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Abstract

This paper deals with chain graph models under alternatM® Anterpretation. A new represen-
tative of an AMP Markov equivalence class, called ldugest deflagged graphs proposed. The
representative is based on revealed internal structuteeoAMP Markov equivalence class. More
specifically, the AMP Markov equivalence class decompassfinerstrong equivalencelasses
and there exists a distinguished strong equivalence ctass@those forming the AMP Markov
equivalence class. The largest deflagged graph is the tatggis graph in that distinguished strong
equivalence class. A composed graphical procedure to géathest deflagged graph on the basis
of any AMP Markov equivalent chain graph is presented. Inegal the largest deflagged graph
differs from the AMP essential graph, which is another repngative of the AMP Markov equiva-
lence class.

Keywords: chain graph, AMP Markov equivalence, strong equivaleregdst deflagged graph,
component merging procedure, deflagging procedure, éskgraph

1. Introduction

This paper studies chain graph models under the alternative interpretatamhuiced by Andersson,
Madigan and Perlman (2001). In generathain graph moddk a statistical model in which a chain
graph is used to represent the conditional independence structuningdfie statistical model.
The vertices of the graph represent random variables and the coatlitholependence structure
is determined through the respectivarkov property The class of chain graphs was introduced
and the original interpretation was given by Lauritzen and Wermuth (1884)also Lauritzen and
Wermuth (1989). The mathematical theory of chain graphs was develgped/tenberg (1990),
who formally defined the Markov property corresponding to the origirakpretation. Following
the standard literature in this field, we will refer to this property ad ivé& Markov property.
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ROVERATO AND STUDENY

More recently, another interpretation of chain graphs was introduceshdgrsson, Madigan
and Perlman (1996); see also Andersson et al. (2001). This intdiprel@ads to an alternative
Markov property and we will refer to it as thMP Markov property.

Two different chain graphs may be equivalent with respect to a camesiddarkov property,
by which is meant that they define the same statistical model. The distinction Inetiiffszent
interpretations of chain graphs is reflected by the different conceptgjuifalence, namely the
LWF Markov equivalencand theAMP Markov equivalence

From a statistical perspective, the point of interest is a statistical model. \dowiewe repre-
sent a statistical model using an arbitrary graph in the respedtivkov equivalence clasthen the
non-unique nature of graphical description may result in difficulties. me of difficulty concerns
problems one can meet in structural learning of graphical models; s¢ier52@ of Chickering
(2002) for a review in the case of acyclic directed graphs. A solution teetipeoblems may be
provided by a suitable choice of a unigtepresentativeof each Markov equivalence class, that
is, of a particular element in that equivalence class. The choice of a lsuitglresentative is also
important from the perspective of causal inference in chain grapagrifizen, 2001, Section 11.2).

The problem of the representative choice has a natural solution in thedas# Frydenberg
(1990) showed that every LWF equivalence class containgatigest chain graphwhich is the
graph with the largest amount of undirected edges within the LWF equaalgass. Furthermore,
every arrow in the largest chain graph is an arrow with the same directimeig ehain graph from
the class. The largest chain graph is uniquely determined and can seaveatural representative
of the LWF equivalence class. Moreover, there exist at least tweedwoes that transform every
chain graph into the largest chain graph of the respective LWF eqnaaleass Roverato (2005);
Volf and Studeg (1999).

However, the situation is different in the AMP case. Itis not clear whah&taral representative
of an AMP equivalence class and, in particular, the notion of the “laigekt chain graph” makes
no sense. Andersson et al. (2001) proposed to represent an AMNakence class by a so-called
AMP essential graph Every arrow in the AMP essential graph is either an arrow with the same
direction or an undirected edge in every chain graph from the equaelgass. Their terminology
was inspired by the case of acyclic directed graph models, in which casentesponding equiva-
lence class has a suitable representative calledgbential graptfAndersson et al., 1997). Indeed,
if an AMP equivalence class contains an equivalence class of acydittelr graphs, then the AMP
essential graph coincides with the respective essential graph; geesRian 4.2 in Andersson and
Perlman (2006). However, as of now, there is no algorithm to constracAlMP essential graph,
as in the LWF case. Furthermore, in the case that the AMP equivalensecolasins a completely
undirected graph, it may happen that the AMP essential graph has smws,and this unpleasant
phenomenon was already reported in Section 7 of Andersson et al.)(200

The aim of this paper is to provide an alternative solution to the problem ofiarggaphical
representation of AMP equivalence classes. The point is that AMRalguoce classes have a more
complicated structure than LWF equivalence classes. We succeed alimgvihis structure and
provide a representing graph as well as an algorithm for its construdgflansolution, called the
largest deflagged graphis different from the AMP essential graph proposed in Anderssai. et
(2001). Nevertheless, if an AMP equivalence class contains an adydited graph then our rep-
resentative reduces to the essential graph of the correspondinvgleqae class of acyclic directed
graphs. Moreover, it provides a better solution if the AMP equivalefagscontains an undirected
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graph because then, as one would expect, that undirected grapidesinith our largest deflagged
graph.

These are the main contributions of the paper:

1. We introduce a new concept, namely, the concepgtrohg equivalencef chain graphs. An
important observation is that every AMP equivalence class of chairhgrdgcomposes into
strong equivalence classes.

2. Every strong equivalence class has a unigue representativetyitie largest chain graph of
the class. We introduce a procedure, calledabeponent merging procedymhich starts

from any chain graplG and, by replacing arrows with undirected edges, finds the largest

graph in the class of chain graphs strongly equivalef@.to

3. There exists a unique distinguished strong equivalence class amaegfthming an AMP
equivalence class. Its elements have the largest amount of immoralities dedghgossible
amount of flags. We call the graphs in this class the maximally deflaggedsytaiéfly the
deflagged graphsWe introduce a procedure, called ttieflagging procedurewhich starts

from any chain grapks and, by replacing undirected edges with arrows, produces a deflagge

graphG AMP equivalent tcG.

4. We propose to characterize every AMP equivalence class by mé#resrespectivéargest

deflagged graphThis representative can be constructed by applying the component mergin

procedure to the chain grap}obtained by the deflagging procedure.

The next section recalls basic graphical concepts. Then, in Sectior &am results in the
LWF case are recalled in order to let the reader see some analogy.tionStave give an overview
of our new results and illustrate them by an example. The results on stroinglkegqce of chain
graphs are formulated in Section 5. They appear to be analogous to titts kedid in the LWF
case. In Section 6, we present a deflagging procedure to get agflggaph in a given AMP
equivalence class. Section 7 contains some concluding remarks. Bfdabks main results are
moved to the Appendix.

2. Basic Concepts

In this paper we consider graphs that admit both directed edges, cal@dsaand undirected
edges, called lines. Formally, given a non-empty finiteNseanarrow over N is an ordered pair
(a,b) of distinct elements o and aline overN is a subse{a,b} of N of cardinality two, that is,
an unordered pair of distinct elementsif A hybrid graphis a tripletH = (N, 2, £) whereN
is a finite non-empty set afodes 4 a set of arrows oveN and 2 a set of lines oveN such that
no multiple edges are allowed, which means thatjb) € 2 then(b,a) ¢ 2 and{a,b} ¢ .. To
express thal is the set of nodes dfl we also say thatl is a hybrid grapltover N

Given a hybrid graptH, we will write a— b in H or b —— ain H to denote(a,b) € 4.
Analogously, we will writea — bin H orb — ain H if {a,b} € £. This notation is in accordance
with usual pictures. An ordered pddr, b] of distinct nodes ifd will be called aredgeinH if a— b
inH,a—Dbin H ora<— bin H. Observe thafa,b] is an edge iffib,a] is an edge: this means
that edges can be viewed as unordered pairs of distinct nodesb]lis an edge irH we also say
thata andb areadjacentin H.
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A set of node<C C N is connectedn H if, for everya,b € C, there exists anndirected path
connecting them, that is, a sequence of distinct nedegs,...,c, =b, n> 1 such that; — ¢.1
inH fori=1,...,n—1. A (connectivity)componenin H is a maximal connected set kh with
respect to set inclusion. Evidently, components in a hybrid graph angipaidisjoint.

Given a set of node& C N in a hybrid grapH, the set ofparentsof nodes inA, denoted by
pa, (A), is the set

pa;(A)={beN; b— a inH forsomeac A}.

A descending patm H from a nodea to a nodeb is a sequence of distinct nodas-ci,...,c, = b,
n> 1 such that eithet; — ¢i,1inH orc —ci 1 inHfori=1,...,n— 1. If there exists a path
of this kind inH then we say thad is anancestorof b in H. The set of ancestors k of nodes in a
setA C N will be denoted by an(A); observe that one hasC any (A).

An undirected graphs a hybrid graph without arrows, that ig,= 0. A setK C N is complete
in an undirected grapH if, Va,b € K, a# b, one hags — bin H. Given a hybrid graph overN,
the respectiveinderlying graphs an undirected grapH" overN such thaa — b in H" iff [a,b]
is an edge iH.

A directed graphis a hybrid graph without lines, that is, = 0. A directed graptH is acyclic
if there is no directed cycle iHl, that is, there is no sequence of nodgs..,d,_1,d,=dg, N> 3
such that,...,d,_1 are distinct andyi =0,...,n—1,di — di 1 in H.

The concept of @hain graph(CG) can be introduced in two equivalent ways. Note that we are
going to use the abbreviatid®G in the rest of the paper. The first definition is that a CG is a hybrid
graphH whose components can be ordered to form a chain, that is, a seqtenceCy,, m> 1
such that

e if a—DbinH thena,b € C; for somei,
e ifa— binH thenac C,bcCjwithi < j.

Note that this is the reason for which some authors call the components irchdcomponents
A consequence of this definition is that every CG hasreinal componenthat is, a component
T such that there is no arroer— b in H with a € T. The other definition is that a CG is a
hybrid graphH without semi-directed cyclesA semi-directed cycle of the lengthis a sequence
of nodesdp, . ..,dn_1,dn, = dg with n > 3 such that,,...,d,_; are distinct,dy — d; in H and,
Vi=1,...,n—1, eitherd — di; 1 inH ordi — d;; 1 in H. See Lemma 2.1 in Studgif1997) for
the proof of equivalence of both definitions of a CG. It is easy to seeetlaty undirected graph
and every acyclic directed graph is a CG.

Given a hybrid grapld overN and® # A C N, theinduced subgraplof H for A, denoted by
Ha, is the graptHa = (A, 2 N (Ax A), L N2 (A)), where? (A) = {B; B C A}. We will deal with a
few special induced subgraphs.cAmplexin a hybrid grapH is an induced subgraph &f of the
forma—c¢ — ... —cs+<— b, s> 1, which means that no other edge between distinct nodes
{a,b,cq,...,cs} is present inH. An example of a complex is shown in the left-hand picture of
Figure 1. A special case of a complex isiamnmorality, which is a configuratioa — c+—bin H
wherea, b, c are distinct nodes arid, b] is not an edge ii. An example of an immorality is shown
in the middle picture of Figure 1. Two CG3 andH over N will be called complex equivalent
iff they have the same underlying graph and complexes. Given &CGe class of CGs that are
complex equivalent t& will be denoted by .
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Figure 1: A complex, an immorality and a flag.

A flagin a hybrid graphH is another induced subgraph if for three nodes, namely —
¢ — bwherea, b, c are distinct nodes ard, b| is not an edge itd. An example of a flag is shown
in the right-hand picture of Figure 1. &iplex in a hybrid graphH is a pair({a,b},c) such that
eithera— ¢ +— bis an immorality inH,a— ¢ —bis aflaginH ora—c+«— bis a flag
in H. All three different versions of a triplex are shown in Figure 2. Two G&andH overN
will be calledtriplex equivalentff they have the same underlying graph and triplexes. Note that
coincidence of triplexes is understood as follows. If, for instaace;~ ¢ <—— b is an immorality
in G then it need not be an immorality id but it has to be one of three versions of the triplex
({a,b},c). Given a CGH, the class of CGs that are triplex equivalenttavill be denoted byH.

3. Representation of LWF Equivalence Classes

In this section we recall known results concerning the LWF case. The dmrhislp the reader to
realize the analogy between these former results and our new resultsg astuivalence of CGs
presented in Section 5. Moreover, an overview of the results in the LWé&\wdl indicate what is

the main difference from the AMP case, which is reported in Section 4.

3.1 Largest Chain Graph in a LWF Equivalence Class

In this paper, we omit the formal definition of LWF Markov property and LW&rkov equivalence;
this can be found in Frydenberg (1990). Instead, we recall Fryatgisgraphical characterization
of LWF equivalence of CGs (see Proposition 5.6 in Frydenberg, 1996)showed that two CGs
over the same set of nodes are LWF Markov equivalent iff they are leomeguivalent.

The second crucial point is that every LWF equivalence class is eztlavith a natural partial
ordering. Supposing th&t = (N, 2y, 24) andG = (N, 4, L) are two LWF equivalent CGs, we
say thatH is larger thanG if a4 C 4, that is

a— binH impliesa— bin G, QD

0O

O
a

0O

(i) (i) (iii )
Figure 2: Three different versions of the tripléja, b}, c).
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for every paira andb of distinct nodes irH. Observe that the fact th& andH have the same
underlying graph necessitates thigt C Ly, that is

a—bin Gimpliesa—binH, 2

which meandd has ‘more’ lines thaits. One can easily show that the relation defined by (1) is a
partial ordering on every LWF equivalence class; we will wkite> G if (1) is fulfilled.

Third, Frydenberg also showed (Proposition 5.7 of Frydenberg)19&t every LWF equiv-
alence clasg has the largest element with respect to this ordering, th&:.iss ¢ such that for
everyGin g one hasG. > G. Thus, this grapl&.., named thédargest chain grapiof ¢, can serve
as a natural representative ®f

3.2 Feasible Merging of Components

The last important point is that there are procedures which allow one thgérgest CGs., € G
on the basis of any CG € g from the LWF equivalence class. At least three procedures of this
kind have been presented in the literature; however, two of them are méigmadly equivalent.

One of them could be a procedure based on Theorem 3.9 of Volf andit(iP99). The basic
idea is that some arrows in a G&¢< ¢ are indicated as ‘protected’ arrows. Then all arrow§in
which are not ‘protected’ are replaced with lines and the largest chaph@.. of G is obtained.

Another procedure, called theool-component rulewas presented in Section 5 of Stuglen
(1997). The basic idea is that there is an elementary operation of mergmgooents in a CG
whose result is an LWF equivalent CG. By consecutive application obfteésation, the respective
largest chain graph can be obtained. However, the formal descridtibateelementary operation
given in Studen (1997) is still awkward.

The third procedure is described in Roverato (2005). Its basic ideseneaslly the same;
an elementary step of that procedure consists of merging componentsin$astantial’ meta-
arrow, that is, of the bunch of arrows between two certain compondrigsshown in Section 4 of
Roverato (2005) that, by consecutive application of that elementarytbepespective largest CG
is obtained. One can show that the elementary operations presented inyStL@i#7) and Roverato
(2005) are equivalent (see Studei al., 2006), but the formal description of the operation presented
in Roverato (2005) is much more elegant from the mathematical point of viendakided to take
it as the basis of the following definitions.

Definition 1 (meta-arrow)

Let G be a CG. A pair of componertd, L) in G such that there exists an arrow-a- b in G with
ac U and be L determines aneta-arrowin G. More specifically, the meta-arrow is the collection of
all arrows a— b with ac U and be L. The component U will be called tlupper componerdnd
the component L thiswer componentof the meta-arrow). We will occasionally use the notation
Uu=lL.

Note that the above notion is a minor modification of the concept of a meta-aoowRoverato
(2005). The essential difference is that in Definition 1 we require thHatat one arrow exists from
a member ofJ to a member of., while in Roverato (2005) a possibly empty collection of arrows
fromU to L was allowed. Thus, the concept of a meta-arrow used in this paper cesneith the
concept of a non-empty meta-arrow from Roverato (2005). Since emgranews play no role
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Figure 3: Two examples of feasible merging. The vertices belonging to thefsem (i) are filled
in and arrows of the meta-arrdw = L are bold.

in a CG, we have decided to simplify our terminology. Our additional assumpgoriraplies that
the considered componerdsandL are different.

Definition 2 (merging of components)

Bymerging of componenis a CG G we understand the following operation applicable to G. Given
a pair of component§J, L) which defines a meta-arrow, we replace all arrows of the meta-arrow
U = L with lines and say that the resulting hybrid graphi€obtained by merging of components
U and L; more specifically, bgnergingof the upper component U and the lower component L.

Note that the above terminology was inspired by terminology from Stu¢004). In general,
the result of the operation of merging components in a CG need not be a @&velr, there are
sufficient conditions for this; one of them is as follows.

Definition 3 (feasible merging)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow in G. We sam#rging
of components U and L feasible(in G) if the following two conditions hold:

(i) K= pag(L)NU is a complete set in G,
(i) VbeK pag(L)\U < pag(b).

Note that the assumption th@f, L) defines a meta-arrow implies that the Keih (i) is a non-
empty set. Two examples of feasible merging are shown in Figure 3.
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It is shown in Section 4 of Roverato (2005) that a hybrid gr&lobtained from a CGG by
feasible merging of its components is a CG complex equivale@t axtually, it is shown there that
the requirements (i) and (ii) together establish a necessary and suf@oisdtition for this. In fact,
that is the reason we decided to name this operation with CGs “feasible mefginoghnponents”
because the condition ensures that one remains in the same LWF equevellesgof CG after the
merging operation. Moreover, it is also proven in Roverato (2005) tyatfreated application of
this operation to a C& € g, the respective largest CG., € ¢ is obtained.

4. Representation of AMP Equivalence Classes

In this section we reveal the internal structure of AMP Markov equivadeariasses. First, we recall
the graphical characterization of AMP equivalence. Then we introdspecial kind of equivalence

of CGs, calledstrong equivalencesuch that every AMP equivalence class decomposes into strong
equivalence classes. Basic results on strong equivalence are mestimo Section 5. The next
step is to introduce a specidg orderingbetween strong equivalence classes within a fixed AMP
equivalence class. We show that the smallest element with respect to deaingrexists and,
finally, we propose to represent the whole AMP equivalence class biusahrepresentative of that
distinguished strong equivalence class, caliéedest deflagged graph

4.1 Graphical Characterization of AMP Equivalence

The formal definitions of AMP Markov property and AMP Markov equérece are omitted; they
can be found in Andersson et al. (2001). Here we recall graphizabcterization of AMP equiv-
alence given by Andersson et al. (2001, Theorem 5). They shtwatdwo CGs over the same
set of nodes are AMP Markov equivalent iff they are triplex equivialén example of an AMP
equivalence class is given in Figure 2. A further, less trivial, exampi¢aiming ten CGs is given
in Figure 4.

Given a CGH, let us consider the séf of all CGs triplex equivalent tél. If we consider the
partial ordering of CGs ifHl defined by (1) then it may be the case that the largest C& does
not exist. This is illustrated in Figure 2, where none of the three graphgeritivan the others, but
also in Figure 4.

This is the main difference between the case of LWF equivalence andsb@tAMP equiva-
lence. In the LWF case, the key role is played by the ordering of CGsedklin (1). The result on
the existence and unigueness of the largest CG with respect to this gritegach LWF equiva-
lence class reported in Section 3 makes this object a natural represpfdtie LWF equivalence
class. In the representation of an AMP equivalence class, the orddafired by (1) also plays
an important role, even though its use in this case is more subtle than in the LA&F \éfhat is
important is that every AMP equivalence class decomposes into somediriealence classes.

4.2 Definition of Strong Equivalence

Our decomposition of a given AMP equivalence class is based on the tstitetweertriplex
edges namely the arrows and lines that belong to a triplex, and non-triplex eddese specifi-
cally, if two triplex equivalent CGs have identical triplex edges, then wetlsatythey are strongly
equivalent.
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O
\

Figure 4: An example of an AMP equivalence class. The boxes repres®ng equivalence

classes. They are ordered by the flag ordering. There exists a Uaigast graph within
every strong equivalence class. The largest deflagged graplehizes filled in.
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Definition 4 (strong equivalence of chain graphs)
Let G H be CGs over N. We say that they ateongly equivaleniff

[a] G and H have the same underlying graph,
[b] animmorality a— c+<— b occurs in G iff it occurs in H,
[c] aflaga— ¢ —b occursin G iff it occurs in H.

It is easy to see that strongly equivalent CGs have the same complexgtitular, they are
both complex equivalent and triplex equivalent. On the other hand, twov@@h are both LWF
and AMP Markov equivalent need not be strongly equivalent as shfmw example, by the graphs
(i) and(ii) in Figure 2.

Given a CGH, the class of CGs that are strongly equivalenttavill be denoted by# . In
Figure 4, strong equivalence classes are represented by boxesthi since all the graphs i
have the same triplex edges, it makes sense to sag thatcis a triplex arrow inx if a— cis a
triplex arrow in every CG fron¥ , and similarly for triplex lines. We are going to show in Section
5 that, similarly to the LWF case, every strong equivalence clagsas a unique largest element.
We also present a special component merging procedure to get thst lalgment on basis of any
graph in# there.

Strong equivalence is an equivalence relation that induces a partitiory &MP equivalence
classH of CGs. We will denote the set of all strong equivalence classes inclndgdby H =
{#;¢ CH}.

4.3 Flag Ordering

Interestingly, the relation (1) restricted to triplex edges defines a partiakriog betweerstrong
equivalence classes froh.

Definition 5 (flag larger)
Let H be an AMP equivalence class and, g € H. We say that/ is flag largerthan g and write
#H > ¢ if the following condition holds:

whenever a— b is a triplex arrow in# thena— b in g. 3)
Observe that (3) and the fagt, 7 < H imply that
whenevela — bis a triplex line ing thena —Dbin 4. 4

Hence,#r = G = # for 71,6 € H implies that#r and G have the same triplex edges, that is,
G = #{. This allows one to see that the relatieris indeed an ordering dA. Another point is that

(4) means tha#/ has ‘more’ triplex lines thar; . In particular, if# > g then every flag ing is

a flag of the same type i . For this reason, we will refer to the ordering defined by (3) as to the
flag orderingof strong equivalence classes. In Figure 4 we illustrated this orderidg$lyed lines.
Note that there exists the smallest element with respect to flag ordering.natsial distinguished
strong equivalence class withihand, now, we prove its existence.

Proposition 6 Given an AMP equivalence clas there exists a unique strong equivalence class
7' € H such thaty > # ! forall # € H.

1054



A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

Proof As H is finite and= is an ordering orf it suffices to show that, for every,# < H,
there existsr ¢ Hwith g = 7 and# = 7. ChooseG € g andH € # and construct a hybrid
graphF with the same underlying graph &s(andH) in this way:a — b in F iff eithera— b
inGor[a—bin Ganda— b in H]. Lemma 4 in Andersson et al. (2001) says thais a
CG which is triplex equivalent t& (andH). Let ¥ denote the strong equivalence class of CGs
containingF. Thus,# < H and the facG > F implies g = #. The conclusion > # can be
verified directly: ifa— b is a triplex arrow inH (= in #) then the fact thaH andG are triplex
equivalent implies that either— bin Gora — bin Gwhich both givesa— binF (=in 7). R

4.4 Deflagged Graphs and Essential Flags

Given an AMP equivalence cla$g the symbolx ! will be used to denote the least strong equiva-
lence class il with respect to-. The graphs ire/ ! will be calledmaximally deflagged grapls,
briefly, deflagged graphs

In the example in Figure 4, both triplexes in the deflagged graphs are immoratitbegever,
in general, not all triplex edges i@ ' have to be arrows. Some flags appear to be essential for the
specification of the séfl and, therefore, their lines are shared by all graphs fihnAn example
is given in Figure 5 where a single graph, which has two flags, forms tlodewWkMP equivalence
class.

Figure 5: An example of a pair of essential flags.

Definition 7 (essential flag)
LetH be an AMP equivalence class. Ifa- b —d is a flag in H for every H= H then we say
that it is anessential flagn H.

Actually, deflagged graphs can equivalently be introduced as follows.

Proposition 8 Given an AMP equivalence cla& one has G= # ! iff G € H and every flag in G
is an essential flag if.

Proof To verify the necessity of the condition, consider a iag— b — cin GandH € # < H.
Then the assumptiorr > 7' 5 G implies by (4) that the triplex line — cin G is also inH. As
({a,c},b) is a triplex both inG andH it allows one to derive&a — bin H. Thus,a— b —cis
aflagin evenH € H.
For sufficiency, assume th@t< H only has essential flags. Lgtc H be the strong equivalence

class containings. We are to show that/ = g for everys/ < H. Consider a triplex arros — b

in #£. It has to be a part of a triplei{a, c},b). Since it has to be a triplex i the only option
which excludesa — b in G is thata b —— cin G. However, then it is an essential flaglth
anda — b «+«— cin # . This contradicts the assumption and one necessarilghasbing. W
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4.5 Largest Deflagged Graph

Let us summarize. AMP equivalence classes can effectively be habglft considering their
natural partition into strong equivalence classes (partially ordered)psnd then by dealing with
the CGs in every strong equivalence class (partially orderett)oyln this way, it is possible to
identify unambiguously a graph iH by first considering the flag-smallest strong equivalence class
and then by taking the largest graph within that class.

Definition 9 (largest deflagged graph)
The graph H is thelargest deflagged grapi an AMP equivalence clags if

() H e o !,
(i) H' >HforallH € # L,

In Figure 4, the ordering of CGs within strong equivalence classes is dtastby means of dotted
lines. The largest deflagged graph is emphasized by means of verticafille

Recall that the existence of the strong equivalence aldssas proven in Proposition 6 whereas
the existence and uniqueness of the largest C&iis shown in Section 5. Furthermore, in Section
6, we provide a deflagging procedure which, starting from any@iG an AMP equivalence class
H, returns a CG3in # . Then a component merging procedure from Section 5 can be applied to
Gto get the largest deflagged gralgh.

5. Strong Equivalence

This section is devoted to basic results on strong equivalence of CGse Témults are analogous
to the results on LWF Markov equivalence recalled in Section 3. Morefgadly, we prove the
existence of the largest CG within each strong equivalence class, ingtiieirespective elementary
operation ascribing a larger strongly equivalent CG to a CG, and shohthiargest CG in a strong
equivalence class is attainable by this operation.

5.1 Largest Chain Graph in a Strong Equivalence Class

In this subsection we show the existence of the largest CG within a stromgaksmee class. The
first step for this is a direct construction of the supremum of two CGs withageshunderlying
graph with respect to the orderirtt) > G defined by (1). Note that the construction was already
mentioned without further details in Frydenberg (1990). The constructiitines the following
auxiliary concept.

Definition 10 (cyclic arrow)
Given a hybrid graph H, we say that an arrow-a- b in H is acyclic arrowin H if b € any(a).
An equivalent formulation is that there exists a semi-directed cycle in H camggén— b.

Lemma 11 Let us consider the class E of all CGs over N with a prescribed underigiagh
E, ordered by the relation> defined by (1). Then every pair of graphs G and H from E has the
supremum G/ H in (E, >). It can be obtained directly in two steps.

1. Define a hybrid graph GH over N as follows

a—binGUH iff botha—binGanda—binH,
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and a— b in GUH for remaining edges in E.
2. Replace all cyclic arrows in GH with lines and obtain & H.

Proof It is easy to see thdtE,>) is a partially ordered set. We need to show t@at H € E,
GVH > G, GVH > H and, whenever there i5 € E with F > G,H thenF > GV H.

The fact thatG vV H is a CG was proven as Consequence 2.5 in Volf and Sfude99). Hence,
itis clear thatGV H € E and thatGV H is larger than botltc andH.

To show that- > GV H for F € E with F > G,H, consider an arro@ — b in F in order to
verify a— b in GV H. Sincea— bin GUH, it suffices to shovb ¢ ang y(a). Suppose for
contradiction that there exists a descending patbh = c;,...,co=a,n>2in GUH. There is no
1<i<n-—1lwith¢ «—cy1inF, asotherwise; «—— ¢, 1in GUH. Thus,p is a descending path
in F which contradicts the assumption tikats a CG. |

The preceding construction can be utilized to prove that every strorigadgnce class of CGs
is a join semi-lattice with respect t.

Proposition 12 Let G and H be strongly equivalent CGs over N. Then their supremuni Gs
strongly equivalent to them as well.

Because the proof is technical, it is moved to the Appendix. Proposition 4 thieafollowing
consequence.

Corollary 13 Given a strong equivalence clagsof CGs over N, there exists'@& ¢ which is the
largest CG ing .

Proof Sinceg is a finite set, one can apply Proposition 12 repeatedly to get the supremalin of
graphs ing . Of course, it is the largest CG ip. |

5.2 Legal Merging of Components

In this subsection we introduce an elementary operation that producesnglgtequivalent CG
when applied to a CG. Here is the definition.

Definition 14 (legal merging of components)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow. We say #rging of
components U and L iggal(in G) if the following three conditions hold:

[l K= pas(L)NU is a complete setin G,
il vbeK pag(L)\U = pag(b),
[iii] for every de L one haspag(L) = pag(d).
Evidently, the conditions [i]-[iii] imply the conditions (i)-(ii) from Definition 3. Ibrief, every
legal merging (of components in a CG) is feasible. In Figure 3, (M1) is ameke of feasible

merging that is not legal whereas (M2) is an example of legal mergin@.idfa CG without flags
then the condition [iii] is always fulfilled and [ii] takes a simpler form:
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[i] pag(L)\U = pag(U).

Thus, the operation from Definition 14 generalizes the operation of legaimgeof components
(of a CG without flags) from Studgn(2004). The requirement [iJ#] also coincides with the
condition from Roverato (2005) demanding that the arrowhead of the aneteadJ = L is strongly
insubstantial.

Proposition 15 Let G be a CG over N, andJ, L) be a pair of its components which defines a meta-
arrow. Then the conditions from Definition 14 are satisfied iff the grapblfEained by merging of
components U and L is a CG strongly equivalent to G; of course, it is (sirietiger than G.

The proof is moved to the Appendix. Note that one has to replace the wHhigetmm of arrows
between components with lines; otherwise the obtained graph would notBeBh is the reason
why legal merging is indeed an elementary operation yielding a larger am@)btrequivalent CG.

5.3 Component Merging Procedure

An important fact is that the largest CG in a strong equivalence ¢lassn be obtained from any
CG in g by consecutive application of the operation of legal merging of componAntsally, we
show the following, formally stronger, result.

Proposition 16 Let G and H be strongly equivalent CGs over N such that B. Then there exists
a finite sequence & F4,...,Fnh=H, m> 1 of CGs over N such that, for everyil,...,m—1, the
graph F. 1 is obtained from Fby legal merging of components.

The proof is technical and it is moved to the Appendix. Proposition 16 hdsitbeing conse-
quence.

Corollary 17 Given a strong equivalence clagsof CGs over N and & g, the largest CG Gin
G is attainable from G by a series of legal mergings.

Proof We simply putH = G' in Proposition 16. [ |

6. Deflagging Procedure

In this section we describe a procedure to construct a deflagged érapi'rting from any CGG
in the respective AMP equivalence cldfs We proceed as follows. First, we introducéaheling
algorithm that assigns some labels to endings of line$in Second, we introduce directing
algorithmwhich, on the basis of those labels, replaces certain lin€\virith arrows. In this way,
we get a CG which is both triplex equivalent@and flag-smaller that. Finally, we provide a
deflagging procedure which consists of repeated application of thessgaathms. We show that
the result is a deflagged graph.
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Forbidden configurations

Figure 6: Three blocking rules from the labeling algorithm.

6.1 Labeling Algorithm

Let G = (N,4,2) be a CG. Alabeled graph G= (N, a,.") is a graph obtained by ascribing a
pair of labels to every linda,b} € . The labels on a line — b correspond to endings of the
line: one of them is associated withand the other wittb. We use two different kinds of labels: a
blocking label denoted by a crosg),'and a label denoted by a do#,’, to be read as ‘free’. Thus, if
the blocking label is associated wislon a — b then we will say that the line islocked at aand
write a ~— b in G'. On the other hand, the notatian— b in G’ will mean that the line ifree at

a. The intuition behind the terminology is as follows. A blocked ending at a mosi# mean that
the line cannot be replaced with an arrow directed, ttor otherwise we would get a graph outside
H. A free ending ati will mean that no such conclusion has been derived so far.

Consequently, a labeled CG has three types of lines: two symmetric fermsand -—- , and
an asymmetric form—- . Let us emphasize that we only consider labeled graphs in which all lines
have both endings labeled. However, in our notation, labels need naipheitty indicated. For
instance, the notatioa— b in G will mean that eithea «~— b in G’ ora ~— bin G’.

Thelabeling algorithm whose pseudo-code is given in Algorithm 1, produces a special thbele
versionG' of a given CGG. Initially, all lines are replaced with labeled lines with free endings.
Then, threélocking rulesillustrated in Figure 6, are repeatedly applied until they are not applica-
ble. Each blocking rule maodifies just one ending of one line: a free endipigéged. In this way,
we get a labeled CG in which rforbidden configuratior{see Figure 6) is present. The labelling
algorithm is the first step of the overall deflagging procedure and in fleviog step some lines
of G are replaced by arrows; thus, the reader can possibly understarikettaree forbidden con-
figurations actually correspond to three unwanted operations: (&@spmmnds to cancellation of a
triplex, (b) to creation of a triplex and (c) to creation of a semi-directed dgtléhe length 3).
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Algorithm 1 Pseudo-code for theabel i ngAl gori t hm(G).
1: inputaCGG = (N, 4,L)

2: puti=0

3: initialize Gf = (N, 4, ") by replacing every line —bin Gbya «— bin Gf

4: while at least one forbidden configuration is preser®{rdo

5  i=i+1

6: G/ =modify G{_, by applying one of the following rules (see also Figure 6):
(@) ifa— b — cin G/_, anda andc are not adjacent theém— cin G
(b) ifa— b «—cin G/ ; andaandc are not adjacent theém*— cin G/
(c)ifa—xb—xc-—ainG, thenc ~— ain G/

7: end while

8: returnG' = G/

The point is that the result of the labelling algorithm is invariant with respethecorder in
which the blocking rules are applied.

Proposition 18 For any CG G, the labeled graph‘GLabel i ngAl gorit hm(G) is unique. This
means that the output of the labeling algorithm does not depend on thenmgydie which the three
blocking rules are applied.

The proof can be found in the Appendix. In the rest of the paBéwvill always denote the
labeled version of5 resulting from the application of Algorithm 1. An example of application of
the labeling algorithm is given in Figure 7.

Note that Algorithm 1 is specified so that just one single label is changeckiitenation. This
is useful in the proofs of the results of this section, but may be inefficieptraatice. A more
efficient implementation of the procedure can be achieved by applyingléee(a) and (b) firstin a
multi-step, and then only applying the rule (c) iteratively. This follows fromgdesition 18 and the
fact that the application of the rules (a) and (b) does not depend oedh# of previous iterations
of Algorithm 1.

6.2 Directing Algorithm

Thedirecting algorithm described in Algorithm 2, is the second building block of the deflagging
procedure. It replaces some (labeled) lines with arrows in order tohghpssduce the number of
flags in the original CG. More precisely, every line of the faam—- b is replaced with the arrow

a — band then the labels on other lines are removed.

Algorithm 2 Pseudo-code for thii r ect i ngAl gori t hm(G).

1: input a labeled C&' = (N, 2, ")
2: G! = modify G’ by applying the following rule:

ax=binG'’ = a—binG.
3: G'= unlabeled version o8’
4: returnG'

We show that if the directing algorithm is applied to the result of the labeling igthgothen an
AMP equivalent graph is obtained.
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Figure 7: An example of the application of the labeling algorithm to be read foitpthe number-
ing. Initially, all lines of G are replaced with labeled lines with free endings. Then, in
every pair of successive pictures, a forbidden configuration is higieldband the corre-
sponding rule is applied.
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Theorem 19 Let G be a CG, Gdenote the labeled graph obtained from G by Algorithm 1, ahd G
the graph resulting from Gby Algorithm 2. Then Gs a CG which is triplex equivalent to G.

The proof is relatively long and we have placed it in the Appendix. Clearg hasG > G’
and, henceg = g’ for the respective equivalence classes. Moreover, oné&Ghass’ unless no
line is replaced with an arrow in the directing phase. An example of the apphiaattibe directing
algorithm will be shown in the next section.

6.3 Overall Procedure

The application of the above algorithms to a @3roduces a grap®’ in the same AMP equiva-
lence class such th& > G'. However,G' still need not be a maximally deflagged graph and one
can then apply the same proceduréto In Algorithm 3, we provide the pseudo-code of the over-
all deflagging procedure which consists in repeated application of bodhithigns until no line is
replaced with an arrow during the directing phase. Its result will be ddmyté.

Algorithm 3 Pseudo-code for thigef | aggi ngPr ocedur e (G).
1 inputG=(N,4,2)
j=0
 initialize Gj = G
repeat
j=1+1 ~
G!_; = Label i ngAl gori thm(Gj_1)
Gj =DirectingAl gorithm(G|_,)
. until G; is equal toG; 1
: returné: éj

SinceG has a finite number of lines, the procedure will return a result in finitely meepss
An example of the application of the deflagging algorithm is given in Figure @e hat, in this
exampleGis already the largest deflagged graph from Figure 4; however, thid tsu in general.

222229

G=Go 0 1 1 2 5 G=Gs

Figure 8: An example of the application of the deflagging procedure,efBés the top left graph
in Figure 4. Note that the first application of the labeling algorithm, to ob@&jfirom
G, is detailed in Figure 7.

We are to show thab is a deflagged graph, that B,in 7 ! wheres ! is the class of deflagged
graphs in the respective AMP equivalence class. It follows from Aflgor 3 thatG is such that the
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directing algorithm does not direct any line if applied to the labeled versi@ Ghis means, every
line in G! is either of the type-—- or of the type +«— .

Proposition 20 Let G be a CG such that there is no line of asymmetric fosm- in its labeled
version G. Then, every line a—b in G such that a— b in G’ is a line in every CG F which is
triplex equivalent to G.

The proof is again postponed to the Appendix. Proposmon 20is not \ valié éssumption on
G is omitted. A counterexample is given in Figure 8 where- GoandF =G. A consequence of
Proposition 20 is that every flag @ is an essential flag.

CorollaryA21 Given a CG G, the grapl@ = Def | aggi ngProcedure (G) is a deflagged graph,
formally G in 2+

Proof By Theorem 19G belongs to the same AMP equivalence clisasG. Owing to Propo-
sition 8, we need to show that# — b —d is a flag inG then it is an essential flag. By the
blocking rule (a)Ja — b —din G impliesa— b —<din G'. Since there are no lines of the
form -— in G/, it necessitatea — b «— d in G'. It follows from Proposition 20 thay —d

in H for everyH € H. Asa— b —d has to correspond to a triplex kh, one can conclude that
a—b—dinH. |

Note that the arguments in the proof above actually imply that a simple sufficieditiom for
a CG to be deflagged is that its labelled version has no line of asymmetric form.

7. Conclusions

This paper is devoted to the problem of choosing a graphical repréigerdhthe statistical model
ascribed to a CG under AMP interpretation. As a matter of fact, any CG fremegpective AMP
Markov equivalence class provides a graphical representative obtinesponding model. However,
a representative only makes sense if it complies with some properties thaelyriadentify it within
each class. Furthermore, in the framework of structural learning, te®ilosss of a graphical
representative is related to the availability of procedures which can lbdqaiéy dealt with. That
means, for instance, that an implementable construction procedure to oletagptesentative (on
the basis of any other graph in the Markov equivalence class) shoaltcdue disposal.

Nevertheless, from the point of view of interpretation, a representsitivald be chosen on the
basis of the information carried with respect to the corresponding statistmdél. Hereafter, we
address the issue of the information contained in the largest deflagged wiaich is the represen-
tative for an AMP chain graph model we have proposed.

Andersson et al. (2001, Theorem 4) showed that, for aH;@e AMP and the LWF Markov
properties coincide ifH has no flags. Thus, if there exists a CG without flag&lithen formal
distinction between the two Markov properties is not necessary. In thés alishe results derived
in the LWF case can be applied. For instance, the useful factorizatioonditmnal densities into
‘potentials’ given by Frydenberg (1990, Theorem 4.1(iii)) can beliagpgn the AMP case only
with respect to CGs without flags. Clearly, there is a strong connectiorebetthe set of CGs
without flags and the set ! of deflagged graphs. More specificallj,has a CG without flags iff
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there are no essential flagslih In this case, the class of deflagged graphsis just the class of
CGs without flags iffl. Conversely, if there exists some essential flag/inthen one can conclude
that there is no CG ifl for which the two Markov properties coincide. Because deflaggechgrap
only contain essential flags, they eliminate the ambiguity resulting from the miojiei graphical
representation of triplexes, and allow an immediate comparison with the LWF case

The above reasons justify our restriction to the class of deflaggedgyréjiiw we justify the
choice of the largest deflagged graphsrt. If 2! contains no flags theH! is the largest CG
without flags inH. Thus, if H contains an undirected graph then the largest deflagged gtaph
coincides with that undirected graph. Analogouslylitontains an acyclic directed graphthen
H! coincides with the essential graptf for D (Andersson et al., 1997; Studer2004; Roverato,
2005). We remark that the AMP essential graphproposed by Andersson et al. (2001) is a de-
flagged graph (see Andersson and Perlman, 2006, Lemma 3.2(a) ) B thad . Nevertheless, in
general, the largest deflagged graphis different from the AMP essential grapti': for instance,
if H contains an undirected graph thidri may even have some arrows (see Andersson et al., 2001,
Figure 14).

Another issue related to the problem of representative choice is the topaaisél discovery in
CGs (see Section 11.2 of Lauritzen, 2001). This is a controversial tep& $ection 3 of Dawid,
2002, for more discussion). The disputable question is whether one eatifydsome causal rela-
tionships between variables on the basis of data. Nevertheless, whahkéhtkt what is generally
accepted in the field of causal discovery is the following proposition:

If data are “generated” from a distribution which is “faithful” with respexa CG and
if an arrowa — b is notinvariant across the respective Markov equivalence class, then
onecannotreveal possible causal relationship frarto b on basis of data.

In short, one cannot make causal discovery betveesamdb if there is arundirectededge betweea
andb in at least one of the chain graphs from the Markov equivalence cagshere are two chain
graphs such tha — b in the one of them first and — a in the latter one. On the other hand, if
an arrowa — b is invariant across the respective Markov equivalence class thealadigcovery
could be possible. Consequently, from the point of view of causal discavechain graphs, a
good representative of a Markov equivalence class should indicdtéhthaorresponding edge is
not an invariant arrow by the presence of a line. Standard représeata the LWF case, such as
the largest CGs (Studgnl1997), the essential graphs for acyclic directed graphs (Anateetsal.,
1997), and thes-essential graphs (Roverato and La Rocca, 2006), are fully inforeneitm this
point of view because they have the largest number of lines and, fortiney they contain an arrow
if and only if it is invariant. As the examples in Figures 2 and 4 show, a CG withptioigerty may
not exist in an AMP equivalence class and therefore both the AMP tsgiraph and the largest
deflagged graph may contain some arrows that are not invariant. Howeedargest deflagged
graph is more informative than the AMP essential graph because it is a tdrgm graph and,
therefore, it has more lines.

We have not mentioned this explicitly but, in this paper, we have actually pr\adealgo-
rithmic characterization of the largest deflagged graphs. More spdlgifiaaCG G is the largest
deflagged graph iff it is again obtained by the consecutive applicationmptacedures: the de-
flagging procedure is applied & and the component merging procedure to its reGult
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The results of the paper also lead to some natural open problems. Foc@stanwould like
to know whether the converse of Proposition 20 is valid. More specifioddigs the deflagging
procedure identify all essential lines Hh as double-blocked lines? Further conjecture is that the
AMP essential graph is obtained if the deflagging procedure is applied t@nfest deflagged
graph. Another issue is as follows. We know that both LWF and AMP Ma#dguivalence are
associated to Markov properties for CGs. Is there any Markov ptpfmrCGs which gives rise to
the strong equivalence of CGs?
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Appendix A. Proofs
Proof of Proposition 12

Throughout the proof we assume tl@aandH are strongly equivalent CGs. L&tUH andGV H
denote the graphs introduced in Lemma 11. We start with an auxiliary olbserva

Fact 1 Let &y — d; be a cyclic arrow in GUH andp: dg,ds,...,dn = dg, m> 3 a semi-directed
cycle in GUH containing it which cannot be shortened (to a semi-directed cycle.iii@&ontaining

do — dy of the length < m). Then d — d; in one of the graphs G and H whilg d— d» in the

other graph.

Proof SinceGis a CG, there exist £ j < mwith dj_; «— d; in G and the same conclusion holds
for H. Let us put
s=min{2<j<m;dj_; < d;eitherinGorinH }.

Let us, without loss of generality, assume that; «— ds in G. Thendy,...,ds 1 is a descending
pathG. Moreover, observe thal, .. .,dsis necessarily a descending path in the other graph, namely
in H. This impliess < mfor otherwisep is a semi-directed cycle in a Ci.

The next step is to verify thatls_»,ds] is an edge ilGUH. This is because otherwisg —
ds 1 «— ds_» is an immorality inG or ds — ds_1 — ds_» is a flag inG, which, by strong equiv-
alence ofG andH, implies thatds — ds_1 in H and this contradicts the assumption tpas a
semi-directed cycle iGUH.

SinceH is a CG andds_»,ds 1,ds a descending path ifl, one has eitheds «—— ds_» or
ds — ds_» in H, and, therefore, iIGUH.

Thus, necessarilg = 2; otherwisep could be shortened i UH by the edgdds_»,ds] to get
a shorter semi-directed cycle containidg— d; which would contradict its definition. Thus,
d, — dj in G. The facts thaH is a CG,[dp,dz] = [ds_2,ds] is an edge iH, dp — d; in H and
eitherd; — dy ord; — dy in H imply thatdy — d» in H. [ |
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Fact 2 There is no cyclic arrow a— ¢ in GUH which belongs either to an immorality-a— ¢ «—
bortoaflaga— c—Dbin GUH.

Proof For a contradiction, suppose that at least one such cyclic arrow exlstese a semi-directed
cyclep : dg,dy,...,dn=do, m> 3 in GUH of shortest possible length among all semi-directed
cycles containing an arrow of this kind. Assume tat= a — ¢ = d; is that arrow inGUH and,
using Fact 1, observe thad — d; in one of the graph, say i@, while dy — d» in the other graph
H.

Consider the induced subgraph oyerc,b} mentioned in the formulation of Fact 2. As b| is
not an edge it UH whereagdy, dz] = [a,d] is an edge irH, one hagl, # b. Observe that «— b
orc — bin G. Indeed, otherwise — b in G implies—(c — bin H) by the assumption of Fact
2, andH has either an immoralitg — ¢ «<— b or a flaga— ¢ — b. By strong equivalence of
G andH, G has the same induced subgraph{fasc, b}, which contradicts the fact— bin G. By
interchange o6s andH derive thatt «—— b orc bin H as well.

This allows one to see th#lt, dy] is an edge irGUH as otherwise the induced subgraph®f
for {dz,d; = c,b} havingd, — d; coincides, by strong equivalence®fandH, with the subgraph
of H and the conclusiod, — dj in H contradicts the assumption thais a semi-directed cycle
in GUH. Sinceb,c,d; is a descending path i one has eitheld — d, orb — dy in H.

Thus, H has either an immoralitgy — d> «— b or a flagdg — d> —b. SinceG and
H are strongly equivalent; has the same induced subgraph {ds,d,,b}. Of course, the same
conclusion holds fo UH anddy — dy is an arrow inGUH belonging to a triplex.

Hence, it is impossible thah > 3 as otherwisg can be shortened ty, d,,...,d, = dg by a
cyclic arrowdy — d of the considered type which contradicts its definition. Howeven # 3
then the fact; = dp — d, in GUH contradicts the assumption thats a semi-directed cycle in
GUH. [ |

Observe easily by contradiction thaiGfandH are strongly equivalent then

[d] if a— cbothinG and inH then an induced subgrajph— ¢ — b occurs inH iff it occurs
in G.

This observation is used in the proof of the following fact and also later.

Fact 3 There is no cyclic arrow e— b in GUH which belongs to an induced subgraph-a
c—bin GUH.

Proof For a contradiction, suppose that such an arrow exists. Choose a isected cycle
p:do,d1,....,dnw=dy, m> 3 in GUH of shortest possible length among all semi-directed cycles
containing an arrow of this kind. More specifically, assume that c — b=d; in GUH. By
Fact 1 observe that one can assuipe— d; in G anddyg — dy in H. One has eithed, < d; or
d> — dy in H for otherwised, — d; in GUH contradicts the assumption thais a semi-directed
cycle. Asa— cin H whereasl, < dp = cin H, one has # d,.

Observe, by contradiction, thé, dy] is not an edge irGUH. Indeed, otherwisa — ¢ =
do — dz in a CGH impliesa — dy in H andH has either an immoralitg — d, «—— d; or a flag
a— dy — di. Thus,G has the same subgraph fa, d,d; } which contradicts the fact, — dj
in G.
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Thus,H has an induced subgraph— ¢ = dy — d,, which implies, by the condition [d] men-
tioned above Fact 3, th& has the same induced subgraph. In partic@anH has this induced
subgraph as well. Thus, necessariy 3 for otherwisep can be shortened BUH by dy — d»
to get a shorter cycle of the required typemt 3 thend; = dyp — d, in GUH implies a contra-
dictory conclusion thap is not a semi-directed cycle BUH. |

Now, the proof of Proposition 12 follows directly from Lemma 11 and Facte®& SinceG
andH are strongly equivalent an immorality or a flag&occurs also iH and, therefore, iIGUH.
By Fact 2 it is preserved iV H. Conversely, ila — ¢ +— bis an immorality inGV H theniitis
also inG. Ifa— c¢—Dbis aflag inGV H thena — c both inG and inH. The optionc < b
in one of the graph& andH is excluded because then the graph has an immogality ¢ < b,
whichis saved il VH. If c— bin both graphs the®UH has an induced subgraph— ¢ — b.
By Fact 3 the arroe — bremains inGVv H which contradicts the assumption. Thas,— b either
in G or in H and this implies, by their strong equivalence, that thedlag-~c —bisinG.

Proof of Proposition 15

This proposition is analogous to the result on LWF equivalence and feasdrging given in The-
orem 8 of Roverato (2005). It says this:

Given a CGG and a meta-arroW = L in G, the conditions (i) and (ii) from Definition 3
form together a necessary and sufficient condition for the g@&joibtained by merging
U andL to be a CG which is complex equivalent®

In fact, we utilize this result in our proof of Proposition 15. Recall that thedition [i] from
Definition 14 is identical to the condition (i) from Definition 3 and the condition [igrh Definition
14 is stronger than (ii) from Definition 3.

Proof First, we are going to verify the necessity of the conditions [i]-[iii]. Sincerstrequivalence
of CGs implies their complex equivalence the necessity of conditions (i)-(ijvis from Theorem
8 in Roverato (2005). The conditions [i] and (i) are identical, but [ii] is styer than (ii). Indeed,
[ii] requires equality of sets pdlL)\ U and pg(b) for everyb € K whereas (ii) only requires

pag(L)\U < pag(b).
Thus, to verify [ii] it suffices to show

e YbeK pag(b) C pag(L)\U.

Suppose for contradiction thite K anda € pag(b) exists witha ¢ pag(L) \U. Thend € L exists
such thab— d in G. Of coursea # d and, sincés is a CG, the optiona«<— danda—din G
cannot occur. The optioa— d is excluded by the assumpti@ pas(L)\U. If [a,d] is not an
edge inG thenG has an induced subgraph— b — d while G’ has a flagga — b — d which
contradicts the assumption that they are strongly equivalent.

The next step is to verify the necessity of the condition

[iii] for every d €L one has pg(L) C pas(d),

which is an equivalent formulation of [iii]. Let us fik€ L. Givenb € pag(L), to show thab — d
in G two cases can be distinguished.
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e be U, thatis,b e K.
Then there existg € L with b — g in G. If g # d then one can consider a path—
g — ... —din G and its shortening which cannot be shortened any more[blfd] is not
an edge inG thenG has a flagp — e — f composed of nodes @. This contradicts the
assumption that andG’ are strongly equivalent since one las— e in G’ by definition of
merging. Thus|b,d] is an edge and — d in G sinceG is a CG.

e be pgg(L)\U.
Observe that € K exists by Definition 1 anth — a follows from (ii). Moreover, one has

a— d in G by the previous case. [b,d] is not an edge the® has an induced subgraph
b — a — d while G’ has a flagp — a — d which contradicts the assumption that they
are strongly equivalent. Thugh, d] is an edge, namely — d in G becausé& is a CG.

This concludes the proof of the necessity of conditions [i]-[iii].

Second, we prove the sufficiency of those conditions. Since they implyoieitons (i)-(ii)
from Definition 3, it follows from Theorem 8 in Roverato (2005) ti&itis a CG which is complex
equivalent taG but strictly larger. In particulaiG andG’ have the same immoralities and, to show
that they are strongly equivalent, it suffices to verify that they haveticrilags.

If a— b —dis aflag inG then we are to show that it is a flag@. The only option which
avoids the desired conclusionds U andb € L. However, therd € L and by [iii] observea — d
in G which contradicts the assumption.

If a— b —dis a flag inG’ then the faclG’ > G impliesa — b in G and the only option
which avoids the desired conclusion tleat— b —d is a flag inG is that[b,d] was modified.
There are basically two cases.

e If be L andd €U thena— b+«— d is an immorality inG and, because of complex equiv-
alence of graphs, also {&. This contradicts the assumption.

e If bc U andd € L then observé € K and by [ii] a € pag(b) C pag(L) \U. By [iii] get
a € pagg(d) which contradicts the assumption.

Thus, the sufficiency proof is finished. |

Proof of Proposition 16

Basic observation which is needed is as follows.

Fact4 Let E,F,G be CGs over N with the same underlying graph such that IE > G and the
following condition holds for any € N:

[e] if there exists & N with a—c in E and a— c in F then for every l&= N with c—Db in
F one hasc—bin G.

If E and G are strongly equivalent then F is strongly equivalent to them ds we
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Note that the conclusion of Fact 4 need not be valid if the condition [e] is omittedsider
N = {a,b,c}, E an undirected graph with— ¢ — b, F a CG witha— ¢ — bandG a directed
graph witha— ¢ —b.

Proof We can show thaF is strongly equivalent t&. If a— ¢ «<— bis an immorality inE then
E > F implies that it is an immorality ifk. Conversely, ifa— ¢ «<— bis an immorality inF then
F > Gimplies that it is an immorality ir> and, therefore, iik.

If a— c — bis aflaginE, then itis a flag inG which impliesc — b in F by F > G. Since
a—cinF byE > F the graphF has a flagp— ¢ —b.

If a— ¢ —Dbis aflag inF, thenF > G impliesa — cin G. We first verifya— cin E by
excluding two other variants of the edgee] in E. SinceE > F the case «— cin E is excluded.
The case&a — cin E is also excluded, this time owing to the condition [e] from the assumption of
Fact 4. Indeed, [e] says— b in G, which implies that — ¢ — b is a flag inG and, therefore,
in E, which contradicts the assumptian—c in E. Thus,a— cin E and the aim is to show

c bin G. It can be shown by contradiction.
e If c—— bin Gthena — c+«— bis an immorality inG and, therefore, i, which implies,
by E > F, a contradictory conclusion+~— b in F.
e If c— bin Gthena— ¢ — bis aninduced subgraph (5. By the condition [d] mentioned
above Fact 3 applied 1@ andE, it is also an induced subgraphin The assumptioi > F
then implies a contradictory conclusior— bin F.
Hencea — ¢ — bis aflag inG, and therefore iik. [ |

The main step is the following ‘sandwich lemma’.

Fact 5 Let G E be strongly equivalent CGs, E G, E # G. Then there exists a CG F which is
strongly equivalent to G and E, such thatEF > G and E is obtained from F by legal merging of
components.

Note that the idea of the proof of this proposition is analogous to the prodhebrem 7 in
Roverato (2005).

Proof SinceE > G, every component it is the union of components i@ and the assumption
E # G implies that there exists a componé&htn E containing at least two components@ As
Gc is a CG one can find a terminal compong&ni it. By the constructiol©\ T # 0 and there is an
arrow fromC\ T to T in G. Let us construct a hybrid graghfrom E by replacement of all lines
betweerC\ T andT in E by arrows fromC\ T to T. Observe the following facts.

{a} FisaCG.
Assume for contradiction th& has a semi-directed cycte SinceRyc = En\c isa CG and
Fc is a CG by constructiorp has an edge betwedh\ C andC, namely an arrow. This arrow
is also an arrow irE (with the same direction); the other arrowsméither are kept irE or
become lines, the lines @f retain inE. Therefore p has to be a semi-directed cycle i
which contradicts the assumption.
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{b} E>F >GandF #E.
The factE > F is evident. To se& > G observe that i — b in F then eithem — b in
E in which caseE > G impliesa— bin G, ora—bin E. In the latter casa€ C\ T and
b € T which also implies, by the definition df, thata— bin G.

{c} C\T is aconnected set id and, therefore, it is a componentfin
Indeed, suppose for contradiction that distiadh € C\ T exist which are not connected by
an undirected path ikc\1 = Ec\7. SinceC is a connected set i, one can construct a path
&—C — ... —Cne— Db, m>1inF with somecy,...,cn € T and& b e C\ T such
that [4, b] is not an edge ifF. This path has the same form @and can be shortened to a
complex inG. This complex is not irE which contradicts the assumption tiatandG are
strongly equivalent since strong equivalence implies complex equivalenc

{d} F is strongly equivalent t& andE.
This follows from Fact 4 owing tda} and{b}. The condition [e] from Fact 4 holds because
of the construction oF: if a— cin E anda— cin F thence T andc — bin F implies
b e T for which reasort — bin G.

Now, the conclusion thdt is made ofF by legal merging of components is easy to see. The condi-
tion {c} implies that botlC\ T andT are components ik andE is obtained fronF by merging

of the upper componet =C\ T and the lower componemt= T. SinceE andF are strongly
equivalent is follows from Proposition 15 that the merging is legal. |

Now, the proof of Proposition 16 is easy. The required sequéneéd-,...,F,=H, m> 1 can
be constructed backwards by consecutive application of FadBmtwlE = F, to getF_; = F until
F_1 is the graphG. Of course, one starts with, = H, wherem— 1 is the difference between the
numbers of components &fandH.

Proof of Proposition 18

Assume for contradiction that two different orderings of applicationdaxlong rules leads to two
different labeled graph&‘® and G“®. Since they only differ in their labels, one can assume
without loss of generality tha®‘(Y) has at least one blocked label that is ‘freeGf2). Let us fix

a sequence of iteratior@, ”, GV, ...,Gi" = G'¥, n > 2 leading toG"Y). Let G/" be the first

)

graph in this sequence which has a blocked label that is ‘fre€‘#, saya ~—d € G and
a+—de G/, In particularb ~— cin Gf(l) for j < iimpliesb ~— cin G/?.

We now show that~—d € G'Y) anda-—d in G/@ implies thatG'® has a forbidden
configuration, which contradicts the assumption. There are three posagas.

1. Ifa~—din Gf(l) is blocked ata by the rule (a) then there exists a vertesuch thath —
d — ais a flag inG (cf. Algorithm 1). In particularb — d — a in G*@ is a forbidden
configuration inG“2).

2. Ifa~—din Gf(l) is blocked af by (b) then there exists a vertbxvithb —a —d in G,
while [b,d] is not an edge 6. Thenb — a -— d is a forbidden configuration i6/(2.
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3. Ifa~—din Gf(l) is blocked ata by the rule (c) then there exists a vertesuch that the
following forbidden configuration

a

VAN

b d

L

appears irGf(ll). As mentioned above, blocking Iabels@f for j <i also occur inG“@.

Thus, that forbidden configuration is also preserif?).

Proof of Theorem 19

Throughout the proof we assume titis a CG,G' the labeled version d& obtained fromG by
the labeling algorithm an@’ the hybrid graph obtained fro®@‘ by the directing algorithm. The
overall aim is to show tha®’ is a CG triplex equivalent t&. To improve the readability of the
proof, we split it into more elementary facts. The first goal is to show®@&tas no semi-directed
cycle of the length 3. This is the main step to show that it has no semi-directies atall, that is,
itis a CG. Finally, we prove tha®' is triplex equivalent tds.

We start with two auxiliary facts.

Fact 6 If there is a semi-directed cycle in’ @en it is undirected in G.

Proof Assume for contradiction that: do,...,d,_1,d, = do, N > 3 is a semi-directed cycle i@’
which has an arrowly — d; in G. SinceG is a CG, there exists an array_; «— d;, 2<i<n
in G. Basic observation is that arrows @are kept inG’ with the same direction. In particular,
dp — d; andd;_; «+— d; in G/, which contradicts the assumption tipeis a semi-directed cycle in
G. |

Fact7 If p:a,b,d,ais a semi-directed cycle of the length 3 ihvdth a— b in G then it corre-
sponds to the following configuration irf G

a

/ E (5)

b d

Proof By Fact 6,p consists of lines irG. Asa — bin G, it follows from Algorithm 2 thatp
corresponds to the following configuration

b d

in G'. We only need to show thatcannot occur in either of the following two configurations3f
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a a

S

b d b d

(A) (B)

Consider the case (A) and observe that—d also has to have a blocked endingdain G.
Indeed, otherwise by Algorithm @ — d in G’ andp is not a semi-directed cycle i@’, which
contradicts the assumption. Hence, we have

a

-

b d

in G*. Now, it follows from Algorithm 1 that — d has a blocked ending dt Indeed, otherwise
a forbidden configuratiob — a — d — b of type (c) exists inG‘. Thus, the situation is as
follows:

Again,b — d has a blocked ending atfor otherwise, by Algorithm 2b «— d in G’ contradicts
the assumption thatis a semi-directed cycle. Thl'sf[a,b d) looks like

a

S

b d

which is, however, also impossible becaase—~ d —« b -— a is a forbidden configuration of
type (c) inG'. Hence, the configuration (A) cannot occur. Using the same kind sbreag, it is
also easy to check that the configuration (Bjahis impossible. This is left to the reader. |

Fact 8 G’ has no semi-directed cycle of the length 3.

Proof Suppose for contradiction th&' has a semi-directed cycle of the length 3. Thus, the set
4’ of arrows inG’ belonging to (at least one of) those cycles is assumed to be non-emptacBy F
6, every arrone — f in 4’ corresponds to a line— f in G, and, therefore, by the directing
algorithm, to a labeled line ~— f in G'. Let us fix a sequenc8y,...,Gh, n> 1 of labeled CGs
generated by the labeling algorithm. Clearly, every— f in 4’ is assigned the unique<di <n
such that ~— f in G ande «~— f in G| for j <i. Leta— b denote that arrow ite” which has
assigned the least suchin particular, ife «~— f in fol thene — f does not belong ta’.

Let us fix a semi-directed cycle: a,b,d,a of the length 3 inG’' containinga — b. By Fact
7, the subset of verticega, b,d} corresponds to the configuration (5) @t and, because of the
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construction ofz!, also inG!. Now, we show that the occurrence of (5)G leads to contradiction
because the lina —- bin the previous iteratioﬂ‘:{f1 cannot be blocked atby any of the blocking
rules from Algorithm 1.

1. If b= ais blocked at on basis of the rule (a) then there exists a vegtexN, not adjacent
to a, such thay— b in G. If we add this arrow to the configuration (5)@f above then we
obtain (possibly omitting an edge betwegandd)

g a

pras

b d

Nodesg andd are necessarily adjacent for otherwehas a forbidden configuratian—

b — d of the type (a). Actually, one hag— d in G as otherwisés has a semi-directed
cycleg,b,d,g. However, therg — d — a is a forbidden configuration of type (a) @&,
which is impossible.

2. If a - bis blocked at on basis of the rule (b) then there exists a vegexN, not adjacent
to b, such thaty — a in G. If we add this line to the configuration (5) i@‘ and obtain
(possibly omitting an edge betwegrandd)

g a

s

b d

Nodesg andd have to be adjacent for otherwise a forbidden configurajien—a -— d of
the type (b) exists it‘. AsG is a CG, one hag — d in G. However, thery —d ~—b
is a forbidden configuration of type (b) &', which is impossible.

3. If a~— b is blocked ata on basis of the rule (c) then there exists a vemesuch that
b—xg—+a-+—bin G/ ;. Asg—aandd — ain G’ one hasg # d. Thus, the
following configuration occurs is!, where the possible edge betwapandd is omitted:

g a

pras

b d

The nodegy andd have to be adjacent for otherwige— a — d would be a forbidden
configuration of type (b) irG!. SinceG is a CG, one hag —d in G. The ending of
g—d atgin G’ has to be free as otherwise—« g — a ~— d would be a forbidden
configuration of type (c) irG’. Analogously, its ending at in G’ is also free for otherwise
b — g — d -— bwould be a forbidden configuration of type (c)®. Thus,g — d has

both endings free i’ and
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To show thata — g is blocked atg in G’ recall thata ~—gin G/ ;. If a«-gin G’
then Algorithm 2 implies thad, g,d, a is a semi-directed cycle i@’ (note thaid — ain G
implies that eithed — aord ain G'). This, however, means that— g belongs to

4', which contradicts the choice ef— b: as mentioned above, that choice ensures that if

e ~— fin G/_; thene— f does not belong ta’.

The conclusion thay — bis blocked abin G can be derived analogously.gf«—- bin G
then Algorithm 2 implies thag, b,d, g is a semi-directed cycle i&’. Theng — b belongs
to 4’ which is not possible because of the fgct— bin G/ ;.

Hence, one has both~— b andg +~— ain G, and the situation is as follows:
g a
A
b d

However, the configuration (6) has a subconfiguraiehA— g — b —— a which is a for-
bidden configuration of type (c) iB¢. This contradicts the assumptions.

This completes the proof. |

Fact 9 The graph Ghas no semi-directed cycle.

Proof We show that ifG' has a semi-directed cycle of the length 1, wherek > 3 then it has a

semi-directed cycle of the length3 < | < k. This, together with Fact 8, implies what is desired.
Assume thap:a,b,g,...,0«_ 1,8, k> 3 is a semi-directed cycle & witha— bin G'. By

Fact 6,a— b in G and Algorithm 2 implies thap corresponds to the following configuration

a Gk-1

b 5

in G, where the dotted connection stands for an undirected path and sone ardgpossibly
omitted. It follows from Algorithm 1 that andg; are adjacent ii© for otherwiseg; — b -—a
is a forbidden configuration of the type (b)@f. As G is a CG,a — g, in G and the situation is
as follows:

a k-1
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If eithera«— g1 ora—g; in G’ thena, b, g;,ais a semi-directed cycle of the length 3@&. On
the other hand, ih — g; in G’ thena, 91,0, ...,0k_1,ais a semi-directed cycle of the lendkhin
G. [ |

Thus, we have verified th&' is a CG. The last step is to show that it is in the AMP equivalence
class containings.

Fact 10 G is triplex equivalent to G.

Proof We already know thaG and G’ are CGs with the same underlying graph. Moreover, it
follows from the construction o' thatG > G'.

In particular, every immorality irG remains inG'. Thus, to verify that triplexes i are also
in G’ it is enough to show that every flag— b — d in G remains a triplex irG’. Asa— bin
G/, the only option of canceling the tripléXa,d},b) is if b — d in G'. Then Algorithm 2 implies
a— b »—din G’, which is, however, a forbidden configuration of type (aj&in(cf. Algorithm
1).

Now, we show that triplexes i@’ are also inG. Realize thatG > G’ implies that an arrow
in G’ cannot be an arrow with the opposite directionGn Thus, ifa— b —d is a flag inG’'
then, by (2), eithee — b—d ora—b —d in G. By Algorithm 2, the latter case means
a -~ b —din G, which is a forbidden configuration of type (b). Analogoushg #— b «— d
is an immorality inG’ that does not correspond to a triplex@thena — b —d in G. Hence,

a b+ din G’, which is also a forbidden configuration of type (b). |

Proof of Proposition 20

Recall thaiG is a CG such that there is no line of the form- in its labeled versioG’. LetF be
a CG which is triplex equivalent t6. We are to show that — b in F whenevera ~— b in G'.
Suppose for contradiction that there exists (at least one) line of thedosm f in G’ such that
e — f in F. Thus, the setir of arrowse — f in F of the forme «~ f in G’ is assumed to be
non-empty.

Let us fix a chain of componen&,...,C,,, m> 1inF. Letk be the highest ¥ k < msuch
that there exists an arroer— f from ag with f € C¢. Denote byaf the subset ofag consisting
of arrowse — f with f € Cy. Clearly,a¢ # 0.

The next step is to fix a sequen@é,...G‘g, n > 1 of labeled CGs generated by Algorithm 1.
Everye — f from s is assigned unique 4 i < nsuch thae — f in G{ ande — f in G for
j <i. Leta— b denote the arrow fromi: which has assigned the least sucbserve that this
choice ofa — b ensures that the following two conditions are valid.

() If b—din F for some nodel thenb — d does not belong tar.

This is becausb € Cy. The fact thaCy,...,Cy is a chain fof- impliesd € C; with | > k. However,
k was chosen so that no arrev— f from 4g with f € G, for | > k exists.

(1) Whenevere — f in G_; thenaf does not contaie — f.
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This follows from the choice of. a necessary condition fe— f to belong toaf ise — f in
G? only for j > i, thatis,e — fin G/ ;.

Now, we are going to derive a contradictory conclusion that+ b cannot be blocked &t by
any of the blocking rules from Algorithm 1.

1. If a-— bis blocked ath on basis of the blocking rule (a) then there exists a vedteuch
thatd — a —bin G andb is not adjacent tal. Henced — a —Dbis a flag inG. As

G andF are triplex equivalentE has a triplex({b,d},a), which, however, contradicts the
assumptiora— bin F.

2. If a~— bis blocked at on basis of the blocking rule (b) then there exists a vedtexich
thata — b —d in G anda is not adjacent tal. This impliesb — d in F for otherwise
the facta — b in F implies that({a,d},b) is a triplex inF which is not inG. Moreover,
a— b —din G implies, by the blocking rule (b) from Algorithm 1, that—« b ~—d
in G'. BecauseG! has no lines of the form~— this meansa «— b «— d in G’. Thus,
b — d belongs taag, contradicting the condition (1) above.

3. If a~— bis blocked ab on basis of the blocking rule (c) then there exists a vettexch
thata —« d —« b «—ain G ;. Thus, we have

avb
d

in G'. Since there is no line of the type—- in G/, we have
a b

V4

d

in GY, whereas the corresponding subgrapF iis
a Q—>Q b

S ®)

p

where the dashed connection means that the nodes are adjacent. Kdweegenfigurations

(7) and (8) cannot coexist because any possible type of the edgedrehandb in F leads
to a contradiction.

e If d — bin F then (7) and the fadi € Cc imply d — bisin a.. Asd — bin G_,
this contradicts the condition (1) above.

e Ifd—DbinF thend € G, anda — d in F for otherwiseF has a semi-directed
cycle. Hence, by (74 — d belongs taa;. Asa —~din Gi{l it also contradicts the
condition (I1) above.

e If b—dinF then (7) gived — d in ag contradicting the condition (I) above.

This concludes the proof.
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