
Journal of Machine Learning Research 25 (2024) 1-83 Submitted 6/23; Revised 1/24; Published 3/24

Overparametrized Multi-layer Neural Networks: Uniform
Concentration of Neural Tangent Kernel and Convergence of

Stochastic Gradient Descent∗

Jiaming Xu jx77@duke.edu
The Fuqua School of Business
Duke University
Durham, NC 27708, USA

Hanjing Zhu hz176@duke.edu

The Fuqua School of Business

Duke University

Durham, NC 27708, USA

Editor: Joan Bruna

Abstract

There have been exciting progresses in understanding the convergence of gradient descent
(GD) and stochastic gradient descent (SGD) in overparameterized neural networks through
the lens of neural tangent kernel (NTK). However, there remain two significant gaps be-
tween theory and practice. First, the existing convergence theory only takes into account
the contribution of the NTK from the last hidden layer, while in practice the intermediate
layers also play an instrumental role. Second, most existing works assume that the training
data are provided a priori in a batch, while less attention has been paid to the impor-
tant setting where the training data arrive in a stream. In this paper, we close these two
gaps. We first show that with random initialization, the NTK function converges to some
deterministic function uniformly for all layers as the number of neurons tends to infinity.
Then we apply the uniform convergence result to further prove that the prediction error
of multi-layer neural networks under SGD converges in expectation in the streaming data
setting. A key ingredient in our proof is to show the number of activation patterns of
an L-layer neural network with width m is only polynomial in m although there are mL
neurons in total.

Keywords: neural network, neural tangent kernel, stochastic gradient descent, uniform
concentration

1. Introduction

Deep Learning is proven to be successful in many real-life applications, while the underpin-
ning of its success remains elusive. Recently, researchers are interested in understanding
the success of neural networks from the optimization perspective. A neural network with
Rectified Linear Units (ReLU) activation leads to a non-convex and non-smooth objective
function, which is usually hard to optimize by gradient descent methods. However, surpris-

∗. This work was presented in part at the The 24th International Conference on Artificial Intelligence and
Statistics, 2021 Xu and Zhu (2021).

c©2024 Jiaming Xu and Hanjing Zhu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/23-0740.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0740.html

Jiaming Xu and Hanjing Zhu

ingly, gradient descent (GD) or stochastic gradient descent (SGD) on neural networks with
ReLU activation is observed to perform well not only in training but also in generalization
(Krizhevsky et al., 2012). To demystify this phenomenon, an extensive amount of research
has been done recently. For instance, the mean-field theory is used in Chen et al. (2020);
Mei et al. (2018, 2019); Rotskoff and Vanden-Eijnden (2018); Sirignano and Spiliopoulos
(2022); Tzen and Raginsky (2020) to analyze the SGD of infinite-width feed-forward neural
networks. Optimal transport theory is employed in Chizat and Bach (2018) to study the
gradient flow of neural networks and to show that the training error converges to the global
optimum under some mild conditions. In addition, Hu et al. (2019) connects the SGD of
neural networks in training to the diffusion process.

A different line of research focuses on understanding the gradient descent of neural
networks through kernels, in particular the neural tangent kernel (NTK). Specifically, given
an L-layer neural network f(x; W) with input x and parameter W, we define NTK for a
sequence of weights {W(t)} as

Ht(x, x
′) ,

〈
∂f(x; W(t))

∂W
,
∂f(x′; W(t))

∂W

〉
=

L∑
`=1

H
(`)
t (x, x′) , (1)

where

H
(`)
t (x, x′) ,

〈
∂f(x; W(t))

∂W(`)
,
∂f(x′; W(t))

∂W(`)

〉
(2)

is the NTK from the `-th hidden layer. It is first introduced by Jacot et al. (2018), which
shows that gradient descent on infinite width neural networks can be viewed as learning
through the NTK. Subsequent works (Allen-Zhu et al., 2019a; Du et al., 2019b; Su and
Yang, 2019; Arora et al., 2019a; Du et al., 2019a; Zou et al., 2020) connect GD and SGD
with the NTK, and show that with overparameterization and random initialization, the
training error converges to 0. Similar convergence results are also established in other types
of neural networks beyond feed-forward neural networks (Arora et al., 2019b; Allen-Zhu and
Li, 2020, 2019a,b; Allen-Zhu et al., 2019b; Du et al., 2018; Li et al., 2019; Tirer et al., 2022),
such as convolutional neural networks (CNN) and residual neural networks (ResNet).

Despite these remarkable progresses, there remain two significant gaps between theory
and practice. Firstly, the existing theory does not accurately characterize the convergence
rate of GD. Specifically, given a batch {(xi, yi)}ni=1, Du et al. (2019a) first shows that the

NTK matrix from the last hidden layer H
(L)
t =

(
1
nH

(L)
t (xi, xj)

)
is close to some deter-

ministic kernel matrix Φ(L). Based on this, the authors further show the training loss

converges at a linear rate
(
1− η

2λmin(Φ(L))
)t

where η is the step size. However, such a
characterization based on the last hidden layer is very loose for two reasons. First of all,
the characterization only captures the contribution from the last hidden layer. Secondly,
as pointed out by Su and Yang (2019), λmin(Φ(L)) goes to 0 as the batch size n goes to
infinity. In contrast, as illustrated in Figure 1a, the actual GD dynamic converges much
faster and can be more accurately characterized via the spectrum of the integral operator
Φ associated with some deterministic kernel function Φ =

∑L
`=1 Φ(`), which captures the

contribution from all layers.
Secondly, most existing works study GD in the batch setting where the training data is

provided a priori in a batch. It remains unclear how SGD performs in the streaming setting

2

Overparametrized Multi-layer Neural Networks

0 250 500 750 1000 1250 1500 1750 2000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
tra

in
in

g
lo

ss

(1 min((4))/2)t

(1 2())t
normalized loss under GD

(a) Training loss under GD

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0 (1 2((4)))t

normalized average prediction error
(1 2())t

(b) Average prediction error under SGD

Figure 1: Comparison of GD/SGD dynamic versus different characterizations. The actual
estimation errors are shown in blue. The characterization based on the last layer is shown
in green while the characterization based on all layers is shown in orange. The data is
generated according to y = f∗(x)+u, where f∗ is a linear function, u ∼ N (0, 0.01), and x is
generated uniformly over the unit sphere. We learn a 4-layer neural network with m = 1000
neurons in each hidden layer using step size η = 0.2. We use the symmetric initialization
introduced in Section 4. For both GD and SGD, we normalize the error by the error at
initialization. According to Corollary 4, under the symmetric initialization, λ2 (Φ) provides
a good characterization for linear f∗.

where the data arrives in a stream. The streaming data arises in a variety of fields such as
finance, news organization, and information technology (O’callaghan et al., 2002; Allen-Zhu
and Li, 2019a; Ikonomovska et al., 2007). Such streaming data is usually inspected once and
archived afterwards immediately without being examined again. Apart from vast sources
of naturally generated streaming data, there are ubiquitous situations where the streaming
data is preferred even though batches of samples can be obtained. For instance, O’callaghan
et al. (2002) points out that in medical or marketing data mining, the volume of data is so
large that only one pass over data is allowed due to computational constraints. Moreover,
Feigenbaum et al. (2001); Muthukrishnan (2005) argues that the streaming data is useful in
privacy-preserving data mining, where the data is kept confidential by users and analyzed
via a single pass.

It is challenging to close these two gaps. The analysis of the NTK from intermediate
layers is significantly harder than that from only the last hidden layer. To see this, the
analysis of the last hidden layer reduces to the one hidden layer analysis by treating the
output from the second-to-last hidden layer as the input (Du et al., 2019b). In particular,
conditioning on the output from the second-to-last hidden layer, the NTK from the last
hidden layer can be written as a sum of independent random variables. In contrast, the
NTKs from intermediate layers not only depend on weights from previous layers but also
subsequent layers. Thus, there is no similar conditional independence structure like the last
hidden layer for us to utilize. As a result, a completely new method is needed to analyze
the intermediate layers.

3

Jiaming Xu and Hanjing Zhu

To see why it is hard to study SGD in the streaming setting, note that a critical step in
existing analysis of GD on the batch setting (Du et al., 2019a) is to obtain the concentration
of the finite-dimensional NTK matrix. There, pointwise concentration and union bounds
suffice to obtain the desired convergence. However, in the analysis of SGD under the
streaming setting, we need to show the uniform concentration of the infinite-dimensional
kernel function. Existing analysis techniques tailored to finite-dimensional kernel matrices
are not enough to obtain the uniform convergence.

In this paper, we overcome the above challenges and close the two gaps. In particular,

• For an L-layer fully connected feed-forward neural network f(x; W) with m neurons
in each layer, we show that under Gaussian initialization, with high probability as

m → ∞, the NTK function from the `-th hidden layer H
(`)
0 (x, x′) defined in (2) at

initialization concentrates on some deterministic function Φ(`)(x, x′) uniformly for all
x, x′ ∈ Sd−1 and all layers 1 ≤ ` ≤ L;

• We further apply the uniform concentration of NTK to show that with high probability
as m → ∞, the average prediction error under SGD at iteration T in the streaming
setting is upper bounded by

inf
`≥1

{
T−1∏
t=0

(1− ηtλ`) ‖∆0‖2 +R(∆0, `)

}
+ Y,

where ηt is the step size at iteration t, λ` is the `-th eigenvalue of the integral op-
erator Φ associated with function Φ =

∑L
`=1 Φ(`), ‖∆0‖2 is the prediction error at

initialization, and Y is the error term capturing the approximation error from the
non-linearity of ReLU function and the noise from stochastic gradients. Particularly,
for an arbitrary small but fixed constant ε > 0, by choosing an appropriate step size,
we have Y < ε, yielding a small average prediction error. In contrast to the charac-
terization based on the NTK from only the last hidden layer, our analysis captures
the contribution from all layers and provides a much tighter characterization of the
average prediction error under SGD, as depicted in Figure 1b;

• On the technical front, to prove the convergence of the infinite-dimensional kernel
function, one key step is to bound the number of activation patterns, that is, the sign
patterns of the ReLU units in all layers when varying the network input x while fixing
the weights W. Leveraging the recursive structure of the network in layers, we show
that the number of activation patterns grows multiplicatively by a factor of md in
every layer. This immediately implies that there are at most mdL different activation
patterns, despite that the network has mL neurons in total.

Notation Let (X , µ) denote a measurable space and L2(X , µ) denote the space of func-

tions f : X → R that are integrable, i.e., ‖f‖2 ,
√∫
X f

2(x)dµ(x) <∞. When X is the unit

sphere Sd−1 in Rd, we abbreviate L2(Sd−1, µ) as L2(µ) for simplicity. Define the L-infinite
norm ‖f‖∞ , supx∈X |f(x)|. Given f, g ∈ L2(X , µ), define their inner product as 〈f, g〉 ,∫
X f(x)g(x)dµ(x) with 〈f, f〉 = ‖f‖22 . Given a kernel function K ∈ L2(X ×X , µ⊗µ), define

the associated integral operator K : L2(X , µ)→ L2(X , µ) as Kf(x) =
∫
X K(x, y)f(y)dµ(y).

4

Overparametrized Multi-layer Neural Networks

The operator norm of K is defined as ‖K‖2 , sup‖f‖2≤1 ‖Kf‖2. Denote the composition of

operators Km ◦Km−1 ◦ · · · ◦K1 as
∏m
i=1 Ki with

∏n
i=n+1 Ki treated as the identity operator.

2. Related Work

There is a vast literature on overparametrized neural networks, and here we can only hope
to cover a fraction of them we see the most relevant. A summary of the mostly related
works on NTK is given in Table 1.

Table 1: Summary of related works

Literature Error Setting Layer Activation Problem

Du et al. (2019b)
Training Batch+GD

Single ReLU
RegressionSu and Yang (2019)

Du et al. (2019a) Multi Analytic

Arora et al. (2019a)
Generalization

Batch+GD Single
ReLU

Regression
Cao and Gu (2019)

Stream+SGD Multi
Classification

this paper Regression

To facilitate the discussion and better differentiate the algorithms, we use GD to denote
the gradient descent algorithm where the entire batch is used to compute the gradient at
each iteration, i.e., for the given batch {(xi, yi)}ni=1 and a loss function L(·, ·),

W(t+ 1) = W(t)− ηt
n

n∑
i=1

∇WL(f(xi; W(t)), yi),

where W(t) is the weight matrix at iteration t, f(x; W(t)) is the neural network with
parameter W(t). In contrast, our study focuses on the one-pass SGD, abbreviated as SGD,
which draws a single fresh sample from the true data distribution to compute the gradient
at each iteration. In particular,

W(t+ 1) = W(t)− ηt∇WL(f(xt; W(t)), yt), (3)

where (xt, yt) is a freshly drawn sample at the t-th iteration from some unknown distribution
µ. The drawn sample (xt, yt) is then archived and not used any more.

Training error with batch learning For single-layer neural networks with a given batch
{(xi, yi)}ni=1, it is shown in Du et al. (2019b) that the NTK matrix Ht =

(
1
nHt(xi, xj)

)
,

concentrates on the deterministic matrix Φ =
(

1
nΦ(xi, xj)

)
as the number of neurons goes

to infinity. Then they utilize the spectrum of Φ to prove that the training error of over-
parametrized neural networks under GD converges at a linear rate

[
1− η

2λmin(Φ)
]t

, where
t is the number of iterations and η is the step size. The follow-up work Su and Yang (2019)
proves that as the sample size n grows, λmin(Φ) decreases to 0 and hence the convergence
rate can be very close to 0. Instead, they provide a different characterization showing that
the training error under GD is upper bounded by[

1− 3η

4
λr(Φ)

]t
+ 2
√

2R (∆0, r) + Θ

(
1√
n

)
,

5

Jiaming Xu and Hanjing Zhu

where λr(Φ) is the r-th largest eigenvalue of the integral operator Φ associated with the
kernel function Φ(x, x′), and R(∆0, r) is the L2 norm of the projection of ∆0 = f∗(x) −
f(x; W(0)) onto the eigenspaces of kernel Φ associated with {λi(Φ)}∞i=r+1. In addition,
Du et al. (2019a) extends the result of Du et al. (2019b) to multi-layer neural networks
with analytic activation functions. In particular, they first show the NTK matrix from the
last hidden layer concentrates on some deterministic matrix Φ(L) and then characterize the
GD dynamic utilizing the spectrum of Φ(L). However, their analysis crucially utilizes the
analytic property of the activation function, which does not cover the widely used ReLU-
activated neural networks.

Generalization error with batch learning Apart from the training error, the general-
ization error which measures the accuracy of the model’s prediction on unseen data is also
of wide interest. Following Du et al. (2019b), Arora et al. (2019a) derives an upper bound
of the generalization error of over-parameterized single layer neural networks under GD as

E(X,y)∼µ [L(f(X; W(t)), y)] ≤ 2y>Φ−1y

n
+O

(√
log(n/λmin(Φ))

n

)
,

where y = (y1, y2, · · · , yn)> ∈ Rn is the label of the i.i.d. sample {(Xi, yi)}ni=1 drawn from
the distribution µ. As mentioned above, λmin(Φ) decreases to 0 and hence the generalization
error can potentially blow up to infinity as n grows.

Generalization error with streaming data To learn a neural network in streaming
setting, one way is to use SGD shown in (3). One work studying SGD with streaming
data is Cao and Gu (2019) which focuses on the classification problem with the hinge loss
function. Technically this work applies the online-to-batch conversion proposed in Cesa-
Bianchi et al. (2004) to bound the generalization error 1

T

∑T
s=1 E(X,y)

[
1{yf(X;W (s))<0}

]
from

above by the empirical loss 1
T

∑T
s=1 L (ysf(xs;W (s)) with the hinge loss function L(z) =

log(1 + exp(−z)). Note that the online-to-batch conversion follows from an application of
martingale concentration inequalities. It does not fully resolve the problem of bounding
the generalization error as one still needs to bound the empirical loss. Indeed the authors
bound the cumulative loss following a similar analysis of Du et al. (2019b) and obtain an
upper bound of the generalization error as

1

T

T∑
s=1

E(X,y)

[
1{yf(X;W (s))<0}

]
= O


√
y>
(
Φ(L)

)−1
y

T

+O
(√

1/T
)
,

where y = (y1, · · · , yT)>. However, as T increases, λmin(Φ(L)) decreases to 0 and hence the
upper bound may blow up.

3. Problem Setup

Suppose the data (X, y) is given by y = f∗(X)+u, where f∗ is the underlying true function,
X ∈ Rd is the feature vector generated according to some distribution µ on the unit sphere
Sd−1, and u is the bounded noise independent of X with mean 0, variance τ2. Denote
γ , max {‖f∗‖∞, |u|} which is independent of m.

6

Overparametrized Multi-layer Neural Networks

x1

x2

...

xd

x

...

1√
m

W(1)x o(1)(x)

σ

σ

...

σ

...

1√
m

W(2)o(1) o(2)(x)

σ

σ

...

σ

. . .

. . .

. . .

o(L)(x)

...

σ

σ

...

σ

1√
m

W(L)o(L−1)

f(x; W)

= 〈a, o(L)(x)〉

Figure 2: Illustration of Multi-Layer Neural Network f(x; W)

We consider the following L-layer neural network, as illustrated in Fig. 2:

f(x; W) = a>
1√
m

D(L)(x)W(L) · · · 1√
m

D(1)(x)W(1)x, (4)

where a ∈ RnL is the outer weight, W(`) ∈ Rn`×n`−1 is the weight of the `-th hidden layer

whose i-th row is denoted as w
(`)
i ,

D(`)(x) = diag

{
1{
〈w(`)

i ,o(`−1)(x)〉≥0
}} ∈ Rn`×n` , (5)

with n` as the number of neurons in the hidden layer `, and o(`)(x) is the output of the `-th
layer given by

o(`)(x) =
1√
m

D(`)(x)W(`) · · · 1√
m

D(1)(x)W(1)x (6)

with o(0)(x) = x.

The neural network is trained by running the stochastic gradient descent on the stream-

ing data in one pass. In particular, given the initialization
{
W(`)(0)

}L
`=1

and outer weight
a, the `-th layer weight matrix at the t-th iteration is updated as

W(`)(t+ 1) = W(`)(t)− ηt
∂L(yt, f(Xt; W(t)))

∂W(`)

= W(`)(t) + ηt (yt − f (Xt; W(t)))
∂f(Xt; W(t))

∂W(`)
, (7)

where ηt is the step size, L(y, ŷ) = 1
2 (y − ŷ)2 is the quadratic loss function, and (Xt, yt) is

the freshly drawn data that is independent and identically distributed as (X, y).

7

Jiaming Xu and Hanjing Zhu

To derive ∂f(x;W)

∂W(`) , recall from (4) and (6) that

f(x; W) = a>
1√
m

D(L)(x)W(L) · · · 1√
m

D(`)(x)W(`)o(`−1)(x)

= a>
[
V

(`)
L (x)

]>
W(`)o(`−1)(x)

=

〈
V

(`)
L (x)a

[
o(`−1)(x)

]>
,W(`)

〉
,

where [
V

(`)
L (x)

]>
,

1√
m

D(L)(x)W(L) · · · 1√
m

D(`+1)(x)W(`+1) 1√
m

D(`)(x). (8)

Thus, we get1

∂f(x; W)

∂W(`)
= V

(`)
L (x)a

[
o(`−1)(x)

]>
. (9)

Plugging (9) into (7), we have

W(`)(t+ 1) = W(`)(t) + ηt (yt − f(Xt; W(t))) V
(`)
L,t(x)a

[
o

(`−1)
t (x)

]>
, (10)

where V
(`)
L,t(x) is defined as V

(`)
L (x) with W replaced by W(t).

At t = 0, we initialize each weight matrix W(`)(0) as Gaussian random matrix with
i.i.d. standard normal entry. We also generate outer weight a to be Rademacher (symmet-
ric Bernoulli) random variable with equal probability to be −1 or 1 which will be fixed
throughout the training. This initialization is widely used in existing literature such as Du
et al. (2019b); Arora et al. (2019a); Su and Yang (2019). Furthermore, it has been shown
in Jacot et al. (2018) that the training dynamic of gradient descent method under this
initialization is governed by the NTK defined in (1).

For ease of presentation, we assume γ = O(1), the step size ηt ≤ θ
t+1 for some θ indepen-

dent of d and m and n1 = n2 = · · · = nL = m, i.e., all hidden layers have the same width,
and consider the overparameterizd regime where m tends to ∞. Such overparameterized
neural networks have been the focus in the literature of NTK (Allen-Zhu et al., 2019a; Du
et al., 2019a).

4. Main Result

In Section 4.1, we show the uniform concentration of NTK. In Section 4.2, we apply the
uniform concentration to derive an upper bound of the average prediction error under one-
pass SGD.

1. Note that {D(k), k ≥ `} all depend on W(`). However, each entry of D(k) only takes value 0 or 1, and
hence does not change with W(`) once its value is fixed to be either 0 and 1.

8

Overparametrized Multi-layer Neural Networks

4.1 Concentration of NTK at Initialization

In this section, we show the concentration of NTK at initialization. For notation simplicity,

we abbreviate H0 as H, H
(`)
0 as H(`), W(`)(0) as W(`), D

(`)
0 as D(`) and o

(`)
0 as o(`) for all

` throughout this section and Section 5.
Note that the kernel function H is a sum of L kernel functions where H(`) represents the

contribution from the `-th hidden layer. To show the concentration of the kernel function
H, it is sufficient to show the concentration of H(`) for each 1 ≤ ` ≤ L.

To obtain the closed-form expression of H(`), we plug (9) into (2) and get

H(`)(x, x′) = 〈o(`−1)(x), o(`−1)(x′)〉︸ ︷︷ ︸
(I)

× a>G
(`)
L (x, x′)︸ ︷︷ ︸
(II)

a , (11)

where

G
(`)
L (x, x′) ,

[
V

(`)
L (x)

]>
V

(`)
L (x′) (12)

with V
(`)
L (x) defined in (8).

Here, we provide a heuristic on obtaining the limiting function Φ. Consider H(`) in (11).
For term (I), by the definition of o(`), we have the following recursion:

〈o(`−1)(x), o(`−1)(x′)〉 =
1

m

m∑
i=1

σ(〈w(`−1)
i , o(`−2)(x)〉)σ(〈w(`−1)

i , o(`−2)(x′)〉). (13)

Conditioning on o(`−2), since w
(`−1)
i are i.i.d. Gaussian random vectors across i, we expect

〈o(`−1)(x), o(`−1)(x′)〉 concentrates on its conditional mean, i.e.,

〈o(`−1)(x), o(`−1)(x′)〉 → Ew∼N (0,I)

[
σ
(
〈w, o(`−2)(x)〉

)
σ
(
〈w, o(`−2)(x′)〉

)]
(14)

where(
〈w, o(`−2)(x)〉, 〈w, o(`−2)(x′)〉

)
∼ N

(
0,

(∥∥o(`−2)(x)
∥∥2

2
〈o(`−2)(x), o(`−2)(x′)〉

〈o(`−2)(x), o(`−2)(x′)〉
∥∥o(`−2)(x′)

∥∥2

2

))
.

Analogous to (14), we show the covariance matrix on the right hand side of the above
displayed equation concentrates on(

E
[
σ2
(
〈w, o(`−3)(x)〉

)]
E
[
σ
(
〈w, o(`−3)(x)〉

)
σ
(
〈w, o(`−3)(x′)〉

)]
E
[
σ
(
〈w, o(`−3)(x)〉

)
σ
(
〈w, o(`−3)(x′)〉

)]
E
[
σ2
(
〈w, o(`−3)(x)〉

)])
.

In view of this recursive relation of
(
〈w, o(`−2)(x)〉, 〈w, o(`−2)(x′)〉

)
, we can approximate(

〈w, o(`−2)(x)〉, 〈w, o(`−2)(x′)〉
)

by a pair of bivariate normal random variables. In particular,

we define (U (`−1)(x), U (`−1)(x′)) such that

(U (`−1)(x), U (`−1)(x′)) ∼ N
(

0,Σ(`−2)(x, x′)
)

Σ(`−2)(x, x′) ,

(
E
[
σ2(U (`−2)(x))

]
E
[
σ(U (`−2)(x))σ(U (`−2)(x′))

]
E
[
σ(U (`−2)(x))σ(U (`−2)(x′))

]
E
[
σ2(U (`−2)(x′))

])
(15)

9

Jiaming Xu and Hanjing Zhu

with Σ(0)(x, x′) =

(
1 〈x, x′〉

〈x, x′〉 1

)
, and show that

(I)→ E
[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)]
. (16)

For (II), conditioning on weight matrices
{
W(k)

}L
k=1

, we have

(II)→ Ea
[
a>G

(`)
L a
]

= Tr(G
(`)
L).

Moreover, crucially Tr(G
(`)
L) approximately satisfies a recursion. In particular, by the defi-

nition of G
(`)
L , for any fixed ` ≤ L,

Tr
(
G

(`)
L+1(x, x′)

)
= Tr

(
D(L+1)(x)W(L+1)G

(`)
L (x, x′)

[
W(L+1)

]>
D(L+1)(x′)

)
=

1

m

m∑
i=1

1{
〈w(L+1)

i ,o(L)(x)〉≥0
}1{

〈w(L+1)
i ,o(L)(x′)〉≥0

} [w(L+1)
i

>
G

(`)
L (x, x′)w

(L+1)
i

]

→ 1

m

m∑
i=1

1{
〈w(L+1)

i ,o(L)(x)〉≥0
}1{

〈w(L+1)
i ,o(L)(x′)〉≥0

} Tr
(
G

(`)
L (x, x′)

)
, (17)

where the last assertion holds because w>G
(`)
L (x, x′)w concentrates on its mean Tr

(
G

(`)
L (x, x′)

)
.

When ` = L+ 1, we know V
(L+1)
L+1 (x) = 1√

m
D(L+1)(x) in view of (8). From (12), we get

G
(L+1)
L+1 (x, x′) = 1

mD(L+1)(x)D(L+1)(x′) and

Tr
(
G

(L+1)
L+1 (x, x′)

)
=

1

m

m∑
i=1

1{
〈w(L+1)

i ,o(L)(x)〉≥0
}1{

〈w(L+1)
i ,o(L)(x′)〉≥0

}.
Furthermore,

1

m

m∑
i=1

1{
〈w(L+1)

i ,o(L)(x)〉≥0
}1{

〈w(L+1)
i ,o(L)(x′)〉≥0

}
→ Ew∼N (0,I)

[
1{〈w,o(L)(x)〉≥0}1{〈w,o(L)(x′)〉≥0}

]
→ π − arccos ρ(L)(x, x′)

2π
, (18)

where the first step holds by conditioning on o(L), and the last line follows as〈
o(L)(x)∥∥o(L)(x)

∥∥
2

,
o(L)(x′)∥∥o(L)(x′)

∥∥
2

〉
→

E
[
σ(U (L)(x))σ(U (L)(x′))

]√
E
[
σ2(U (L)(x))

]√
E
[
σ2(U (L)(x′))

] , ρ(L)(x, x′).

10

Overparametrized Multi-layer Neural Networks

Therefore, by defining

q
(`)
L+1(x, x′) =

π − arccos ρ(L)(x, x′)

2π
q

(`)
L (x, x′), ∀` ≤ L,

q
(L+1)
L+1 (x, x′) =

π − arccos ρ(L)(x, x′)

2π
, (19)

we get that

(II)→ q
(`)
L (x, x′). (20)

Combining (16) and (20), we get that

H(`)(x, x′)→ E
[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)]
q

(`)
L (x, x′) , Φ(`)(x, x′). (21)

It has been shown in Jacot et al. (2018) that for fixed (x, x′) and fixed `, H(`)(x, x′) con-
verges to Φ(`)(x, x′) in probability. The following theorem strengthens their result, showing
the uniform convergence of H(`) to Φ(`) for all ` and characterizing the rate of the conver-
gence.

Theorem 1 Under Gaussian initialization, For m ≥ Cd2 exp
(
L2
)

for some constant C,

there exist constants C1, C2 and C3 such that, with probability at least 1− exp
(
−C1m

1/3
)
,∥∥∥H(`) − Φ(`)

∥∥∥
∞
≤ C2

(
CL3
m1/6

+

√
dL logm

m

)
, ∀1 ≤ ` ≤ L. (22)

Remark 2 Theorem 1 significantly improves the concentration bounds in Du et al. (2019a).
Specifically, Du et al. (2019a) only establishes the concentration of the last hidden layer
H(L)(xi, xj) for a bounded number of data points {xi}ni=1. In contrast, Theorem 1 establishes
the concentration uniformly over all x ∈ Sd−1 and for all layers ` ∈ [L], which is much
stronger and more challenging to obtain. To see why, note that a simple pointwise control
and union bounds fall short of proving the uniform concentration over all x ∈ Sd−1. More
importantly, from the definition (12), we know

H(L) = 〈o(L−1)(x), o(L−1)(x′)〉 1

m

m∑
i=1

1{
〈w(L)

i ,o(L−1)(x)〉≥0
}1{

〈w(L)
i ,o(L−1)(x′)〉≥0

}.
is a sum of independent random variables conditioning on o(L−1) for which a simple con-
centration inequality can be applied to. In contrast, the intermediate layer H(`) with ` < L
depends on not only previous hidden layers but also weight matrices and activation pat-

terns of subsequent layers through G
(`)
L . To overcome these challenges, we fix G

(`)
L and view

a>G
(`)
L (x, x′)a as a quadratic term. This allows us to apply Hanson-Wright inequality (Ver-

shynin, 2019, Theorem 6.2.1) and obtain the concentration of a>G
(`)
L (x, x′)a for any fixed

x, x′. To upgrade this point-wise concentration to the uniform one, we utilize the criti-

cal observation that the number of different G
(`)
L (x, x′) for fixed

{
W(`)

}L
`=1

depends on the

number of activation patterns |DL| where DL ,
{(

D(1)(x), · · · ,D(L)(x)
)

: x ∈ Sd−1
}

. We
then show |DL| ≤ mdL through showing |Dk| ≤ md|Dk−1|. See Lemma 7 for more details.

11

Jiaming Xu and Hanjing Zhu

Implications in batch setting Theorem 1 implies that if m = Ω
(
exp(L2)poly(d, 1

ε)
)
,

then ‖H − Φ‖∞ < ε with high probability. Interestingly, our uniform bounds enable us to
derive a sufficient condition on the over-parameterization m in the batch setting that is
independent of the batch size. Specifically, in the batch setting with data points {xi}ni=1,
by defining kernel matrices H =

(
1
nH(xi, xj)

)
∈ Rn×n and Φ =

(
1
nΦ(xi, xj)

)
∈ Rn×n, we

can deduce that ‖H−Φ‖F ≤ ‖H − Φ‖∞ < ε. In contrast, the previous works in the batch
setting Du et al. (2019b,a); Su and Yang (2019) require m to grow sufficiently fast in n to
ensure ‖H−Φ‖F ≤ ε. For example, Du et al. (2019b) requires that m = Ω(n6).

In addition to the above application, Theorem 1 also plays an important role in the
analysis of gradient descent dynamic. Existing work (Du et al., 2019a) shows the training
error under GD decays at the rate of (1− ηλmin(Φ(L))/2)t where Φ(L) =

(
1
nΦ(L)(xi, xj)

)
is

the limit of the NTK matrix from the last hidden layer as the number of neurons goes to
infinity. With Theorem 1, we are able to show a tighter rate (1− ηλmin(Φ)/2)t.

Beyond the application in batch setting, Theorem 1 further enables us to characterize
the convergence of the prediction error under SGD in the streaming data setting, as we
shall present next.

4.2 Average Prediction Error under SGD

Define the prediction error ∆t(x) , f∗(x) − f(x; W(t)). We aim to characterize the con-

vergence of the average prediction error ‖∆t‖2 ,
√
EX
[
∆2
t (X)

]
.

To analyze ‖∆t‖2, we first show a linear approximation of ∆t:

∆t+1 = (I− ηtHt)∆t + vt + εt, (23)

where I is the identity operator, Ht is the integral operator associated with the kernel
function Ht(x, x

′), vt is the noise from the stochastic gradient, and εt is the approximation
error.

Note that Ht depends on {W(s), s ≤ t} and hence further depends on the sample
path {Xs, ys}t−1

s=0. To circumvent this dependency, we first show W(t) stays relatively
close to W(0) in operator norm under the over-parameterized regime with large m. This
further allows us to show ‖Ht −H‖∞ is small. Applying the triangle inequality together
with Theorem 1, we deduce that ‖Ht − Φ‖∞ is small. It then follows from (23) that the
prediction error under SGD can be approximated by a linear dynamic governed by Φ for
any sample path {Xt, yt}:

∆t+1 = (I− ηtΦ)∆t + ηt (Φ− Ht) ∆t + vt + εt, (24)

where Φ is the integral operator associated with Φ defined in (21). This recursion reveals
that the evolution of ∆t is governed by the spectrum of Φ.

More specifically, denote the eigenvalues of Φ as {λi}∞i=1 with λ1 ≥ λ2 ≥ · · · and the
corresponding eigen-functions φi. For any function g ∈ L2(µ), denote the residual projection
errorR(g, r) as the L2 norm of the projection of g onto the space spanned by eigen-functions
{φi}∞i=r+1, i.e.,

R(g, r) =

√√√√ ∞∑
i=r+1

〈g, φi〉2. (25)

12

Overparametrized Multi-layer Neural Networks

Theorem 3 Given m ≥ C3d
7 exp(θCL log T) and ηt = θ

t+1 for θ < 9
2
√

44L
, with probability

at least 1− exp
(
−C−L4 m1/36

)
over the initialization, we have

E [‖∆t‖2] ≤ inf
`

{(
t−1∏
s=0

(1− ηsλ`)

)
‖∆0‖2 +R(∆0, `)

}
+ 2c2 ‖∆0‖2 + 2c2τ, (26)

where c2 = θLe
√

44Lθ/9
√

1
1−2
√

44Lθ/9
+ 1.

Here, the first term on the right hand side of (26) comes from the linear approximation
∆t+1 ≈ (I− ηtΦ) ∆t ≈

∏t
s=0 (I− ηsΦ) ∆0 in view of (24). The term 2c2 ‖∆0‖2 + 2c2τ is

the sum of three errors. One is the accumulation of the perturbation error vt from the
stochastic gradients. Another is the accumulation of the approximation error εt from the
use of the linear approximation. The last one is the accumulation of the approximation
error ηt (Φ− Ht) ∆t.

From Theorem 3, we see that an early stopping time T , which is commonly used (Su and
Yang, 2019; Allen-Zhu et al., 2019a), is needed to ensure the condition on the number of
neurons per layer m is satisfied. Intuitively, this dependency on T comes from two aspects.
Firstly, to ensure the linear approximation holds, we crucially require W(t) to be close to
W(0), resulting in an upper bound on the number of SGD iterations T . Secondly, the
accumulation of the approximation error εt, albeit vanishing in m, grows in the number
of iterations T . Thus to ensure the final approximation error is small, we need m to be
sufficiently large compared with T .

Our result sheds light on the trade-off between the convergence rate and the accumu-
lation of approximation errors. The trade-off is two-fold. One is between

∏t
s=0 (1− ηsλ`)

and R(∆0, `) through `. Intuitively, on one hand, a larger ` implies a larger principal space
which yields a smaller R(∆0, `). On the other hand, a larger ` also implies a smaller λ`.
Thus, the contraction factor

∏t
s=0 (1− ηsλ`) is smaller, indicating slower convergence. The

other trade-off is between the contraction factor
∏t
s=0

(
1− θλ`

s+1

)
and the accumulation of

approximation error and noise c2 through θ. To make sure c2 is small, we need small θ,
thus yielding a small contraction factor. In return, we need more iterations to converge.

Now we present an application of Theorem 3 when f∗ is a polynomial. Consider SGD

under a symmetric initialization scheme of the last layer, i.e., W(L)(0) =

(
W
W

)
where

W ∈ R
m
2
×m is a random matrix with i.i.d. standard normal entries and a = (b,−b)> where

b ∈ Rm/2 has i.i.d. Rademacher entries.

Corollary 4 Assume f∗ is a degree `∗ polynomial and the input data follows the uniform
distribution over Sd−1. Under the same condition as Theorem 3, we have with probability

at least 1− exp
(
−Ω(C−L4 m1/36)

)
,

E [‖∆t+1‖2 |W(0), a] ≤
t∏

s=0

(1− ηsλ`∗+1) ‖f∗‖2 + 2c2 ‖f∗‖2 + 2c2τ. (27)

The proof is deferred to Appendix E.

13

Jiaming Xu and Hanjing Zhu

Remark 5 From Corollary 4, for arbitrarily small constant ε, by choosing small step
sizes, a sufficiently long horizon and a sufficient wide neural network, we ensure that
the average prediction error under SGD is smaller than ε. To be more specific, for any

0 < ε < ‖f∗‖2 + τ , by choosing T ≥
(

ε
6‖f∗‖2

)−1/(θλ`∗+1)
and θ ≤ 9ε

8
√

44(‖f∗‖2+τ)L
, we ensure

E [‖∆t+1‖2 |W(0), a] ≤ ε. To see why, note that

t∏
s=0

(1− ηsλ`∗+1) ≤ exp (−θλ`∗+1 log T) = T−θλ`∗+1 ≤ ε

6 ‖f∗‖2
, (28)

and

c2 (‖f∗‖2 + τ) = θLe
√

44Lθ/9

√
1

1− 2
√

44Lθ/9
+ 1 (‖f∗‖2 + τ)

(a)

≤ 9ε

8
√

44
e1/8

√
7/3 ≤ 5

12
ε, (29)

where (a) holds since 2
√

44Lθ
9 ≤ ε

4(‖f∗‖2+τ)
< 1

4 . The result follows by plugging (28) and

(29) into (27).

5. Proof of Theorem 1

In this section, we present the proof of the main results.

Additional notation Define VC(F) as the VC dimension of Boolean function class F .
For any matrix C ∈ Rn×m, we define ‖C‖∞ , max1≤i≤n,1≤j≤m |Cij |. Throughout the
remaining paper, we use C to denote absolute constant whose value may vary in lines.

We present several key lemmas that will be used in the proof of Theorem 1. First, we
show that 〈o(`)(x), o(`)(x′)〉 concentrates on E

[
σ
(
U (`)(x)

)
σ
(
U (`)(x′)

)]
uniformly over all

x, x′ ∈ Sd−1 and all ` ∈ [L].

Lemma 6 With probability at least 1− L exp
(
O (d logm)− Ω(m1/3)

)
, for any 1 ≤ ` ≤ L,

sup
x,x′

∣∣∣〈o(`)(x), o(`)(x′)〉 − E
[
σ
(
U (`)(x)

)
σ
(
U (`)(x′)

)]∣∣∣ = O

(
`C2`

m1/3

)
, (30)

where (U (`)(x), U (`)(x′)) is defined in (15).

To prove Lemma 6, we follow the aforementioned heuristic in Section 4.1 to show that
〈o(`)(x), o(`)(x′)〉 concentrates on E

[
σ(U (`)(x))σ(U (`)(x′))

]
for any fixed (x, x′). Then we

establish that o(`)(x) is Lipschitz in x with high probability. This enables us to apply an
ε-net argument to upgrade the pointwise concentration to the uniform one.

The next two lemmas together show that a>G
(`)
L (x, x′)a uniformly concentrates on

q
(`)
L (x, x′).

Lemma 7 With probability at least 1− exp
(
O(dL logm)− Ω(m1/3)

)
, for ` = 1, 2, · · · , L,

sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a− Tr

(
G

(`)
L (x, x′)

)∣∣∣ = O

(
c2L−2`

0

m1/3

)
. (31)

14

Overparametrized Multi-layer Neural Networks

The above lemma shows the uniform concentration of a>G
(`)
L (x, x′)a on Tr(G

(`)
L (x, x′)).

However, unlike the previous case, an ε-net argument cannot be applied here, as x influ-

ences G
(`)
L (x, x′) through non-Lipschitz indicator functions 1{〈w(k+1),o(k)(x)〉≥0} for k ≥ `.

As mentioned in Remark 2, the key to overcome this challenge lies on the following crucial

observation. Although there are infinite number of different matrices G
(`)
L (x, x′) when vary-

ing x, x′, conditioning on
{
W(k)

}L
k=1

the size of G(`)
L ,

{
G

(`)
L (x, x′) : x, x′ ∈ Sd−1

}
depends

only on the size of

DL ,
{(

D(1)(x), · · · ,D(L)(x)
)

: x ∈ Sd−1
}
.

Since D(k) ∈ Rm×m is diagonal with binary entries, one can directly bound |DL| by 2mL. Un-
fortunately, such naive bound is too loose to obtain a tight concentration. Instead, we show
a much tighter bound |DL| ≤ mdL utilizing the recursive relation |Dk| ≤ md|Dk−1| for all k.
To obtain such recursive relation, a critical step is to decompose Sd−1 into disjoint regions
{Vj , j = 1, 2, · · · , |Dk−1|} so that for any x within the same Vj ,

(
D(1)(x), · · · ,D(k−1)(x)

)
is

the same. With such decomposition, we can get

|Dk| ≤
|Dk−1|∑
j=1

∣∣∣{D(k)(x) : x ∈ Vj
}∣∣∣ .

To further bound
∣∣{D(k)(x) : x ∈ Vj

}∣∣, we crucially utilize the fact that for any fixed j,

o(k−1)(x) = Pjx for all x ∈ Vj with some deterministic matrix Pj ∈ Rm×d independent
of x. Hence,

∣∣{D(k)(x) : x ∈ Vj
}∣∣ ≤ md follows by applying Hajek and Raginsky (2019,

Proposition 7.1) and Sauer-Shelah Lemma (Lemma 22). With this tighter bound in hand,

we deduce the uniform concentration of a>G
(`)
L (x, x′)a on its mean Tr

(
G

(`)
L (x, x′)

)
by

combining Hanson-Wright inequality with a union bound over G(`)
L .

It remains to show the uniform concentration of Tr
(
G

(`)
L (x, x′)

)
on q

(`)
L (x, x′).

Lemma 8 With probability at least 1− exp (O(dL logm)− Ω(m1/3), for ` = 1, 2, · · · , L,

sup
x,x′

∣∣∣Tr
(
G

(`)
L (x, x′)

)
− q(`)

L (x, x′)
∣∣∣ = O

(√
LCL

m1/6
+

√
d (1 + (L− 1) logm)

m

)
(32)

for some universal constant C.

To prove Lemma 8, we follow the heuristic argument in Section 4.1 to prove (17) and
(18). The proof of (17) follows similarly as that of Lemma 7. To prove the first step of
(18), we utilize the following observation. Conditioning on W(1), · · · ,W(L−1), the change
of supx,x′ h

(L)(x, x′) from the change of any single coordinate is bounded by 1
m , where

h(L)(x, x′) ,

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(L)

i ,o(L−1)(x)〉≥0
}1{

〈w(L)
i ,o(L−1)(x′)〉≥0

} − Ew
[
1{〈w,o(L−1)(x)〉≥0}1{〈w,o(L−1)(x)〉≥0}

]∣∣∣∣∣ .
15

Jiaming Xu and Hanjing Zhu

This allows us to apply McDiarmid’s inequality to show with high probability over the ran-

domness of
{
w

(L)
i

}m
i=1

, supx,x′ h
(L)(x, x′) concentrates on its mean. We then apply Lemma

21 to bound E
[
supx,x′ h

(L)(x, x′)
]

by O

(√
VC(H(L))

m

)
where

H(L) ,
{
fx,x′(w) = 1{〈w,o(L−1)(x)〉≥0}1{〈w,o(L−1)(x′)〉≥0} : x, x′ ∈ Sd−1

}
.

Afterwards, we apply Lemma 20 to show VC(H(L)) = O
(
VC(F (L))

)
where

F (L) ,
{
fx(w) = 1{〈w,o(L−1)(x)〉≥0} : x ∈ Sd−1

}
.

To bound VC(F (L)), we follow a similar decomposition strategy as Lemma 7 and show

VC(F (L)) = O(d(1 + (L− 1) logm)).

To prove the second step of (18), we crucially establish that the arccos function is Hölder
continuous of order 1/2 despite that it is non-Lipschitz.

With the above lemmas, we now present the proof of Theorem 1. The full proofs of
Lemma 6– 8 are deferred to Appendix B.

Proof [Proof of Theorem 1] Throughout the proof, we condition on the event such that
(30), (31) and (32) hold simultaneously. By Lemma 6–Lemma 8, we get such event occurs
with probability at least 1− exp

(
−Ω(m1/3)

)
for sufficiently large m.

For any 1 ≤ ` ≤ L, by the triangle inequality, we have∥∥∥H(`) − Φ(`)
∥∥∥
∞

= sup
x,x′

∣∣∣〈o(`−1)(x), o(`−1)(x′)〉a>G
(`)
L (x, x′)a− E

[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)]
q

(`)
L (x, x′)

∣∣∣
≤ sup

x,x′

∣∣∣(〈o(`−1)(x), o(`−1)(x′)〉 − E
[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)])
a>G

(`)
L (x, x′)a

∣∣∣
+ sup

x,x′

∣∣∣E [σ (U (`−1)(x)
)
σ
(
U (`−1)(x′)

)](
a>G

(`)
L (x, x′)a− q(`)

L (x, x′)
)∣∣∣ . (33)

Here, we claim that

sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a

∣∣∣ ≤ 1, (34)

and

sup
x,x′

E
[
σ(U (`)(x))σ(U (`)(x′))

]
≤ sup

x

√
E
[
σ2(U (`)(x))

]
sup
x′

√
E
[
σ2(U (`)(x′))

]
= 2−` ≤ 1.

(35)

16

Overparametrized Multi-layer Neural Networks

Plugging the above two claims into (33), we have∥∥∥H(`) − Φ(`)
∥∥∥
∞

≤ sup
x,x′

∣∣∣〈o(`−1)(x), o(`−1)(x′)〉 − E
[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)]∣∣∣+ sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a− q(`)

L (x, x′)
∣∣∣

(a)
= O

(
`C2`

m1/3

)
+O

(
CL

m1/6
+

√
d (1 + (L− 1) logm)

m

)

= O

(
CL

m1/6
+

√
d (1 + (L− 1) logm)

m

)
,

where (a) holds by (30), (31), and (32); and the last equality holds since m = Ω(exp
(
L2
)
).

It remains to prove (34) and (35). To prove (34), by definition (19), we have

0 ≤ q(`)
L (x, x′) ≤ 1/2. (36)

Therefore, by the triangle inequality, we have

sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a

∣∣∣ ≤ sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a− q(`)

L (x, x′)
∣∣∣+ sup

x,x′

∣∣∣q(`)
L (x, x′)

∣∣∣ ≤ 1,

where the last inequality holds sinceO

(√
LCL

m1/6 +

√
d(1+(L−1) logm)

m

)
≤ 1

2 givenm = Ω(d2 exp(L2))).

Now we prove (35). Since U (1)(x) = 〈w, x〉 ∼ N (0, 1) for any x, we have

E
[
σ2(U (1)(x))

]
= EZ∼N (0,1)

[
Z21{Z≥0}

]
=

1

2
, ∀x. (37)

By the definition of Σ(`), it follows that

E
[
σ2(U (`)(x))

]
= EU(`−1)(x)

[
EZ∼N(0,σ2(U(`−1))(x))

[
Z21{Z≥0}|U (`−1)(x)

]]
=

1

2
E
[
σ2(U (`−1)(x))

]
, ∀x.

Recursively applying the above equality and noting (37), we get that

E
[
σ2(U (`)(x))

]
= 2−`, ∀x. (38)

By Cauchy-Schwartz inequality, we have

sup
x,x′

E
[
σ(U (`)(x))σ(U (`)(x′))

]
≤ sup

x

√
E
[
σ2(U (`)(x))

]
sup
x′

√
E
[
σ2(U (`)(x′))

]
= 2−` ≤ 1.

17

Jiaming Xu and Hanjing Zhu

6. Bounding ‖Ht −H0‖∞
In this section, we prove that with high probability, for any sample path {xs, ys}T−1

s=0 ,
‖Ht −H0‖∞ is small. As discussed in Section 4.2, this is crucial to the analysis of the
average prediction error under SGD in the streaming data setup.

Recall from (1) that Ht =
∑L

`=1H
(`)
t and

H
(`)
t (x, x′) =

〈
∂f(x; W(t))

∂W(`)
,
∂f(x′; W(t))

∂W(`)

〉
.

where

∂f(x; W(t))

∂W(`)
=

1√
m

D
(`)
t (x)z

(`)
t (x)

[
o

(`−1)
t (x)

]>
, (39)

and z
(`)
t (x) measures the sensitivity of the output from the `-th hidden layer defined as

[
z

(`)
t (x)

]>
,

[
∂f(x; W(t))

∂o(`)(x)

]>
= a>

1√
m

D
(L)
t (x)W(L)(t) · · · 1√

m
D

(`+1)
t (x)W(`+1)(t). (40)

Throughout the section, we assume the width of each hidden layer m satisfies

m ≥ d9 exp
(
Ω(θLCL log T)

)
(41)

for some absolute constant C. Also, recall from Section 3 that we assume γ , max {‖f∗‖∞, |u|}
is independent of m and choose step size ηt ≤ θ

t+1 .

Proposition 9 Assume (41) holds. With probability 1 − exp
(
−Ω(C−Lm1/36)

)
, for any

sample path {xs, ys}T−1
s=0 , all t ≤ T , and all 1 ≤ ` ≤ L, we have

sup
x

∥∥∥∥∂f(x; W(t))

∂W(`)
− ∂f(x; W(0))

∂W(`)

∥∥∥∥
2

= O

(
CL

m1/36

)
,

and hence, ∥∥∥H(`)
t −H

(`)
0

∥∥∥
∞

= O

(
CL

m1/36

)
. (42)

To prove Proposition 9, in view of (39), the key is to control the deviations of D
(`)
t (x),

z
(`)
t (x) and o

(`−1)
t (x) uniformly, which will be done in the following Lemma 10–12. The

detailed proof of Proposition 9 and Lemma 10–12 are deferred to Appendix C.

We begin with bounding the deviation of o
(`−1)
t (x). Define a sequence of real numbers:

R0 , m5/18,

Rt+1 , R0 + LC2L−2
t∑

s=0

ηs(Rs + γ), t ≥ 1. (43)

18

Overparametrized Multi-layer Neural Networks

Lemma 10 Assume (41) holds. Then we have Rt ≤ m1/3 for all t ≤ T . Moreover, with

probability at least 1 − exp
(
−Ω(C−L1 m1/9)

)
, for any 1 ≤ ` ≤ L, t ≤ T and sample path

{xs, ys}T−1
s=0 , the following holds:

∥∥∥W(`)(t)−W(`)(0)
∥∥∥

2
≤ CL−1

2

t−1∑
s=0

ηs (Rs + γ) ≤ Rt (44)

sup
x

∥∥∥o(`)
t (x)− o(`)

0 (x)
∥∥∥

2
≤ C`3
m1/6

(45)

sup
x
|∆t(x)| ≤ Rt, (46)

for some absolute constant C1, C2 and C3.

Lemma 10 is proved via induction over t in Appendix C.2. A key underlying idea is as
follows. While the weight vectors for some individual neurons may exhibit large deviations,
collectively W(`)(t) is close to W(`)(0) in terms of the spectral norm, or equivalently the
Frobenius norm as W(`)(t) −W(`)(0) is of rank no more than t, which is much smaller

than m following (41). This allows us to further control the deviation of o
(`)
t (x) and |∆t(x)|

uniformly over all x, which in turn results in a small deviation of W(`)(t + 1) in the next
iteration. Departing from the previous work (e.g. Du et al. (2019a, Lemma B.5)), here
to control the deviation of W(`)(t + 1), it is crucial to bound |∆t(x)| uniformly over all
x. A critical intermediate step is to bound |f(x; W(0))|. To this end, by observing that
f2(x; W(0)) ≤ a>Q(x)a for some matrix Q(x) independent of a, we apply the Hanson-
Wright inequality for a fixed Q(x) and then apply a union bound over

{
Q(x) : x ∈ Sd−1

}
,

analogous to the proof of Lemma 7.

Next, we show D
(`)
t (x) is close to D

(`)
0 (x) for any x. As such, define

S
(`)
t (x) , ‖D(`)

t (x)−D
(`)
0 (x)‖F.

Equivalently, S
(`)
t (x) measures the number of sign flips of the neurons at the `-th layer.

Lemma 11 Assume (41) holds. Then with probability 1 − exp
(
−Ω

(
C−L1 m1/9

))
for any

1 ≤ ` ≤ L, t ≤ T and sample path {xs, ys}t−1
s=0,

sup
x
S

(`)
t (x) ≤ C`2m8/9, (47)

for some absolute constant C1 and C2.

Note that the previous work Du et al. (2019b) has obtained bounds to the number of
sign flips in the batch setting with one hidden layer. They crucially require every individual

weight vector w
(1)
i not to change much and hence only the neurons with small |〈w(1)

i (0), x〉|
can have sign flips. However, in our setting, we need to further bound the number of neurons
with relatively large deviations based on our bound of

∥∥W(`)(t)−W(`)(0)
∥∥

2
.

Finally, we bound the deviation of the sensitivity z
(`)
t (x).

19

Jiaming Xu and Hanjing Zhu

Lemma 12 Assume (41) holds. With probability at least 1− exp
(
−Ω(C−L+`

3 m1/36)
)

, for

layer ` and t ≤ T and any sample path {xs, ys}T−1
s=0 , we have

sup
x

∥∥∥z(`)
0 (x)

∥∥∥
∞
≤ m1/36, (48)

and
sup
x

∥∥∥z(`)
t (x)− z(`)

0 (x)
∥∥∥

2
= O

(
C2L−`

4 m17/36
)
, (49)

for some absolute constant C3 and C4.

Lemma 12 is proved via a backward induction over ` in Appendix C.3. In particular,
we crucially utilize the following layer-wise recursive relation

z
(`)
t (x) =

1√
m

[
W(`+1)(t)

]>
D

(`+1)
t (x)z

(`+1)
t (x) (50)

and apply the aforementioned deviation bounds of W(`+1)(t) and D
(`+1)
t (x). Note that

even if there is only a single sign flip at some r-th neuron, an enormous value of the r-

th coordinate of z
(`+1)
0 (x) can possibly induce a large change of z

(`)
t (x). To circumvent

this issue, we derive a uniform bound to ‖z(`)
0 (x)‖∞. Specifically, we observe that the

r-th coordinate of z
(`)
0 (x) equals 〈a, v(`)

r (x)〉 where v
(`)
r (x) is the r-th column of matrix

1√
m

D(L)(x)W(L)(0) · · · 1√
m

D(`+1)(x)W(`+1)(0) in view of (40). Analogous to the proof of

Lemma 7, by conditioning on
{
W(k)

}L
k=1

, we first show the concentration of 〈a, v(`)
r (x)〉 for

a fixed v
(`)
r (x) and then apply a union bound by counting the number of v

(`)
r (x).

7. Proof of Theorem 3

Recall from Section 4.2 that the recursion (24) plays a key role in showing Theorem 3. In
the following lemma, we prove the recursion (24). Denote operators as

Kt = I− ηtΦ, Qt = I− ηtHt, Dt = Qt − Kt, (51)

where Φ is the integral operator associated with Φ, Ht is the integral operator associated
with Ht defined in (1), and Φ ,

∑L
`=1 Φ(`) with Φ(`) defined in (21).

Lemma 13 For any t, we have

∆t+1 = Kt ◦∆t + Dt ◦∆t + vt + εt, (52)

and hence,

E [‖∆t+1‖2 |W(0), a] ≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+
t∑

r=0

E

∥∥∥∥∥∥
t∏

i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

∥∥∥∥∥∥
2

∣∣∣∣∣W(0), a


+

t∑
s=0

E

[∥∥∥∥∥
t∏

r=s+1

Qr ◦ εs

∥∥∥∥∥
2

∣∣∣∣W(0), a

]
+ E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

∣∣∣∣W(0), a

]
.

(53)

20

Overparametrized Multi-layer Neural Networks

where εt ≡ εt(x,Xt; W(t),W(t+ 1)) with

εt(x, x
′; W(t),W(t+1)) , f(x; W(t))−f(x; W(t+1))+ηtHt(x, x

′)
(
f∗(x′) + ut − f(x′; W(t))

)
and

vt ≡ vt(x,Xt) = −ηt [(∆t(Xt) + ut)Ht(x,Xt)− EXt [∆t(Xt)Ht(x,Xt)|W(0), a]] . (54)

Proof [Proof of Lemma 13] By the definition of εt, we have

∆t+1(x) = ∆t(x)− ηtHt(x,Xt) (∆t(Xt) + ut) + εt(x,Xt)

= ∆t − ηtEXt [Ht(x,Xt)∆t(Xt)|W(0), a] + εt(x,Xt) + vt(x,Xt).

Using the notation in (51), we get the first equality of the lemma

∆t = Qt ◦∆t + vt + εt

= Kt ◦∆t + Dt ◦∆t + εt + vt,

where the last equality holds since Qt = Dt + Kt.
Unrolling the above equality, we have

∆t+1 ≤
t∏

s=0

Ks ◦∆0 +
t∑

r=0

t∏
i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0 +
t∑

s=0

t∏
r=s+1

Qr ◦ εs +
t∑

s=0

t∏
r=s+1

Qr ◦ vs.

Taking L2 norm and conditional expectation, following the triangle inequality, we obtain
the second inequality of the lemma.

To bound the average prediction error E [‖∆t+1‖2 |W(0), a], it suffices to bound the right
hand side of (53). The first term can be bounded using the eigen-decomposition of Kt. As
an intermediate step, we prove both Φ and Ht are positive semi-definite with a bounded
spectral norm in Lemma 14 below. This will be useful in bounding the spectrum of Kt and
Qt.

Lemma 14 Φ is positive semi-definite with ‖Φ‖2 ≤ ‖Φ‖∞ ≤
L
2 . Hence, for ηt ≤ 2

L , we
have

0 ≤ λi(Kt) ≤ 1,

for all i where λi(Kt) is the i-th largest eigen-value of Kt.
Assume (41) holds. With probability at least 1− exp

(
−Ω

(
C−Lm1/36

))
, Ht are positive

semi-definite for all t ≤ T with ‖Ht‖2 ≤
2L
3 , and hence for ηt ≤ 3

2L ,

0 ≤ λi(Qt) ≤ 1,

where λi(Qt) is the i-th largest eigen-value of Qt.

The second term of (53) is the approximation error of using Φ instead of Ht. To bound
the second term, we apply Lemma 14 which bounds ‖Qt‖2 and ‖Kt‖2 for all t. Then we
apply Proposition 9 as well as Theorem 1 to bound ‖Dt‖2.

It remains to bound the last two terms. Intuitively, the third term is the accumulation
of εt and the last term is the accumulation of the noise from the stochastic gradients vt.

The following lemma bounds the approximation error.

21

Jiaming Xu and Hanjing Zhu

Lemma 15 Assume (41) holds. With probability at least 1 − exp
(
−Ω(C−L+1m1/36)

)
, we

have

E [‖εt‖2 |W(0), a] = O

(
ηtC

Lσt

m1/36

)
, (55)

where

σ2
t = E

[
‖∆t‖22 |W(0), a

]
+ τ2. (56)

and τ is the variance of the noise u.

Next, we bound the noise from the stochastic gradients in expectation.

Lemma 16 Assume (41) holds. With probability at least 1 − exp
(
−Ω(C−Lm1/36)

)
, we

have

E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

∣∣∣∣W(0), a

]
≤ c2σ0, (57)

where c2 = Lθe
√

44Lθ/9
√

1
1−2
√

44Lθ/9
+ 1.

To prove Lemma 16, we first utilize ‖Qt‖2 ≤ 1 and the observation

E
[
vs| {Xr, yr}s−1

r=0 ,W(0), a
]

= 0

to show

E

∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

2

∣∣∣∣W(0), a

 ≤ t∑
s=0

E
[
‖vs‖22 |W(0), a

]
.

Then following the definition of vt and the upper bound of ‖Ht‖∞, we have

E
[
‖vs‖22 |W(0), a

]
≤ 4Lη2

s

9
σ2
s

where σ2
s is defined in (56).

Finally we bound
∑T

s=0 η
2
sσ

2
s . Note that ηs ≤ θ

s+1 . Therefore, by showing σt does not

grow too fast in t, i.e., σt+1 ≤
(

1 +
√

44Lηt
9

)
σt, we guarantee

∑∞
s=0 η

2
sσ

2
s converges and

hence obtain the upper bound of
∑T

s=0 η
2
sσ

2
s .

Proof [Proof of Theorem 3] Throughout the proof, we condition on W(0) and a such that
(22), (42), (55), (57) hold. This can be guaranteed with probability 1−exp

(
−Ω(C−Lm1/36)

)
following Theorem 1, Proposition 9, Lemma 15 and Lemma 16. For simplicity, we abbreviate
the conditional expectation E [·|W(0), a] as E [·]. We now prove the theorem by induction.

When t = 0, clearly ‖∆0‖2 ≤ ‖∆0‖2 + 2c2 ‖∆0‖2 + 2c2τ .

22

Overparametrized Multi-layer Neural Networks

Suppose (26) holds at all time s ≤ t, now we show it also holds at time t+ 1. Following
(53) in Lemma 13, we have

E [‖∆t+1‖2] ≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+
t∑

r=0

E

∥∥∥∥∥∥
t∏

i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

∥∥∥∥∥∥
2


+

t∑
s=0

E

[∥∥∥∥∥
t∏

r=s+1

Qr ◦ εs

∥∥∥∥∥
2

]
+ E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

]

≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+
t∑

r=0

E [‖Dr‖2] ‖∆0‖2 +
t∑

s=0

E [‖εs‖2] + E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

]
,

(58)

where the last inequality holds by Lemma 14 that gives ‖Qt‖2 ≤ 1 and ‖Kt‖2 ≤ 1 for all
t ≤ T .

Now we bound each term on the right hand side above.

Denote ρi(t) ,
∏t
s=0 (1− ηsλi) where {λi}∞i=1 are eigenvalues of Φ. Since λ1 ≥ λ2 ≥

· · · ≥ 0 and supi (1− ηsλi) ≤ 1 for all s, we know ρi(t) is bounded above by 1 and is
increasing in i. To bound the first term on the right hand side of (58), here we use an
induction to prove that

t∏
s=0

Ks ◦ g =
∞∑
i=1

ρi(t)〈g, φi〉φi, (59)

where φi is the eigenfunction of Φ associated with eigenvalue λi.

When t = 0, since K0 is positive semi-definite, by Lemma 27, we have

K0 ◦ g =
∞∑
i=1

ρi(0)〈g, φi〉φi,

where φi is the eigenfunction of Φ associated with eigenvalue λi.

Suppose (59) holds for some time t. Since Kt+1 is PSD, by Lemma 27, we have

Kt+1 ◦

(
t∏

s=0

Ks ◦ g

)
=
∞∑
i=1

(1− ηt+1λi)

〈 ∞∑
j=1

ρj(t)〈g, φj〉φj , φi

〉
φi

(a)
=
∞∑
i=1

(1− ηt+1λi) 〈ρi(t)〈g, φi〉φi, φi〉φi

(b)
=
∞∑
i=1

ρi(t+ 1)〈g, φi〉φi,

where (a) holds by orthogonality of {φi} and (b) holds by the definition of ρi and the
normality of φi. Therefore, taking L2 norm square on both hand sides of (59), for any

23

Jiaming Xu and Hanjing Zhu

r ∈ N, we get ∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

2

=

∞∑
i=0

ρ2
i (t)〈∆0, φi〉2

(a)

≤
r∑
i=0

ρ2
i (t)〈∆0, φi〉2 +

∞∑
i=r+1

〈∆0, φi〉2

(b)

≤ ρ2
r(t)

r∑
i=0

〈∆0, φi〉2 +R2(∆0, r)

≤ ρ2
r(t) ‖∆0‖22 +R2(∆0, r),

where the residual projection error R is defined in (25); (a) holds since ρi(t) ≤ 1 for all i
and t; (b) holds since ρi(t) is monotonic increasing in i. Hence, we have for any r ∈ N,∥∥∥∥∥

t∏
s=0

Ks ◦∆0

∥∥∥∥∥
2

≤
t∏

s=0

(1− ηsλr) ‖∆0‖2 +R(∆0, r). (60)

To bound
∑t

r=0 E [‖Dr‖2], note that

‖Dr‖2 ≤ ηr ‖Ht − Φ‖∞ = O

(
ηrC

L

m1/36

)
.

Thus, we get
t∑

r=0

E [‖Dr‖2] = O

(
CL
∑t

r=0 ηr

m1/36

)
≤ C1

θCL log T

m1/36
, (61)

for some absolute constant C1 where the last inequality holds by plugging in ηr ≤ θ
r+1 .

By (55), we have
t∑

s=0

E [‖εs‖2] = O

(
CL2
m1/36

t∑
s=0

ηsσs

)
.

By definition of σs, we have

σs =

√
E
[
‖∆s‖22

]
+ τ2 ≤ E [‖∆s‖2] + τ.

Now we prove that
E [‖∆s‖2] ≤ (1 + 2c2) ‖∆0‖2 + 2c2τ.

and hence
σs ≤ (1 + 2c2) ‖∆0‖2 + (1 + 2c2)τ.

To see this, note that for any ε > 0, R(∆0, `) < ε for sufficiently large `. Therefore, since
(26) holds for all s ≤ t, we have

E [‖∆s‖2] ≤
s∏
r=0

(1− ηrλ`) ‖∆0‖2 + ε+ 2c2 ‖∆0‖2 + 2c2τ ≤ (1 + 2c2) ‖∆0‖2 + ε+ 2c2τ.

24

Overparametrized Multi-layer Neural Networks

Since ε can be arbitrary, we have E [‖∆s‖2] ≤ (1 + 2c2) ‖∆0‖2 + 2c2τ . Plugging the bound
to σs and ηs ≤ θ

s+1 , we get

t∑
s=0

E [‖εs‖2] ≤ C3θC
L
2 log T

m1/36
(1 + 2c2) (‖∆0‖2 + τ) . (62)

for some absolute constant C3 where we use the fact that
∑T

t=0 ηt ≤
∑T

t=0
θ
t+1 ≤ C

′θ log T.
Lastly, from (57), we have

E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

]
≤ c2 (‖∆0‖2 + τ) .

Plugging the above bound as well as (60), (61) and (62) into (58), we have

E [‖∆t+1‖2]

≤
t∏

s=0

(1− ηsλr) ‖∆0‖2 +R(∆0, r) + C1
θCL log T

m1/36
‖∆0‖2

+
C3θC

L
2 log T

m1/36
(1 + 2c2) (‖∆0‖2 + τ) + c2 (‖∆0‖2 + τ)

=

{
t∏

s=0

(1− ηsλr)

}
‖∆0‖2 +R(∆0, r)

+

[
(C1 + C3(1 + 2c2))

θCL4 log T

m1/36
+ c2

]
‖∆0‖2 +

(
(1 + 2c2)C3θC

L
2 log T

m1/36
+ c2

)
τ, (63)

where C4 = max {C,C2}.
When m = Ω

(
(C1 + C3(1 + c2))36 θ36c36

2 C
36L
4 log36 T

)
, we have

(C1 + C3(1 + 2c2))
θCL4 log T

m1/36
≤ c2,

and
(1 + 2c2)C3θC

L
2 log T

m1/36
≤ c2.

As a result, we have

E [‖∆t+1‖2] ≤
t∏

s=0

(1− ηsλr) ‖∆0‖2 +R(∆0, r) + 2c2 ‖∆0‖2 + 2c2τ,

which completes the induction.

8. Numerical Study

In this section, we provide some numerical studies.

25

Jiaming Xu and Hanjing Zhu

8.1 Synthetic data

We consider the following different choices of f∗:

• Linear: f∗(x) = 〈b, x〉 with parameter b ∈ Rd;

• Quadratic: f∗(x) = x>Ax+ 〈b, x〉, where A ∈ Rd×d and b ∈ Rd;

• Teacher neural network: f∗(x) =
∑3

i=1 biψ(〈vi, x〉), where ψ(z) = 1
1+e−z is the sigmoid

function, bi ∈ {−1, 1}, and vi ∈ Rd;

• Random label: f∗(x) is an i.i.d. Bernoulli random variable with parameter 1/2.

We use the symmetric initialization introduced in Section 4 as Corollary 4 suggests
a zero residual projection error R(∆0, `

∗ + 1) for a degree `∗ polynomial. We run the
stochastic gradient descent algorithm (10) on the streaming data with constant step size
η = 0.3 to train a four-layer neural network. At each iteration, we randomly draw data
X uniformly from Sd−1 and u from N (0, τ2) to obtain (X, y) where y = f∗(X) + u. The
average prediction error is estimated using freshly drawn 200 data points, and the resulting
error is further averaged over 20 independent runs.

In Section 4, we prove that the average prediction error converges under SGD in the
streaming setting. Here we show the numerical performance of SGD. We study the normal-
ized average prediction error E [‖∆t‖2] /E [‖∆0‖2] for different f∗ with d = 5, m = 1000,
and τ = 0.1. For linear, quadratic and teacher neural network f∗, the best achievable value
of the normalized error equals 0. For random label f∗, since f∗(x) is an i.i.d. Bernoulli
random variable with parameter 1/2 for any x, we get

‖∆t‖22 = EX
[
(f∗(X)− f(X; W(t)))2

]
=

1

2

[
(f(X; W(t))− 1)2 + f2(X; W(t))

]
≥ 1

4
, ∀t.

Hence, the best achievable value of the normalized average prediction error equals 1/2

E[‖∆0‖2]
,

which is represented by the horizontal dashed line in Figure 3. From Figure 3, we clearly
see that SGD learns f∗ efficiently for all four choices: the normalized average prediction
error converges to the best achievable values.

As discussed in Section 4, our result which captures the contribution of NTK from all
hidden layers, characterizes the average prediction error better than existing works (Du
et al., 2019a) . Here, we provide numerical studies to verify this statement. Figure 4
plots the evolution of the average prediction error normalized by the error at initialization
and the characterizations utilizing the spectrum of Φ and Φ(4). It can be seen that our
characterization based on Φ is close to the actual SGD dynamic when f∗ is linear, quadratic
or teacher neural network function. Note that under the symmetric initialization, ∆0 = f∗.
According to Corollary 4, we choose λ2(Φ) for linear and λ3(Φ) for quadratic f∗ since the
residual projection error equals 0. For teacher neural network f∗ which is not polynomial,
we cannot find some `∗ such that the residual projection error R(f∗, `∗) = 0. Instead, we
choose λ4 (Φ) as it provides the best fit among all λi (Φ) , i ≥ 1.

As shown in Section 6, to ensure Ht is close to H0, we crucially prove that W(`)(t) stays
relatively close to W(`)(0) in Lemma 10 and bound the number of sign changes for each
hidden layer in Lemma 11. Here we study both phenomena numerically. Figure 5 studies

26

Overparametrized Multi-layer Neural Networks

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
av

er
ag

e
pr

ed
ict

io
n

er
ro

r
random label
linear
quadratic
teacher neural net

Figure 3: Normalized prediction error for different f∗

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

(1 min((4)))t

normalized average prediction error
(1 2())t

(a) Linear f∗

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

(1 min((4)))t

normalized average prediction error
(1 3())t

(b) Quadratic f∗

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

(1 min((4)))t

normalized average prediction error
(1 4())t

(c) Teacher neural net f∗

Figure 4: Average prediction error and the characterization based on Φ

teacher neural network f∗. Figure 5a shows that the relative deviation of weight matrix∥∥W(`)(t)−W(`)(0)
∥∥

2
/
∥∥W(`)(0)

∥∥
2

for each `-th hidden layer is small. This is consistent
with the trend implied by Lemma 10 which shows that with high probability, the numerator∥∥W(`)(t)−W(`)(0)

∥∥
2

is small compared to the denominator
∥∥W(`)(0)

∥∥
2
. In Figure 5b, we

observe only a small fraction of sign changes in each hidden layer throughout the training.
Furthermore, we see the proportion of sign changes increase when the layer index ` increases.
Both are consistent with the trend indicated by Lemma 11.

8.2 Real data experiment

To illustrate the characterization from our theoretical result on real data, we run a numerical
experiment on MNIST dataset. For simplicity, we only use the data corresponding to digit
0 and digit 1. We randomly draw 1500 images with 28× 28 pixels from each digit and treat
the empirical distribution of these 3000 images as the underlying true data distribution.
We reshape the data to have xi ∈ R784. For each xi ∈ R784 in the dataset, we assign
yi = 1 if the corresponding image is digit 1 and yi = −1 if the image is digit 0. We

27

Jiaming Xu and Hanjing Zhu

(a) Relative deviation of weight matrices (b) Proportion of sign flips

Figure 5: Evolution of weight and sign flips for a 4-layer teacher neural network f∗

then normalize xi to have ‖xi‖2 = 1. We run the mini-batch SGD with mini-batch size
100 on streaming data with step size η = 0.7 using a 4-layer neural network with 10000
neurons in each hidden layer. The reason for the use of mini-batch is to limit the noise
from the stochastic gradient. Figure 6 shows the training loss normalized by the loss at
initialization and two characterizations from the spectrum of NTK. We use error0 to denote
the average prediction error at initialization. It can be seen that the characterization from
our result provides a much tighter bound than the characterization from existing works
(Du et al., 2019a) using only the spectrum of the NTK from the last hidden layer. In
addition, we clearly see two elbow points on our characterization. The first 100 iterations
correspond to (1− ηλ1(Φ))t +R(∆0, 1)/error0 while the next 400 iterations correspond to
(1− ηλ2(Φ))t +R(∆0, 2)/error0.

0 250 500 750 1000 1250 1500 1750 2000
iteration

0.2

0.4

0.6

0.8

1.0

normalized loss
infr{(1 r())t + (0, r)/error0}
(1 min((4))t

Figure 6: Normalized training loss for the first 2000 iterations

28

Overparametrized Multi-layer Neural Networks

9. Conclusion

In this paper, we show the uniform concentration of NTK from all hidden layers of neural
networks which allows us to capture the contribution of intermediate layers in the char-
acterization of GD/SGD dynamics. Furthermore, in the streaming setting, we show the
average prediction error under SGD converges in expectation. Our analysis opens the door
for several interesting future directions. For example, it is of great interest to extend our
study to Markovian data arising in the reinforcement learning. It is also useful to extend
our uniform concentration result to other neural network architectures such as convolutional
neural network (CNN).

Acknowledgments.

The research is supported in part by the NSF Grant CCF-1856424 and an NSF CAREER
award CCF-2144593.

References

M. Abramowitz, I. A. Stegun, and R. H. Romer. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, 1988.

Z. Allen-Zhu and Y. Li. What can resnet learn efficiently, going beyond kernels? In Advances
in Neural Information Processing Systems, pages 9017–9028, 2019a.

Z. Allen-Zhu and Y. Li. Can sgd learn recurrent neural networks with provable general-
ization? In Advances in Neural Information Processing Systems, pages 10331–10341,
2019b.

Z. Allen-Zhu and Y. Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252,
2019a.

Z. Allen-Zhu, Y. Li, and Z. Song. On the convergence rate of training recurrent neural
networks. In Advances in neural information processing systems, pages 6676–6688, 2019b.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and gen-
eralization for overparameterized two-layer neural networks. In International Conference
on Machine Learning, pages 322–332. PMLR, 2019a.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation
with an infinitely wide neural net. Advances in neural information processing systems,
32, 2019b.

M. J. Cantero and A. Iserles. On rapid computation of expansions in ultraspherical poly-
nomials. SIAM Journal on Numerical Analysis, 50(1):307–327, 2012.

29

Jiaming Xu and Hanjing Zhu

Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In Advances in Neural Information Processing Systems, pages
10836–10846, 2019.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Z. Chen, Y. Cao, Q. Gu, and T. Zhang. Mean-field analysis of two-layer neural networks:
Non-asymptotic rates and generalization bounds. arXiv preprint arXiv:2002.04026, 2020.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in neural information processing systems,
pages 3036–3046, 2018.

Y. Cho and L. Saul. Kernel methods for deep learning. Advances in neural information
processing systems, 22, 2009.

F. Dai and Y. Xu. Approximation theory and harmonic analysis on spheres and balls,
volume 23. Springer, 2013.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep
neural networks. In International Conference on Machine Learning, pages 1675–1685,
2019a.

S. S. Du, Y. Wang, X. Zhai, S. Balakrishnan, R. R. Salakhutdinov, and A. Singh. How
many samples are needed to estimate a convolutional neural network? In Advances in
Neural Information Processing Systems, pages 373–383, 2018.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. ICLR 2019, 2019b.

J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright. Secure
multiparty computation of approximations. In International Colloquium on Automata,
Languages, and Programming, pages 927–938. Springer, 2001.

B. Hajek and M. Raginsky. Statistical learning theory. Lecture Notes, 387, 2019.

W. Hu, C. J. Li, L. Li, and J.-G. Liu. On the diffusion approximation of nonconvex stochastic
gradient descent. Annals of Mathematical Sciences and Applications, 4(1), 2019.

E. Ikonomovska, S. Loskovska, and D. Gjorgjevik. A survey of stream data mining. In
Proceedings of 8th National Conference with International participation, ETAI, pages
19–21, 2007.

L. Isserlis. On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables. Biometrika, 12(1/2):134–139, 1918.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–
8580, 2018.

30

Overparametrized Multi-layer Neural Networks

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

Z. Li, R. Wang, D. Yu, S. S. Du, W. Hu, R. Salakhutdinov, and S. Arora. Enhanced
convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. In Conference on Learning Theory, pages 2388–
2464. PMLR, 2019.

J. Mercer. Xvi. functions of positive and negative type, and their connection the theory of
integral equations. Philosophical transactions of the royal society of London. Series A,
containing papers of a mathematical or physical character, 209(441-458):415–446, 1909.

S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers Inc, 2005.

L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data algo-
rithms for high-quality clustering. In Proceedings 18th International Conference on Data
Engineering, pages 685–694. IEEE, 2002.

G. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time conver-
gence and asymptotic error scaling of neural networks. Advances in neural information
processing systems, 31, 2018.

J. Shawe-Taylor, N. Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

J. Sirignano and K. Spiliopoulos. Mean field analysis of deep neural networks. Mathematics
of Operations Research, 47(1):120–152, 2022.

L. Su and P. Yang. On learning over-parameterized neural networks: A functional ap-
proximation perspective. In Advances in Neural Information Processing Systems, pages
2641–2650, 2019.

T. Tirer, J. Bruna, and R. Giryes. Kernel-based smoothness analysis of residual networks.
In Mathematical and Scientific Machine Learning, pages 921–954. PMLR, 2022.

B. Tzen and M. Raginsky. A mean-field theory of lazy training in two-layer neural
nets: entropic regularization and controlled mckean-vlasov dynamics. arXiv preprint
arXiv:2002.01987, 2020.

A. Van Der Vaart and J. A. Wellner. A note on bounds for vc dimensions. Institute of
Mathematical Statistics collections, 5:103, 2009.

R. Vershynin. High-dimensional probability. Cambridge, UK: Cambridge University Press,
2019.

31

Jiaming Xu and Hanjing Zhu

Y. Wang. Harmonic analysis and isoperimetric inequalities. Lecture Notes, 2010.

J. Xu and H. Zhu. One-pass stochastic gradient descent in overparametrized two-layer
neural networks. In International Conference on Artificial Intelligence and Statistics,
pages 3673–3681. PMLR, 2021.

D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep
relu networks. Machine Learning, 109(3):467–492, 2020.

32

Overparametrized Multi-layer Neural Networks

Appendix A. Auxiliary Results

A.1 Concentration Inequalities

In this section, we provide the concentration inequalities used in this paper. First of all, we
present McDiarmid’s inequality.

Lemma 17 (Hajek and Raginsky, 2019, Theorem 2.3) Let X = (X1, · · · , Xm) ∈ Xm be
an n-tuple of X -valued independent random variables and f : Xm → R be a measurable
function. Assume the value of f(x) can change by at most ci > 0 under an arbitrary change
of the i-th coordinate. Then for any t > 0,

P [f(X)− E [f(X)] ≥ t] ≤ exp

(
− 2t2∑m

i=1 c
2
i

)
.

The following lemma is Bernstein inequality which shows the concentration of the sum
of i.i.d. sub-exponential random variables.

Lemma 18 (Vershynin, 2019, Theorem 2.8.1) Let X1, · · · , Xn be i.i.d., sub-exponential
random variables with sub-exponential norm ‖Xi‖ψ1 ≤ K. Then for any t > 0, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − E [X1]

∣∣∣∣∣ > t

]
≤ 2 exp

(
−C min

(
nt2

K2
,
nt

K

))
.

Finally, we present Hanson-Wright inequality. For any random variable X, define
‖X‖ψ2 , inf

{
t > 0 : E

[
exp

(
X2/t2

)]
≤ 2
}

.

Lemma 19 (Vershynin, 2019, Theorem 6.2.1) Let X = (X1, · · · , Xm) ∈ Rm be a random
vector with independent, mean zero, sub-Gaussian coordinates. Let A be an m×m matrix.
Then for any t ≥ 0,

P
[∣∣∣X>AX − E

[
X>AX

]∣∣∣ > t
]
≤ 2 exp

(
−C min

{
t2

K4‖A‖2F
,

t

K2 ‖A‖2

})
,

where K = maxi ‖Xi‖ψ2.

A.2 VC Dimension

Let C be a collection of subsets in Rp. For any set A consisting of finite points in Rp, we
denote CA = {C ∩A : C ∈ C}. We say CA shatters set A if |CA| = 2|A|. Let MC(n) =
max {|CF | : F ⊂ Rp, |F | = n} and P(C) = sup {n :MC(n) = 2n} which is the largest cardi-
nality of a set that can be shattered by C.

Consider a Boolean function class F on Rp. For each f ∈ F , we denote Df =
{x ∈ Rp : f(x) = 1}. As a result, the collection CF , {Df : f ∈ F} forms a collection of
subsets of Rp. Define CF (A) = {Df ∩A : f ∈ F}. The VC dimension of F is then defined
as

VC(F) , P (CF) = sup

{
n : max

A
|CF (A)| = 2n : |A| = n,A ⊂ Rp

}
.

Now we provide the auxiliary results in this paper regarding VC dimension.
The following lemma can be used to obtain the bound of VC dimension of the function

class consisting of functions with the form of a product of Boolean functions.

33

Jiaming Xu and Hanjing Zhu

Lemma 20 (Van Der Vaart and Wellner, 2009, Theorem 1.1) For Boolean function classes
H and {Fi}Ni=1, if for any h ∈ H, there exists functions f1 ∈ F1, · · · , fN ∈ FN such that

h =
∏N
i=1 fi, then we have

VC(H) ≤ 5

2
log(4N)

N∑
i=1

VC(Fi).

The next lemma bounds the expectation of the largest deviation of an average of some
Boolean function through VC dimension.

Lemma 21 (Vershynin, 2019, Theorem 8.3.23) Let F be a class of Boolean functions on
a probability space (Ω,Σ, µ) with finite VC dimension. Let X1, X2, · · · , Xn be independent
random points in Ω. Then

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EX [f(X)]

∣∣∣∣∣
]
≤ C

√
VC(F)

n

for some constant C.

Next, we present Sauer-Shelah Lemma which bounds the cardinality of CF (A) with the
VC dimension of F .

Lemma 22 (Vershynin, 2019, Theorem 8.3.16) Let F be a Boolean function class and
A = {a1, · · · , an} be a set of n points in the space. Then for any n ≥ VC(F),

| {(f(a1), · · · , f(an)) : f ∈ F} | = |CF (A)| ≤
(

en

VC(F)

)VC(F)

.

Lemma 23 (Hajek and Raginsky, 2019, Proposition 7.1) Let F =
{
fθ(y) = 1{〈y,θ〉≥0} : θ ∈ Θ

}
where y ∈ Rp and Θ is some q-dimensional subspace of Rp. Then

VC(F) = q.

Lastly, we provide a lemma that bounds the VC dimension of union of function classes
when the number of function classes is much larger than their VC dimension.

Lemma 24 Suppose F = ∪Ni=1Fi where VC(Fi) = d for all i, then

VC(F) ≤ C max (d log d, logN) .

Proof [Proof of Lemma 24] Fix arbitrary set A = {y1, · · · , yn} of size n. Since F = ∪Ni=1Fi,
we have CF (A) = ∪Nj=1CFj (A).

Thus, we have

|CF (A)| ≤
N∑
j=1

|CFj (A)|
(a)

≤
N∑
j=1

nVC(Fj) ≤ Nnd.

where (a) holds by Lemma 22.

34

Overparametrized Multi-layer Neural Networks

By the definition of VC dimension, if ndN < 2n, then VC (F) < n.
Taking logarithm on both hand sides, we have d log n+ logN < n log 2.
Note that when n

2 > d log n and n
2 > logN , i.e., n ≥ max (Cd log d, 2 logN), the above

inequality clearly holds.
Therefore, we get

VC(F) ≤ C max (Cd log d, logN)

for some universal constant C.

A.3 Kernel

Here, we provide some intermediate results used in this paper regarding kernel operator.

Lemma 25 (Shawe-Taylor et al., 2004, Proposition 3.22) For any positive semi-definite
kernel κ1 and κ2, any function φ, we have κ3, κ4 and κ5 are positive semi-definite kernels
where

κ3(x, y) , κ1(x, y) + κ2(x, y), (64)

κ4(x, y) , κ1(x, y)κ2(x, y), (65)

and
κ5(x, y) , κ1(φ(x), φ(y)). (66)

Lemma 26 (Shawe-Taylor et al., 2004, Theorem 3.13) Suppose f(x, y) is a kernel function.
If for any g ∈ L2(µ), ∫ ∫

f(x, y)g(x)g(y)dµ(x)dµ(y) ≥ 0,

then f is positive semi-definite.

Lemma 27 (Mercer, 1909) Suppose κ is a positive semi-definite kernel. Then there exists
non-negative eigenvalues λ1 ≥ λ2 ≥ · · · and orthonormal eigenfunctions {φi} such that

κ(x, y) =
∞∑
j=1

λjφj(x)φj(y).

Lemma 28 For any positive semi-definite kernel operator J associated with function J , we
have

‖J‖2 ≤ ‖J‖∞ .

Proof [Proof of Lemma 28] By Cauchy-Schwartz inequality, we have

‖J‖22 = sup
‖g‖2=1

∫ (∫
J(x, y)g(y)dµ(y)

)2

dµ(x)

≤ sup
‖g‖2=1

∫ ∫
J2(x, y)dµ(y)dµ(x)

∫
g2(y)dµ(y)

≤ ‖J‖2∞

35

Jiaming Xu and Hanjing Zhu

where ‖g‖2 =
√∫

g2(x)dµ(x) is the L2 norm for function g.

A.4 Probability of the intersection of events

Lemma 29 Let {Ai} and {Bi} be two sequences of events, where A0 and B0 are the whole
probability spaces. Then we have for any n ≥ 1,

P [∩ni=1(Ai ∩Bi)] ≥ 1−
n∑
i=1

P
[
Bc
i | ∩i−1

k=1(Ak ∩Bk)
]
−

n∑
i=1

P [Aci]

and

P [Bn ∩ (∩ni=1Ai)] ≥ 1−
n∑
i=1

P
[
Bc
i |Bi−1 ∩ (∩i−1

k=1Ak)
]
−

n∑
i=1

P [Aci] ,

where ∩0
i=1Fi for any event Fi is understood as the whole probability space.

Proof [Proof of Lemma 29] Note that for any event E and F , we have

P [F] ≤ P [E ∩ F] + P [Ec ∩ F] ≤ P [E] + P [Ec ∩ F] . (67)

Taking E = ∩ni=1 (Ai ∩Bi) and F = ∩n−1
i=1 (Ai ∩Bi), we have

P
[
∩n−1
i=1 (Ai ∩Bi)

]
≤ P [∩ni=1 (Ai ∩Bi)] + P

[
(∩ni=1 (Ai ∩Bi))c ∩

(
∩n−1
i=1 (Ai ∩Bi)

)]
. (68)

Now we bound P
[
(∩ni=1 (Ai ∩Bi))c ∩

(
∩n−1
i=1 (Ai ∩Bi)

)]
.

Since (∩ni=1 (Ai ∩Bi))c =
[
∩n−1
i=1 (Ai ∩Bi)

]c ∪Acn ∪Bc
n, we have

P
[
(∩ni=1 (Ai ∩Bi))c ∩

(
∩n−1
i=1 (Ai ∩Bi)

)]
≤ P

[
(Acn ∪Bc

n) ∩
(
∩n−1
i=1 (Ai ∩Bi)

)]
≤ P [Acn] + P

[
Bc
n ∩

(
∩n−1
i=1 (Ai ∩Bi)

)]
≤ P [Acn] + P

[
Bc
n| ∩n−1

i=1 (Ai ∩Bi)
]
.

Plugging the aboved displayed equation into (68), we have

P [∩ni=1 (Ai ∩Bi)] ≥ P
[
∩n−1
i=1 (Ai ∩Bi)

]
− P [Acn]− P

[
Bc
n| ∩n−1

i=1 (Ai ∩Bi)
]
.

Recursively replacing P
[
∩n−1
i=1 (Ai ∩Bi)

]
on the right hand side of the above inequality,

we obtain the first inequality of Lemma 29.
Similarly, we prove the second inequality of Lemma 29 . From (67), taking E = Bn ∩

(∩ni=1Ai) and F = Bn−1 ∩
(
∩n−1
i=1 Ai

)
, we have

P
[
Bn−1 ∩

(
∩n−1
i=1 Ai

)]
≤ P [Bn ∩ (∩ni=1Ai)] + P

[
(Bn ∩ (∩ni=1Ai))

c ∩
(
Bn−1 ∩

(
∩n−1
i=1 Ai

))]
.

Since (Bn ∩ (∩ni=1Ai))
c = Bc

n ∪Acn ∪
(
∩n−1
i=1 Ai

)c
, we have

P
[
(Bn ∩ (∩ni=1Ai))

c ∩
(
Bn−1 ∩

(
∩n−1
i=1 Ai

))]
≤ P [Acn] + P

[
Bc
n ∩Bn−1 ∩

(
∩n−1
i=1 Ai

)]
≤ P [Acn] + P

[
Bc
n|Bn−1 ∩

(
∩n−1
i=1 Ai

)]
.

36

Overparametrized Multi-layer Neural Networks

Thus, P [Bn ∩ (∩ni=1Ai)] ≥ P
[
Bn−1 ∩

(
∩n−1
i=1 Ai

)]
− P [Acn]− P

[
Bc
n|Bn−1 ∩

(
∩n−1
i=1 Ai

)]
.

Recursively applying the above inequality, we obtain the second inequality of Lemma
29.

Appendix B. Proofs in Section 5

Recall from Section 5 that the proof of Theorem 1 consists of Lemma 6–8. Here, we present
the full proofs of these lemmas. Since the proofs involve several key intermediate results,
to ease the reading, we present the following diagram to illustrate the proof structure.

Lemma 30

Lemma 31 Lemma 6

Lemma 32 Lemma 33 Lemma 7

Lemma 34 Lemma 8

Corollary 35

Figure 7: Diagram of the proof structure in Appendix B

B.1 Proof of Lemma 6: Concentration of 〈o(`)(x), o(`)(x′)〉

As mentioned in Section 5, to prove Lemma 6, we need to establish that o(`)(x) is Lipschitz
in x. This is done in the following lemma.

Define

E(k)
0 =

{∥∥∥W(k)
∥∥∥

2
≤ c0

√
m
}
. (69)

where W(k) is the weight matrix of the k-th hidden layer.

Lemma 30 For any 0 ≤ ` ≤ L, under event ∩`k=1E
(k)
0 ,

• supx
∥∥o(`)(x)

∥∥
2
≤ c`0;

•
∥∥o(`)(x)− o(`)(z)

∥∥
2
≤ c`0 ‖x− z‖2.

Proof [Proof of Lemma 30] Recall that o(0)(x) = x and

o(`)(x) =
1√
m

D(`)(x)W(`) · · · 1√
m

D(1)(x)W(1)x, ∀` ≥ 1

where D(`)(x) = diag

{
1{
〈w(`)

i ,o(`−1)(x)〉≥0
}} and w

(`)
i is the i-th row of W(`).

When ` = 0, since o(0)(x) = x, both inequalities of Lemma 30 hold directly.

37

Jiaming Xu and Hanjing Zhu

Now consider the case for ` ≥ 1. Under ∩`k=1E
(k)
0 , we know

∥∥W(k)
∥∥

2
≤ c0

√
m for all

k = 1, 2, · · · , `. Therefore, for any x,
∥∥∥ 1√

m
D(k)(x)W(k)

∥∥∥
2
≤ c0 for all k = 1, 2, · · · , `. Thus,

we have

sup
x

∥∥∥o(`)(x)
∥∥∥

2
≤ sup

x

∥∥∥∥ 1√
m

D(`)(x)W(`) · · · 1√
m

D(1)(x)W(1)

∥∥∥∥
2

≤ sup
x

∥∥∥∥ 1√
m

D(`)(x)W(`)

∥∥∥∥
2

· · · sup
x

∥∥∥∥ 1√
m

D(1)(x)W(1)

∥∥∥∥
2

≤ c`0.

This completes the proof of the first inequality of Lemma 30.
Now we prove the second inequality of Lemma 30. By the definition of o(`)(x), we know[
o(`)(x)

]
i

=

[
1√
m

D(`)(x)W(`)o(`−1)(x)

]
i

=
1√
m

1{
〈w(`)

i ,o(`−1)(x)〉≥0
}〈w(`)

i , o(`−1)(x)〉

=
1√
m
σ
(
〈w(`)

i , o(`−1)(x)〉
)
,

where
[
o(`)(x)

]
i

is the i-th coordinate of o(`)(x).
As a result, for any x and z, we have∥∥∥o(`)(x)− o(`)(z)

∥∥∥2

2
=

1

m

m∑
i=1

(
σ(〈w(`)

i , o(`−1)(x)〉)− σ(〈w(`)
i , o(`−1)(z)〉)

)2

(i)

≤ 1

m

m∑
i=1

(
〈w(`)

i , o(`−1)(x)〉 − 〈w(`)
i , o(`−1)(z)〉

)2

=
1

m

∥∥∥W(`)
(
o(`−1)(x)− o(`−1)(z)

)∥∥∥2

2

≤ c2
0

∥∥∥o(`−1)(x)− o(`−1)(z)
∥∥∥2

2
.

where (i) holds since ReLU function is 1-Lipchitz and the last inequality holds under

∩`k=1E
(k)
0 .

Recursively applying the above displayed equation, we obtain the second inequality of
Lemma 30.

The following lemma from Du et al. (2019a, Lemma G.4) shows that if the covariance
matrices of two pairs of bivariate normal random variables are close entrywise, then the
expectation of some function F on these two pairs are also close.

Lemma 31 Let

A =

(
a2

1 ρ1a1b1
ρ1a1b1 b21

)
and B =

(
a2

2 ρ2a2b2
ρ2a2b2 b22

)
.

Suppose there exists some constant C > 0 such that 1
C ≤ min(a1, b1, a2, b2) ≤ max(a1, b1, a2, b2) ≤

C. Define F (X) = E(U,V)∼N (0,X) [σ(U)σ(V)] for any positive definite matrix X. Then we
have

|F (A)− F (B)| = O (‖A−B‖∞) .

38

Overparametrized Multi-layer Neural Networks

Proof of Lemma 6 Denote V0 as a 1
m2 -net of Sd−1. By Vershynin (2019, Corollary

4.2.13), we have V0 is of size O
(
m2d

)
. Define event E(k)

1 such that the following holds for
any x0, x

′
0 ∈ V0:∣∣∣∣∣ 1

m

m∑
i=1

σ
(
〈w(k)

i , o(k−1)(x0)〉
)
σ
(
〈w(k)

i , o(k−1)(x′0)〉
)
− Ew

[
σ
(
〈w, o(k−1)(x0)〉

)
σ
(
〈w, o(k−1)(x′0)〉

)]∣∣∣∣∣
≤ C c

2(k−1)
0

m1/3
. (70)

Denote E1 = ∩Lk=1E
(k)
1 and E0 = ∩Lk=1E

(k)
0 .

To prove the lemma, we first bound P [E0 ∩ E1] and then show (30) holds under E0 ∩ E1.
By Lemma 29, we have

P [E0 ∩ E1] ≥ 1−
L∑
`=1

P
[(
E(`)

1

)c
|
(
∩`−1
k=1E

(k)
1

)
∩
(
∩`−1
k=1E

(k)
0

)]
−

L∑
`=1

P
[(
E(`)

0

)c]
. (71)

For 1 ≤ ` ≤ L, since W(`) has i.i.d. standard Gaussian entries, by Vershynin (2019, Theorem
4.4.5),

P
[(
E(`)

0

)c]
≤ exp (−Ω(m)) . (72)

Next we condition on
{
W(k)

}`−1

k=1
such that

(
∩`−1
k=1E

(k)
1

)
∩
(
∩`−1
k=1E

(k)
0

)
holds. Since w

(`)
i ’s

are independent of
{
W(k)

}`−1

k=1
, 〈w(`)

i , o(`−1)(x)〉i.i.d.∼ N (0,
∥∥o(`−1)(x)

∥∥2

2
). Therefore,

‖σ(〈w(`)
i , o(`−1)(x0)〉)σ(〈w(`)

i , o(`−1)(x′0)〉)‖ψ1

≤ ‖σ(〈w(`)
i , o(`−1)(x0)〉)‖ψ2‖σ(〈w(`)

i , o(`−1)(x′0)〉)‖ψ2 ≤ c
2`−2
0 ,

where ‖X‖ψ2 , inf
{
t > 0 : E

[
exp

(
X2/t2

)]
≤ 2
}

, and ‖X‖ψ1 , inf {t > 0 : E [exp (|X|/t)] ≤ 2}
for any random variable X; the first inequality holds by Vershynin (2019, Lemma 2.7.7)

and the second inequality holds by Lemma 30 under ∩`−1
k=1E

(k)
0 .

It follows from the sub-exponential concentration inequality (Lemma 18) that for any
fixed (x0, x

′
0) ∈ V0, (70) holds with probability at least 1− exp

(
−Ω(m1/3)

)
. Further taking

union bounds over V0, we have

P
[
E(`)

1

∣∣∣ (∩`−1
k=1E

(k)
1

)
∩
(
∩`−1
k=1E

(k)
0

)]
≥ 1− exp

(
O(d logm)− Ω(m1/3)

)
. (73)

Plugging (73) and (72) into (71), we have

P [E0 ∩ E1] ≥ 1− L exp
(
O(d logm)− Ω(m1/3)

)
− L exp (−Ω(m))

≥ 1− L exp
(
O(d logm)− Ω(m1/3)

)
. (74)

It remains to show (30) under E0 ∩ E1. Fix any (x, x′) and denote (x0, x
′
0) ∈ V0 × V0

such that ‖x− x0‖2 ≤
1
m2 and ‖x′ − x′0‖2 ≤

1
m2 . For any 0 ≤ ` ≤ L − 1, by the triangle

39

Jiaming Xu and Hanjing Zhu

inequality,∣∣∣〈o(`+1)(x), o(`+1)(x′)〉 − E
[
σ(U (`+1)(x))σ(U (`+1)(x′))

]∣∣∣
≤
∣∣∣〈o(`+1)(x), o(`+1)(x′)〉 − 〈o(`+1)(x0), o(`+1)(x′0)〉

∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣〈o(`+1)(x0), o(`+1)(x′0)〉 − Ew

[
σ(〈w, o(`)(x0)〉)σ(〈w, o(`)(x′0)〉)

]∣∣∣︸ ︷︷ ︸
(II)

+
∣∣∣Ew [σ(〈w, o(`)(x0)〉)σ(〈w, o(`)(x′0)〉)

]
− E

[
σ(U (`+1)(x))σ(U (`+1)(x′))

]∣∣∣︸ ︷︷ ︸
(III)

, (75)

where

(U (`+1)(x), U (`+1)(x′)) ∼ N
(

0,Σ(`)(x, x′)
)

Σ(`)(x, x′) ,

(
E
[
σ2(U (`)(x))

]
E
[
σ(U (`)(x))σ(U (`)(x′))

]
E
[
σ(U (`)(x))σ(U (`)(x′))

]
E
[
σ2(U (`)(x′))

])
(76)

with Σ(0)(x, x′) =

(
1 〈x, x′〉

〈x, x′〉 1

)
.

To bound (I), note that for any y, z, y′, z′, by the triangle inequality and Cauchy-
Schwartz inequality, we have∣∣〈y, y′〉− 〈z, z′〉∣∣ ≤ ‖y − z‖ ∥∥y′∥∥+

∥∥y′ − z′∥∥ ‖z‖ . (77)

Thus, we get

(I) ≤ sup
x,x′

(∥∥∥o(`+1)(x)− o(`+1)(x0)
∥∥∥

2

∥∥∥o(`+1)(x′)
∥∥∥

2
+
∥∥∥o(`+1)(x′)− o(`+1)(x′0)

∥∥∥
2

∥∥∥o(`+1)(x0)
∥∥∥

2

)
≤ 2c2`+2

0

m2
. (78)

where the last inequality holds under E0 by Lemma 30.
For term (II), recall by (13) that

〈o(`+1)(x0), o(`+1)(x′0)〉 =
1

m

m∑
i=1

σ(〈w(`+1)
i , o(`)(x0)〉)σ(〈w(`+1)

i , o(`)(x′0)〉).

Thus, under E1,

(II) ≤ C c2`
0

m1/3
. (79)

To bound (III), note that conditioning on o(`),
(
〈w, o(`)(x0)〉, 〈w, o(`)(x′0)〉

)
is a bivariate

normal random vector with mean 0 and covariance

A(`)(x0, x
′
0) =

(∥∥o(`)(x0)
∥∥2

2
〈o(`)(x0), o(`)(x′0)〉

〈o(`)(x0), o(`)(x′0)〉
∥∥o(`)(x′0)

∥∥2

2

)
.

40

Overparametrized Multi-layer Neural Networks

Thus, by Lemma 31, we have

(III) = O
(∥∥∥A(`)(x0, x

′
0)− Σ(`)(x, x′)

∥∥∥
∞

)
≤ O

(∥∥∥A(`)(x0, x
′
0)−A(`)(x, x′)

∥∥∥
∞

)
+O

(∥∥∥A(`)(x, x′)− Σ(`)(x, x′)
∥∥∥
∞

)
= O

(
c2`

0

m2

)
+O

(∥∥∥A(`)(x, x′)− Σ(`)(x, x′)
∥∥∥
∞

)
(80)

where the last equality holds by (77).
Plugging (78), (79) and (80) into (75) and taking supremum over (x, x′), we get

sup
x,x′

∣∣∣〈o(`+1)(x), o(`+1)(x′)〉 − E
[
σ(U (`+1)(x))σ(U (`+1)(x′)

]∣∣∣
≤ O

(
c2`

0

m1/3

)
+O

(
sup
x,x′

∥∥∥A(`)(x, x′)− Σ(`)(x, x′)
∥∥∥
∞

)
. (81)

By definition of A(`) and Σ(`), for ` ≥ 1,

sup
x,x′

∥∥∥A(`)(x, x′)− Σ(`)(x, x′)
∥∥∥
∞
≤ O

(
sup
x,x′

∣∣∣〈o(`)(x), o(`)(x′)〉 − E
[
σ(U (`)(x))σ(U (`)(x′))

]∣∣∣) .
(82)

Recursively applying (81) and (82), and noting supx,x′
∥∥A(0)(x, x′)− Σ(0)(x, x′)

∥∥
∞ = 0, we

complete the proof of (30).

B.2 Proof of Lemma 7: Concentration of a>G
(`)
L (x, x′)a on Tr

(
G

(`)
L (x, x′)

)
Recall from the discussion in Section 5 that a crucial step in the proof of Lemma 7 is to

bound the number of different matrices G
(`)
k (x, x′) by varying x, x′ through bounding the

cardinality of Dk where G
(`)
k (x, x′) =

[
V

(`)
k (x)

]>
V

(`)
k (x′) from (12),

[
V

(`)
k (x)

]>
,

1√
m

D(k)(x)W(k) · · · 1√
m

D(`+1)(x)W(`+1) 1√
m

D(`)(x)

from (8) and Dk =
{

(D(1)(x), · · · ,D(k)(x)) : x ∈ Sd−1
}

.

Lemma 32 Fix any k > 0 and ` ≤ k. For any fixed
{
W(r)

}k
r=1

, we have |Dk| ≤ mdk, and

hence |G(`)
k | ≤ m

2dk where G(`)
k (W(1), · · · ,W(k)) ,

{
G

(`)
k (x, x′) : x, x′ ∈ Sd−1

}
.

Intuitively, Lemma 32 implies that while there are infinite many different choices of x, x′

on the unit sphere Sd−1, the number of different matrices G
(`)
k (x, x′) is finite for any fixed{

W(r)
}k
r=1

.
Before presenting the proof of Lemma 32, we provide a proof sketch for the ease of

reading. To prove Lemma 32, note that given fixed
{
W(r)

}k
r=1

, by the definition of G(`)
k , we

41

Jiaming Xu and Hanjing Zhu

have |G(`)
k | ≤ |Dk|

2. The proof is then completed by showing |Dk| ≤ mdk. To obtain this,
we show |D1| ≤ md and |Dk| ≤ md|Dk−1| for all k. The key of proving |Dk| ≤ md|Dk−1| lies
on a refinement idea illustrated in Figure 8. In particular, we partition Sd−1 into disjoint
Vj for j = 1, 2, · · · , |Dk−1| such that ∪jVj = Sd−1 and Vj ∩ Vj′ = ∅ for all j 6= j′, and that
for any x within the same Vj , (D(1)(x), · · ·D(k−1)(x)) is the same. We then refine Vj so
that within each subregion after refinement, D(k)(x) is the same. Here, we crucially show
|
{
D(k)(x) : x ∈ Vj

}
| ≤ md for all j, i.e., the refinement within each Vj cannot exceed md

and hence conclude |Dk| ≤ md|Dk−1|.

Figure 8: Illustration of the key idea in showing |Dk| ≤ md|Dk−1|. Left hand side shows the

partition of Sd−1 into disjoint {Vj}
|Dk−1|
j=1 so that for any x within Vj , (D(1)(x), · · ·D(k−1)(x))

is the same. We then refine each Vj to obtain the right hand side so that within each refined
sub-region in Vj , D(k)(x) is also the same. We then show the number of such sub-region
cannot exceed md for any Vj , which leads to |Dk| ≤ md|Dk−1|.

Proof [Proof of Lemma 32] Throughout the proof, we fix
{
W(r)

}k
r=1

. Since
{
W(r)

}k
r=1

is
fixed, we have

G(`)
k ⊂

{
V>Ṽ : V = D(k)W(k) · · ·D(`+1)W(`+1)D(`), Ṽ = D̃(k)W(k) · · · D̃(`+1)W(`+1)D̃(`),(

D(1), · · · ,D(k)
)
∈ Dk,

(
D̃(1), · · · , D̃(k)

)
∈ Dk

}
.

Thus |G(`)
k | ≤ |Dk|

2, and the proof is completed by the following claim:

|Dk| ≤ mdk. (83)

To prove this claim, we first show |D1| ≤ md and then show the recursion |Dk| ≤ md|Dk−1|
for all k ≥ 2.

Step 1 bounding |D1|: Note that D(1)(x) is diagonal whose i-th diagonal element equals

fx(w
(1)
i), where fx(w) = 1{〈w,x〉≥0}. Thus, letting F (1) =

{
fx(w) = 1{〈w,x〉≥0} : x ∈ Sd−1

}
,

we have ∣∣∣{D(1)(x) : x ∈ Sd−1
}∣∣∣ =

∣∣∣{(f(w
(1)
1), · · · , f(w(1)

m)
)

: f ∈ F (1)
}∣∣∣ .

42

Overparametrized Multi-layer Neural Networks

It follows from Lemma 22 that |
{
D(1)(x) : x ∈ Sd−1

}
| ≤ mVC(F(1)). By Hajek and Raginsky

(2019, Proposition 7.1),

VC(F (1)) = d. (84)

As a result, we get |D1| =
∣∣{D(1)(x) : x ∈ Sd−1

}∣∣ ≤ md.

Step 2 showing |Dk| ≤ md|Dk−1| for any k ≥ 2: Partition Sd−1 into disjoint Vj for
j = 1, 2, · · · , |Dk−1| such that for any x and x′ within the same Vj ,(

D(1)(x),D(2)(x), · · · ,D(k−1)(x)
)

=
(
D(1)(x′),D(2)(x′), · · · ,D(k−1)(x′)

)
.

Note that Dk = ∪|Dk−1|
j=1

{(
D(1)(x), · · · ,D(k)(x)

)
: x ∈ Vj

}
. Thus,

|Dk| ≤
|Dk−1|∑
j=1

∣∣∣{(D(1)(x), · · · ,D(k)(x)
)

: x ∈ Vj
}∣∣∣ =

|Dk−1|∑
j=1

∣∣∣{D(k)(x) : x ∈ Vj
}∣∣∣ , (85)

where the last equality holds because (D(1)(x), · · · ,D(k−1)(x)) is the same for all x ∈ Vj .
It remains to bound

∣∣{D(k)(x) : x ∈ Vj
}∣∣. The i-th diagonal element of D(k)(x) equals

fx(w
(k)
i), where fx(w) = 1{〈w,o(k−1)(x)〉≥0}. Therefore, by letting

F (k)
j (W(1), · · · ,W(k−1)) ,

{
fx(w) = 1{〈w,o(k−1)(x)〉≥0} : x ∈ Vj

}
, (86)

we have ∣∣∣{D(k)(x) : x ∈ Vj
}∣∣∣ =

∣∣∣{(f(w
(k)
1), · · · , f(w(k)

m)
)

: f ∈ F (k)
j

}∣∣∣ ≤ mVC(F(k)
j), (87)

where the last inequality holds by Lemma 22.

Now we bound VC(F (k)
j). Since

(
D(1)(x), . . . ,D(k−1)(x)

)
is the same across all x ∈ Vj

and
{
W(r)

}k−1

r=1
are fixed, by definition of o(k−1), we have o(k−1)(x) = Pjx, for all x ∈ Vj ,

where Pj = 1√
m

D(k−1)(x)W(k−1) · · · 1√
m

D(1)(x)W(1) ∈ Rm×d is some matrix independent

of x. Therefore, o(k−1)(x) lies on the same d-dimensional subspace of Rm for all x ∈ Vj . By
Hajek and Raginsky (2019, Proposition 7.1),

VC
(
F (k)
j

)
= d. (88)

It then follows from (87) that
∣∣{D(k)(x) : x ∈ Vj

}∣∣ ≤ md for all j = 1, 2, · · · , |Dk−1|. Further
plugging this bound into (85) yields that |Dk| ≤ md|Dk−1|.

With Lemma 32, we prove the following key intermediate result by applying Hanson-

Wright inequality with a union bound on G
(`)
k (x, x′).

43

Jiaming Xu and Hanjing Zhu

Lemma 33 Let Y = (Y1, Y2, · · · , Ym) ∈ Rm be a random vector with mean zero, indepen-

dent, sub-Gaussian coordinates with ‖Yi‖ψ2 ≤ C. Assume Y is independent of
{
W(r)

}k
r=1

.
For any ` = 1, 2, · · · , k, we have,

P

[
sup
`∈[k]

sup
x,x′

∣∣∣Y >G
(`)
k (x, x′)Y − Tr

(
G

(`)
k (x, x′)

)∣∣∣ ≥ c2k−2
0

m1/3

∣∣∣∣ ∩kr=0 E
(r)
0

]
≤ k exp

(
O(dk logm)− Ω(m1/3)

)
. (89)

In the above lemma, by taking Y = a and k = L, we obtain the uniform concentra-

tion of a>G
(`)
L (x, x′)a on Tr

(
G

(`)
L (x, x′)

)
conditional on ∩Lr=1E

(r)
0 , which readily implies

Lemma 7. Furthermore, by taking Y = w
(k+1)
i , we obtain the uniform concentration of[

w
(k+1)
i

]>
G

(`)
k (x, x′)w

(k+1)
i on Tr

(
G

(`)
k (x, x′)

)
for any i ∈ [m], where w

(k+1)
i is the i-th row

of W(k+1). That turns out to be instrumental in the proof of Lemma 8.

Proof [Proof of Lemma 33] Fix arbitrary ` ≤ k. We condition on
{
W(r)

}k
r=1

such that

∩kr=1E
(r)
0 holds. Under ∩kr=1E

(r)
0 , for any x ∈ Sd−1, we have

∥∥∥V(`)
k (x)

∥∥∥
2

=

∥∥∥∥∥
[

1√
m

D(k)(x)W(k) · · · 1√
m

D(`+1)(x)W(`+1) 1√
m

D(`)(x)

]>∥∥∥∥∥
2

≤ ck−`0√
m
.

By definition of G
(`)
k , we get

∥∥∥G(`)
k (x, x′)

∥∥∥
2

=

∥∥∥∥[V(`)
k (x)

]>
V

(`)
k (x′)

∥∥∥∥
2

≤
∥∥∥V(`)

k (x)
∥∥∥

2

∥∥∥V(`)
k (x′)

∥∥∥
2
≤ c2k−2`

0

m
. (90)

and

‖G(`)
k (x, x′)‖F ≤

√
m
∥∥∥G(`)

k (x, x′)
∥∥∥

2
≤ c2k−2`

0√
m

. (91)

Since Y has mean zero and is independent of
{
W(r)

}k
r=1

, we have

E
[
Y >G

(`)
k (x, x′)Y

∣∣∣∣ {W(r)
}k
r=1

]
= Tr

(
G

(`)
k (x, x′)

)
.

Thus, under event ∩kr=1E
(r)
0 , by Hanson-Wright inequality, we have for any fixed x, x′,

P

[∣∣∣Y >G
(`)
k (x, x′)Y − Tr

(
G

(`)
k (x, x′)

)∣∣∣ > c2k−2`
0

m1/3

∣∣∣∣ {W(r)
}k
r=1

]

≤ 2 exp

−Cmin

 c4k−4`
0 m−2/3

‖G(`)
k (x, x′)‖2F

,
c2k−2`

0 m−1/3∥∥∥G(`)
k (x, x′)

∥∥∥
2

 = exp
(
−Ω(m1/3)

)
.

44

Overparametrized Multi-layer Neural Networks

By Lemma 32, we have |G(`)
k (W(1), · · · ,W(k))| ≤ m2dk. Taking union bounds over all

possible G
(`)
k , we have under event ∩kr=1E

(r)
0 ,

P

[
sup
x,x′

∣∣∣Y >G
(`)
k (x, x′)Y − Tr

(
G

(`)
k (x, x′)

)∣∣∣ > c2k−2`
0

m1/3

∣∣∣∣ {W(r)
}k
r=1

]

= P

 sup
G∈G(`)k

∣∣∣Y >GY − Tr (G)
∣∣∣ > c2k−2`

0

m1/3

∣∣∣∣ {W(r)
}k
r=1


= m2dk exp

(
−Ω(m1/3)

)
= exp

(
O (dk logm)− Ω(m1/3)

)
.

Further take union bounds over `, we obtain that

P

[
sup
`∈[k]

sup
x,x′

∣∣∣Y >G
(`)
k (x, x′)Y − Tr

(
G

(`)
k (x, x′)

)∣∣∣ > c2k−2`
0

m1/3

∣∣∣∣ {W(r)
}k
r=1

]
= k exp

(
O(dk logm)− Ω(m1/3)

)
.

Taking the average of
{
W(r)

}k
r=1

on the event ∩kr=1E
(r)
0 , we get the desired conclusion.

Proof of Lemma 7: Denote

E2 =

{
sup
`∈[L]

sup
x,x′

∣∣∣a>G
(`)
L (x, x′)a− Tr

(
G

(`)
L (x, x′)

)∣∣∣ ≤ C c2L−2
0

m1/3

}
.

Note that a is mean zero, sub-Gaussian and is independent of
{
W(k)

}L
k=1

. Thus, by
Lemma 33, we have

P
[
E2| ∩Lk=1 E

(k)
0

]
≥ 1− L exp

(
O(dL logm)− Ω(m1/3)

)
From (72), we have

P
[
∩Lk=1E

(k)
0

]
≥ 1− L exp (−Ω(m)) . (92)

Therefore,

P [E2] ≥ P
[
E2| ∩Lk=1 E

(k)
0

]
P
[
∩Lk=1E

(k)
0

]
≥
(

1− L exp
(
O(dL logm)− Ω(m1/3)

))
(1− L exp(−Ω(m)))

≥ 1− exp
(
O(dL logm)− Ω(m1/3)

)
.

45

Jiaming Xu and Hanjing Zhu

B.3 Proof of Lemma 8: Concentration of Tr
(
G

(`)
L (x, x′)

)
on q

(`)
L (x, x′)

Recall from (19) that

q
(`)
L (x, x′) =

π − arccos ρ(L−1)(x, x′)

2π
q

(`)
L−1(x, x′), ∀` ≤ L,

q
(L)
L (x, x′) =

π − arccos ρ(L−1)(x, x′)

2π
,

where

ρ(L−1)(x, x′) =
E
[
σ(U (L−1)(x))σ(U (L−1)(x′))

]√
E
[
σ2(U (L−1)(x))

]√
E
[
σ2(U (L−1)(x′))

] , (93)

and U (L−1) is defined in (76).

To prove Lemma 8, we crucially show the concentration of Tr
(
G

(`)
L (x, x′)

)
on

q
(L−1)
L−1 (x, x′) Tr

(
G

(`)
L−1(x, x′)

)
. Then, by repeatedly applying this recursive relation of

Tr
(
G

(`)
L−1(x, x′)

)
, we obtain the concentration of Tr

(
G

(`)
L (x, x′)

)
on q

(`)
L (x, x′).

Proving the concentration of Tr
(
G

(`)
L (x, x′)

)
on q

(L−1)
L−1 (x, x′) Tr

(
G

(`)
L−1(x, x′)

)
consists

of the following three steps.

Step 1: As the first step, we show the concentration of Tr
(
G

(`)
L (x, x′)

)
on

1

m

m∑
i=1

1{
〈w(L)

i ,o(L−1)(x)〉≥0
}1{

〈w(L)
i ,o(L−1)(x′)〉≥0

} Tr
(
G

(`)
L−1(x, x′)

)
.

This is achieved by applying Lemma 33.

In the next two steps, we show the concentration of 1
m

∑m
i=1 1{

〈w(L)
i ,o(L−1)(x)〉≥0

}1{
〈w(L)

i ,o(L−1)(x′)〉≥0
}

on q
(`−1)
L−1 (x, x′).

Step 2: Here, we show the concentration of 1
m

∑m
i=1 1{

〈w(L)
i ,o(L−1)(x)〉≥0

}1{
〈w(L)

i ,o(L−1)(x′)〉≥0
}

on Ew∼N (0,I)

[
1{〈w,o(L−1)(x)〉≥0}1{〈w,o(L−1)(x′)〉≥0}

]
by the following lemma.

Lemma 34 Let {wi}mi=1 ∈ Rd be i.i.d. Gaussian random vectors with standard normal
entries. Define for 0 ≤ ` ≤ L− 1,

h
(`+1)
x,x′ (z1, · · · , zm) ,

∣∣∣∣∣ 1

m

m∑
i=1

1{〈zi,o(`)(x)〉≥0}1{〈zi,o(`)(x′)〉≥0} − Ew∼N (0,I)

[
1{〈w,o(`)(x)〉≥0}1{〈w,o(`)(x′)〉≥0}

]∣∣∣∣∣ .
Conditioning on

{
W(k)

}`
k=1

, with probability at least 1− exp(−2m1/3),

sup
x,x′

h
(`+1)
x,x′ (w1, · · · , wm) ≤ C

√
d (1 + ` logm)

m
+

1

m1/3
.

46

Overparametrized Multi-layer Neural Networks

Proof [Proof of Lemma 34] Throughout the proof, we condition on
{
W(k)

}`
k=1

. We first
show that

P

[
sup
x,x′

h
(`+1)
x,x′ (w1, · · · , wm) ≤ E

[
sup
x,x′

h
(`+1)
x,x′ (w1, · · · , wm)

]
+

1

m1/3

]
≥ 1− exp

(
−2m1/3

)
. (94)

To prove this, note that by the triangle inequality, for arbitrary i, ∃(x0, x
′
0) ∈ Sd−1 such

that∣∣∣∣∣sup
x,x′

h(`+1)(z1, · · · , zi−1, zi, zi+1, · · · , zm)− sup
x,x′

h(`+1)(z1, · · · , zi−1, z
′
i, zi+1, · · · , zm)

∣∣∣∣∣
≤ 1

m

∣∣∣1{zi,o(`)(x0)〉≥0}1{zi,o(`)(x′0)〉≥0} − 1{z′i,o(`)(x0)〉≥0}1{z′i,o(`)(x′0)〉≥0}
∣∣∣

≤ 1

m
. (95)

Therefore, (94) follows by applying McDiarmid’s inequality (Lemma 17).

To complete the proof of Lemma 34, it remains to show

E

[
sup
x,x′

h
(`+1)
x,x′ (w1, · · · , wm)

]
= O

(√
d (1 + ` logm)

m

)
. (96)

Since {wi}mi=1 are i.i.d. conditional on
{
W(r)

}`
r=1

, by Lemma 21,

E

[
sup
x,x′

h
(`+1)
x,x′ (w1, · · · , wm)

]
≤ C

√
VC(H(`+1))

m
, (97)

where

H(`+1)(W(1), · · · ,W(`)) =
{
α

(`)
x,x′(w) : x, x′ ∈ Sd−1

}
,

with α
(`)
x,x′(w) = 1{〈w,o(`)(x)〉≥0}1{〈w,o(`)(x′)〉≥0}. Now we bound VC

(
H(`+1)

)
. Let F (`+1) ={

fx(w) = 1{〈w,o(`)(x)〉≥0} : x ∈ Sd−1
}

. Then for any α(w) ∈ H(`+1), we can always find f(w)

and g(w) in F (`+1) such that α = f × g. Thus, by Lemma 20, VC(H(`+1)) ≤ CVC(F (`+1))
for some universal constant C. We claim that VC

(
F (`+1)

)
= O (d(1 + ` logm)). Plugging

this bound into the above displayed equation and combining it with (97), we obtain (96).

Finally, we prove the claim. When ` = 0, by (84), we have VC
(
F (1)

)
= d.

Now consider the case when ` ≥ 1. Similar to the proof of Lemma 32, we decompose
Sd−1 into V = {Vj , j = 1, 2, · · · , |D`|} where ∪Vj = Sd−1 and Vj ∩ Vj′ = ∅ whenever j 6= j′

such that for any x, x′ within the same Vj ,(
D(1)(x), · · · ,D(`)(x)

)
=
(
D(1)(x′), · · · ,D(`)(x′)

)
.

47

Jiaming Xu and Hanjing Zhu

Recall from (86) that F (`+1)
j ,

{
fx(w) = 1{〈w,o(`)(x)〉≥0} : x ∈ Vj

}
. Since ∪Vj = Sd−1, we

have F (`+1) = ∪|D`|
j=1F

(`+1)
j . From (88), we have VC(F (`+1)

j) ≤ d for all j. Thus, by Lemma
24, we have

VC(F (`+1)) = O (max {d log d, log |D`|}) = O (max {d log d, d` logm}) = O (d` logm) ,

where the second equality holds by (83) which gives |D`| ≤ md` and the last equality holds
since log d ≤ ` logm as m ≥ d.

Step 3: Note that Ew∼N (0,I)

[
1{〈w,o(L−1)(x)〉≥0}1{〈w,o(L−1)(x′)〉≥0}

]
= π−arccos ρ̂(L−1)(x,x′)

2π

where

ρ̂(L−1)(x, x′) ,

〈
o(L−1)(x)∥∥o(L−1)(x)

∥∥
2

,
o(L−1)(x′)∥∥o(L−1)(x′)

∥∥
2

〉
. (98)

To show the the concentration of Ew∼N (0,I)

[
1{〈w,o(L−1)(x)〉≥0}1{〈w,o(L−1)(x′)〉≥0}

]
on q

(L−1)
L−1 (x, x′),

we show the concentration of arccos ρ̂(L−1)(x, x′) on arccos ρ(L−1)(x, x′) through the follow-
ing corollary.

Corollary 35 Fix any ` ≤ L. Under
(
∩`k=1E

(k)
0

)
∩
(
∩`k=1E

(k)
1

)
where E(k)

0 is defined in

(69) and E(k)
1 is defined in (70),

sup
x,x′

∣∣∣ρ̂(`)(x, x′)− ρ(`)(x, x′)
∣∣∣ = O

(
`C`

m1/3

)
.

and hence

sup
x,x′

∣∣∣arccos ρ(`)(x, x′)− arccos ρ̂(`)(x, x′)
∣∣∣ = O

(√
`C`

m1/6

)
.

To see why Corollary 35 holds, note that Lemma 6 implies both the numerator and
denominator of ρ̂(`) are close to those of ρ(`). To obtain the second bound of Corollary 35,
we prove that the arccos function is Hölder continuous of order 1/2, that is,

arccos z − arccos y ≤ arccos(1− (y − z)) ≤ 3
√
y − z, ∀0 ≤ z ≤ y ≤ 1. (99)

Combining the above with the first bound of Corollary 35 finishes the proof.
Proof [Proof of Corollary 35] We first prove ρ̂(`)(x, x′) is close to ρ(`)(x, x′). Note that for
any y, y′, z, z′, by the triangle inequality we have∣∣∣∣yz − y′

z′

∣∣∣∣ ≤ ∣∣∣∣y − y′z

∣∣∣∣+

∣∣∣∣y′z − y′

z′

∣∣∣∣ =

∣∣∣∣y − y′z

∣∣∣∣+

∣∣∣∣y′(z′ − z)zz′

∣∣∣∣ ≤ ∣∣∣∣y − y′z

∣∣∣∣+

∣∣∣∣z′ − zz

∣∣∣∣ ,
where the last inequality holds under the assumption that |y′/z′| ≤ 1. Taking y =

E
[
σ(U (`)(x))σ(U (`)(x′))

]
, y′ = 〈o(`)(x), o(`)(x′)〉, z =

√
E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]
,

and z′ =
∥∥o(`)(x)

∥∥
2

∥∥o(`)(x′)
∥∥

2
, by definition (93) and (98), we have

ρ̂(`)(x, x′) =
y

z
, ρ(`)(x, x′) =

y′

z′
,

48

Overparametrized Multi-layer Neural Networks

By Cauchy Schwartz inequality, |ρ(`)(x, x′)| ≤ 1. As a result, we have

∣∣∣ρ̂(`)(x, x′)− ρ(`)(x, x′)
∣∣∣ ≤

∣∣∣∣∣∣〈o
(`)(x), o(`)(x′)〉 − E

[
σ(U (`)(x))σ(U (`)(x′))

]√
E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]
∣∣∣∣∣∣︸ ︷︷ ︸

(I)

+

∣∣∣∣∣∣
∥∥o(`)(x)

∥∥
2

∥∥o(`)(x′)
∥∥

2
−
√

E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]√
E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]
∣∣∣∣∣∣︸ ︷︷ ︸

(II)

.

Note that

(I) = 2`
∣∣∣〈o(`)(x), o(`)(x′)〉 − E

[
σ(U (`)(x))σ(U (`)(x′))

]∣∣∣ = O

(
`C`

m1/3

)
where the first equality holds by (38) which gives E

[
σ2(U (`)(x))

]
= E

[
σ2(U (`)(x′))

]
=

2−`, ∀x, x′ and the last equality holds by Lemma 6.

To bound (II), by (38), we have

(II) = 2`
∣∣∣∣∥∥∥o(`)(x)

∥∥∥
2

∥∥∥o(`)(x′)
∥∥∥

2
−
√

E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]∣∣∣∣ . (100)

Note that for any y, ỹ, z, z̃ ≥ 0,

|yỹ − zz̃| ≤ ỹ |y − z|+ z |ỹ − z̃| ≤ ỹ
∣∣y2 − z2

∣∣
y + z

+ z

∣∣ỹ2 − z̃2
∣∣

ỹ + z̃

≤ ỹ
∣∣y2 − z2

∣∣
z

+ z

∣∣ỹ2 − z̃2
∣∣

z̃
.

Taking y =
∥∥o(`)(x)

∥∥
2
, ỹ =

∥∥o(`)(x′)
∥∥

2
, z =

√
E
[
σ2
(
U (`)(x)

)]
, and z′ =

√
E
[
σ2
(
U (`)(x′)

)]
,

we have ỹ ≤ c`0 by Lemma 30 under event ∩`k=1E
(k)
0 , z, z̃ = 2−`/2 by (38), and |y2 − z2| and

|ỹ2 − z̃2| are upper bounded by `C`/m1/3 by Lemma 6. Therefore,∣∣∣∣∥∥∥o(`)(x)
∥∥∥

2

∥∥∥o(`)(x′)
∥∥∥

2
−
√
E
[
σ2
(
U (`)(x)

)]√
E
[
σ2
(
U (`)(x′)

)]∣∣∣∣
= O

(
c`0
`C`/m1/3

2−`/2

)
+O

(
`C`

m1/3

)
= O

(
`C`

m1/3

)
.

Plugging the above bound into (100), we have (II) = O
(
` C`

m1/3

)
.

Combining the bound of (I) and (II), we have for any x and x′,

|ρ̂(`)(x, x′)− ρ(`)(x, x′)| = O

(
`C`

m1/3

)
. (101)

49

Jiaming Xu and Hanjing Zhu

Next we prove arccos ρ̂(`)(x, x′) is close to arccos ρ(`)(x, x′) for any x and x′ on Sd−1.
For notation simplicity, in the remaining part of the proof, we denote ρ as ρ(`) and ρ̂ as
ρ̂(`). Here, we claim for any y and z, |arccos y − arccos z| ≤ 3

√
|y − z|. Given the claim,

taking y = ρ̂ and z = ρ, we complete the proof since |arccos ρ− arccos ρ̂| ≤ 3
√
|ρ− ρ̂| =

O
(√

`C`m−1/6
)

.

Now we prove the claim. WLOG, assume ρ ≤ ρ̂ ≤ 1, so arccos ρ ≥ arccos ρ̂. By

Abramowitz et al. (1988, 4.4.33), we have arccos ρ−arccos ρ̂ = arccos
(
ρρ̂+

√
1− ρ2

√
1− ρ̂2

)
,

arccos ξ. Define δ , ρ̂− ρ. Note that ξ = ρρ̂+
√

1− ρ2
√

1− ρ̂2 ≥ ρ̂2− δρ̂+ 1− ρ̂2 ≥ 1− δ,
where the second inequality holds by 1−ρ2 ≥ 1− ρ̂2 and the last inequality holds by ρ̂ ≤ 1.

Since arccos function is monotonic decreasing, it remains to show arccos (1− δ) ≤ 3
√
δ.

Denote h(x) = 3
√
x − arccos(1 − x), x ∈ (0, 1]. Since dh

dx = 1√
x

(
3− 2√

2−x

)
> 0 for any

x ∈ (0, 1] and h(0) = 0, we have arccos(1− x) ≤ 3
√
x for any x ∈ [0, 1].

Proof of Lemma 8: Denote for any k and all ` ≤ k,

E(`)
d,k =

sup
x,x′

∣∣∣Tr
(
G

(`)
k (x, x′)

)
− q(`)

k (x, x′)
∣∣∣ = O

√kCk
m1/6

+

√
d logk−1m

m

 ,

and Ed,k = ∩k`=1E
(`)
d,k.

Note that under Ed,L, (32) holds directly. Thus, it suffices to prove

P [Ed,L ∩ E0 ∩ E1] = 1− exp
(
O(dL logm)− Ω(m1/3)

)
.

where E0 = ∩Lk=1E
(k)
0 and E1 = ∩Lk=1E

(k)
1 with E(k)

0 defined in (69) and E(k)
1 defined in

(70). For notation simplicity, denote V(k) = ∩kr=1

(
E(r)

0 ∩ E(r)
1

)
. By the second inequality of

Lemma 29, we have

P [Ed,L ∩ E0 ∩ E1] ≥ 1−
L∑
k=1

P
[
Ecd,k|Ed,k−1 ∩ V(k−1)

]
−

L∑
k=1

P
[(
V(k)

)c]
. (102)

By (74), we have

P
[
V(k)

]
≥ 1− k exp

(
O (d logm)− Ω(m1/3)

)
. (103)

Next we bound P
[
Ecd,k|Ed,k−1 ∩ V(k−1)

]
. By definition of Ed,k,

P
[
Ecd,k|Ed,k−1 ∩ V(k−1)

]
≤

k∑
`=1

P
[(
E(`)
d,k

)c
|Ed,k−1 ∩ V(k−1)

]
. (104)

In the remaining proof, we condition on
{
W(r)

}k−1

r=1
such that Ed,k−1 ∩ V(k−1) holds.

50

Overparametrized Multi-layer Neural Networks

Case 1 ` = k: By definition,

Tr
(
G

(k)
k (x, x′)

)
=

1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

}, (105)

and

q
(k)
k (x, x′) =

π − arccos ρ(k−1)(x, x′)

2π
,

where ρ(k−1) is defined in (93).
By the triangle inequality, we have∣∣∣Tr

(
G

(k)
k (x, x′)

)
− q(k)

k (x, x′)
∣∣∣

=

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

} − π − arccos ρ(k−1)(x, x′)

2π

∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

} − π − arccos ρ̂(k−1)(x, x′)

2π

∣∣∣∣∣
+

∣∣∣∣ 1

2π

(
arccos ρ̂(k−1)(x, x′)− arccos ρ(k−1)(x, x′)

)∣∣∣∣ , (106)

where ρ̂(k−1) is defined in (98).
Under V(k−1), by Corollary 35, we have

sup
x,x′

∣∣∣∣ 1

2π

(
arccos ρ̂(k−1)(x, x′)− arccos ρ(k−1)(x, x′)

)∣∣∣∣ = O

(√
k − 1Ck−1

m1/6

)
. (107)

Now we bound the first term on the RHS of (106). Note that
{
w

(k)
i

}m
i=1

is independent

of
{
W(`)

}k−1

`=1
and

E
w

(k)
i

[
1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

}] =
π − arccos ρ̂(k−1)(x, x′)

2π
.

Thus, by Lemma 34, with probability at least 1− exp(−2m1/3),

sup
x,x′

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

} − π − arccos ρ̂(k−1)(x, x′)

2π

∣∣∣∣∣
= O

(√
d (1 + (k − 1) logm)

m
+

1

m1/3

)
,

Combining the above displayed equation with (107), we have with probability at least
1− exp

(
−2m1/3

)
,

sup
x,x′

∣∣∣Tr
(
G

(k)
k (x, x′)

)
− q(k)

k (x, x′)
∣∣∣ = O

(√
k − 1Ck−1

m1/6
+

√
d (1 + (k − 1) logm)

m
+

1

m1/3

)

= O

(√
k − 1Ck−1

m1/6
+

√
d (1 + (k − 1) logm)

m

)
.

51

Jiaming Xu and Hanjing Zhu

Thus,

P
[
E(k)
d,k |Ed,k−1 ∩ V(k−1)

]
≥ 1− exp(−2m1/3). (108)

Case 2 ` < k: By the definition of G
(`)
k , we have

Tr
(
G

(`)
k (x, x′)

)
= Tr

(
D(k)(x)W(k)G

(`)
k−1(x, x′)

[
W(k)

]>
D(k)(x′)

)
=

1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

} [w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i .

Thus, by the triangle inequality, we have

sup
x,x′

∣∣∣Tr
(
G

(`)
k (x, x′)

)
− q(`)

k (x, x′)
∣∣∣

≤ sup
x,x′

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

} [w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i

− 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

}q(`)
k−1(x, x′)

∣∣∣∣∣
+ sup

x,x′

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

}q(`)
k−1(x, x′)− q(`)

k (x, x′)

∣∣∣∣∣
≤ sup

x,x′,i

∣∣∣∣[w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i − q

(`)
k−1(x, x′)

∣∣∣∣︸ ︷︷ ︸
(I)

+ sup
x,x′

∣∣∣∣∣ 1

m

m∑
i=1

1{
〈w(k)

i ,o(k−1)(x)〉≥0
}1{

〈w(k)
i ,o(k−1)(x′)〉≥0

}q(`)
k−1(x, x′)− q(`)

k (x, x′)

∣∣∣∣∣︸ ︷︷ ︸
(II)

.

By the triangle inequality, we have

(I) ≤ sup
x,x′,1≤i≤m

∣∣∣∣[w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i − Tr

(
G

(`)
k−1(x, x′)

)∣∣∣∣+ sup
x,x′

∣∣∣Tr
(
G

(`)
k−1(x, x′)

)
− q(`)

k−1(x, x′)
∣∣∣

≤ sup
x,x′,1≤i≤m

∣∣∣∣[w(k)
i

]>
G

(`)
k−1(x, x′)w

(L)
i − Tr

(
G

(`)
k−1(x, x′)

)∣∣∣∣
+O

(√
k − 1Ck−1

m1/6
+

√
d (1 + (k − 2) logm)

m

)
, (109)

where the last equality holds under E(`)
d,k−1.

52

Overparametrized Multi-layer Neural Networks

We next bound the first term in the RHS of (109). Since
{
w

(k)
i

}m
i=1

are i.i.d. N (0, Im)

and are independent of
{
W(r)

}k−1

r=1
, by Lemma 33, for any i ∈ [m],

P
w

(k)
i

[
sup
x,x′

∣∣∣∣[w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i − Tr

(
G

(`)
k−1(x, x′)

)∣∣∣∣ > c2k−2−2`
0

m1/3

∣∣∣∣∣Ed,k−1 ∩ V(k−1)

]
= exp

(
O (d(k − 1) logm)− Ω(m1/3)

)
.

Further taking union bounds over i, we have

P

[
sup

x,x′,i∈[m]

∣∣∣∣[w(k)
i

]>
G

(`)
k−1(x, x′)w

(k)
i − Tr(G

(`)
k−1(x, x′))

∣∣∣∣ > c2k−2−2`
0

m1/3

∣∣∣∣∣Ed,k−1 ∩ V(k−1)

]
≤ m exp

[
O (d(k − 1) logm)− Ω(m1/3)

]
= exp

[
O (d(k − 1) logm)− Ω(m1/3)

]
. (110)

Plugging (110) into (109), we get

P

[
(I) = O

(√
k − 1Ck−1

m1/6
+

√
d (1 + (k − 2) logm)

m

)
+
c2k−2−2`

0

m1/3

∣∣∣∣Ed,k−1 ∩ V(k−1)

]

= P

[
(I) = O

(√
k − 1Ck−1

m1/6
+

√
d (1 + (k − 2) logm)

m

)∣∣∣∣Ed,k−1 ∩ V(k−1)

]
≥ 1− exp

(
O (d(k − 1) logm)− Ω(m1/3)

)
.

To bound (II), we have with probability at least 1− exp(−2m1/3),

(II)
(a)
= sup

x,x′

∣∣∣q(`)
k−1(x, x′)

(
Tr
(
G

(k)
k

)
− q(k)

k (x, x′)
)∣∣∣

(b)

≤ sup
x,x′

∣∣∣Tr
(
G

(k)
k (x, x′)

)
− q(k)

k (x, x′)
∣∣∣

= O

(√
kCk

m1/6
+

√
d (1 + (k − 1) logm)

m

)
.

where (a) holds by (19), that is q
(`)
k (x, x′) = q

(`)
k−1(x, x′)q

(k)
k (x, x′), and (105); (b) holds as

supx,x′
∣∣∣q(`)
k−1(x, x′)

∣∣∣ ≤ 1; and the last equality holds from (108).

Combining the above bounds on (I) and (II), we have for any ` < k,

P
[[
E(`)
d,k

]c
|Ed,k−1 ∩ V

(k−1)
0 ∩ V(k−1)

1

]
≤ exp

[
O (d(k − 1) logm)− Ω(m1/3)

]
+exp

(
−2m1/3

)
.

Combining the last displayed equation with (104) and (108) yields that

P
[
Ecd,k|Ed,k−1 ∩ V

(k−1)
0 ∩ V(k−1)

1

]
≤ (k−1) exp

[
O (d(k − 1) logm)− Ω(m1/3)

]
+k exp

(
−2m1/3

)
.

(111)

53

Jiaming Xu and Hanjing Zhu

Plugging (111) and (103) into (102), we get

P [Ed,k ∩ E0 ∩ E1]

≥ 1−
L∑
k=1

[
(k − 1) exp

[
O (d(k − 1) logm)− Ω(m1/3)

]
+ k exp

(
−2m1/3

)]
−

L∑
k=1

exp
(
O (d logm)− Ω(m1/3)

)
= 1− exp

[
O (dL logm)− Ω(m1/3)

]
.

Appendix C. Proofs in Section 6

Recall E0 = ∩L`=1E
(`)
0 where E(`)

0 is defined in (69). By (92), we have

P [E0] ≥ 1− L exp (−Ω(m)) . (112)

C.1 Proof of Proposition 9

Throughout the proof, we assume E0, all three conclusions of Lemma 10, conclusion of
Lemma 11, and conclusions of Lemma 12 hold. These altogether can be guaranteed with
probability at least 1 − exp

(
Ω(C−Lm1/36)

)
by union bounds following (112) and Lemma

10–12.
Recall from (39) that

∂f(x; W(t))

∂W(`)
=

1√
m

D
(`)
t (x)z

(`)
t (x)

[
o

(`−1)
t (x)

]>
,

where [
z

(`)
t (x)

]>
= a>

1√
m

D
(L)
t (x)W(L)(t) · · · 1√

m
D

(`+1)
t (x)W(`+1)(t). (113)

Therefore, by the triangle inequality, we have∥∥∥∥∂f(x; W(t))

∂W(`)
− ∂f(x; W(0))

∂W(`)

∥∥∥∥
2

=
1√
m

∥∥∥∥D(`)
t (x)z

(`)
t (x)

[
o

(`−1)
t (x)

]>
−D

(`)
0 (x)z

(`)
0 (x)

[
o

(`−1)
0 (x)

]>∥∥∥∥
2

≤ 1√
m

∥∥∥∥D(`)
t (x)

(
z

(`)
t (x)− z(`)

0 (x)
) [
o

(`−1)
t (x)

]>∥∥∥∥
2

+
1√
m

∥∥∥∥(D
(`)
t (x)−D

(`)
0 (x)

)
z

(`)
0 (x)

[
o

(`−1)
t (x)

]>∥∥∥∥
2

+
1√
m

∥∥∥∥D(`)
0 (x)z

(`)
0 (x)

(
o

(`−1)
t (x)− o(`−1)

0 (x)
)>∥∥∥∥

2

. (114)

Now we bound the first term on the right hand side of (114). Note that

sup
x

∥∥∥o(`−1)
t (x)

∥∥∥
2
≤ sup

x

∥∥∥o(`−1)
t (x)− o(`−1)

0 (x)
∥∥∥

2
+ sup

x

∥∥∥o(`−1)
0 (x)

∥∥∥
2
≤ C`−1

m1/6
+ c`−1

0 ≤ C`−1,

(115)

54

Overparametrized Multi-layer Neural Networks

where the second inequality holds by (45) in Lemma 10, i.e., supx

∥∥∥o(`)
t (x)− o(`)

0 (x)
∥∥∥

2
≤

C`

m1/6 , and Lemma 30 under E0. Since
∥∥∥D(`)

t (x)
∥∥∥

2
≤ 1 for all x and t, we have

1√
m

∥∥∥∥D(`)
t (x)

(
z

(`)
t (x)− z(`)

0 (x)
) [
o

(`−1)
t (x)

]>∥∥∥∥
2

≤ 1√
m

∥∥∥z(`)
t (x)− z(`)

0 (x)
∥∥∥

2

∥∥∥o(`−1)
t (x)

∥∥∥
2

= O
(
C2L−1m−1/36

)
(116)

where the last inequality holds by (49) from Lemma 12, i.e., supx

∥∥∥z(`)
t (x)− z(`)

0 (x)
∥∥∥

2
=

O
(
C2L−`m17/36

)
.

To bound the second term of (114), note that by the definition of D
(`)
t , we have∥∥∥(D

(`)
t (x)−D

(`)
0 (x)

)
z

(`)
0 (x)

∥∥∥2

2
=

m∑
i=1

(
1{
〈w(`)

i (t),o
(`−1)
t (x)〉≥0

} − 1{
〈w(`)

i (0),o
(`−1)
0 (x)〉≥0

})2 [
z

(`)
0 (x)

]2

i

≤
∥∥∥z(`)

0 (x)
∥∥∥2

∞

m∑
i=1

∣∣∣∣1{
〈w(`)

i (t),o
(`−1)
t (x)〉≥0

} − 1{
〈w(`)

i (0),o
(`−1)
0 (x)〉≥0

}∣∣∣∣
≤ 4m1/18S

(`)
t (x) = O

(
C`m17/18

)
where the last inequality holds by supx

∥∥∥z(`)
0 (x)

∥∥∥
∞
≤ m1/36 from (48) in Lemma 12, and the

definition of St(x) and the last equality holds by (47) from Lemma 11, i.e., supx S
(`)
t (x) ≤

C`2m
8/9. Thus, by (115), we have

1√
m

∥∥∥∥(D
(`)
t (x)−D

(`)
0 (x)

)
z

(`)
0 (x)

[
o

(`−1)
t (x)

]>∥∥∥∥
2

≤ 1√
m

∥∥∥(D
(`)
t (x)−D

(`)
0 (x)

)
z

(`)
0 (x)

∥∥∥
2

∥∥∥o(`−1)
t (x)

∥∥∥
2

=
1√
m
O
(
C2`−1m17/36

)
= O

(
C2`−1m−1/36

)
. (117)

Now we bound the last term on the right hand side of (114). By the definition of z
(`)
t (x)

in (113), since
∥∥∥D(`)

0 (x)
∥∥∥

2
≤ 1 for all x, under E0, we have

∥∥∥z(`)
0 (x)

∥∥∥
2
≤

L∏
k=`+1

∥∥∥∥ 1√
m

D
(k)
0 (x)W(k)(0)

∥∥∥∥
2

‖a‖2 ≤ c
L−`
0

√
m. (118)

Thus, we have

1√
m

∥∥∥∥D(`)
0 (x)z

(`)
0 (x)

(
o

(`−1)
t (x)− o(`−1)

0 (x)
)>∥∥∥∥

2

≤ 1√
m

∥∥∥z(`)
0 (x)

∥∥∥
2

∥∥∥o(`−1)
t (x)− o(`−1)

0 (x)
∥∥∥

2
≤ CL

m1/6
, (119)

55

Jiaming Xu and Hanjing Zhu

where the last inequality holds by (118) and (45) of Lemma 10.
Plugging (116), (117) and (119) back into (114), we get∥∥∥∥∂f(x; W(t))

∂W(`)
− ∂f(x; W(0))

∂W(`)

∥∥∥∥
2

= O

(
C2L−1m−1/36 + C2`−1m−1/36 +

CL

m1/6

)
= O

(
C2Lm−1/36

)
.

(120)
Next, we prove ‖Ht −H0‖∞ = O

(
C2Lm−1/36

)
. By (77), we have∣∣∣H(`)

t (x, x′)−H(`)(x, x′)
∣∣∣

=

∣∣∣∣〈∂f(x; W(t))

∂W(`)
,
∂f(x′; W(t))

∂W(`)

〉
−
〈
∂f(x; W(0))

∂W(`)
,
∂f(x′; W(0))

∂W(`)

〉∣∣∣∣
≤
∥∥∥∥∂f(x; W(t))

∂W(`)
− ∂f(x; W(0))

∂W(`)

∥∥∥∥
2

∥∥∥∥∂f(x′; W(t))

∂W(`)

∥∥∥∥
2

+

∥∥∥∥∂f(x′; W(t))

∂W(`)
− ∂f(x′; W(0))

∂W(`)

∥∥∥∥
2

∥∥∥∥∂f(x; W(0))

∂W(`)

∥∥∥∥
2

= O
(
C2Lm−1/36

)(∥∥∥∥∂f(x′; W(t))

∂W(`)

∥∥∥∥
2

+

∥∥∥∥∂f(x; W(0))

∂W(`)

∥∥∥∥
2

)
, (121)

where the last equality holds by (120).
From (118) and Lemma 30, we get under E0,∥∥∥∥∂f(x; W(0))

∂W(`)

∥∥∥∥
2

≤ 1√
m

∥∥∥z(`)
0 (x)

∥∥∥
2

∥∥∥o(`−1)
0 (x)

∥∥∥
2

= O
(
cL0
)
. (122)

By the triangle inequality, we further have∥∥∥∥∂f(x; W(t))

∂W(`)

∥∥∥∥
2

≤
∥∥∥∥∂f(x; W(0))

∂W(`)

∥∥∥∥
2

+

∥∥∥∥∂f(x; W(t))

∂W(`)
− ∂f(x; W(0))

∂W(`)

∥∥∥∥
2

= O(C2L)

where the last equality holds by plugging in (122) and (120).
Plugging the above bound and (122) into (121), we complete the proof.

C.2 Proof of Lemma 10

Step 1, showing Rt ≤ m1/3: Recall thatR0 = m5/18 andRt+1 = R0+LC2L−2
∑t

s=0 ηs(Rs+
γ). Therefore Rt+1 + γ − (Rt + γ) = LC2L−2ηt(Rt + γ), which is equivalent as Rt+1 + γ =(
1 + LC2L−2ηt

)
(Rt + γ). Thus,

Rt + γ =

t−1∏
s=0

(
1 + LC2L−2ηs

)
(R0 + γ)

≤ exp

(
LC2L−2

t−1∑
s=0

ηs

)
(R0 + γ) ≤ 2 exp

(
LC2L−2θ log T

)
m5/18

where the second inequality holds since 1 + z ≤ ez for any z and the last equality holds by
plugging in ηs ≤ θ

s+1 and the fact that R0 + γ ≤ 2m5/18.

56

Overparametrized Multi-layer Neural Networks

As a result, when m = exp
(
Ω(LC2L−2θ log T)

)
, we have Rt ≤ Rt + γ ≤ m1/3 for all

t ≤ T .
In the following Step 2, we show E0 ∩ E3 occurs with high probability where

E3 ,

{
sup
x
|∆0(x)| ≤ m5/18,∀t ≤ T

}
,

with ∆0(x) = f∗(x)− f(x; W(t)).
Then in Step 3, we use an inductive argument to show under E0∩E3, (44)–(46) in Lemma

10 hold for all t ≤ T .

Step 2, bounding P [E0 ∩ E3]: Note that it suffices to show

P [E3|E0] ≥ 1− exp
(
−Ω(C−Lm1/9)

)
. (123)

With (123), by (112), we then have

P [E0 ∩ E3] ≥
(

1− exp
(
−Ω(C−Lm1/9)

))
(1− L exp (−Ω(m)))

= 1− exp
(
−Ω(C−L1 m1/9)

)
, (124)

for some constant C and C1.
Now we prove 123. By the triangle inequality, we have supx |∆0(x)| ≤ supx |f∗(x)| +

supx |f(x; W(0))|. Since supx |f∗(x)| ≤ m5/18 by assumption, we have

P [E3|E0] ≥ P
[
sup
x
f2(x; W(0)) ≤ m5/9

∣∣∣E0

]
.

Thus, it remains to show

P
[
sup
x
f2(x; W(0)) ≤ m5/9

∣∣∣E0

]
= 1− exp

(
−Ω(C−Lm1/9)

)
.

Throughout the remaining proof of Step 2, we condition on
{
W(k)(0)

}L
k=1

such that E0

holds. Following the definition of f in (4),

f2(x; W(0)) =

[
a>
(

1√
m

D
(L)
0 (x)W(L)(0) · · · 1√

m
D

(1)
0 (x)W(1)(0)

)
x

]2

≤
∥∥∥∥a>(1√

m
D

(L)
0 (x)W(L)(0) · · · 1√

m
D

(1)
0 (x)W(1)(0)

)∥∥∥∥2

2

= a>Q(x)a,

where

Q(x)

,

(
1√
m

D
(L)
0 (x)W(L)(0) · · · 1√

m
D

(1)
0 (x)W(1)(0)

)(
1√
m

D
(L)
0 (x)W(L)(0) · · · 1√

m
D

(1)
0 (x)W(1)(0)

)>
.

57

Jiaming Xu and Hanjing Zhu

Under E0, we have ‖Q(x)‖2 ≤ c2L
0 and hence, ‖Q(x)‖F ≤

√
m ‖Q(x)‖2 ≤ c2L

0

√
m. Since

a is independent with
{
W(k)(0)

}L
k=1

, by Hanson-Wright inequality, for any fixed x,

P
[∣∣∣a>Q(x)a

∣∣∣ ≥ m5/9
∣∣∣ {W(k)(0)

}L
k=1

s.t. E0 holds

]
≤ 2 exp

(
−Cmin

(
m10/9

c4L
0 m

,
m5/9

c2L
0

))
= exp

(
−Ω(C−Lm1/9)

)
.

Denote Q
(
W(1)(0), · · · ,W(L)(0)

)
=
{
Q(x, x′) : x, x′ ∈ Sd−1

}
. Note that for any given

W(1)(0), · · · ,W(L)(0), by the definition of Dk in Section B.2, we have

Q ⊂
{

VV> : V = DLW(L)(0) · · ·D1W
(1)(0), (D1, · · · ,DL) ∈ DL

}
.

Thus by (83), we have |Q| ≤ |DL| ≤ mdL. Taking union bounds over Q, for sufficiently
large m, we have

P
[
sup
x

∣∣∣a>Q(x)a
∣∣∣ ≥ m5/9

∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds

]
= P

[
sup
Q∈Q

∣∣∣a>Qa
∣∣∣ ≥ m5/9

∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds

]
≤ mdL exp

(
−Ω(C−Lm1/9)

)
= exp

(
−Ω(C−Lm1/9)

)
.

Averaging over
{
W(k)(0)

}L
k=1

, we get

P
[
sup
x
f2(x; W(0)) ≤ m5/9

∣∣∣E0

]
= 1− exp

(
−Ω(C−Lm1/9)

)
.

Step 3, inductive argument to show small deviations of W(`), o(`) and bounded
∆t: Throughout step 3, we assume E0 ∩E3 holds. Here, we use an inductive argument to
show that under E0 ∩ E3, (44)–(46) hold for all t ≤ T .

When t = 0, (44) and (45) hold by definition. By the definition of ∆0, we know (46)
holds under E3.

Now suppose (44)–(46) hold for some t. We first show (44) holds at t+ 1 by showing∥∥∥W(`)(t+ 1)−W(`)(t)
∥∥∥

2
≤ CL−1ηt (Rs + γ) (125)

for all `.
By (10), we have∥∥∥W(`)(t+ 1)−W(`)(t)

∥∥∥
2

= ηt |∆t(Xt) + ut|

∥∥∥∥∥ 1√
m

D
(`)
t (Xt)

(
L∏

k=`+1

[
1√
m

W(k)(t)

]>
D

(k)
t (Xt)

)
a
[
o

(`−1)
t (Xt)

]>∥∥∥∥∥
2

≤ ηt(Rt + γ)

∥∥∥∥∥ 1√
m

D
(`)
t (Xt)

(
L∏

k=`+1

[
1√
m

W(k)(t)

]>
D

(k)
t (Xt)

)
a
[
o

(`−1)
t (Xt)

]>∥∥∥∥∥
2

, (126)

58

Overparametrized Multi-layer Neural Networks

where the last inequality holds since |∆t(Xt) + ut| ≤ supx |∆t(x)|+ sup |ut| ≤ Rt + γ.

Now we show

∥∥∥∥∥ 1√
m

D
(`)
t (Xt)

(
L∏

k=`+1

[
1√
m

W(k)(t)

]>
D

(k)
t (Xt)

)
a
[
o

(`−1)
t (Xt)

]>∥∥∥∥∥
2

≤ CL−1.

Plugging the above inequality into (126), we obtain (125).

By the triangle inequality, under E0 ∩ E3, for any k, we have

∥∥∥W(k)(t)
∥∥∥

2
≤
∥∥∥W(k)(t)−W(k)(0)

∥∥∥
2

+
∥∥∥W(k)(0)

∥∥∥
2

= O(
√
m), (127)

where the last equality holds since under E0 ∩ E3,
∥∥W(k)(0)

∥∥
2

= O(
√
m) and

∥∥∥W(k)(t)−W(k)(0)
∥∥∥

2
≤ CL−1

t−1∑
s=0

ηs (Rs + γ) ≤ Rt ≤ m1/3, ∀0 ≤ t ≤ T. (128)

Similarly, by the triangle inequality, we have

sup
x

∥∥∥o(`−1)
t (x)

∥∥∥
2
≤ sup

x

∥∥∥o(`−1)
t (x)− o(`−1)

0 (x)
∥∥∥

2
+ sup

x

∥∥∥o(`−1)
0 (x)

∥∥∥
2
≤ `c`0
m1/6

+ c`−1
0 ≤ C`−1,

(129)
where the last inequality holds by Lemma 30 under E0.

As a result, under E0 ∩ E3, we have

∥∥∥∥∥ 1√
m

D
(`)
t (Xt)

(
L∏

k=`+1

[
1√
m

W(k)(t)

]>
D

(k)
t (Xt)

)
a
[
o

(`−1)
t (Xt)

]>∥∥∥∥∥
2

≤
∥∥∥∥ 1√

m
D

(`)
t (Xt)

∥∥∥∥
2

(
L∏

k=`+1

∥∥∥∥∥
[

1√
m

W(k)(t)

]>
D

(k)
t (Xt)

∥∥∥∥∥
2

)
‖a‖2

∥∥∥o(`−1)
t (Xt)

∥∥∥
2

≤ CL−1,

where the last inequality holds by (127), (129) and the fact that
∥∥∥D(k)

t (x)
∥∥∥

2
≤ 1 for any k

and x.

Next, we show (45) holds at t+ 1. When ` = 0, since o
(0)
t+1(x) = x for all t, we get

sup
x

∥∥∥o(0)
t+1(x)− o(0)

0 (x)
∥∥∥

2
= 0. (130)

59

Jiaming Xu and Hanjing Zhu

Fix arbitrary `. By the definition of o(`), under E0 ∩ E3, for any x ∈ Sd−1, we have∥∥∥o(`+1)
t+1 (x)− o(`+1)

0 (x)
∥∥∥

2

=
1√
m

∥∥∥σ(W(`+1)(t+ 1)o
(`)
t+1(x))− σ(W(`+1)(0)o

(`)
0 (x))

∥∥∥
2

≤ 1√
m

∥∥∥(W(`+1)(t+ 1)−W(`+1)(0)
)
o

(`)
t+1(x)

∥∥∥
2

+
1√
m

∥∥∥W(`+1)(0)
(
o

(`)
t+1(x)− o(`)

0 (x)
)∥∥∥

2

(a)

≤ m−1/6
∥∥∥o(`)

t+1(x)
∥∥∥

2
+ c0

∥∥∥o(`)
t+1(x)− o(`)

0 (x)
∥∥∥

2

≤ m−1/6
(∥∥∥o(`)

t+1(x)− o(`)
0 (x)

∥∥∥
2

+
∥∥∥o(`)

0 (x)
∥∥∥

2

)
+ c0

∥∥∥o(`)
t+1(x)− o(`)

0 (x)
∥∥∥

2

(b)

≤
(
c0 +m−1/6

)∥∥∥o(`)
t+1(x)− o(`)

0 (x)
∥∥∥

2
+ c`0m

−1/6,

where the first inequality holds by the triangle inequality, (a) holds by (128) and the defi-
nition of E0 which gives

∥∥W(`+1)(0)
∥∥

2
≤ c0
√
m, and (b) holds by Lemma 30 under E0.

Recursively applying the above inequality and being aware of (130), we get for any

x ∈ Sd−1,
∥∥∥o(`)

t+1(x)− o(`)
0 (x)

∥∥∥
2
≤ c`0m−1/6

∑`−1
k=0

(
c0 +m−1/6

)k
= O

(
C`m−1/6

)
.

Finally, we show (46) holds at t+ 1. For notation simplicity, define E(k)(t) , W(k)(t)−
W(k)(0). By the triangle inequality, we have for any x ∈ Sd−1,

|∆t+1(x)| = |f∗(x)− f(x; W(t+ 1)|
≤ |f∗(x)− f(x; W(0))|+ |f(x; W(0)− f(x; W(t+ 1))|

= |∆0(x)|+
∣∣∣∣ 1√
m
a>
(
σ(W(L)(t+ 1)o

(L−1)
t+1 (x))− σ(W(L)(0)o

(L−1)
0 (x))

)∣∣∣∣
(a)

≤ R0 +
∥∥∥W(L)(t+ 1)o

(L−1)
t+1 (x)−W(L)(0)o

(L−1)
0 (x)

∥∥∥
2

∥∥∥∥ 1√
m
a

∥∥∥∥
2

(b)

≤ R0 +
∥∥∥E(L)(t+ 1)o

(L−1)
t+1 (x)

∥∥∥
2

+
∥∥∥W(L)(0)

(
o

(L−1)
t+1 (x)− o(L−1)

0 (x)
)∥∥∥

2

(c)

≤ R0 +

L−1∑
`=0

∥∥∥E(L−`)(t+ 1)o
(L−`−1)
t (x)

∥∥∥
2

where (a) holds by Cauchy-Schwartz inequality under E3 and the fact that ReLU is 1-
Lipschitz, (b) holds by the triangle inequality and (c) holds by recursively decomposing

o
(L−1)
t+1 (x)− o(L−1)

0 (x).

Plugging (129) and the assumption that
∥∥W(`)(t+ 1)−W(`)(0)

∥∥
2
≤ CL−1

∑t
s=0 ηs (Rs + γ)

for any ` in the above displayed equation, we have for any x,

|∆t+1(x)| ≤ R0 +

L∑
`=1

CL−1
∥∥∥E(`)(t+ 1)

∥∥∥
2

≤ R0 + LC2L−2
t∑

s=0

ηs(Rs + γ)

= Rt+1,

60

Overparametrized Multi-layer Neural Networks

where the last equality holds by the definition of Rt+1.

C.3 Proof of Lemma 11

Denote O
(`)
t (x) ,

{
i : 1{

〈w(`)
i (t),o

(`)
t (x)〉≥0

} − 1{
〈w(`)

i (0),o
(`)
0 (x)〉≥0

} 6= 0

}
. Therefore, we have

S
(`)
t (x) = |O(`)

t (x)|.
Note that if any neuron at layer ` has a sign flip, then it has either a small output value

at initialization or a larger deviation than the initial output value. As such, we define

B(`)(x) ,
{
i : |〈w(`)

i (0), o
(`−1)
0 (x)〉 ≤ `−1/3C−1/3m−1/9

}
, (131)

as the set of neurons with small output values at initialization. Then

sup
x
S

(`)
t (x) ≤ sup

x
|B(`)(x)|+ sup

x

∣∣∣O(`)
t (x) ∩

[
B(`)(x)

]c∣∣∣ . (132)

It remains to bound both supx |B(`)(x)| and supx

∣∣∣O(`)
t (x) ∩

[
B(`)(x)

]c∣∣∣.
Define E4 ,

{
supx |B(`)(x)| = O

(
C`m8/9

)
, ∀1 ≤ ` ≤ L

}
. It can be shown that E4 occurs

with high probability. The proof is deferred to the end.

Step 1, bounding supx S
(`)
t (x): Throughout Step 1, we assume E0 ∩ E3 ∩ E4 and all

conclusions of Lemma 10 hold.

Fix arbitrary `. We first bound the deviation of the output value:

sup
x

∥∥∥W(`)(t)o
(`−1)
t (x)−W(`)(0)o

(`−1)
0 (x)

∥∥∥
2
.

From (115), under E0, we have supx

∥∥∥o(`)
t (x)

∥∥∥
2
≤ C`. Thus, by the triangle inequality,

we have

sup
x

∥∥∥W(`)(t)o
(`−1)
t (x)−W(`)(0)o

(`−1)
0 (x)

∥∥∥
2

≤ sup
x

∥∥∥(W(`)(t)−W(`)(0)
)
o

(`−1)
t (x)

∥∥∥
2

+ sup
x

∥∥∥W(`)(0)
(
o

(`−1)
t (x)− o(`−1)

0 (x)
)∥∥∥

2

≤ C`m1/3 + c0

√
m

C`1
m1/6

≤ C`2m1/3,

for some constant C1 and C2 where the second inequality holds by (45) from Lemma 10
under E0 and (128) under E0 ∩ E3.

61

Jiaming Xu and Hanjing Zhu

For neuron i in
[
B(`)(x)

]c
, we know

∣∣∣〈w(`)
i (0), o

(`−1)
0 (x)〉

∣∣∣ > `−1/3C−1/3m−1/9. It follows

that

sup
x

∣∣∣O(`)
t (x) ∩

[
B(`)(x)

]c∣∣∣ ≤ supx
∑m

i=1

(
〈w(`)

i (t), o
(`−1)
t (x)〉 − 〈w(`)

i (0), o
(`−1)
0 (x)〉

)2

`−2/3C−2/3m−2/9

=
supx

∥∥∥W(`)(t)o
(`−1)
t (x)−W(`)(0)o

(`−1)
0 (x)

∥∥∥2

2

`−2/3C−2/3m−2/9

= O
(
C`m8/9

)
.

Plugging the above displayed equation into (132), under E0∩E3∩E4, we have supx S
(`)
t (x) =

O
(
C`m8/9

)
.

Step 2, E4 occurs with high probability: Here, we prove

P [E4] = 1− L exp
(
O(d logm)− Ω(m1/3)

)
. (133)

Define the deviation for any 1 ≤ ` ≤ L

φ(`−1)
x (z1, · · · , zm) ≡ φ(`−1)

x

(
z1, · · · , zm; W(1)(0), · · · ,W(`−1)(0)

)
=

∣∣∣∣∣ 1

m

m∑
i=1

1{
|〈zi,o

(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

} − Ew
[
1{
|〈w,o(`−1)

0 (x)〉|≤`−1/3C−`/3m−1/9
}]∣∣∣∣∣

where Ew [·] is the expectation over w.

We first show φ(`−1)(w
(`)
1 , · · · , w(`)

m) concentrates on its mean for any x. By the triangle
inequality, we have∣∣∣∣sup

x
φ(`−1)
x (z1, · · · , zi−1, zi, zi+1, · · · , zm)− sup

x
φ(`−1)
x (z1, · · · , zi−1, z

′
i, zi+1, · · · , zm)

∣∣∣∣
≤ 1

m

∣∣∣∣1{
|〈zi,o

(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

} − 1{
|〈z′i,o

(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

}∣∣∣∣ ≤ 1

m
.

Thus, by McDiarmid’s inequality (Lemma 17), we get

P
[
sup
x
φ(`−1)
x (w

(`)
1 (0), · · · , w(`)

m (0)) ≤ E
[
sup
x
φ(`−1)
x (w

(`)
1 (0), · · · , w(`)

m (0))

]
+m−1/3

]
= 1− exp

(
−m1/3

)
. (134)

Now we bound E
[
supx φ

(`−1)
x (w

(`)
1 (0), · · · , w(`)

m (0))
]
. By Lemma 21, we have

E
[
sup
x
φ(`−1)
x (w

(`)
1 (0), · · · , w(`)

m (0))

]
≤ C

√
VC(Y)

m
, (135)

where Y =

{
fx(w) = 1{

|〈w,o(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

} : x ∈ Sd−1

}
.

62

Overparametrized Multi-layer Neural Networks

Note that for any f ∈ Y(W(1)(0), · · · ,W(`−1)(0)), we can always find g ∈ W and h ∈ W ′
such that f(w) = g(w)h(w) where

W(W(1)(0), · · · ,W(`−1)(0)) =

{
gx(w) = 1{

〈w,o(`−1)
0 (x)〉≤`−1/3C−`/3m−1/9

} : x ∈ Sd−1

}
,

and

W ′(W(1)(0), · · · ,W(`−1)(0)) =

{
hx(w) = 1{

〈w,o(`−1)
0 (x)〉≥−`−1/3C−`/3m−1/9

} : x ∈ Sd−1

}
.

Therefore, by Lemma 20, we have

VC(Y) = O
(
VC(W) + VC(W ′)

)
.

Following the same procedure as bounding VC(F (`+1)) in the proof of Lemma 34 from
Appendix B.3, we can get

VC(W) = VC(W ′) = O (d` logm) .

As a result, VC(Y) = O (d` logm). Plugging the bound of VC(Y) into (135), we get

E
[
sup
x
φ(`−1)
x (w

(`)
1 (0), · · · , w(`)

m (0))

]
≤ C

√
d` logm

m
≤ m−1/3 (136)

when m satisfies (41).

Plugging (136) into (134) and taking union bounds over `, we get with probability at
least 1− L exp

(
−m1/3

)
, for all x and `,

1

m

m∑
i=1

1{
|〈w(`)

i ,o
(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

}

≤ Ew
[
1{
|〈w,o(`−1)

0 (x)〉|≤`−1/3C−`/3m−1/9
}]+ 2m−1/3. (137)

Next, we bound supx,` Ew
[
1{
|〈w,o(`−1)

0 (x)〉|≤`−1/3C−`/3m−1/9
}]. Note that conditioning on{

W(k)(0)
}L
k=1

, 〈w, o(`−1)
0 (x)〉 ∼ N

(
0,
∥∥∥o(`−1)

0 (x)
∥∥∥2

2

)
as w ∼ N (0, I). Therefore,

sup
x

Ew
[
1{
|〈w,o(`−1)

0 (x)〉|≤`−1/3C−`/3m−1/9
}]

= sup
x

Pw
[
|〈w, o(`−1)

0 (x)〉| ≤ `−1/3C−`/3m−1/9
]
≤ 2`−1/3C−`/3m−1/9

√
2π
∥∥∥o(`−1)

0 (x)
∥∥∥

2

. (138)

63

Jiaming Xu and Hanjing Zhu

Now we bound
∥∥∥o(`−1)

0 (x)
∥∥∥

2
from below. By Lemma 6, we have with probability at least

1− L exp
(
O(d logm)− Ω(m1/3)

)
, for any x and `,∥∥∥o(`−1)

0 (x)
∥∥∥2

2
= 〈o(`−1)

0 (x), o
(`−1)
0 (x)〉

≥ E
[
σ2
(
U (`−1)(x)

)]
−O

(
`C2`

1

m1/3

)
(a)
= 2−` −O

(
`C2`

1

m1/3

)
= Ω(C`2), (139)

for some constant C1 and C2 where (a) holds by (38) which gives E
[
σ2(U (`−1)(x))

]
= 2−`+1.

Plugging (139) into (138), we have with probability at least 1−L exp
(
O(d logm)− Ω(m1/3)

)
,

for any ` ≤ L,

sup
x

Ew
[
1{
|〈w,o(`−1)

0 (x)〉|≤`−1/3C−`/3m−1/9
}] ≤ C`3m−1/9

for some constant C3. Combining the above inequality with (137), we have with probability
1− L exp

(
O(d logm)− Ω(m1/3)

)
− L exp

(
−m−1/3

)
,

1

m

m∑
i=1

1{
|〈w(`)

i ,o
(`−1)
0 (x)〉|≤`−1/3C−`/3m−1/9

} ≤ C`3m−1/9 + 2m−1/3 = O
(
C`3m

−1/9
)
.

This completes the proof of Step 2.

C.4 Proof of Lemma 12

Step 1, bounding supx

∥∥∥z(k)
0 (x)

∥∥∥
∞

: We begin with proving (48). In particular, we show

with probability 1− exp
(
−Ω(C−L+k+1m1/36

)
,

sup
x

∥∥∥z(k)
0 (x)

∥∥∥
∞
≤ m1/36. (140)

Note that

P
[
sup
k

∥∥∥z(k)
0

∥∥∥
∞
≤ m1/36

]
= P

[
sup
k

∥∥∥z(k)
0

∥∥∥
∞
≤ m1/36|E0

]
P [E0] . (141)

Now we show

P
[
sup
k

∥∥∥z(k)
0

∥∥∥
∞
≤ m1/36

∣∣∣E0

]
≥ 1− exp

(
O(dL logm)− Ω(C−L+k+1m1/36)

)
.

Plugging the above bound on P
[
supk

∥∥∥z(k)
0

∥∥∥
∞
≤ m1/36|E0

]
and (112) into (141), we com-

plete the proof of step 1.

Throughout the remaining proof of step 1, we condition on
{
W(k)(0)

}L
k=1

such that E0

holds.

64

Overparametrized Multi-layer Neural Networks

Denote

P(k+1)(x) ,
1√
m

[
W(k+1)(0)

]>
D

(k+1)
0 (x) · · · 1√

m

[
W(L)(0)

]>
D

(L)
0 (x), (142)

and hence z
(k)
0 = P(k+1)a from (113).

Therefore, [
z

(k)
0 (x)

]
r

=

〈
a,

1√
m
p(k+1)
r (x)

〉
,

where
[
z

(k)
0 (x)

]
r

is the r-th coordinate of z
(k)
0 (x) and p

(k+1)
r (x) is the r-th row of P(k+1)(x).

Under E0, for any k and x, we have∥∥∥p(k+1)
r (x)

∥∥∥
2

=
∥∥∥P(k+1)(x)e1

∥∥∥
2
≤
∥∥∥P(k+1)(x)

∥∥∥
2
≤ cL−k0 . (143)

where e1 = (1, 0, · · · , 0)> ∈ Rm.

Since a is independent with p
(k+1)
r (x), by Hoeffding inequality, we have for any fixed

x ∈ Sd−1,

P
[∣∣∣∣〈a, 1√

m
p(k+1)
r (x)

〉∣∣∣∣ > m1/36

∣∣∣∣ {W(k)
}L
k=1

s.t. E0 holds.

]

≤ exp

− m1/18

2
∥∥∥ 1√

m
p

(k+1)
r (x)

∥∥∥2

2


= exp

(
−Ω

(
C−L+km1/18

))
.

Taking union bounds over r, we have for any fixed x,

P
[∥∥∥z(k)

0 (x)
∥∥∥
∞
> m1/36

∣∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds.

]
≤ m exp

(
−Ω

(
C−L+km1/18

))
= exp

(
logm− Ω

(
C−L+km1/18

))
.

Thus, we have

P
[
sup
x

∥∥∥z(k)
0 (x)

∥∥∥
∞
> m1/36

∣∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds.

]
= P

[
sup

P∈P(k+1)

‖Pa‖∞ > m1/36

∣∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds.

]
≤ |P(k+1)| exp

(
logm− Ω

(
C−L+km1/18

))
, (144)

where P(k+1)(W(1)(0), · · · ,W(L)(0)) =
{
P(k+1)(x) : x ∈ Sd−1

}
with P(k+1)(x) defined in

(142).
Now we bound |P(k+1)|. Recall the definition of DL in Section 5. By definition, there is

an injective mapping from P(k+1) to DL. Therefore, we have |P(k+1)| ≤ |DL| ≤ mdL, where
the last inequality holds by (83).

65

Jiaming Xu and Hanjing Zhu

Plugging this bound on |P(k+1)| into (144), we get

P
[
sup
x

∥∥∥z(k)
0 (x)

∥∥∥
∞
> m1/36

∣∣∣∣ {W(k)(0)
}L
k=1

s.t. E0 holds

]
≤ mdL exp

(
logm− Ω(C−L+km1/18)

)
= exp

(
−Ω(C−L+km1/18)

)
.

Step 2, bounding
∥∥∥z(`)

t (x)− z(`)
0 (x)

∥∥∥
2
: Now we prove the second inequality (49) holds

with high probability. Assume (140), all three conditions in Lemma 10 and (47) hold, which
can be guaranteed with probability at least 1 − exp

(
−Ω(C−L+km1/36)

)
following Lemma

10, Lemma 11 and Step 1 above.
Fix arbitrary t. We will use an inductive argument on layer to prove (49) holds for all

1 ≤ ` ≤ L.
By definition, z

(L)
t (x) = a for any x. Therefore, (49) holds at ` = L.

Now suppose (49) holds at some ` + 1, we are going to show (49) holds at ` as well.
Note that

z
(`)
t (x) =

1√
m

[
W(`+1)(t)

]>
D

(`+1)
t (x)z

(`+1)
t (x).

Similar to (114), by the triangle inequality, we have∥∥∥z(`)
t (x)− z(`)

0 (x)
∥∥∥

2
≤
∥∥∥∥[W(`+1)(t)−W(`+1)(0)

]> 1√
m

D
(`+1)
t (x)z

(`+1)
t (x)

∥∥∥∥
2

+

∥∥∥∥ 1√
m

[
W(`+1)(0)

]>
D

(`+1)
t (x)

(
z

(`+1)
t (x)− z(`+1)

0 (x)
)∥∥∥∥

2

+

∥∥∥∥ 1√
m

[
W(`)(0)

]> (
D

(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥∥
2

. (145)

Now we bound the first term on the right hand side of (145). By the triangle inequality,∥∥∥z(`+1)
t (x)

∥∥∥
2
≤
∥∥∥z(`+1)

0 (x)
∥∥∥

2
+
∥∥∥z(`+1)

t (x)− z(`+1)
0 (x)

∥∥∥
2

≤ cL−`0

√
m+O

(
C2L−`−1m17/36

)
= O(C2L−`−1

1

√
m). (146)

for some constant C and C1 where the second inequality holds by (118) under E0 and the
inductive hypothesis.

As a result, ∥∥∥∥[W(`+1)(t)−W(`+1)(0)
]> 1√

m
D

(`+1)
t (x)z

(`+1)
t (x)

∥∥∥∥
2

≤
∥∥∥W(`+1)(t)−W(`+1)(0)

∥∥∥
2

1√
m

∥∥∥z(`+1)
t (x)

∥∥∥
2

≤ C2L−`−1
1 m1/3, (147)

where the last inequality holds by (44) and Rt ≤ m1/3 from Lemma 10, and the above

bound of
∥∥∥z(`+1)

t (x)
∥∥∥

2
.

66

Overparametrized Multi-layer Neural Networks

To bound the second term, note that under E0 and the inductive hypothesis, we have∥∥∥∥ 1√
m

[
W(`+1)(0)

]>
D

(`+1)
t (x)

(
z

(`+1)
t (x)− z(`+1)

0 (x)
)∥∥∥∥

2

≤ 1√
m

∥∥∥W(`+1)(0)
∥∥∥

2

∥∥∥D(`+1)
t (x)

∥∥∥
2

∥∥∥z(`+1)
t (x)− z(`+1)

0 (x)
∥∥∥

2

= O
(
C2L−`m17/36

)
. (148)

To bound the last term on the right hand side of (145), note that under E0,∥∥∥∥ 1√
m

[
W(`)(0)

]> (
D

(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥∥
2

≤ 1√
m

∥∥∥W(`)(0)
∥∥∥

2

∥∥∥(D
(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥
2

≤ c0

∥∥∥(D
(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥
2
.

By definition, we have∥∥∥(D
(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥
2

≤

√√√√ m∑
i=1

(
1{
〈w(`+1)

i (t),o
(`)
t (x)〉≥0

} − 1{
〈w(`+1)

i (0),o
(`)
0 (x)〉≥0

})2 [
z

(`+1)
0 (x)

]2

i

≤
∥∥∥z(`)

0 (x)
∥∥∥
∞

√∥∥∥S(`+1)
t

∥∥∥
∞

= O
(
C2L−`−1m17/36

)
, (149)

where the last equality holds by (47) and the assumption supx,k

∥∥∥z(k)
0 (x)

∥∥∥
∞
≤ m1/36.

Therefore,∥∥∥∥ 1√
m

[
W(`)(0)

]> (
D

(`+1)
t (x)−D

(`+1)
0 (x)

)
z

(`+1)
0 (x)

∥∥∥∥
2

= O
(
C2L−`m17/36

)
.

Plugging (147), (148) and the above displayed equation into the right hand side of (145),
we complete the proof of Step 2.

Appendix D. Proof of lemmas in Section 7

D.1 Proof of Lemma 14

Recall from (21) that Φ(`)(x, x′) , E
[
σ
(
U (`−1)(x)

)
σ
(
U (`−1)(x′)

)]
q

(`)
L (x, x′) where U (`)(x)

is defined in (15) and q
(`)
L is defined in (20).

67

Jiaming Xu and Hanjing Zhu

Step 1, Φ is positive semi-definite: We begin with showing Φ is positive semi-
definite (PSD). Since Φ =

∑L
`=1 Φ(`), by (64) and (65) of Lemma 25, it suffices to show

both E
[
σ(U (`)(x))σ(U (`)(x′))

]
and q

(`)
L (x, x′) are PSD kernels.

DenoteG(x, x′) , E
[
σ(U (`)(x))σ(U (`)(x′))

]
. Here, we apply Lemma 26 to proveG(x, x′)

is PSD. To begin with, we show

E
[
σ2(U (`)(x))σ2(U (`)(x′))

]
<∞. (150)

By definition (15), we have

E
[(
U (`)(x)

)2
]

=
[
Σ(`−1)

]
11
≤ E

[(
U (`−1)(x)

)2
]

where the last inequality holds since σ2(U (`−1)(x)) ≤
(
U (`−1)(x)

)2
.

Since for any x ∈ Sd−1, E
[(
U (0)(x)

)2]
= ‖x‖22 ≤ 1, we get for any `, E

[(
U (`)(x)

)2] ≤ 1.

By Cauchy-Schwartz inequality, we have

E
[
U (`)(x)U (`)(x′)

]
≤
√

E
[(
U (`)(x)

)2]E [(U (`)(x′)
)2] ≤ 1.

Thus, for any x, y ∈ Sd−1,

E
[
σ2(U (`)(x))σ2(U (`)(y))

]
≤ E

[(
U (`)(x)U (`)(y)

)2
]

= E
[(
U (`)(x)

)2
]
E
[(
U (`)(y)

)2
]

+ 2E
[
U (`)(x)U (`)(y)

]
≤ 3,

where the equality holds by Isserlis’ Theorem (Isserlis, 1918).
By Cauchy-Schwartz inequality, for any g ∈ L2(µ), we get∫ ∫

E
[∣∣∣g(x)σ(U (`)(x))σ(U (`)(y))g(y)

∣∣∣] dµ(x)dµ(y)

≤
∫ ∫

g2(x)g2(y)dµ(x)dµ(y)

∫ ∫
E
[(
σ(U (`)(x))σ(U (`)(y))

)2
]
dµ(x)dµ(y) <∞,

where the last inequality holds by (150) and the fact that g ∈ L2(µ).
As a result, by Fubini Theorem, we have∫ ∫

g(x)G(x, y)g(y)dµ(x)dµ(y) =

∫ ∫
E
[
g(x)σ(U (`)(x))σ(U (`)(y))g(y)

]
dµ(x)dµ(y)

= E
[∫ ∫

g(x)σ(U (`)(x))σ(U (`)(y))g(y)dµ(x)dµ(y)

]
= E

[(∫
g(x)σ(U (`)(x))dµ(x)

)2
]
≥ 0.

By Lemma 26, we get G(x, x′) is PSD.

68

Overparametrized Multi-layer Neural Networks

Now we show q
(`)
L (x, x′) is PSD by induction. By definition, we know

q
(`)
L (x, x′) =

L∏
k=`

π − arccos ρ(k)(x, x′)

2π
.

Following (65) of Lemma 25, it remains to show

F (k)(x, x′) ,
π − arccos ρ(k)(x, x′)

2π

is PSD for any k where ρ(k)(x, x′) =
E[σ(U(k)(x))σ(U(k)(x′))]√

E[σ2(U(k)(x))]
√

E[σ2(U(k)(x′))]
is defined in (93).

Note that we have shown the numerator of ρ(k)(x, x′) is PSD. From (38), we know the
denominator of ρ(k)(x, x′) is some constant independent of x and x′. Therefore, ρ(k)(x, x′)
is PSD and hence we have ρ(k)(x, x′) = 〈φ(x), φ(x′)〉 for some function φ.

Since π−arccos(〈x,x′〉)
2π is PSD (Cho and Saul, 2009), by (66) of Lemma 25, we get F (k) is

PSD.

Step 2, ‖Φ‖2 ≤ ‖Φ‖∞ ≤
L
2 The inequality ‖Φ‖2 ≤ ‖Φ‖∞ follows from Lemma 28.

To bound ‖Φ‖∞, we follow (36) and (35) and get
∥∥Φ(`)

∥∥
∞ ≤

1
2 for all `.

Since Φ =
∑L

`=1 Φ(`), we have ‖Φ‖∞ ≤
L
2 .

Step 3, bounding ‖Kt‖2 and ‖Qt‖2 By definition, the eigenvalues of Kt equals 1 −
ηtλi, i = 1, 2, · · · where λi is the i-th largest eigenvalue of Φ. Since 0 ≤ λi ≤ L

2 for all i,
with ηt ≤ 2

L , we have 0 ≤ 1− ηtλi ≤ 1 for all i. This shows ‖Kt‖2 ≤ 1 and Kt is PSD.
Similarly, we bound ‖Qt‖2. Following Theorem 1 and Proposition 9, by the triangle

inequality, with probability at least 1− exp
(
−Ω(C−Lm1/36)

)
,

‖Ht − Φ‖∞ ≤ ‖Ht −H0‖∞ + ‖H0 − Φ‖∞ = O

(
CL

m1/36

)
.

Therefore, for m = exp (Ω(L)) which is guaranteed by (41), we have

‖Ht‖2 ≤ ‖Ht‖∞ ≤ ‖Ht − Φ‖∞ + ‖Φ‖∞ ≤
2L

3
(151)

for all t. By the definition of Ht in (1), we know Ht is PSD. As a result, we have

0 ≤ λi(Ht) ≤
2L

3
.

For ηt ≤ 3
2L , we have 0 ≤ 1−ηtλi(Ht) ≤ 1, ∀i, where λi(Ht) is the i-th largest eigenvalue

of Ht. This shows ‖Qt‖2 ≤ 1 and Qt is PSD.

D.2 Proof of Lemma 15

Recall that

εt(x, x
′) = f(x; W(t))− f(x; W(t+ 1)) + ηtHt(x, x

′)
(
f∗(x′) + ut − f(x′; W(t))

)
. (152)

69

Jiaming Xu and Hanjing Zhu

Here we provide a lower bound of εt. The upper bound of εt can be obtained analogously.
The proof consists of three steps. Firstly, we study the evolution of the prediction value

f(x; W(t + 1)) − f(x; W(t)). Since the change of the prediction value is driven by the
update of weight W(t) in (10), intuitively we have

f(x; W(t+ 1))− f(x; W(t)) ≈
L∑
`=1

〈
∂f(x; W(t))

∂W(`)
,W(`)(t+ 1)−W(`)(t)

〉
= ηt (∆t(Xt) + ut)Ht(x,Xt).

To justify the above approximation, we first show

f(x; W(t+ 1))− f(x; W(t)) ≤
L∑
`=1

∆W(`)(t)(x) +
L−1∑
`=1

A
(`)
t (x),

for some ∆W(`)(t)(x) and A
(`)
t (x) defined in (155) and (159).

Then we prove that for each `,

∆W(`)(t)(x) = ηt(∆t(Xt) + ut)
(
H

(`)
t (x,Xt) + B

(`)
t (x,Xt) + R

(`)
t (x,Xt)

)
(153)

where B
(`)
t (x,Xt) and R

(`)
t (x,Xt) are some error terms defined in (164) and (165).

Following the definition of εt, we have

εt(x) = f(x; W(t))− f(x; W(t+ 1)) + ηtHt(x,Xt) (∆t(Xt) + ut)

≥ −ηt (∆t(Xt) + ut)
L∑
`=1

(
Bt(x,Xt) + R

(`)
t (x,Xt)

)
−
L−1∑
r=1

A
(r)
t . (154)

To bound εt, it suffices to bound A
(`)
t , B

(`)
t and R

(`)
t . In short, we show these terms

depend on either the change of output o
(`)
t+1 − o

(`)
t or the change of activation pattern

D
(`)
t+1(x)−D

(`)
t (x) which are shown to be small with high probability in Section 6.

D.2.1 Analysis of the evolution of f(x; W(t))

For all 0 ≤ ` ≤ L, define

Z
(`)+
t (x) , diag

{
1{[

z
(`)
t (x)

]
i
≥0

}} , and Z
(`)−
t (x) , diag

{
1{[

z
(`)
t (x)

]
i
<0

}} .
When ` = L, since z

(L)
t (x) = a does not change over time,

Z
(L)+
t (x) = diag {ai = 1} , Z

(L)−
t (x) = diag {ai = −1} , ∀t.

Denote

∆W(`)(t)(x) ,
[
z

(`)
t (x)

]> [
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]
1√
m

(
W(`)(t+ 1)−W(`)(t)

)
o

(`−1)
t+1 (x), (155)

70

Overparametrized Multi-layer Neural Networks

and

∆
o
(`)
t

(x) ,
[
z

(`+1)
t (x)

]> [
Z

(`+1)+
t (x)D

(`+1)
t+1 (x) + Z

(`+1)−
t (x)D

(`+1)
t (x)

]
1√
m

W(`+1)(t)
(
o

(`)
t+1(x)− o(`)

t (x)
)
.

Intuitively, ∆W(`)(t)(x) and ∆
o
(`)
t

(x) capture the change of prediction value f(x; W(t))

by the change of W(`)(t) and o
(`)
t (x), respectively.

Note that for any vector p, b, e ∈ Rm, we have

p> (σ(b)− σ(e)) =
∑
i:pi≥0

pi (σ(bi)− σ(ei)) +
∑
i:pi<0

(−pi) (σ(ei)− σ(bi))

≤
∑
i:pi≥0

pi1{bi≥0} (bi − ei) +
∑
i:pi<0

(−pi)1{ei≥0} (ei − bi) , (156)

where the last inequality holds by the fact that σ(y)− σ(x) ≤ 1{y≥0} (y − x).
Therefore, we have

f(x; W(t+ 1))− f(x; W(t))

=
1√
m
a>
(
σ(W(L)(t+ 1)o

(L−1)
t+1 (x))− σ(W(L)(t)o

(L−1)
t (x))

)
≤ 1√

m
a>
(
Z

(L)+
t D

(L)
t+1(x) + Z

(L)−
t D

(L)
t (x)

)(
W(L)(t+ 1)o

(L−1)
t+1 (x)−W(L)(t)o

(L−1)
t (x)

)
,

= ∆W(L)(t)(x) + ∆
o
(L−1)
t

(x), (157)

where the last equality holds since

W(L)(t+ 1)o
(L−1)
t+1 (x)−W(L)(t)o

(L−1)
t (x)

=
(
W(L)(t+ 1)−W(L)(t)

)
o

(L−1)
t+1 (x) + W(L)(t)

(
o

(L−1)
t+1 (x)− o(L−1)

t (x)
)
,

∆W(L)(t)(x) = a>
[
Z

(L)+
t (x)D

(L)
t+1(x) + Z

(L)−
t (x)D

(L)
t (x)

] 1√
m

(
W(L)(t+ 1)−W(L)(t)

)
o

(L−1)
t+1 (x),

and

∆
o
(L−1)
t

(x) = a>
[
Z

(L)+
t (x)D

(L)
t+1(x) + Z

(L)−
t (x)D

(L)
t (x)

] 1√
m

W(L)(t)
(
o

(L−1)
t+1 (x)− o(L−1)

t (x)
)
.

Intuitively, since the change of o
(`)
t comes from the update of W(`)(t) and o

(`−1)
t , we can

obtain a recursive relation of ∆
o
(`)
t

. In particular, we show that for all `,

∆
o
(`)
t

(x) ≤ ∆
o
(`−1)
t

(x) + ∆W(`)(t)(x) + A
(`)
t (x), (158)

where

A
(`)
t (x)

,
[
z

(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

] 1√
m

W(`+1)(t)
(
o

(`)
t+1(x)− o(`)

t (x)
)
. (159)

71

Jiaming Xu and Hanjing Zhu

Note that Z
(`)+
t (x) + Z

(`)−
t (x) = I. Therefore, for any 1 ≤ ` ≤ L,

Z
(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x) = D

(`)
t (x) + Z

(`)+
t (x)

(
D

(`)
t+1(x)−D

(`)
t (x)

)
. (160)

Thus, we have

∆
o
(`)
t

(x)

=
[
z

(`+1)
t (x)

]> [
Z

(`+1)+
t (x)D

(`+1)
t+1 (x) + Z

(`+1)−
t (x)D

(`+1)
t (x)

] 1√
m

W(`+1)(t)
(
o

(`)
t+1(x)− o(`)

t (x)
)

=
[
z

(`+1)
t (x)

]>
D

(`+1)
t (x)

1√
m

W(`+1)(t)
(
o

(`)
t+1(x)− o(`)

t (x)
)

︸ ︷︷ ︸
(I)

+
[
z

(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

] 1√
m

W(`+1)(t)
(
o

(`)
t+1(x)− o(`)

t (x)
)

︸ ︷︷ ︸
A
(`)
t (x)

.

From (50), we know
[
z

(`)
t (x)

]>
=
[
z

(`+1)
t (x)

]>
1√
m

D
(`+1)
t (x)W(`+1)(t). Thus, we have

(I) =
[
z

(`)
t (x)

]> (
o

(`)
t+1(x)− o(`)

t (x)
)

=
1√
m

[
z

(`)
t (x)

]> (
σ
(
W(`)(t+ 1)o

(`−1)
t+1 (x)

)
− σ

(
W(`)(t)o

(`−1)
t (x)

))
(i)

≤
[
z

(`)
t (x)

]> (
Z(`)+D

(`)
t+1(x) + Z(`)−D

(`)
t (x)

) 1√
m

(
W(`)(t+ 1)o

(`−1)
t+1 (x)−W(`)(t)o

(`−1)
t (x)

)
=
[
z

(`)
t (x)

]> (
Z(`)+D

(`)
t+1(x) + Z(`)−D

(`)
t (x)

) 1√
m

{(
W(`)(t+ 1)−W(`)(t)

)
o

(`−1)
t+1 (x)

+ W(`)(t)
(
o

(`−1)
t+1 (x)− o(`−1)

t (x)
)}

= ∆W(`)(t)(x) + ∆
o
(`−1)
t

(x),

where (i) holds by (156) and the last equality holds by the definition of ∆W(`)(t) and ∆
o
(`−1)
t

.

Hence, we get (158).
Recursively plugging (158) into the right hand side of (157), we get

f(x; W(t+ 1))− f(x; W(t)) ≤
L∑
`=1

∆W(`)(t)(x) +

L−1∑
`=1

A
(`)
t (x). (161)

D.2.2 Decomposing ∆W(`)(t)(x)

Here we prove (153). Plugging (10) into (155) to replace W(`)(t+ 1)−W(`)(t), we have

∆W(`)(t)

=
1

m

[
z

(`)
t (x)

]> [
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]
〈o(`−1)
t+1 (x), o

(`−1)
t (Xt)〉

ηt (∆t(Xt) + ut) D
(`)
t (Xt)z

(`)
t (Xt). (162)

72

Overparametrized Multi-layer Neural Networks

Note that(
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

)
〈o(`−1)
t+1 (x), o

(`−1)
t (Xt)〉

=
(
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

)
〈o(`−1)
t+1 (x)− o(`−1)

t (x) + o
(`−1)
t (x), o

(`−1)
t (Xt)〉

(a)
=
(
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

)
〈o(`−1)
t+1 (x)− o(`−1)

t (x), o
(`−1)
t (Xt)〉

+ D
(`)
t (x)〈o(`−1)

t (x), o
(`−1)
t (Xt)〉+ Z

(`)+
t (x)

(
D

(`)
t+1(x)−D

(`)
t (x)

)
〈o(`)
t (x), o

(`−1)
t (Xt)〉,

where (a) holds by (160).
Plugging the above equation into (162), we have

∆W(`)(t) =
1

m
ηt (∆t(Xt) + ut)

{[
z

(`)
t (x)

]>
D

(`)
t (x)〈o(`−1)

t (x), o
(`−1)
t (Xt)〉

+
[
z

(`)
t (x)

]>
Z

(`)+
t (x)

(
D

(`)
t (x)−D

(`)
t (x)

)
〈o(`−1)
t (x), o

(`−1)
t (Xt)〉

+
[
z

(`)
t (x)

]> (
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

)
〈o(`−1)
t+1 (x)− o(`−1)

t (x), o
(`−1)
t (Xt)〉

}
D

(`)
t (Xt)z

(`)
t (Xt)

= ηt (∆t(Xt) + ut)
(
H

(`)
t (x,Xt) + B

(`)
t (x,Xt) + R

(`)
t (x,Xt)

)
, (163)

where

H
(`)
t (x, x′) =

1

m

〈
D

(`)
t (x)z

(`)
t (x)

[
o

(`−1)
t (x)

]>
,D

(`)
t (x′)z

(`)
t (x′)

[
o

(`−1)
t (x′)

]>〉
from (39),

B
(`)
t (x,Xt) ,

[
z

(`)
t (x)

]>
Z

(`)+
t (x)

(
D

(`)
t+1(x)−D

(`)
t (x)

) 1

m
〈o(`−1)
t (x), o

(`−1)
t (Xt)〉

D
(`)
t (Xt)z

(`)
t (Xt), (164)

and

R
(`)
t (x,Xt) ,

[
z

(`)
t (x)

]> [
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]
1

m
〈o(`−1)
t+1 (x)− o(`−1)

t (x), o
(`−1)
t (Xt)〉D(`)

t (Xt)z
(`)
t (Xt). (165)

Intuitively, B
(`)
t captures the error from the change in activation pattern of the `-th

hidden layer and R
(`)
t captures the error from the change of the output o

(`−1)
t .

Plugging (163) back into (161), we have

f(x; W(t+ 1))− f(x; W(t)) ≤ ηt (∆t(Xt) + ut)
L∑
`=1

(
H

(`)
t (x,Xt) + B

(`)
t (x,Xt) + R

(`)
t (x,Xt)

)
+

L−1∑
`=1

A
(`)
t (x). (166)

73

Jiaming Xu and Hanjing Zhu

Recall the definition of εt from (152). For any x ∈ Sd−1, we have

εt(x) = f(x; W(t))− f(x; W(t+ 1)) + ηtHt(x,Xt)(∆t(Xt) + ut)

≥ −ηt (∆t(Xt) + ut)
L∑
`=1

(
B

(`)
t (x,Xt) + R

(`)
t (x,Xt)

)
−
L−1∑
`=1

A
(`)
t .

To bound εt, it remains to bound A
(`)
t , B

(`)
t and R

(`)
t .

Here, we claim that with probability at least 1 − exp
(
−Ω(C−L0 m1/36)

)
over the ran-

domness of the weight W(0) and the outer weight a, for any sample path {(Xs, ys)}t−1
s=0,

sup
x
|A(`)
t (x)| = O

(
ηt`C

L
1

m1/36
|∆t(Xt) + ut|

)
, (167)

sup
x,x′

∣∣∣B(`)
t (x, x′)

∣∣∣ = O

(
C2L

2

m1/36

)
(168)

sup
x,x′
|R(`)

t (x, x′)| = O

(
CL3
m1/6

)
. (169)

With the above claims, we have with probability at least 1− exp
(
−Ω(C−L0 m1/36)

)
, for any

x and sample path {(Xs, ys)}t−1
s=0,

εt(x) ≥ −C5ηt |∆t(Xt) + ut|
LC2L

4

m1/36
,

for some constant C4 and C5.

Analogously, we get with probability at least 1− exp
(
−Ω(C−L0 m1/36)

)
,

εt(x) ≤ C5ηt|∆t(Xt) + ut|
LC2L

4

m1/36
.

As a result, we have

E [‖εt‖2 |W(0), a] ≤
√
E
[
‖εt‖22

∣∣W(0), a
]

=
√

E(Xs,us)ts=0

[
EX
[
ε2t (X)

] ∣∣W(0), a
]

≤

√
E(Xs,us)ts=0

[
sup
x
ε2t (x)

∣∣∣W(0), a

]
= O

(
ηtLC

L

m1/36

)√
E(Xs,us)ts=0

[
(∆t(Xt) + ut)

2
∣∣W(0), a

]
=
ηtLC

Lσt

m1/36
,

(170)

where the last equality holds since

E(Xs,us)ts=0

[
(∆t(Xt) + ut)

2
∣∣W(0), a

]
= E(Xs,us)ts=0

[
∆2
t (Xt)

∣∣W(0), a
]

+ E
[
u2
t

]
= E(Xs,us)t−1

s=0

[
‖∆t‖22 |W(0), a

]
+ τ2 = σ2

t .

In the following, we prove (167)–(169). Throughout the remaining of Section D.2, we
assume the conclusions of Lemma 10–12 hold which is guaranteed to occur with probability

at least 1− exp
(
−Ω(C−L0 m1/36)

)
.

74

Overparametrized Multi-layer Neural Networks

D.2.3 Bounding A
(`)
t

Recall the definition of A
(`)
t from (159). Here, we bound supx

∣∣∣A(`)
t (x)

∣∣∣. Fix arbitrary

x ∈ Sd−1. Note that

|A(`)
t (x)| ≤

∥∥∥∥[z(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

] 1√
m

W(`+1)(t)

∥∥∥∥
2︸ ︷︷ ︸

(I)

∥∥∥o(`)
t+1(x)− o(`)

t (x)
∥∥∥

2︸ ︷︷ ︸
(II)

.

(171)

We first bound (II). Note that the change of o
(`)
t comes from the change of W(t).

Intuitively, since W(t) does not change much by Lemma 10, we expect that ot does not
change much. By Lipschitz property of ReLU function and the triangle inequality, we obtain

the following layer-wise recursive relation of
∥∥∥o(`)

t+1(x)− o(`)
t (x)

∥∥∥
2
:

∥∥∥o(`)
t+1(x)− o(`)

t (x)
∥∥∥

2
=

1√
m

∥∥∥σ (W(`)(t+ 1)o
(`−1)
t+1 (x)

)
− σ

(
W(`)(t)o

(`−1)
t (x)

)∥∥∥
2

≤ 1√
m

∥∥∥W(`)(t+ 1)o
(`−1)
t+1 (x)−W(`)(t)o

(`−1)
t (x)

∥∥∥
2

≤ 1√
m

∥∥∥(W(`)(t+ 1)−W(`)(t)
)∥∥∥

2

∥∥∥o(`−1)
t+1 (x)

∥∥∥
2

+
1√
m

∥∥∥W(`)(t+ 1)
∥∥∥

2

∥∥∥o(`−1)
t+1 (x)− o(`−1)

t (x)
∥∥∥

2
.

Since o
(0)
t+1(x)− o(0)

t (x) = 0, by recursively applying the above inequality, we have

∥∥∥o(`)
t+1(x)− o(`)

t (x)
∥∥∥

2
≤ 1√

m

∑̀
s=1

∥∥∥∥∥ ∏̀
r=s+1

1√
m

W(s)(t+ 1)

∥∥∥∥∥
2

∥∥∥W(s)(t+ 1)−W(s)(t)
∥∥∥

2

∥∥∥o(s−1)
t+1 (x)

∥∥∥
2
.

Plugging (126) into the above displayed equation to replace
∥∥W(s)(t+ 1)−W(s)(t)

∥∥
2
, we

have∥∥∥o(`)
t+1(x)− o(`)

t (x)
∥∥∥

2

≤ 1√
m

∑̀
s=1

∥∥∥∥∥
(∏̀
r=s+1

1√
m

W(s)(t+ 1)

)∥∥∥∥∥
2

∥∥∥∥ηt (∆t(Xt) + ut) V
(`)
L,t(x)a

[
o

(`−1)
t (Xt)

]>∥∥∥∥
2∥∥∥o(s−1)

t+1 (x)
∥∥∥

2
, (172)

where V
(`)
L,t(x) is defined in (8).

From (127), we have 1√
m

∥∥W(`)(t+ 1)
∥∥

2
≤ C, and hence,∥∥∥V(`)

L,t(x)
∥∥∥

2
≤ CL−`/

√
m. (173)

75

Jiaming Xu and Hanjing Zhu

Plugging (127), (129) and (173) into the right hand side of (172), we get∥∥∥o(`)
t+1(x)− o(`)

t (x)
∥∥∥

2
= O

(
`CL+`ηt√

m
|∆t(Xt) + ut|

)
. (174)

Note that although Xt does not explicitly appear on the left hand side of (174), the

evolution of o
(`)
t (x) depends on Xt and ut through the update of W(t).

Now we bound (I) on the right hand side of (171). Note that∥∥∥∥[z(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

] 1√
m

W(`+1)(t)

∥∥∥∥
2

≤
∥∥∥∥[z(`+1)

t (x)
]>

Z
(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

]∥∥∥∥
2

∥∥∥∥ 1√
m

W(`+1)(t)

∥∥∥∥
2

(a)

≤ C

∥∥∥∥[z(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

]∥∥∥∥
2

(b)

≤ C
∥∥∥(D

(`)
t+1(x)−D

(`)
t (x)

)
z

(`+1)
t (x)

∥∥∥
2

≤ C
∥∥∥(D

(`)
t+1(x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2

+ C
∥∥∥(D

(`)
t (x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2
, (175)

where (a) holds by (127), (b) holds since Z
(`+1)+
t is a diagonal matrix with diagonal entries

0 or 1 and the last inequality holds by the triangle inequality.
Here we bound ∥∥∥(D

(`)
t+1(x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2
. (176)

By Lemma 11, we know D
(`)
t+1(x) − D

(`)
0 (x) has very few non-zero diagonal coordinates.

However, if z
(`+1)
t (x) has large values on those coordinates, (176) can still be large. To

show such situation does not occur, we crucially decompose the coordinates of z
(`+1)
t (x)

into M and Mc where

M =
{
i ∈ [m] :

∣∣∣[z(`+1)
t (x)

]
i

∣∣∣ < 2m1/36
}
.

For coordinate i ∈ Mc, since
∣∣∣[z(`+1)

t (x)
]
i

∣∣∣ ≥ 2m1/36 and supx

∥∥∥z(`+1)
0 (x)

∥∥∥
∞
≤ m1/36, we

know ∣∣∣[z(`+1)
t (x)

]
i

∣∣∣ ≤ 2
∣∣∣[z(`+1)

t (x)
]
i
−
[
z

(`+1)
0 (x)

]
i

∣∣∣ .
Intuitively, the above displayed equation says that for coordinate i of z

(`+1)
t (x) with large ab-

solute value, since the initial value
∣∣∣[z(`+1)

0 (x)
]
i

∣∣∣ is small, the magnitude of
[
z

(`+1)
t (x)

]
i

is of

the same order of its deviation from the initial value. With the bound on
∥∥∥z(`+1)

t (x)− z(`+1)
0 (x)

∥∥∥
2

in (49) from Lemma 12, we are able to control the contribution of coordinates in Mc on
(176) as follows:∑
j∈Mc

[(
D

(`)
t+1(x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

]2

j
≤
∑
j∈Mc

[
z

(`+1)
t (x)

]2

i
≤ 4

∥∥∥z(`+1)
t (x)− z(`+1)

0 (x)
∥∥∥2

2

= O(C4L−2`−2
1 m17/18), (177)

76

Overparametrized Multi-layer Neural Networks

for some constant C1.

Next, we show the contribution on (176) from M is small. This is true since all coor-

dinates in M have small values and the number of coordinates having nonzero D
(`)
t+1(x) −

D
(`)
0 (x) is small. In particular, we have

∑
j∈M

[(
D

(`)
t+1(x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

]2

j

≤ 4m1/18
∑
j∈M

(
1{
〈w(`)

j (t+1),o
(`−1)
t (x)〉≥0

} − 1{
〈w(`)

j (0),o
(`−1)
0 (x)〉≥0

})2

≤ 4m1/18 sup
x
S

(`)
t+1(x) = O(C`2m

17/18), (178)

for some constant C2 where the last equality holds by (47) from Lemma 11.

Combining (177) and (178), we have∥∥∥(D
(`)
t+1(x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2

= O(C2L−`−1
3 m17/36) (179)

for some constant C3.

Similarly, we can get
∥∥∥(D

(`)
t (x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2

= O(C2L−`−1
3 m17/36).

Plugging the above bound on
∥∥∥(D

(`)
t (x)−D

(`)
0 (x)

)
z

(`+1)
t (x)

∥∥∥
2

and (179) into (175), we

get ∥∥∥∥[z(`+1)
t (x)

]>
Z

(`+1)+
t (x)

[
D

(`)
t+1(x)−D

(`)
t (x)

] 1√
m

W(`+1)(t)

∥∥∥∥
2

= C
∥∥∥(D

(`)
t+1(x)−D

(`)
t (x)

)
z

(`+1)
t (x)

∥∥∥
2

= O(CL4 m
17/36) (180)

for some constant C4.

Combining (174) and (180), we have for any x ∈ Sd−1,

|A(`)
t (x)| = O

(
ηt`C

L

m1/36
|∆t(Xt) + ut|

)
,

for some constant C.

D.2.4 Bounding B
(`)
t and R

(`)
t

As is mentioned in Section D.2.2, B
(`)
t captures the error caused by the change of activation

pattern. To bound
∣∣∣B(`)

t (x, x′)
∣∣∣, we crucially apply (180) which bounds

∥∥∥(D
(`)
t+1(x)−D

(`)
0 (x)

)
z

(`)
t (x)

∥∥∥
2
.

To bound R
(`)
t which captures the error from the change of the output o

(`−1)
t , we apply (45)

from Lemma 10 which bounds the deviation of o
(`−1)
t .

77

Jiaming Xu and Hanjing Zhu

Bounding
∣∣∣B(`)

t

∣∣∣: Recall that

B
(`)
t (x, x′) =

[
z

(`)
t (x)

]>
Z

(`)+
t (x)

(
D

(`)
t+1(x)−D

(`)
t (x)

)
1

m
〈o(`−1)
t (x), o

(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′).

Fix any x and x′ ∈ Sd−1. By Cauchy-Schwartz inequality, we have∣∣∣B(`)
t (x, x′)

∣∣∣ ≤ ∥∥∥∥[z(`)
t (x)

]>
Z

(`)+
t (x)

(
D

(`)
t+1(x)−D

(`)
t (x)

)∥∥∥∥
2∥∥∥∥ 1

m
〈o(`−1)
t (x), o

(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′)

∥∥∥∥
2

= O
(
CLm17/36

)∥∥∥∥ 1

m
〈o(`−1)
t (x), o

(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′)

∥∥∥∥
2

where the last equality holds by (180).
Moreover, applying Cauchy-Schwartz inequality again, we get∥∥∥∥ 1

m
〈o(`−1)
t (x), o

(`−1)
t (x′)〉D(`)

t (Xt)z
(`)
t (x′)

∥∥∥∥
2

≤ 1

m

∥∥∥o(`−1)
t (x)

∥∥∥
2

∥∥∥o(`−1)
t (x′)

∥∥∥
2

∥∥∥z(`)
t (x′)

∥∥∥
2

= O

(
CL1√
m

)
.

where the last equality holds by (129) and (146).
As a result, for any x, x′ ∈ Sd−1, we have∣∣∣B(`)

t (x, x′)
∣∣∣ ≤ O(C2L

2

m1/36

)
for some constant C2.

Bounding
∣∣∣R(`)

t

∣∣∣: Recall that

R
(`)
t (x, x′) =

[
z
(`)
t (x)

]> [
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]
1

m
〈o(`−1)t+1 (x)− o(`−1)t (x), o

(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′).

By Cauchy-Schwartz inequality, we have

|R(`)
t (x, x′)| ≤

∥∥∥[Z(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]
z

(`)
t (x)

∥∥∥
2∥∥∥∥ 1

m
〈o(`−1)
t+1 (x)− o(`−1)

t (x), o
(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′)

∥∥∥∥
2

.

By (146) we have∥∥∥∥[z(`)
t (x)

]> [
Z

(`)+
t (x)D

(`)
t+1(x) + Z

(`)−
t (x)D

(`)
t (x)

]∥∥∥∥
2

≤
∥∥∥z(`)

t (x)
∥∥∥

2
= O(CL−`

√
m).

78

Overparametrized Multi-layer Neural Networks

Further note that∥∥∥∥ 1

m
〈o(`−1)
t+1 (x)− o(`−1)

t (x), o
(`−1)
t (x′)〉D(`)

t (x′)z
(`)
t (x′)

∥∥∥∥
2

≤ 1

m

∥∥∥o(`−1)
t+1 (x)− o(`−1)

t (x)
∥∥∥

2

∥∥∥o(`−1)
t (x′)

∥∥∥
2

∥∥∥z(`)
t (x′)

∥∥∥
2

≤ C2L−1

√
m

(∥∥∥o(`−1)
t+1 (x)− o(`−1)

0 (x)− o(`−1)
t (x) + o

(`−1)
0 (x)

∥∥∥
2

)
≤ C2L−1

√
m

(∥∥∥o(`−1)
t+1 (x)− o(`−1)

0 (x)
∥∥∥

2
+
∥∥∥o(`−1)

t (x)− o(`−1)
0 (x)

∥∥∥
2

)
= O

(
C2L+`−2

m1/2+1/6

)
.

where the second inequality holds by (146) and (129), the third one holds by the triangle
inequality, and the last equality holds by (45) from Lemma 10.

As a result, for any x, x′ ∈ Sd−1,

|R(`)
t (x, x′)| = O

(
CL3
m1/6

)
,

for some constant C3.

D.3 Proof of Lemma 16

Throughout the proof, we assume the conclusions of Lemma 15 holds. For the ease of
presentation, we use E [·] to denote the conditional expectation E [|W(0), a].

Recall the definition of vt from (54). We first show

E

∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

2

 ≤ t∑
s=0

E
[
‖vs‖22

]
. (181)

For notation simplicity, denote Ft as the filtration of {X1, · · · , Xt}. Let qt =
∑t

r=0

∏t
i=r+1 Qi◦

vr and ht = Qt ◦ qt−1. Thus, qt = vt + ht. Then

E
[
‖qt‖22

]
= E

[
‖vt + ht‖22

]
(a)
= E

[
‖vt‖22

]
+ E

[
‖ht‖22

] (b)

≤ E
[
‖vt‖22

]
+ E

[
‖qt−1‖22

]
,

where (a) uses the fact that E [〈vt, ht〉] = E [E [〈vt, ht〉|Ft−1]] = E [〈E [vt|Ft−1] , ht〉] = 0; (b)
follows from ‖Qt‖2 ≤ 1 by Lemma 14.

Recursively applying the last displayed equation yields that

E
[
‖qt‖22

]
≤

t∑
r=0

E
[
‖vr‖22

]
.

79

Jiaming Xu and Hanjing Zhu

Next, we bound E
[
‖vs‖22

]
. Recall from (56) that σ2

s = E
[
‖∆s‖22

]
+ τ2. Note that

E
[
‖vs‖22

]
= η2

sE
[(
Hs(x,Xs) (∆s(Xs) + us)

2 − EXs [Hs(x,Xs)∆s(Xs)]
)2
]

= η2
sE
[
H2
s (x,Xs) (∆s(Xs) + us)

2
]
− η2

s (EXs [Hs(x,Xs)∆s(Xs)])
2

≤ η2
sL

2
(
E
[
‖∆s‖22

]
+ τ2

)
= η2

s

4L2

9
σ2
s , (182)

where the inequality holds by (151) that gives ‖Ht‖2 ≤ ‖Ht‖∞ ≤
2L
3 .

Therefore, to control E
[
‖vs‖22

]
, we need to bound σ2

t . We now claim that

σ2
t+1 ≤

t∏
s=0

(1 +

√
44L

9
ηt)

2σ2
0,

when m = Ω(exp(L2)) and ηt ≤ 3
2L for all t.

Given the claim, we have

ηrσr ≤
θ

r + 1

r−1∏
k=0

(
1 +

√
44Lθ

9(k + 1)

)
σ0

≤ θ

r + 1
exp

(√
44Lθ

9
(log(r + 1) + 1)

)
σ0

≤ θ (r + 1)
√

44Lθ/9−1 e
√

44Lθ/9σ0. (183)

Combining (183) and (182) into (181), we have

E

∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

2

 ≤ L2
t∑

s=0

η2
sσ

2
s

≤ L2
t∑

r=0

θ2(r + 1)2
√

44θL/9−2e2
√

44Lθ/9σ2
0

≤ L2θ2e2
√

44Lθ/9σ2
0

(
1

1− 2
√

44Lθ/9
+ 1

)
= c2

2σ
2
0.

By Cauchy-Schwartz inequality, we have

E

[∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

]
≤

√√√√√E

∥∥∥∥∥
t∑

s=0

t∏
r=s+1

Qr ◦ vs

∥∥∥∥∥
2

2

∣∣∣∣W(0), a

 = c2σ0,

which completes the proof.
Now we prove the claim. Recall ∆t+1 = Qt ·∆t − vt + εt. Therefore,

‖∆t+1‖22 = ‖Qt ·∆t − vt + εt‖22
= ‖Qt ·∆t‖22 + ‖vt‖22 + ‖εt‖22 − 2〈Qt ·∆t, vt〉 − 2〈vt, εt〉+ 2〈Qt ·∆t, εt〉
≤ ‖∆t‖22 + ‖vt‖22 + ‖εt‖22 + 2 ‖∆t‖2 ‖vt‖2 + 2 ‖vt‖2 ‖εt‖2 + 2 ‖∆t‖2 ‖εt‖2 , (184)

80

Overparametrized Multi-layer Neural Networks

where the last inequality holds by ‖Qt‖2 ≤ 1 whenever ηt ≤ 2/L and Cauchy-Schwartz
inequality.

From (170), for m satisfying (41), we can get

E
[
‖εt‖22

]
≤ O

(
L2CLη2

t

m1/18
σ2
t

)
≤ L2η2

t

81
σ2
t . (185)

Taking conditional expectation on both hand sides of (184), we have

σ2
t+1 ≤ σ2

t +
4L2η2

t

9
σ2
t +

L2η2
t

81
σ2
t + 2E [‖∆t‖2 ‖vt‖2] + 2E [‖vt‖2 ‖εt‖2] + 2E [‖∆t‖2 ‖εt‖2]

≤
(

1 +
37L2η2

t

81

)
σ2
t + 2

√
E
[
‖∆t‖22

]√
E
[
‖vt‖22

]
+ 2

√
E
[
‖vt‖22

]√
E
[
‖εt‖22

]
+ 2

√
E
[
‖∆t‖22

]√
E
[∥∥ε2t∥∥2

]
≤
(

1 +
37L2η2

t

81

)
σ2
t +

2

9
ηtσ

2
t +

2L2η2
t

27
σ2
t +

2Lηt
9

σ2
t

= (1 +

√
44L

9
ηt)

2σ2
t

where the first and the third inequalities hold by (182) and (185) for m satisfying (41) and
the second inequality holds by Cauchy-Schwartz inequality.

Appendix E. Proof of Corollary 4

We first show a key intermediate step to prove Corollary 4.
Define the space of homogeneous harmonic polynomials of order ` on the sphere as

H` =

P : Sd−1 → R : P (x) =
∑
|α|=`

cαx
α, ∆P = 0


where xα = xα1

1 · · ·x
αd
d , |α| =

∑d
i=1 αi, cα ∈ R and ∆ =

∑d
i=1

∂2

∂x2i
is the Laplacian operator.

Denote for all ` ≥ 0, {Y`,i}N`
i=1 as some orthonormal basis ofH` where N` is the dimension

of H`, i.e., 〈Y`,i, Y`,j〉 = 0 for i 6= j. Moreover, from Dai and Xu (2013, Theorem 1.1.2) for
` 6= `′, H` and H`′ are orthogonal. Hence, {Y`,i} are orthogonal across different ` as well.

We now derive in Theorem 36 an expansion for functions with the form K(x, y) =
h(〈x, y〉), x, y ∈ Sd−1, d ≥ 3 in terms of {Y`,i} , 1 ≤ i ≤ N`, ` ≥ 0. A similar result is
obtained in Su and Yang (2019) without a full proof. We provide a proof in Appendix E.1
for completeness.

Theorem 36 Suppose the function K has the form K(x, y) = h(〈x, y〉) where h is analytic
on [−1, 1], x, y ∈ Sd−1 and d ≥ 3. Then

K(x, y) =
∑
`≥0

β`(h)

N∑̀
i=1

Y`,i(x)Y`,i(y)

81

Jiaming Xu and Hanjing Zhu

where

β`(h) =
d− 2

2

∞∑
m=0

h`+2m

2`+2mm!(d−2
2)`+m+1

(186)

with h`+2m is the (` + 2m)-th derivative of h at 0 and (·)n is the Pochhammer symbol
recursively defined as (a)0 = 1, (a)k = (a+ k − 1)(a)k−1 for k ≥ 1.

Remark 37 The case d = 2 can be analyzed using Fourier analysis. Since this is not of
particular interest in our study, we do not provide the analysis here. One can refer to (Dai
and Xu, 2013, Section 1.6) if interested.

Proof [Proof of Corollary 4] From (Wang, 2010, Theorem 7.4), we know the polynomial
of degree `∗ can be projected onto the direct sum of the spaces of homogeneous harmonic
polynomials up to degree `∗+ 1. Now we claim Φ can be expanded in the space of homoge-
neous harmonic polynomials. With the claim, we have R(f∗, `∗ + 1) = 0 which completes
the proof.

It remains to prove the claim. Recall the definition of Φ(`) in (21). Here, we show
Φ(`)(x, x′) is analytic and can be viewed as a function of 〈x, x′〉 only by analyzing E

[
σ(U (`)(x))σ(U (`)(x′)

]
and q

(`)
L (x, x′).

We begin with analyzing E
[
σ(U (`)(x))σ(U (`)(x′)

]
. By (15), we get (U (`)(x), U (`)(x′)) de-

pends on Cov
(
σ(U (`)(x)), σ(U (`)(x′)

)
. Since Σ(0) only depends on 〈x, x′〉, we know the joint

distribution of (U (1)(x), U (1)(x′)) only depends on 〈x, x′〉. Hence, Cov
(
σ(U (1)(x)), σ(U (1)(x′)

)
only depends on 〈x, x′〉. Following the recursive relationship of U (`), we get the joint distri-
bution of (U (`)(x), U (`)(x′)) for all ` ≥ 1 only depends on 〈x, x′〉. Hence, E

[
σ(U (`)(x))σ(U (`)(x′)

]
only depends on 〈x, x′〉. Note that a product of two ReLU functions is analytic. By Fubini
Theorem and Lebniz integral rule, we know E

[
σ(U (`)(x))σ(U (`)(x′)

]
is analytic.

Next, we study q
(`)
L (x, x′) which is defined in (19). We have shown the numerator of

ρ(`)(x, x′) only depends on 〈x, x′〉. By (38), we know the denominator of ρ(k)(x, x′) is some

constant independent of x and x′. Therefore, ρ(k)(x, x′) and hence q
(`)
L (x, x′) only depends

on 〈x, x′〉. Since a composition of analytic functions is analytic and arccos function is

analytic, we know q
(`)
L is analytic.

Since for any `, Φ(`) is analytic and can be viewed as a function of 〈x, x′〉, we know
Φ =

∑L
`=1 Φ(`) is also analytic and is a function of 〈x, x′〉.

E.1 Proof of Theorem 36

We begin with a key result that will be used in the proof of Theorem 36.

Proposition 38 (Cantero and Iserles, 2012, Theorem 2, eq (2.1)) Let h be analytic in
[−1, 1]. Letting hn = h(n)(0) be n-th order derivative, then for any α > −1, α 6= −1

2 ,

h(x) =

∞∑
n=0

h̃nC
α+1/2
n (x), x ∈ [−1, 1] (187)

82

Overparametrized Multi-layer Neural Networks

where

Cα+1/2
n (x) =

(2α+ 1)n
n!

n∑
k=0

(−1)k
(
n

k

)
(n+ 2α+ 1)k

(α+ 1)k

(
1− x

2

)k
,

is the Gegenbauer polynomial, and

h̃n = (α+ n+ 1/2)
∞∑
m=0

hn+2m

2n+2mm!(α+ 1/2)n+m+1
, (188)

with hn+2m = h(n+2m)(0), the n+ 2m-th derivative of h at 0.

Remark 39 Gegenbauer polynomials are orthogonal across different n, i.e., for m 6= n,

d ≥ 3 and any fixed y ∈ Sd−1,

〈
C

d−2
2

n (〈·, y〉), C
d−2
2

m (〈·, y〉)
〉

Sd−1

= 0. The proof is based on

the orthogonality of H`. One can check Dai and Xu (2013, Corollary 2.8) for a detailed
proof.

The form of β`(h) in (186) depends on the specific function h. For the ease of presenta-
tion, we abbreviate β`(h) as β`. Now we proceed to the proof of Theorem 36.
Proof [Proof of Theorem 36] From Dai and Xu (2013, eq(2.8)), we know for any l ≥ 0,

`+ λ

λ
Cλ` (〈x, y〉) =

N∑̀
i=1

Y`,i(x)Y`,i(y) (189)

where λ = d−2
2 , x, y ∈ Sd−1.

Plugging (189) into (187) and note that α+ 1/2 = λ = d−2
2 , we get

h(〈x, y〉) =
∑
`≥0

h̃`
λ

`+ λ

N∑̀
i=1

Y`,i(x)Y`,i(y) = β`

N∑̀
i=1

Y`,i(x)Y`,i(y)

where

β` = h̃`
λ

`+ λ
=
d− 2

2

∞∑
m=0

h`+2m

2`+2mm!(d−2
2)`+m+1

.

83

	Introduction
	Related Work
	Problem Setup
	Main Result
	Concentration of NTK at Initialization
	Average Prediction Error under SGD

	Proof of Theorem 1
	Bounding "026B30D Ht-H0 "026B30D
	Proof of Theorem 3
	Numerical Study
	Synthetic data
	Real data experiment

	Conclusion
	Auxiliary Results
	Concentration Inequalities
	 VC Dimension
	Kernel
	Probability of the intersection of events

	Proofs in Section 5
	Proof of Lemma 6: Concentration of "426830A o()(x),o()(x')"526930B
	Proof of Lemma 7: Concentration of aG()L(x,x')a on `39`42`"613A``45`47`"603ATr(G()L(x,x'))
	Proof of Lemma 8: Concentration of `39`42`"613A``45`47`"603ATr(G()L(x,x')) on q()L(x,x')

	Proofs in Section 6
	Proof of Proposition 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12

	Proof of lemmas in Section 7
	Proof of Lemma 14
	Proof of Lemma 15
	Analysis of the evolution of f(x;W(t))
	Decomposing W()(t)(x)
	Bounding A()t
	Bounding B()t and R()t

	Proof of Lemma 16

	Proof of Corollary 4
	Proof of Theorem 36

