz, 1993, p.44):

Definition 2 (Modulus of Continuity) Let f be a Lebesgue measurable function fromR
d to R.

Then its modulus of continuity in the L1-norm is defined for anyδ ≥ 0 as follows

ω( f ,δ) := sup
0≤‖ t ‖≤δ

‖ f (.+ t)− f (.)‖L1 , (4)

where‖ t ‖ is the Euclidean norm of t∈ R
d.

The main result of this paper, whose proof is postponed to Section 4, can now be stated as follows:

Theorem 3 (Main Result) Let σ1 > σ > 0, 0 < p < 2, δ > 0, and let f̂φ,σ denote the minimizer
of theR̂φ,σ risk overHσ, whereφ is assumed to be convex. Assume that the marginal densityρ
is bounded, and let M:= supx∈Rd ρ(x). Then there exist constants(Ki)i=1...4 (depending only
on p, δ, λ, d, and M) such that the following holds with probability greater than1− e−x over
the draw of the training data

Rφ,0( f̂φ,σ)−R∗
φ,0 ≤ K1L

(√
κσφ(0)

λ

) 4
2+p (1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1
n

) 2
2+p

+K2L

(√
κσφ(0)

λ

)2(
1
σ

)d x
n

+K3
σ2

σ2
1

+K4ω( fφ,0,σ1) ,

(5)

where L(r) still denotes the Lipschitz constant ofφ on the interval[−r, r], for any r> 0.

The first two terms in r.h.s. of (5) bound the estimation error (also called sampleerror) asso-
ciated with the Gaussian RKHS, which naturally tends to be small when the numberof training
data increases and when the RKHS is ’small’, i.e., whenσ is large. As is usually the case in such
variance/bias splittings, the variance term here depends on the dimensiond of the input space. Note
that it is also parametrized by bothp andδ. These two parameters come from the bound (36) on
covering numbers that is used to derive the estimation error bound (31). Both constantsK1 andK2

depend on them, although we do not know the explicit dependency. The third term measures the
error due to penalizing theL2-norm of a fixed function inHσ1 by its‖ .‖Hσ-norm, with 0< σ < σ1.
This is a price to pay to get a small estimation error. As for the fourth term, it is a bound on the
approximation error of the Gaussian RKHS. Note that, onceλ andσ have been fixed,σ1 remains a
free variable parameterizing the bound itself.

From (5), we can deduce theRφ,0-consistency of̂fφ,σ for Lipschitz loss functions, as soon asfφ,0

is integrable,σ = o
(
n−1/(d+ε)) for someε > 0, andσ1 → 0 with σ/σ1 → 0. Now, in order to

highlight the type of convergence rates one can obtain from Theorem 3,let us assume that theφ loss
function is Lipschitz onR (e.g., take the hinge loss), and suppose that for some 0≤ β ≤ 1, c1 > 0,
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and for anyh≥ 0, fφ,0 satisfies the following inequality:3

ω( fφ,0,δ) ≤ c1δβ . (6)

Then the right-hand side of (5) can be optimized w.r.t.σ1, σ, p andδ by balancing the first, third
and fourth terms (the second term having always a better convergence rate than the first one). For
anyε > 0, by choosing:

δ = 1 ,

p = 2− ε
2d+dβ−β

,

σ =

(
1
n

) 2+β
4β+(2+β)d+ε

,

σ1 = σ
2

2+β =

(
1
n

) 2
4β+(2+β)d+ε

,

the following rate of convergence is obtained:

Rφ,0
(

f̂φ,σ
)
−R∗

φ,0 = OP



(

1
n

) 2β
4β+(2+β)d+ε


 .

This shows in particular that, whatever the values ofβ andd, the convergence rate that can be derived
from Theorem 3 is always slower than 1/

√
n, and it gets slower and slower as the dimensiond

increases.
Theorem 3 shows that, whenφ is convex, minimizing thêRφ,σ risk for well-chosen widthσ

is a an algorithm consistent for theRφ,0-risk. In order to relate this consistency with more tradi-
tional measures of performance of learning algorithms, the next theorem shows that under a simple
additional condition onφ, Rφ,0-risk-consistency implies Bayes consistency:

Theorem 4 (RelatingRφ,0-Consistency with Bayes Consistency)If φ is convex, differentiable at0,
with φ′(0) < 0, then for every sequence of functions( fi)i≥1 ∈M ,

lim
i→+∞

Rφ,0( fi) = R∗
φ,0 =⇒ lim

i→+∞
R( fi) = R∗

This theorem results from a more general quantitative analysis of the relationship between the ex-
cessRφ,0-risk and the excessR-risk (Theorem 28), and is proved in Section 6.5. In order to state a
refined version of it in the particular case of the support vector machine algorithm, we first need to
introduce the notion oflow density exponent:

Definition 5 We say that a distribution P with marginal densityρ w.r.t. Lebesgue measure has a
low density exponentγ ≥ 0 if there exists(c2,ε0) ∈ (0,∞)2 such that

∀ε ∈ [0,ε0], P
({

x∈ R
d : ρ(x) ≤ ε

})
≤ c2εγ.

3. For instance, it can be shown that the indicator function of the unit ball inR
d, albeit not continuous, satisfies (6)

with β = 1.
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We are now in position to state a quantitative relationship between the excessRφ,0-risk and the
excessR-risk in the case of support vector machines :

Theorem 6 (Consistency of SVM)Let φ1(α) := max(1−α,0) be the hinge loss function and let
φ2(α) := max(1−α,0)2 be the squared hinge loss function. Then for any distribution P with low
density exponentγ, there exist constant(K1,K2, r1, r2) ∈ (0,∞)4 such that for any f∈ M with an
excess Rφ1,0-risk upper bounded by r1 the following holds:

R( f )−R∗ ≤ K1
(
Rφ1,0( f )−R∗

φ1,0

) γ
2γ+1 ,

and if the excess regularized Rφ2,0-risk upper bounded by r2 the following holds:

R( f )−R∗ ≤ K2
(
Rφ2,2( f )−R∗

φ2,2

) γ
2γ+1 ,

This theorem is proved in Section 7.3. In combination with Theorem 3, it states the consistency of
SVM, and gives upper bounds on the convergence rates, for the first time in a situation where the
effect of regularization does not vanish asymptotically. In fact, Theorem 6 is a particular case of
a more general result (Theorem 29) valid for a large class of convex loss functions. Section 6 is
devoted to the analysis of the general case through the introduction of variational arguments, in the
spirit of Bartlett et al. (2006).

Another consequence of theRφ,0-consistency of an algorithm is theL2 convergence of the func-
tion output by the algorithm to the minimizer of theRφ,0-risk :

Lemma 7 (RelatingRφ,0-Consistency withL2-Consistency) For any f∈M , the following holds:

‖ f − fφ,0‖2
L2
≤ 1

λ
(
Rφ,0( f )−R∗

φ,0

)
.

This result is the third statement of Theorem 26, proved in Section 6.3. It is particularly relevant
to study algorithms whose objective is not binary classification. Consider for example the one-
class SVM algorithm, which served as the initial motivation for this paper. Thenwe can state the
following result, proved in Section 8.1 :

Theorem 8 (L2-Consistency of One-Class SVM)Let ρλ denote the function obtained after trun-
cating the density:

ρλ(x) :=

{
ρ(x)
2λ if ρ(x) ≤ 2λ,

1 otherwise.
(7)

Let f̂σ denote the function output by the one-class SVM:

f̂σ := arg min
f∈Hσ

1
n

n

∑
i=1

φ( f (Xi))+λ‖ f ‖2
Hσ

.

Then, under the general conditions of Theorem 3, and assuming thatlimh→0 ω(ρλ,h) = 0,

lim
n→+∞

‖ f̂σ −ρλ ‖L2 = 0 , in probability,

for a well-calibrated bandwidthσ.
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In this and the next theorem,well-calibratedrefers to any choice of bandwidthσ that ensuresRφ,0-
consistency, as discussed after Theorem 3. A very interesting by-product of this theorem is the
consistency of the one-class SVM algorithm for density level set estimation,which to the best of
our knowledge has not been stated so far (the proof being postponed toSection 8.2) :

Theorem 9 (Consistency of One-Class SVM for Density Level Set Estimation) Let0< µ< 2λ <
M, let Cµ be the level set of the density functionρ at level µ:

Cµ :=
{

x∈ R
d : ρ(x) ≥ µ

}
,

andĈµ be the level set of2λ f̂σ at level µ:

Ĉµ :=
{

x∈ R
d : f̂σ (x) ≥ µ

2λ

}
,

where f̂σ is still the function output by the one-class SVM. For any distribution Q, for anysubset C
of R

d, define the excess-mass of C with respect to Q as follows:

HQ(C) := Q(C)−µLeb(C) .

Then, under the general assumptions of Theorem 3, and assuming that limh→0 ω(ρλ,h) = 0, we
have

lim
n→+∞

HP(Cµ)−HP

(
Ĉµ

)
= 0 , in probability,

for a well-calibrated bandwidthσ.

The excess-mass functional was first introduced by Hartigan (1987) toassess the quality of
density level set estimators. It is maximized by the true density level setCµ and acts as a risk
functional in the one-class framework. The proof of Theorem 9 is based on the following general
result: if ρ̂ is a density estimator converging to the true densityρ in the L2 sense, then for any
fixed 0< µ < sup

Rd {ρ}, the excess mass of the level set ofρ̂ at levelµ converges to the excess
mass ofCµ. In other words, as is the case in the classification framework, plug-in rules built onL2-
consistent density estimators are consistent with respect to the excess mass.

3. Some Properties of the Gaussian Kernel and its RKHS

This section presents known and new results about the Gaussian kernelkσ and its associated RKHSHσ,
that are useful for the proofs of our results. They concern the explicit description of the RKHS norm
in terms of Fourier transforms, its relation with theL2-norm, and some approximation properties
of convolutions with the Gaussian kernel. They make use of basic properties of Fourier transforms
which we now recall (and which can be found in e.g. Folland, 1992, Chap.7, p.205).
For any f in L1(R

d), its Fourier transformF [ f ] : R
d → R is defined by

F [ f ] (ω) :=
Z

Rd
e−i<x,ω> f (x)dx .

If in additionF [ f ] ∈ L1(R
d), f can be recovered fromF [ f ] by the inverse Fourier formula:

f (x) =
1

(2π)d

Z

Rd
F [ f ] (ω)ei<x,ω>dω .
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Finally Parseval’s equality relates theL2-norm of a function and its Fourier transform iff ∈L1(R
d)∩

L2(R
d) andF [ f ] ∈ L2(R

d):

‖ f ‖2
L2

=
1

(2π)d ‖F [ f ] ‖2
L2

. (8)

3.1 Fourier Representation of the Gaussian RKHS

For anyu∈ R
d, the expressionkσ(u) denoteskσ(0,u), with Fourier transform known to be:

F [kσ] (ω) = e
−σ2‖ω‖2

2 . (9)

The general study of translation invariant kernels provides an accurate characterization of their
associated RKHS in terms of the their Fourier transform (see, e.g., Matacheand Matache, 2002). In
the case of the Gaussian kernel, the following holds :

Lemma 10 (Characterization ofHσ) LetC0(Rd) denote the set of continuous functions onR
d that

vanish at infinity. The set

Hσ :=

{
f ∈ C0(Rd) : f ∈ L1(R

d) and
Z

Rd
|F [ f ] (ω)|2e

σ2‖ω‖2

2 dω < ∞
}

(10)

is the RKHS associated with the Gaussian kernel kσ, and the associated dot product is given for
any f,g∈ Hσ by

〈 f ,g〉Hσ
=

1
(2π)d

Z

Rd
F [ f ] (ω)F [g] (ω)∗e

σ2‖ω‖2

2 dω , (11)

where a∗ denotes the conjugate of a complex number a. In particular the associatednorm is given
for any f ∈ Hσ by

‖ f ‖2
Hσ

=
1

(2π)d

Z

Rd
|F [ f ] (ω)|2e

σ2‖ω‖2

2 dω . (12)

This lemma readily implies several basic facts about Gaussian RKHS and their associated norms
summarized in the next lemma. In particular, it shows that the family(Hσ)σ>0 forms a nested
collection of models, and that for any fixed function, the RKHS norm decreases to theL2-norm as
the kernel bandwidth decreases to 0.

Lemma 11 The following statements hold:

1. For any0 < σ < τ,
H τ ⊂ Hσ ⊂ L2(R

d) . (13)

Moreover, for any f∈ H τ,
‖ f ‖H τ ≥ ‖ f ‖Hσ ≥ ‖ f ‖L2 (14)

and

0≤ ‖ f ‖2
Hσ

−‖ f ‖2
L2
≤ σ2

τ2

(
‖ f ‖2
H τ

−‖ f ‖2
L2

)
. (15)

2. For anyτ > 0 and f ∈ H τ,
lim
σ→0

‖ f ‖Hσ = ‖ f ‖L2 . (16)
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3. For anyσ > 0 and f ∈ Hσ,

‖ f ‖L∞ ≤√
κσ‖ f ‖Hσ . (17)

Proof Equations 13 and 14 are direct consequences of the characterization of the Gaussian RKHS (12)
and of the observation that

0 < σ < τ =⇒ e
τ2‖ω‖2

2 ≥ e
σ2‖ω‖2

2 ≥ 1.

In order to prove (15), we derive from (12) and Parseval’s equality(8):

‖ f ‖2
Hσ

−‖ f ‖2
L2

=
1

(2π)d

Z

Rd
|F [ f ] (ω)|2

[
e

σ2‖ω‖2

2 −1

]
dω . (18)

For any 0≤ u≤ v, we have(eu−1)/u≤ (ev−1)/v by convexity ofeu, and therefore:

‖ f ‖2
Hσ

−‖ f ‖2
L2
≤ 1

(2π)d

σ2

τ2

Z

Rd
|F [ f ] (ω)|2

[
e

τ2‖ω‖2

2 −1

]
dω, (19)

which leads to (15). Equation 16 is now a direct consequence of (15). Finally, (17) is a classical
bound derived from the observation that, for anyx∈ R

d,

| f (x) | =
∣∣〈 f ,kσ〉Hσ

∣∣≤ ‖ f ‖Hσ‖kσ ‖Hσ =
√

κσ‖ f ‖Hσ .

3.2 Links with the Non-Normalized Gaussian Kernel

It is common in the machine learning literature to work with a non-normalized version of the Gaus-
sian RBF kernel, namely the kernel:

k̃σ(x,x′) := exp

(−‖x−x′ ‖2

2σ2

)
. (20)

From the relationkσ = κσk̃σ (remember thatκσ is defined in Equation 3), we deduce from the
general theory of RKHS thatHσ = H̃σ and

∀ f ∈ Hσ, ‖ f ‖H̃σ
=
√

κσ‖ f ‖Hσ . (21)

As a result, all statements aboutkσ and its RKHS easily translate into statements aboutk̃σ and its
RKHS. For example, (14) shows that, for any 0< σ < τ and f ∈ H̃ τ,

‖ f ‖H̃ τ
≥
√

κτ

κσ
‖ f ‖H̃σ

=
(σ

τ

) d
2 ‖ f ‖H̃σ

,

a result that was shown recently (Steinwart et al., 2004, Corollary 3.12).
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3.3 Convolution with the Gaussian Kernel

Besides its positive definiteness, the Gaussian kernel is commonly used as akernel for function
approximation through convolution. Recall (Folland, 1992) that the convolution between two func-
tions f ,g∈ L1

(
R

d
)

is the functionf ∗g∈ L1
(
R

d
)

defined by

f ∗g(x) :=
Z

Rd
f (x−u)g(u)du

and that it satisfies (see e.g. Folland, 1992, Chap. 7, p.207)

F [ f ∗g] = F [ f ]F [g] . (22)

The convolution with a Gaussian RBF kernel is a technically convenient toolto map any square in-
tegrable function to a Gaussian RKHS. The following lemma (which can also be found in Steinwart
et al., 2004) gives several interesting properties on the RKHS andL2 norms of functions smoothed
by convolution:

Lemma 12 For anyσ > 0 and any f∈ L1
(
R

d
)
∩L2

(
R

d
)
,

kσ ∗ f ∈ H√2σ

and

‖kσ ∗ f ‖H√2σ
= ‖ f ‖L2 . (23)

For anyσ,τ > 0 that satisfy0 < σ ≤
√

2τ, and for any f∈ L1
(
R

d
)
∩L2

(
R

d
)
,

kτ ∗ f ∈ Hσ

and

‖kτ ∗ f ‖2
Hσ

−‖kτ ∗ f ‖2
L2
≤ σ2

2τ2‖ f ‖2
L2

. (24)

Proof Using (12), then (22) and (9), followed by Parseval’s equality (8), wecompute:

‖kσ ∗ f ‖2
H√2σ

=
1

(2π)d

Z

Rd
|F [kσ ∗ f ] (ω)|2eσ2‖ω‖2

dω

=
1

(2π)d

Z

Rd
|F [ f ] (ω)|2e−σ2‖ω‖2

eσ2‖ω‖2
dω

=
1

(2π)d

Z

Rd
|F [ f ] (ω)|2dω

= ‖ f ‖2
L2

.

This proves the first two statements of the lemma.
Now, because 0< σ ≤

√
2τ, previous first statement and (13) imply

kτ ∗ f ∈ H√2τ ⊂ Hσ ,
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and, using (15) and (23),

‖kτ ∗ f ‖2
Hσ

−‖kτ ∗ f ‖2
L2
≤ σ2

2τ2

(
‖kτ ∗ f ‖2

H√2τ
−‖kτ ∗ f ‖2

L2

)

≤ σ2

2τ2‖kτ ∗ f ‖2
H√2τ

=
σ2

2τ2‖ f ‖2
L2

.

A final result we need is an estimate of the approximation properties of convolution with the
Gaussian kernel. Convolving a function with a Gaussian kernel with decreasing bandwidth is known
to provide an approximation of the original function under general conditions. For example, the as-
sumptionf ∈ L1(R

d) is sufficient to show that‖kσ ∗ f − f ‖L1 goes to zero whenσ goes to zero (see,
for example Devroye and Lugosi, 2000, page 79). We provide below a more quantitative estimate
for the rate of this convergence under some assumption on the modulus of continuity of f (see
Definition 2), using methods from DeVore and Lorentz (1993, Chap.7, par.2, p.202).

Lemma 13 Let f be a bounded function in L1(R
d). Then for allσ > 0, the following holds:

‖kσ ∗ f − f ‖L1 ≤ (1+
√

d)ω( f ,σ) ,

whereω( f , .) denotes the modulus of continuity of f in the L1 norm.

Proof Using the fact thatkσ is normalized, then Fubini’s theorem and then the definition ofω, the
following can be derived

‖kσ ∗ f − f ‖L1 =
Z

Rd

∣∣∣∣
Z

Rd
kσ(t)[ f (x+ t)− f (x)]dt

∣∣∣∣dx

≤
Z

Rd

Z

Rd
kσ(t) | f (x+ t)− f (x)|dtdx

=
Z

Rd
kσ(t)

[
Z

Rd
| f (x+ t)− f (x)|dx

]
dt

≤
Z

Rd
kσ(t)‖ f (.+ t)− f (.)‖L1dt

≤
Z

Rd
kσ(t)ω( f ,‖ t ‖)dt .

Now, using the following subadditivity property ofω (DeVore and Lorentz, 1993, Chap.2, par.7,
p.44):

ω( f ,δ1 +δ2) ≤ ω( f ,δ1)+ω( f ,δ2) , δ1,δ2 > 0 ,

the following inequality can be derived for any positiveλ andδ:

ω( f ,λδ) ≤ (1+λ)ω( f ,δ) .
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Applying this and also Cauchy-Schwarz inequality leads to

‖kσ ∗ f − f ‖L1 ≤
Z

Rd

(
1+

‖ t ‖
σ

)
ω( f ,σ)kσ(t)dt

= ω( f ,σ)

[
1+

1
σ

Z

Rd
‖ t ‖kσ(t)dt

]

≤ ω( f ,σ)

[
1+

1
σ

(
Z

Rd
‖ t ‖2 1

(
√

2πσ)d
e−

‖ t ‖2

2σ2 dt

) 1
2

]

= ω( f ,σ)


1+

1
σ

(
d

∑
i=1

Z

Rd
t2
i

1

(
√

2πσ)d
e−

‖ t ‖2

2σ2 dt

) 1
2




= ω( f ,σ)


1+

1
σ

(
d

∑
i=1

Z

Rd
t2
i

1√
2πσ

e−
t2i

2σ2 dti

) 1
2




= ω( f ,σ)

[
1+

1
σ
√

d

(
Z

Rd
u2 1√

2πσ
e−

u2

2σ2 du

) 1
2

]
.

The integral term is exactly the variance of a Gaussian random variable, namelyσ2. Hence we end
up with

‖kσ ∗ f − f ‖L1 ≤ (1+
√

d)ω( f ,σ) .

4. Proof of Theorem 3

The proof of Theorem 3 is based on the following decomposition of the excessRφ,0-risk for the
minimizer of theR̂φ,σ-risk:

Lemma 14 For any0 < σ <
√

2σ1 and any sample(Xi ,Yi)i=1,...,n, the minimizerf̂φ,σ of R̂φ,σ satis-
fies:

Rφ,0( f̂φ,σ)−R∗
φ,0 ≤

[
Rφ,σ( f̂φ,σ)−R∗

φ,σ
]

+
[
Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0)

]

+
[
Rφ,0(kσ1 ∗ fφ,0)−R∗

φ,0

]
(25)

Proof The excessRφ,0-risk decomposes as follows:

Rφ,0( f̂φ,σ)−R∗
φ,0 =

[
Rφ,0

(
f̂φ,σ
)
−Rφ,σ

(
f̂φ,σ
)]

+
[
Rφ,σ( f̂φ,σ)−R∗

φ,σ
]

+
[
R∗

φ,σ −Rφ,σ(kσ1 ∗ fφ,0)
]

+
[
Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0)

]

+
[
Rφ,0(kσ1 ∗ fφ,0)−R∗

φ,0

]
.
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Note that by Lemma 12,kσ1∗ fφ,0∈H√2σ1
⊂Hσ ⊂L2

(
R

d
)

which justifies the introduction ofRφ,σ(kσ1∗
fφ,0) andRφ,0(kσ1 ∗ fφ,0). Now, by definition of the different risks using (14), we have

Rφ,0
(

f̂φ,σ
)
−Rφ,σ

(
f̂φ,σ
)

= λ
(
‖ f̂φ,σ ‖2

L2
−‖ f̂φ,σ ‖2

Hσ

)
≤ 0,

and
R∗

φ,σ −Rφ,σ(kσ1 ∗ fφ,0) ≤ 0.

Hence, controllingRφ,0( f̂φ,σ)−R∗
φ,0 to prove Theorem 3 boils down to controlling each of the three

terms arising in (25), which can be done as follows:

• The first term in (25) is usually referred to as the sample error or estimation error. The
control of such quantities has been the topic of much research recently, including for exam-
ple Tsybakov (1997); Mammen and Tsybakov (1999); Massart (2000); Bartlett et al. (2005);
Koltchinskii (2003); Steinwart and Scovel (2004). Using estimates of local Rademacher com-
plexities through covering numbers for the Gaussian RKHS due to Steinwartand Scovel
(2004), we prove below the following result

Lemma 15 For anyσ > 0 small enough, let̂fφ,σ be the minimizer of thêRφ,σ-risk on a sample
of size n, whereφ is a convex loss function. For any0< p< 2, δ > 0, and x≥ 1, the following
holds with probability at least1−ex over the draw of the sample:

Rφ,σ
(

f̂φ,σ
)
−R∗

φ,σ ≤ K1L

(√
κσφ(0)

λ

) 4
2+p (1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1
n

) 2
2+p

+K2L

(√
κσφ(0)

λ

)2(
1
σ

)d x
n

,

where K1 and K2 are positive constants depending neither onσ, nor on n.

• The second term in (25) can be upper bounded by

φ(0)σ2

2σ2
1

.

Indeed, using Lemma 12, and the fact thatσ <
√

2σ1, we have

Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0) = λ
[
‖kσ1 ∗ fφ,0‖2

Hσ
−‖kσ1 ∗ fφ,0‖2

L2

]

≤ λσ2

2σ2
1

‖ fφ,0‖2
L2

.

Since fφ,0 minimizesRφ,0, we haveRφ,0
(

fφ,0
)
≤ Rφ,0(0), which leads to‖ fφ,0‖2

L2
≤ φ(0)/λ.

Therefore, we have

Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0) ≤
φ(0)σ2

2σ2
1

.
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• The third term in (25) can be upper bounded by

(2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)
(

1+
√

d
)

ω
(

fφ,0,σ1
)

.

Indeed,

Rφ,0(kσ1 ∗ fφ,0)−Rφ,0( fφ,0)

= λ
[
‖kσ1 ∗ fφ,0‖2

L2
−‖ fφ,0‖2

L2

]
+
[
EP
[
φ
(
Y(kσ1 ∗ fφ,0)(X)

)]
−EP

[
φ
(
Y fφ,0(X)

)]]

= λ
〈
kσ1 ∗ fφ,0− fφ,0,kσ1 ∗ fφ,0 + fφ,0

〉
L2

+EP
[
φ
(
Y(kσ1 ∗ fφ,0)(X)

)
−φ
(
Y fφ,0(X)

)]
.

Now, since‖kσ1 ∗ fφ,0‖L∞ ≤ ‖ fφ,0‖L∞‖kσ1 ‖L1 = ‖ fφ,0‖L∞ , then using Lemma 13, we obtain:

Rφ,0(kσ1 ∗ fφ,0)−Rφ,0( fφ,0) ≤ 2λ‖ fφ,0‖L∞‖kσ1 ∗ fφ,0− fφ,0‖L1

+L
(
‖ fφ,0‖L∞

)
EP
[
|(kσ1 ∗ fφ,0)(X)− fφ,0(X)|

]

≤ (2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)‖kσ1 ∗ fφ,0− fφ,0‖L1

≤ (2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)
(

1+
√

d
)

ω
(

fφ,0,σ1
)

,

whereM := supx∈Rd ρ(x) is supposed to be finite.

Now, Theorem 3 is proved by plugging the last three bounds in (25).

5. Proof of Lemma 15 (Sample Error)

The present section is divided into two subsections: the first one presents the proof of Lemma 15,
and the auxiliary lemmas that are used in it are then proved in the second subsection.

5.1 Proof of Lemma 15

In order to upper bound the sample error, it is useful to work with a set offunctions as “small” as
possible, in a meaning made rigorous below. Although we study algorithms that work on the whole
RKHSHσ a priori, let us first show that we can drastically “downsize” it.

Indeed, recall that the marginal distribution ofP in X is assumed to have a support included
in a compactX ⊂ R

d. The restriction ofkσ to X , denoted bykXσ , is a positive definite kernel
onX (Aronszajn, 1950) with RKHS defined by:

H Xσ :=
{

f|X : f ∈ Hσ
}

, (26)

where f|X denotes the restriction off to X , and RKHS norm:

∀ f X ∈ H Xσ , ‖ f X ‖H Xσ := inf
{
‖ f ‖Hσ : f ∈ Hσ and f|X = f X

}
. (27)

For any f X ∈ H Xσ consider the following risks:

RXφ,σ( f X ) := EP|X

[
φ
(
Y fX (X)

)]
+λ‖ f X ‖2

H Xσ
,

R̂Xφ,σ( f X ) :=
1
n

n

∑
i=1

φ
(
Yi f X (Xi)

)
+λ‖ f X ‖2

H Xσ
.

We first show that the sample error is the same inHσ andH Xσ :
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Lemma 16 Let fXφ,σ and f̂ Xφ,σ be respectively the minimizers of RXφ,σ andR̂Xφ,σ. Then it holds almost
surely that

Rφ,σ
(

fφ,σ
)

= RXφ,σ
(

f Xφ,σ
)

,

Rφ,σ
(

f̂φ,σ
)

= RXφ,σ
(

f̂ Xφ,σ
)

.

From Lemma 16 we deduce that a.s.,

Rφ,σ
(

f̂φ,σ
)
−Rφ,σ

(
fφ,σ
)

= RXφ,σ
(

f̂ Xφ,σ
)
−RXφ,σ

(
f Xφ,σ
)

. (28)

In order to upper bound this term, we use concentration inequalities based on local Rademacher
complexities (Bartlett et al., 2006, 2005; Steinwart and Scovel, 2004). Inthis approach, a crucial role
is played by the covering number of a functional classF under the empiricalL2-norm. Remember
that for a given sampleT := {(X1,Y1) , . . . ,(Xn,Yn)} andε > 0, anε-cover for the empiricalL2 norm
is a family of function( fi)i∈I such that:

∀ f ∈ F ,∃i ∈ I ,

(
1
n

n

∑
j=1

( f (Xj)− fi (Xj))
2

) 1
2

≤ ε .

The covering numberN (F ,ε,L2(T)) is then defined as the smallest cardinal of anε-cover.
We can now mention the following result, adapted to our notation and setting, thatexactly fits

our need.

Theorem 17 (see Steinwart and Scovel, 2004, Theorem 5.8.)For σ > 0, let Fσ be a convex sub-
set ofH Xσ and letφ be a convex loss function. DefineGσ as follows:

Gσ :=
{

gf (x,y) = φ(y f(x))+λ‖ f ‖2
H Xσ

−φ(y fXφ,σ(x))−λ‖ f Xφ,σ ‖2
H Xσ

: f ∈ Fσ

}
. (29)

where fXφ,σ minimizes RXφ,σ overFσ. Suppose that there are constants c≥ 0 and B> 0 such that, for
all g ∈ Gσ,

EP
[
g2]≤ cEP [g] ,

and
‖g‖L∞ ≤ B .

Furthermore, assume that there are constants a≥ 1 and0 < p < 2 with

sup
T∈Zn

logN
(
B−1Gσ,ε,L2(T)

)
≤ aε−p (30)

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that for all n≥ 1 and
all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RXφ,σ( f̂ Xφ,σ) > RXφ,σ( f Xφ,σ)+cpε(n,a,B,c,x)

)
≤ e−x , (31)

where

ε(n,a,B,c, p,x) :=
(

B+B
2p

2+p c
2−p
2+p

)(a
n

) 2
2+p

+(B+c)
x
n

.
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Note that we use the outer probability Pr∗ in (31) because the argument is not necessarily measur-
able. From the inequalities‖ f Xφ,σ ‖2

H Xσ
≤ φ(0)/λ and‖ f̂ Xφ,σ ‖2

H Xσ
≤ φ(0)/λ, we see that it is enough

to take

Fσ =

√
φ(0)

λ
B Xσ , (32)

whereB Xσ is the unit ball ofH Xσ , to derive a control of (28) from Theorem 17. In order to apply this
theorem we now provide uniform upper bounds overGσ for the variance ofg and its uniform norm,
as well as an upper bound on the covering number ofGσ.

Lemma 18 For all σ > 0, for all g∈ Gσ,

EP
[
g2]≤

(
L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2
2
λ

EP [g] . (33)

Let us fix

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) . (34)

Then, the following two lemmas can be derived:

Lemma 19 For all σ > 0, for all g∈ Gσ,

‖g‖L∞ ≤ B. (35)

Lemma 20 For all σ > 0, 0 < p≤ 2, δ > 0, ε > 0, the following holds:

logN (B−1Gσ,ε,L2(T)) ≤ c2σ−((1−p/2)(1+δ))dε−p , (36)

where c1 and c2 are constants that depend neither onσ, nor onε (but they depend on p,δ, d andλ).

Combining now the results of Lemmas 18, 19 and 20 allows to apply Theorem 17 with Fσ defined
by (32), anyp∈ [0,2], and the following parameters:

c =

(
L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2
2
λ

,

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) ,

a = c2σ−((1−p/2)(1+δ))d ,

from which we deduce Lemma 15.
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5.2 Proofs of Auxiliary Lemmas

Proof of Lemma 16Because the support ofP is included inX , the following trivial equality holds:

∀ f ∈ Hσ, EP [φ(Y f (X))] = EP|X

[
φ
(
Y f|X (X)

)]
. (37)

Using first the definition of the restricted RKHS (26), then (37) and (27),we obtain

RXφ,σ
(

f Xφ,σ
)

= inf
f X ∈H Xσ

EP|X

[
φ
(
Y fX (X)

)]
+λ‖ f X ‖H Xσ

= inf
f∈Hσ

EP|X

[
φ
(
Y f|X (X)

)]
+λ‖ f|X ‖H Xσ

= inf
f∈Hσ

EP [φ(Y f (X))]+λ‖ f ‖Hσ

= Rφ,σ
(

fφ,σ
)

,

(38)

which proves the first statement.
In order to prove the second statement, let us first observe that with probability 1, Xi ∈ X for i =

1, . . . ,n, and therefore:

∀ f ∈ Hσ,
1
n

n

∑
i=1

φ(Yi f (Xi)) =
1
n

n

∑
i=1

φ
(
Yi f|X (Xi)

)
, (39)

from which we can conclude, using the same line of proof as (38), that thefollowing holds a.s.:

R̂φ,σ
(

f̂φ,σ
)

= R̂Xφ,σ
(

f̂ Xφ,σ
)

.

Let us now show that this implies the following equality:

f̂ Xφ,σ = f̂φ,σ|X . (40)

Indeed, on the one hand,‖ f̂φ,σ|X ‖H Xσ ≤ ‖ f̂φ,σ ‖Hσ by (27). On the other hand, (39) implies that

1
n

n

∑
i=1

φ
(
Yi f̂φ,σ(Xi)

)
=

1
n

n

∑
i=1

φ
(
Yi f̂φ,σ|X (Xi)

)
.

As a result, we get̂RXφ,σ
(

f̂φ,σ|X
)
≤ R̂φ,σ

(
f̂φ,σ
)

= R̂Xφ,σ

(
f̂ Xφ,σ

)
, from which we deduce that̂fφ,σ|X

and f̂ Xφ,σ both minimize the strictly convex functional̂RXφ,σ on H Xσ , proving (40). We also deduce

from R̂Xφ,σ
(

f̂φ,σ|X
)

= R̂φ,σ
(

f̂φ,σ
)

and from (39) that

‖ f̂φ,σ|X ‖H Xσ = ‖ f̂φ,σ ‖Hσ . (41)

Now, using (40), (37), then (41), we can conclude the proof of the second statement as follows:

RXφ,σ
(

f̂ Xφ,σ
)

= RXφ,σ
(

f̂φ,σ|X
)

= EP|X

[
φ
(
Y f̂φ,σ|X (X)

)]
+λ‖ f̂φ,σ|X ‖H Xσ

= EP
[
φ
(
Y f̂φ,σ (X)

)]
+λ‖ f̂φ,σ ‖H Xσ

= Rφ,σ
(

f̂φ,σ
)

,
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concluding the proof of Lemma 16.

Proof of Lemma 18We prove the uniform upper bound on the variances of the excess-lossfunctions
in terms of their expectation, using an approach similar to but slightly simpler than Bartlett et al.
(2006, Lemma 14) and Steinwart and Scovel (2004, Proposition 6.1). First we observe, using (17)
and the fact thatFσ ⊂

√
φ(0)/λBσ, that for anyf ∈ Fσ,

‖ f ‖L∞ ≤√
κσ‖ f ‖Hσ

≤
√

κσφ(0)

λ
.

As a result, for any(x,y) ∈ X ×{−1,+1},
∣∣gf (x,y)

∣∣≤
∣∣φ(y f(x))−φ

(
y fφ,σ(x)

)∣∣+λ
∣∣∣‖ f ‖2

Hσ
−‖ fφ,σ ‖2

Hσ

∣∣∣

≤ L

(√
κσφ(0)

λ

)
∣∣ f (x)− fφ,σ(x)

∣∣+λ‖ f − fφ,σ ‖Hσ‖ f + fφ,σ ‖Hσ

≤
(

L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)
‖ f − fφ,σ ‖Hσ .

(42)

Taking the square on both sides of this inequality and averaging with respect to P leads to:

∀ f ∈ Fσ, EP
[
g2

f

]
≤
(

L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2

‖ f − fφ,σ ‖2
Hσ

. (43)

On the other hand, we deduce from the convexity ofφ that for any (x,y) ∈ X ×{−1,+1} and
any f ∈ Fσ:

φ(y f(x))+λ‖ f ‖2
Hσ

+φ(y fφ,σ(x))+λ‖ fφ,σ ‖2
Hσ

2

≥ φ
(

y f(x)+y fφ,σ(x)

2

)
+λ

‖ f ‖2
Hσ

+‖ fφ,σ ‖2
Hσ

2

= φ
(

y
f + fφ,σ

2
(x)

)
+λ‖ f + fφ,σ

2
‖2
Hσ

+λ‖ f − fφ,σ

2
‖2
Hσ

.

Averaging this inequality with respect toP rewrites:

Rφ,σ( f )+Rφ,σ
(

fφ,σ
)

2
≥ Rφ,σ

(
f + fφ,σ

2

)
+λ‖ f − fφ,σ

2
‖2
Hσ

≥ Rφ,σ
(

fφ,σ
)
+λ‖ f − fφ,σ

2
‖2
Hσ

,

where the second inequality is due to the definition offφ,σ as a minimizer ofRφ,σ. Therefore we get,
for any f ∈ Fσ,

EP [gf ] = Rφ,σ( f )−Rφ,σ
(

fφ,σ
)

≥ λ
2
‖ f − fφ,σ ‖2

Hσ
.

(44)
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Combining (43) and (44) finishes the proof of Lemma 18

Proof of Lemma 19Following a path similar to (42), we can write for anyf ∈ Fσ and any(x,y) ∈
X ×{−1,+1}:

∣∣gf (x,y)
∣∣≤
∣∣φ(y f(x))−φ

(
y fφ,σ(x)

)∣∣+λ
∣∣∣‖ f ‖2

Hσ
−‖ fφ,σ ‖2

Hσ

∣∣∣

≤ L

(√
κσφ(0)

λ

)
∣∣ f (x)− fφ,σ(x)

∣∣+λ
φ(0)

λ

≤ 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) .

Proof of Lemma 20Let us introduce the notationlφ ◦ f (x,y) := φ(y( f (x)) andLφ,σ ◦ f := lφ ◦ f +
λ‖ f ‖2

H Xσ
, for f ∈ H Xσ and(x,y) ∈ X ×{−1,1}. We can then rewrite (29) as:

Gσ =
{

Lφ,σ ◦ f −Lφ,σ ◦ f Xφ,σ : f ∈ Fσ
}

.

The covering number of a set does not change when the set is translatedby a single function,
therefore:

N
(
B−1Gσ,ε,L2(T)

)
= N

(
B−1Lφ,σ ◦Fσ,ε,L2(T)

)
.

Denoting now[a,b] the set of constant functions with values betweena andb, we deduce, from the
fact thatλ‖ f ‖2

H Xσ
≤ φ(0) for f ∈ Fσ, that

B−1Lφ,σ ◦Fσ ⊂ B−1lφ ◦Fσ +
[
0,B−1φ(0)

]
.

Using the sub-additivity of the entropy we therefore get:

logN
(
B−1Gσ,2ε,L2(T)

)
≤ logN

(
B−1lφ ◦Fσ,ε,L2(T)

)
+ logN

([
0,B−1φ(0)

]
,ε,L2(T)

)
. (45)

In order to upper bound the first term in the r.h.s. of (45), we observe,using (17), that for anyf ∈ Fσ
andx∈ X ,

| f (x) | ≤ √
κσ‖ f ‖H Xσ ≤

√
φ(0)κσ

λ
,

and therefore a simple computation shows that, ifu(x,y) := B−1φ(y f(x)) andu′(x,y) := B−1φ(y f ′(x))
are two elements ofB−1lφ ◦Fσ (with f , f ′ ∈ Fσ), then for any sampleT:

‖u−u′ ‖L2(T) ≤ B−1L

(√
φ(0)κσ

λ

)
‖ f − f ′ ‖L2(T) .

and therefore

logN
(
B−1lφ ◦Fσ,ε,L2(T)

)
≤ logN


Fσ,BεL

(√
φ(0)κσ

λ

)−1

,L2(T)




≤ logN


B Xσ ,BεL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
,L2(T)


 .

(46)
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Recalling the definition ofB in (34), we obtain:

BεL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
≥ 2ε

√
κσ ,

and therefore
logN

(
B−1lφ ◦Fσ,ε,L2(T)

)
≤ logN

(
B Xσ ,2ε

√
κσ,L2(T)

)
.

The second term in the r.h.s. of (45) is easily upper bounded by:

logN
([

0,B−1φ(0)
]
,ε,L2(T)

)
≤ log

(
φ(0)

Bε

)
,

and we finally get:

logN
(
B−1Gσ,2ε,L2(T)

)
≤ logN

(
B Xσ ,2ε

√
κσ,L2(T)

)
+ log

(
φ(0)

Bε

)
. (47)

We now need to upper bound the covering number of the unit ball in the RKHS. We make use of
the following result, proved by Steinwart and Scovel (2004, Theorem 2.1, page 5): if ˜B Xσ denotes
the unit ball of the RKHS associated with the non-normalized Gaussian kernel (20) on a compact
set, then for all 0< p≤ 2 and allδ > 0 there exists a constantcp,δ,d independent ofσ such that for
all ε̃ > 0 we have:

logN
(

˜B Xσ , ε̃,L2(T)
)
≤ cp,δ,dσ(1−p/2)(1+δ)dε−p . (48)

Now, using (21), we observe that
B Xσ =

√
κσ

˜B Xσ ,

and therefore:

logN
(
B Xσ ,2ε

√
κσ,L2(T)

)
= logN

(√
κσ

˜B Xσ ,2ε
√

κσ,L2(T)
)

= logN
(

˜B Xσ ,2ε,L2(T)
)

.
(49)

Plugging (48) into (49), and (49) into (47) finally leads to the announced result, after observing that
the second term in the r.h.s. of (47) becomes negligible compared to the first one and can therefore
be hidden in the constant forε small enough.

6. Some Properties of theL2-Norm-Regularized φ-Risk

In this section we investigate the conditions on the loss functionφ under which the Bayes consis-
tency of the minimization of the regularizedφ-risk holds. In the spirit of Bartlett et al. (2006), we
introduce a notion of classification-calibration for regularized loss functionsφ, and upper bound the
excess risk of any classifierf in terms of its excess of regularizedφ-risk. We also upper-bound
theL2-distance betweenf and fφ,0 in terms of the excess of regularizedφ-risk of f , which is useful
to proove Bayes consistency in the one-class setting.
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6.1 Classification Calibration

In the classical setting, Bartlett et al. (2006, Definition 1, page 7) introduce the following notion of
classification-calibrated loss functions:

Definition 21 For any(η,α) ∈ [0,1]×R, let the generic conditionalφ-risk be defined by:

Cη(α) := ηφ(α)+(1−η)φ(−α).

The loss functionφ is said to be classification-calibrated if, for anyη ∈ [0,1]\{1/2}:

inf
α∈R:α(2η−1)≤0

Cη(α) > inf
α∈R

Cη(α)

The importance here is in thestrict inequality, which implies in particular that if the global infimum
of Cη is reached at some pointα, then α > 0 (resp.α < 0) if η > 1/2 (resp.η < 1/2). This
condition, that generalizes the requirement that the minimizer ofCη(α) has the correct sign, is a
minimal condition that can be viewed as a pointwise form of Fisher consistencyfor classification.
In our case, noting that for anyf ∈M , theL2-regularizedφ-risk can be rewritten as follows:

Rφ,0( f ) =
Z

Rd

{
[η(x)φ( f (x))+(1−η(x))φ(− f (x))]ρ(x)+λ f (x)2}dx ,

we introduce the regularized generic conditionalφ-risk:

∀(η,ρ,α) ∈ [0,1]× (0,+∞)×R, Cη,ρ (α) := Cη (α)+
λα2

ρ
,

as well as the related weighted regularized generic conditionalφ-risk:

∀(η,ρ,α) ∈ [0,1]× [0,+∞)×R, Gη,ρ (α) := ρCη (α)+λα2 .

This leads to the following notion of classification-calibration:

Definition 22 We say thatφ is classification calibrated for the regularized risk, orR-classification-
calibrated, if for any(η,ρ) ∈ [0,1]\{1/2}× (0,+∞)

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) > inf
α∈R

Cη,ρ(α)

The following result clarifies the relationship between the properties of classification-calibration
and R-classification-calibration.

Lemma 23 For any functionφ : R → [0,+∞), φ(x) is R-classification-calibrated if and only if for
any t> 0, φ(x)+ tx2 is classification-calibrated.

Proof For anyφ : R → [0,+∞) and ρ > 0, let φ̃(x) := φ(x) + λx2/ρ andC̃η the corresponding
generic conditional̃φ-risk. Then one easily gets, for anyα ∈ R

C̃η (α) = Cη,ρ (α) .

As a result,φ is R-classification-calibrated if and only if, for anyρ, φ̃ is classification-calibrated,
which proves the lemma.

Classification-calibration and R-classification-calibration are two different properties related to
each other by Lemma 23, but none of them implies the other one for general non-convex functions
φ, as illustrated by the following two examples.
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Example 1 : A classification-calibrated, but not R-classification-calibrated function.Let φ(x) =
1 on (−∞,−2], φ(x) = 2 on [−1,1], φ(x) = 0 on [2,+∞), and φ continous linear on[−2,−1]
and [1,2]. Then Cη(α) is also continuous and piecewise linear on the intervals delimited by the
points−2,−1,1,2, with valuesη on (−∞,−2], 1− η on [2,+∞), and 2 on [−1,1]. As a re-
sult, infα∈RCη(α) = min(η,1−η) and infα∈R:α(2η−1)≤0Cη(α) = max(η,1−η). This shows thatφ
is classification-calibrated. However, as soon asρ < 2λ, the global minimum of Cη,ρ(α) is reached
for α = 0 and therefore:

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) = inf
α∈R

Cη,ρ(α) = 2,

which shows thatφ is not R-classification-calibratedin this case.

Example 2 : A R-classification-calibrated, but not classification-calibrated function. Letφ : R→
[0,+∞) be any function with negative right-hand and positive left-hand derivatives at0, satisfying

lim
α→−∞

φ(α) = lim
α→∞

φ(α) = 0 , (50)

and
∀α > 0, φ(α) < φ(−α) . (51)

An example of a function that satisfies these conditions isφ(α) = eα for α ≤ 0, φ(α) = e−2α for α ≥
0. Because of (50), it is clear that such functions satisfy

inf
α≤0

Cη (α) = inf
α≥0

Cη (α) = inf
α∈R

Cη (α) = 0 ,

which shows that they are not classification-calibrated. In order to showthat they are R-classification-
calibrated, it suffices to show by Lemma 23 that for any t> 0, φ(x)+tx2 is classification-calibrated.φ
being nonnegative, the corresponding generic conditional risk

C̃η (α) = ηφ(α)+(1−η)φ(−α)+ tα2

satisfies:
lim

α→−∞
C̃η (α) = lim

α→∞
C̃η (α) = +∞ .

As a result, for anyη 6= 1/2, the infimum of̃Cη over{α ∈ R : α(2η−1) ≤ 0} is reached at some fi-
nite pointα̃η. Moreover,C̃η has negative right-hand and positive left-hand derivatives at0, ensuring
that the minimum is not reached at0: α̃η (2η−1) < 0. This implies by (51) that

(2η−1)(φ(α̃η)−φ(−α̃η)) > 0.

Combining this with the following equality holding for anyα ∈ R:

C̃η (α)−C̃η (−α) = (2η−1)(φ(α)−φ(−α)) ,

we obtain
C̃η (α̃η) > C̃η (−α̃η) .

As a result,
inf

α∈R:α(2η−1)≤0
Cη,ρ(α) = C̃η (α̃η) > C̃η (−α̃η) ≥ inf

α∈R

Cη,ρ(α) ,

showing thatφ(x)+tx2 is classification-calibrated, and therefore thatφ is R-classification-calibrated.
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6.2 Classification-Calibration of Convex Loss Functions

The following lemma states the equivalence between classification calibration and R-classification
calibration for convex loss functions, and it gives a simple characterization of this property.

Lemma 24 For a convex functionφ : R → [0,+∞), the following properties are equivalent:

1. φ is classification-calibrated,

2. φ is R-classification-calibrated,

3. φ is differentiable at0 andφ′(0) < 0.

Proof The equivalence of the first and the third properties is shown in Bartlett etal. (2006, The-
orem 4). From this and lemma 23, we deduce thatφ is R-classification-calibrated iffφ(x)+ tx2 is
classification-calibrated for anyt > 0, iff φ(x)+ tx2 is differentiable at 0 with negative derivative
(for any t > 0), iff φ(x) is differentiable at 0 with negative derivative. This proves the equivalence
between the second and third properties.

6.3 Some Properties of the Minimizer of theRφ,0-Risk

Whenφ is convex, the functionCη(α) is a convex function (as a convex combination of convex
functions), and thereforeGη,ρ(α) is strictly convex and diverges to+∞ in −∞ and+∞; as a result,
for any(η,ρ) ∈ [0,1]× [0,+∞), there exists a uniqueα(η,ρ) that minimizesGη,ρ onR. It satisfies
the following inequality:

Lemma 25 If φ : R→ [0,+∞) is a convex function, then for any(η,ρ)∈ [0,1]× [0,+∞) and anyα∈
R,

Gη,ρ (α)−Gη,ρ (α(η,ρ)) ≥ λ(α−α(η,ρ))2 . (52)

Proof For any (η,ρ) ∈ [0,1]× [0,+∞), the functionGη,ρ(α) is the sum of the convex func-
tion ρCη(α) and of the strictly convex functionλα2. Let us denote byC+

η (α) the right-hand deriva-
tive of Cη at the pointα (which is well defined for convex functions). The right-hand derivative of
a convex function being non-negative at a minimum, we have (denotingα∗ := α(η,ρ)):

ρC+
η (α∗)+2λα∗ ≥ 0 . (53)

Now, for anyα > α∗, we have by convexity ofCη:

Cη(α) ≥Cη (α∗)+(α−α∗)C+
η (α∗) . (54)

Moreover, by direct calculation we get:

λα2 = λα2
∗ +2λα∗ (α−α∗)+λ(α−α∗)

2 . (55)

Mutliplying (54) by ρ, adding (55) and plugging (53) into the result leads to:

Gη,ρ (α)−Gη,ρ (α∗) ≥ λ(α−α∗)
2 .
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This inequality is also valid forα ≤ α∗: starting this time from

ρC−
η (α∗)+2λα∗ ≤ 0 ,

whereC−
η denotes the left-hand derivative ofCη, and from

Cη(α) ≥Cη (α∗)+(α−α∗)C−
η (α∗) ,

which holds for anyα < α∗ by convexity ofCη, we can draw exactly the same lines of reasoning as
for the caseα > α∗.

From this result we obtain the following characterization and properties of the minimizer of
theRφ,0-risk:

Theorem 26 If φ : R → [0,+∞) is a convex function, then the function fφ,0 : R
d → R defined for

any x∈ R
d by

fφ,0(x) := α(η(x),ρ(x))

satisfies:

1. fφ,0 is measurable.

2. fφ,0 minimizes the Rφ,0-risk:

Rφ,0
(

fφ,0
)

= inf
f∈M

Rφ,0( f ) .

3. For any f∈M , the following holds:

‖ f − fφ,0‖2
L2
≤ 1

λ
(
Rφ,0( f )−R∗

φ,0

)
.

Proof To show that fφ,0 is measurable, it suffices to show that the mapping(η,ρ) ∈ [0,1]×
[0,+∞) 7→ α(η,ρ) is continuous. Indeed, if this is true, thenfφ,0 is measurable as a continuous
function of two measurable functionsη andρ.

In order to show the continuity of(η,ρ) 7→ α(η,ρ), fix (η0,ρ0) ∈ [0,1]× [0,+∞) and the corre-
spondingα0 := α(η0,ρ0). Then, for anyε > 0, there exists a neighborhoodBε of (η0,ρ0) such that
for any(η,ρ) ∈ Bε, for anyα ∈ [α0− ε,α0 + ε],

∣∣Gη,ρ (α)−Gη0,ρ0 (α)
∣∣< λε2

3
. (56)

To see that, first note that the functionφ is continuous and thus bounded by some constantA
on [α0− ε,α0 + ε], and therefore, for anyα in [α0− ε,α0 + ε], we have

∣∣Gη,ρ (α)−Gη0,ρ0 (α)
∣∣ = |(ηρ−η0ρ0)(φ(α)−φ(−α))+(ρ−ρ0)φ(−α) |

≤ 2A(|ηρ−η0ρ0 |+ |ρ−ρ0 |) .

Hence, (56) holds by taking, for instance,

Bε :=
{
(η,ρ) ∈ R

2 : |ηρ−η0ρ0 | < λε2/12A , |ρ−ρ0 | < λε2/12A
}

.
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Now, applying (56) successively toα0 + ε and toα0, then using (52), we easily obtain that for
any(η,ρ) ∈ Bε,

Gη,ρ (α0 + ε) > Gη,ρ (α0)+
λε2

3
.

In the same way, applying (56) successively toα0− ε and toα0, then using (52), we obtain that for
any(η,ρ) ∈ Bε,

Gη,ρ (α0− ε) > Gη,ρ (α0)+
λε2

3
.

This reveals the existence of two points aroundα0, namelyα0− ε andα0 + ε, at which the func-
tion Gη,ρ takes values larger thanGη,ρ (α0). By convexity ofGη,ρ, this implies that its minimizer,
namelyα(η,ρ), is in the interval[α0− ε,α0 + ε], as soon as(η,ρ) ∈ Bε, which concludes the proof
of the continuity of(η,ρ) → α(η,ρ), and therefore of the measurability offφ,0.

Now, we have by construction, for anyf ∈M :

∀x∈ R
d, Gη(x),ρ(x)

(
fφ,0(x)

)
≤ Gη(x),ρ(x) ( f (x))

which after integration leads to:
Rφ,0( fφ,0) ≤ Rφ,0( f ) ,

proving the second statement of the theorem.
Finally, for any f ∈M , rewriting (52) withα = f (x), ρ = ρ(x) andη = η(x) shows that:

∀x∈ R
d, Gη(x),ρ(x) ( f (x))−Gη(x),ρ(x)

(
fφ,0(x)

)
≥ λ

(
f (x)− fφ,0(x)

)2
,

which proves the third statement of Theorem 26.

6.4 Relating theRφ,0-Risk with the Classification Error Rate

In the “classical” setting (with a regularization parameter converging to 0), the idea of relating the
convexified risk to the true risk (more simply called risk) has recently gained alot of interest. Zhang
(2004) and Lugosi and Vayatis (2004) upper bound the excess-riskby some function of the excessφ-
risk to prove consistency of various algorithms (and obtain upper boundsfor the rates of convergence
of the risk to the Bayes risk). These ideas were then generalized by Bartlett et al. (2006), which we
now adapt to our framework.

Let us define, for any(η,ρ) ∈ [0,1]× (0,+∞),

M (η,ρ) := min
α∈R

Cη,ρ(α) = Cη,ρ (α(η,ρ)) ,

and for anyρ > 0 the functionψρ defined for allθ in [0,1] by

ψρ (θ) := φ(0)−M

(
1+θ

2
,ρ
)

.

The following lemma summarizes a few properties ofM andψρ. Explicit computations for some
standard loss functions are performed in Section 7.
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Lemma 27 If φ : R → [0,+∞) is a convex function, then for anyρ > 0, the following properties
hold:

1. the functionη 7→ M(η,ρ) is symmetric around1/2, concave, and continuous on[0,1];

2. ψρ is convex, continuous, nonnegative, and nondecreasing on[0,1], andψ(0) = 0;

3. if 0 < ρ < τ, thenψρ ≤ ψτ on [0,1];

4. φ is R-classification-calibrated if and only ifψρ(θ) > 0 for θ ∈ (0,1].

Proof For anyρ > 0, let

φρ(x) := φ(x)+
λx2

ρ
.

As already observed in the proof of Lemma 23, the corresponding generic conditionalφρ-risk C̃η
satisfies

C̃′
η (α) = Cη,ρ (α) .

φρ being convex, the first two points are direct consequences of Bartlett et al. (2006, Theorem 4 &
Lemma 6). In particular,the functionψρ is nondecreasing due to the fact that it is minimal at 0 and
convex on[0,1].

To prove the third point, it suffices to observe that for 0< ρ ≤ τ we have for any(η,α) ∈
[0,1]×R:

Cη,ρ(α)−Cη,τ(α) = λα2
(

1
ρ
− 1

τ

)
≥ 0,

which implies, by taking the minimum inα:

M (η,ρ) ≥ M (η,τ) ,

and therefore, forθ ∈ [0,1]

ψρ (θ) ≤ ψτ (θ) .

Finally, by lemma 24,φ is R-classification-calibrated iffφρ is classification-calibrated (because
both properties are equivalent to saying thatφ is differentiable at 0 andφ′(0) < 0), iff ψρ(θ) > 0
for θ ∈ (0,1] by Bartlett et al. (2006, Theorem 6).

We are now in position to state a first result to relate the excessRφ,0-risk to the excess-risk. The
dependence onρ(x) generates difficulties compared with the “classical” setting, which forces usto
separate the low density regions from the rest in the analysis.

Theorem 28 Supposeφ is a convex classification-calibrated function, and for anyε > 0, let

Aε :=
{

x∈ R
d : ρ(x) ≤ ε

}
.

For any f ∈M the following holds:

R( f )−R∗ ≤ inf
ε>0

{
P(Aε)+ψ−1

ε
(
Rφ,0( f )−R∗

φ,0

)}
(57)
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Proof First note that for convex classification-calibrated functions,ψε is strictly increasing on[0,1].
Indeed, by Lemma 27, it is convex and reaches its unique minimum at 0 in this case. Sinceψε is
also continuous on[0,1], it is therefore invertible, which justifies the use ofψ−1

ε in (57).

Fix now a function f ∈ M , and letU(x) := 1 if f (x)(2η(x)−1) < 0, 0 otherwise (U is the
indicator function of the set wheref and the optimal classifier disagree). For anyε > 0, if we
defineBε := R

d\Aε, we can compute:

Rφ,0( f )−R∗
φ,0 =

Z

Rd

[
Cη(x),ρ(x) ( f (x))−M (η(x),ρ(x))

]
ρ(x)dx

≥
Z

Rd

[
Cη(x),ρ(x) ( f (x))−M (η(x),ρ(x))

]
U(x)ρ(x)dx

≥
Z

Rd
[φ(0)−M (η(x),ρ(x))]U(x)ρ(x)dx

=
Z

Rd
ψρ(x) (|2η(x)−1|)U(x)ρ(x)dx

≥
Z

Bε

ψρ(x) (|2η(x)−1|)U(x)ρ(x)dx

≥
Z

Bε

ψε (|2η(x)−1|)U(x)ρ(x)dx

=
Z

Bε

ψε (U(x) |2η(x)−1|)ρ(x)dx

= P(Bε)
Z

Bε

ψε (U(x) |2η(x)−1|) ρ(x)
P(Bε)

dx

≥ P(Bε)ψε

(
1

P(Bε)

Z

Bε

|2η(x)−1|U(x)ρ(x)dx

)

≥ ψε

(
Z

Bε

|2η(x)−1|U(x)ρ(x)dx

)

= ψε

(
Z

Rd
|2η(x)−1|U(x)ρ(x)dx−

Z

Aε

|2η(x)−1|U(x)ρ(x)dx

)

≥ ψε

(
Z

Rd
|2η(x)−1|U(x)ρ(x)dx−P(Aε)

)

= ψε (R( f )−R∗−P(Aε)) ,

where the successive (in)equalities are respectively justified by: (i) thedefinition ofRφ,0 and the sec-
ond point of Theorem 26; (ii) the fact thatU ≤ 1; (iii) the fact that whenf and 2η−1 have different
signs, thenCη,ρ ( f ) ≥Cη,ρ (0) = φ(0); (iv) the definition ofψρ; (v) the obvious fact thatBε ⊂ R

d;
(vi) the observation that, by definition,ρ is larger thanε onBε, and the third point of Lemma 27; (vii)
the fact thatψε(0) = 0 andU(x) ∈ {0,1}; (viii) a simple division and multiplication byP(Bε) > 0;
(ix) Jensen’s inequality; (x) the convexity ofψε and the facts thatψ(0) = 0 andP(Bε) < 1; (xi) the
fact thatBε = R

d\Aε; (xii) the upper bound|2η(x)−1|U(x) ≤ 1 and the fact thatψε is increasing;
and (xiii) a classical inequality that can be found, e.g., in Devroye et al. (1996, Theorem 2.2, page
16). Composing each side by the strictly increasing functionψ−1

ε leads to the announced result.
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6.5 Proof of Theorem 4

Theorem 4 is a direct corollary of Theorem 28.4 Indeed, keeping the notation of the previous
section, let us choose for anyδ > 0 anε small enough to ensureP(Aε) < δ/2, andN ∈ N such that
for anyn > N,

Rφ,0( fn)−R∗
φ,0 < ψε

(
δ
2

)
.

Then a direct application of Theorem 28 in this case shows that for anyn > N, R( fn)−R∗ < δ,
concluding the proof of Theorem 4.

This important result shows that any consistency result for the regularized φ-risk implies con-
sistency for the true risk, that is, convergence to the Bayes risk. Besides, convergence rates for
the regularizedφ-risk towards its minimum translate into convergence rates for the risk towardsthe
Bayes risk thanks to (57), as we will show in the next subsection.

6.6 Refinements under a Low Noise Assumption

When the distributionP satisfies a low noise assumption as defined in section 2, we have the fol-
lowing result:

Theorem 29 Let φ be a convex loss function such that there exist(κ,β,ν) ∈ (0,+∞)3 satisfying:

∀(ε,u) ∈ (0,+∞)×R, ψ−1
ε (u) ≤ κuβε−ν.

Then for any distribution P with low density exponentγ, there exist constant(K, r) ∈ (0,+∞) such
that for any f∈M with an excess regularizedφ-risk upper bounded by r the following holds:

R( f )−R∗ ≤ K
(
Rφ,0( f )−R∗

φ,0

) βγ
γ+ν .

Proof Let (c2,ε0) ∈ (0,+∞)2 such that

∀ε ∈ [0,ε0], P(Aε) ≤ c2εγ, (58)

and define

r := ε
γ+ν

β
0 κ− 1

β c
1
β
2 . (59)

Given any functionf ∈M such thatδ = Rφ,0( f )−R∗
φ,0 ≤ r, let

ε := κ
1

γ+ν c
− 1

γ+ν
2 δ

β
γ+ν . (60)

Becauseδ ≤ r, we can upper boundε by:

ε ≤ κ
1

γ+ν c
− 1

γ+ν
2 r

β
γ+ν

= ε0.
(61)

4. We note that after this work was submitted, a related analysis has been proposed in Steinwart (2005b). The latter
provides a very general framework, which in particular allows to derive Theorem 4 without the use of Theorem 28.
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Combining (61) and (58), we obtain:

P(Aε) ≤ c2εγ

≤ κ
γ

γ+ν c
ν

γ+ν
2 δ

βγ
γ+ν .

(62)

On the other hand,

ψ−1
ε (δ) ≤ κδβε−ν

= κ
γ

γ+ν c
ν

γ+ν
2 δ

βγ
γ+ν .

(63)

Combining Theorem 28 with (62) and (63) leads to the result claimed with the constantr defined
in (59) and

K := 2κ
γ

γ+ν c
ν

γ+ν
2 .

7. Consistency of SVMs

In this section we illustrate the results obtained throughout Section 6 for a general loss functionφ,
in particular the control of the excessR-risk by the excessRφ,0-risk of Theorem 29, to the specific
cases of the loss functions used in 1- and 2-SVM. This leads to the proof of Theorem 6 in Section
7.3.

7.1 The Case of 1-SVM

Let φ(α) = max(1−α,0). Then we easily obtain, for any(η,ρ) ∈ [−1,1]× (0,+∞):

Cη,ρ(α) =





η(1−α)+λα2/ρ if α ∈ (−∞,−1]

η(1−α)+(1−η)(1+α)+λα2/ρ if α ∈ [−1,1]

(1−η)(1+α)+λα2/ρ if α ∈ [1,+∞).

This shows thatCη,ρ is strictly decreasing on(−∞,−1] and strictly increasing on[1,+∞); as a result
it reaches its minimum on[−1,1]. Its derivative on this interval is equal to:

∀α ∈ (−1,1), C′
η,ρ(α) =

2λα
ρ

+1−2η.

This shows thatCη,ρ reaches its minimum at the point:

α(η,ρ) =





−1 if η ≤ 1/2−λ/ρ
(η−1/2)ρ/λ if η ∈ [1/2−λ/ρ,1/2+λ/ρ]

1 if η ≥ 1/2+λ/ρ
(64)

and that the value of this minimum is equal to:

M (η,ρ) =





2η+λ/ρ if η ≤ 1/2−λ/ρ
1−ρ(η−1/2)2/λ if η ∈ [1/2−λ/ρ,1/2+λ/ρ]

2(1−η)+λ/ρ if η ≥ 1/2+λ/ρ
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From this we deduce that for all(ρ,θ) ∈ (0,+∞)× [−1,1]:

ψρ (θ) =

{
ρθ2/(4λ) if 0 ≤ θ ≤ 2λ/ρ,

θ−λ/ρ if 2λ/ρ ≤ θ ≤ 1

whose inverse function is

ψ−1
ρ (u) =

{√
4λu/ρ if 0 ≤ u≤ λ/ρ,

u+λ/ρ if u≥ λ/ρ.
(65)

7.2 The Case of 2-SVM

Let φ(α) = max(1−α,0)2. Then we obtain, for any(η,ρ) ∈ [−1,1]× (0,+∞):

Cη,ρ(α) =





η(1−α)2 +λα2/ρ if α ∈ (−∞,−1]

η(1−α)2 +(1−η)(1+α)2 +λα2/ρ if α ∈ [−1,1]

(1−η)(1+α)2 +λα2/ρ if α ∈ [1,+∞).

This shows thatCη,ρ is strictly decreasing on(−∞,−1] and strictly increasing on[1,+∞); as a result
it reaches its minimum on[−1,1]. Its derivative on this interval is equal to:

∀α ∈ (−1,1), C′
η,ρ(α) = 2

(
1+

λ
ρ

)
α+1−2η.

This shows thatCη,ρ reaches its minimum at the point:

α(η,ρ) = (2η−1)
ρ

λ+ρ
. (66)

and that the value of this minimum is equal to:

M (η,ρ) = 1− (2η−1)2 ρ
λ+ρ

.

From this we deduce that for all(ρ,θ) ∈ (0,+∞)× [−1,1]:

ψρ (θ) =
ρ

λ+ρ
θ2

whose inverse function is

ψ−1
ρ (u) =

√(
1+

λ
ρ

)
u. (67)

Remark 30 The minimum of Cη,ρ being reached on(−1,1) for any (η,ρ) ∈ [0,1]× (0,+∞), the
result would be identical for any convex loss functionφ0 that is equal to(1−α)2 on(−∞,1). Indeed,
the corresponding regularized generic conditionalφ0-risk would coincide with Cη,ρ on (−1,1) and
would be no smaller than Cη,ρ outside of this interval; it would therefore have the same minimal
value reached at the same point, and consequently the same function M andψ. This is for example
the case with the loss function used in LS-SVM,φ0(α) = (1−α)2.
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7.3 Proof of Theorem 6

Starting withφ1(α) = max(1−α,0), let us follow the proof of Theorem 29 by takingβ = ν = 1/2
andκ = 2

√
λ. For r defined as in (59), let us choose

r1 = min

(
r,

(
c2λγ+ν

κ2
γ+ν

β

) 1
β+γ+ν

)
.

For a functionf ∈M , choosingε as in (60),δ ≤ r1 implies

δ ≤
(

c2λγ+ν

κ2
γ+ν

β

) 1
β+γ+ν

=
(

ε−(γ+ν)2−
γ+ν

β λγ+νδβ
) 1

β+γ+ν

and therefore:

δ2−
1
β ≤ λ

ε
.

This ensures by (65) that foru = δ2−
1
β , one indeed has

ψ−1
ρ (u) = κuβε−ν,

which allows the rest of the proof, in particular (59), to be valid. This proves the result forφ1, with

K1 = 2×2
2γ

2γ+1 λ
γ

2γ+1 c
1

2γ+1

2 .

For φ2(α) = max(1−α,0)2 we can observe from (67) that, for anyε ∈ (0,ε0],

ψ−1
ε (u) ≤

√
(λ+ ε0)

u
ρ
.

and the proof of Theorem 29 leads to the claimed result withr2 = r defined in (59), and

K2 = 2× (λ+ ε0)
γ

2γ+1 c
1

2γ+1

2 .

Remark 31 We note here thatε can be chosen as small as possible in order to move the constant K2

as close as possible to its lower bound:

K̄2 = 2×λ
γ

2γ+1 c
1

2γ+1

2 .

but the counterpart of decreasing K2 is to decrease r2 too, by (59). We also notice the constant
corresponding to the 1-SVM loss function is larger than that of the 2-SVM loss function, by a factor

of up to2
2γ

2γ+1
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8. Consistency of One-class SVMs for Density Level Set Estimation

In this section we focus on the one-class case:η is identically equal to 1, andP is just considered
as a distribution onRd, with densityρ with respect to the Lebesgue measure. The first subsection is
devoted to the proof of Theorem 8, and the second subsection to the proof of Theorem 9.

8.1 Proof of Theorem 8

Theorem 8 easily follows from combining some results given in this paper. First, it follows from
(64) that, in the one-class case whereη = 1 on its domain, the asymptotic functionfφ,0 equals the
truncated densityρλ. Then, using Lemma 7, we get the following bound:

‖ f̂σ −ρλ ‖2
L2
≤ 1

λ
(
Rφ,0( f̂σ)−R∗

φ,0

)
.

Finally, under the assumption limδ→0 ω(ρλ,δ) = 0, using Theorem 3 with, for instance,p = 1, δ =

1, σ = (1/n)1/4d, σ1 = (1/n)1/2d, andx = log(n), we deduce that for anyε > 0,

P
{
‖ f̂σ −ρλ ‖L2 ≥ ε

}
→ 0

asn→ ∞.

8.2 Proof of Theorem 9

Theorem 9 directly follows from combining Theorem 8 with Theorem 33, which is stated and
proved at the end of this section. To prove Theorem 33, it will be usefulto first state Lemma 32.

Before going to this point, let us recall some specific notation in the context ofdensity level set
estimation. The aim is to estimate a density level set of levelµ, for someµ> 0:

Cµ :=
{

x∈ R
d : ρ(x) ≥ µ

}
. (68)

The estimator that is considered here is the plug-in density level set estimator associated withf̂σ,
denoted bŷCµ:

Ĉµ :=
{

x∈ R
d : 2λ f̂σ (x) ≥ µ

}
. (69)

Recall that the asymptotic behaviour off̂σ in the one-class case is given in Theorem 8:f̂σ converge
to ρλ, which is proportional to the densityρ truncated at level 2λ. Taking into account the behaviour
of ρλ, we only consider the situation where 0< µ < 2λ < sup

Rd(ρ) = M. The densityρ is still
assumed to have a compact supportS⊂ X . To assess the quality of̂Cµ, we use the so-calledexcess
massfunctional, first introduced by Hartigan (1987), which is defined for any measurable subsetC
of R

d as follows:
HP(C) := P(C)−µLeb(C) , (70)

where Leb is the Lebesgue measure. Note thatHP is defined with respect to bothP andµ, and that
it is maximized byCµ. Hence, the quality of an estimatêC depends here on how its excess mass is
close to this ofCµ.
The following lemma relates theL2 convergence of a density estimator to the consistency of the
associated plug-in density level set estimator, with respect to the excess mass criterion:
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Lemma 32 Let P be a probability distribution onRd with compact support S⊂ X . Assume that P
is absolutely continuous with respect to the Lebesgue’s measure, and letρ denote its associated
density function. Assume furthermore thatρ is bounded on S. Consider a non-negative density
estimatêρ defined onRd. Then the following holds

HP(Cµ)−HP(Ĉ) ≤ K5‖ ρ̂−ρ‖L2 , (71)

whereĈ is the level set of̂ρ at level µ, and

K5 =
2
√

m‖ρ‖L∞ + 1−m
Leb(S)

mµ
.

Proof To prove the lemma, it is convenient to first build an artificial classification problem using the
density functionρ and the desired levelµ, then to relate the excess-risk involved in this classification
problem to the excess-mass involved in the original one-class problem. Notethat this technique has
already been used in Steinwart et al. (2005). Let us consider the following joint distributionQ
defined by its marginal density function

q(x) :=

{
mρ(x)+(1−m) 1

Leb(S) if x∈ S,

0 otherwise ,
(72)

and by its regression function

η0(x) :=
mρ(x)

mρ(x)+(1−m) 1
Leb(S)

, x∈ S, (73)

wherem is chosen such that

η0(x) =
ρ(x)

ρ(x)+µ
, (74)

that is

m :=
1

1+µLeb(S)
. (75)

In words, in the above artificial classification problem, the initial distributionP stands for the
marginal distribution of the positive class, and the negative class is generated by the uniform distri-
bution over the support ofP. The mixture coefficientm is determined by the initially desired density
levelµ. The corresponding Bayes classifier, which is the plug-in rule associated with η0, is denoted
by h∗.
Furthermore let us definêη0 := ρ̂/(ρ̂+µ), which stands for an estimate ofη0 in our artificial clas-
sification problem, and̂h as the plug-in classifier associated withη̂0: ĥ := sign(2η̂0−1). Then it
is straightforward thath∗ is the indicator function ofCµ, and thatĥ is the indicator function of̂C.
Moreover

R(ĥ)−R(h∗) = m
(

HP(C∗)−HP(Ĉ)
)

.

Indeed,

R(ĥ) = Q(ĥ(X) 6= Y)

= Q(Y = −1)Q(ĥ(X) = 1|Y = −1)+Q(Y = 1)Q(ĥ(X) = −1|Y = 1)

= (1−m)
Leb

(
Ĉ
)

Leb(S)
+m(1−P(Ĉ)) ,
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and, similarly,

R(h∗) = (1−m)
Leb(Cµ)

Leb(S)
+m(1−P(Cµ)) , (76)

which proves the claim.
Now, the following can be derived, starting from an equality that can be found in Devroye et al.
(1996, page 16):

R(ĥ)−R(h∗) = 2EQ

[∣∣∣∣η0−
1
2

∣∣∣∣1ĥ6=h∗

]

≤ 2EQ

[
|η0− η̂0 |2

]1/2

= 2µ

(
Z

Rd

( |ρ̂(x)−ρ(x)|
(ρ̂(x)+µ)(ρ(x)+µ)

)2

q(x)dx

)1/2

≤ 2µ
√

A

(
Z

Rd

( |ρ̂(x)−ρ(x)|
(ρ̂(x)+µ)(ρ(x)+µ)

)2

dx

)1/2

≤ 2

√
A

µ
‖ ρ̂−ρ‖L2 ,

whereA is a positive uniform upper bound onq(x), for instanceA = m‖ρ‖L∞ +(1−m)/Leb(S).
Combining the previous equality with the last inequality concludes the proof.

We could just directly apply this lemma tôfσ, ρλ and the distributionPλ defined5 throughρλ, but
this would prove the consistency off̂σ with respect to the excess massHPλ , which is different from
the criterionHP of interest. The following lemma implies that the plug-in density level set estimator
at level 0< µ < 2λ based on the one-class SVM estimator is indeed consistent with respect to the
excess massHP.

Theorem 33 Let f̂ be a non-negative squared integrable function that estimatesρλ (as defined in
Equation 7). Let0 < µ< 2λ. LetĈ denote the level set of2λ f̂ at level µ. Then

HP(Cµ)−HP(Ĉ) ≤ K6‖ f̂ −ρλ ‖L2 (77)

where K6 > 0 depends neither onσ, nor on n.

Proof Let us introduce the following estimator:

ρ̃ := 2λ f̂ + ρ̃λ , (78)

where the functioñρλ is defined as follows:

ρ̃λ :=

{
ρ(x)−2λ if ρ(x) ≥ 2λ ,

0 otherwise,
(79)

5. Note thatPλ is not a probability distribution, since the functionρλ does not integrate to 1. Still, the excess-mass
remains well-defined.
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and letC̃ denote the level set of̃ρ at levelµ. It can be checked thatρ̃−ρ = 2λ
(

f̂ −ρλ
)
, implying

that
‖ ρ̃−ρ‖L2 = 2λ‖ f̂ −ρλ ‖L2 . (80)

Hence, using Lemma 32, we have

HP(Cµ)−HP
(
C̃
)
≤ K5‖ ρ̃−ρ‖L2 = 2λK5‖ f̂ −ρλ ‖L2 , (81)

leading to

HP(Cµ)−HP(Ĉ) ≤ 2λc‖ f̂ −ρλ ‖L2 +
∣∣∣HP(Ĉ)−HP(C̃)

∣∣∣ . (82)

The last thing to do is to bound
∣∣∣HP(Ĉ)−HP(C̃)

∣∣∣. SinceP has a bounded density w.r.t. the

Lebesgue’s measure, ∣∣∣HP(Ĉ)−HP(C̃)
∣∣∣≤ (µ+M)Leb

(
Ĉ∆C̃

)
. (83)

By construction of̃ρ, if C2λ denotes the level set ofρ at level 2λ, andC2λ its complementary inRd,
then we havêC∩C2λ = C̃∩C2λ and 2λ f̂ ≥ µ =⇒ ρ̃ ≥ µ. Hence

Leb
(
Ĉ∆C̃

)
=

Z

C2λ

1{2λ f̂<µ∧ ρ̃≥µ}

≤
Z

C2λ

1{2λ f̂<µ}

≤
Z

C2λ

2λ−2λ f̂
2λ−µ

1{2λ f̂<µ}

≤ 1
2λ−µ

(
Z

C2λ

(
2λρλ −2λ f̂

)2
)1/2

≤ 2λ
2λ−µ

‖ f̂ −ρλ ‖L2 .

This concludes the proof.
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L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition, volume 31 of
Applications of Mathematics. Springer, 1996.

G. B. Folland.Fourier analysis and its applications. The Wadsworth & Brooks/Cole Mathematics
Series. Wadsworth & Brooks/Cole Advanced Books & Software, PacificGrove, CA, 1992.

J. A. Hartigan. Estimation of a convex density contour in two dimensions.J. Amer. Statist. Assoc.,
82(397):267–270, 1987.

V. Koltchinskii. Localized Rademacher complexities. Manuscript, September 2003.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods.Ann.
Stat., 32:30–55, 2004.

E. Mammen and A. Tsybakov. Smooth discrimination analysis.Ann. Stat., 27(6):1808–1829, 1999.

P. Massart. Some applications of concentration inequalities to statistics.Ann. Fac. Sc. Toulouse, IX
(2):245–303, 2000.

M. T. Matache and V. Matache. Hilbert spaces induced by Toeplitz covariance kernels. InLecture
Notes in Control and Information Sciences, volume 280, pages 319–334. Springer, Jan 2002.
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