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Abstract

In this work, we propose differentially private methods for hypothesis testing, model aver-
aging, and model selection for normal linear models. We propose Bayesian methods based
on mixtures of g-priors and non-Bayesian methods based on likelihood-ratio statistics and
information criteria. The procedures are asymptotically consistent and straightforward to
implement with existing software. We focus on practical issues such as adjusting criti-
cal values so that hypothesis tests have adequate type I error rates and quantifying the
uncertainty introduced by the privacy-ensuring mechanisms.
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1. Introduction

Differential privacy (Dwork et al., 2006) is a formal framework for quantifying the privacy
of randomized algorithms. Its theoretical properties have been studied extensively (see
e.g. Dwork et al. (2014)) and it has been adopted by companies such as Google, Apple,
and Microsoft (Garfinkel et al., 2018), as well as institutions like the U.S. Census Bureau
(Abowd, 2018).

In this article, we develop differentially private methods for normal linear models. We
propose differentially private hypothesis tests for comparing nested models (in Section 4)
as well as methods for model averaging and selection (in Section 5). We consider Bayesian
methods based on mixtures of g-priors (Liang et al., 2008) and non-Bayesian methods that
are built upon likelihood-ratio statistics and information criteria.

In Bayesian hypothesis testing and model selection, prior distributions must be chosen
carefully because their effect does not vanish as the sample size grows (Bayarri et al., 2012).
Our work is based on mixtures of g-priors because, when combined with right-Haar priors
on the common parameters, they satisfy a list of appealing criteria proposed in Bayarri et al.
(2012). They are also conveniently implemented in the R package library(BAS) (Clyde,
2020).
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From a non-Bayesian perspective, we work with likelihood-ratio tests and information
criteria. We make this choice because of their theoretical properties, intuitive appeal, and
ease of use. The class of information criteria we consider includes the Akaike Informa-
tion Criterion (AIC; Akaike (1974)) and the Bayesian Information Criterion (BIC; Schwarz
(1978)), among others. Although we focus on normal linear models, information criteria are
useful in model averaging and selection problems for more complex models. We recommend
the monograph Claeskens et al. (2008) for an extensive overview of the approach.

We enforce differential privacy with well-established techniques. For hypothesis testing,
we use the subsample and aggregate technique (Nissim et al., 2007; Smith, 2011), which
consists in splitting the data into subgroups and releasing perturbed averages. For model
averaging and selection, we use sufficient-statistic perturbation, which consists in releasing
a noisy version of a sufficient statistic (see, for example, McSherry and Mironov (2009); Vu
and Slavkovic (2009) and Bernstein and Sheldon (2019)).

1.1 Related Work

There is a growing literature on differentially private methods for linear regression models.
For example, Amitai and Reiter (2018) estimate quantiles and posterior tail probabilities of
coefficients, Barrientos et al. (2019) test the significance of individual regression coefficients,
and Ferrando et al. (2022) propose methods for point and interval estimation that can be
applied to the normal linear model. Lei et al. (2018) consider the problem of model selection
based on information criteria, but do not consider model averaging or Bayesian approaches,
and Bernstein and Sheldon (2019) propose a method for sampling from posterior distribu-
tions on regression coefficients, but do not consider hypothesis testing, model averaging or
selection.

Our methods for hypothesis testing involve data-splitting and censoring. Both opera-
tions can induce bias in the outputs. Evans et al. (2020) considers the effects of censoring in
estimates that are asymptotically normal and proposes strategies to correct the bias induced
by censoring. Covington et al. (2021) uses bags of little bootstraps (Kleiner et al., 2012)
to find unbiased estimates and valid confidence intervals. Alternatively, Ferrando et al.
(2022) use the parametric bootstrap for bias correction. In hypothesis testing, the bias
induced by data-splitting and censoring leads to inappropriate critical values for rejecting
null hypotheses. We address this issue by simulating the distribution of the differentially
private test statistics under the null hypothesis and then find corrected critical values that
are adequately calibrated.

In general, our Bayesian methodology draws from the objective Bayesian literature for
hypothesis testing, averaging, and selection, especially from Liang et al. (2008) and Bayarri
et al. (2012). In these references, the classes of priors we consider here are proposed after
showing that they satisfy a list of conceptually appealing criteria.

1.2 Main Contributions

In Section 4, we argue that working on a logarithmic scale is natural for defining differentially
private Bayes factors. We show that the methods are asymptotically consistent under
regularity conditions that are similar to the ones needed for consistency when there are no
privacy constraints. In Section 4.2, we describe a simple procedure to quantify the effects
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of the privacy-ensuring mechanisms. Then, in Section 4.3, we study the effects of censoring
and data-splitting.

In Section 5, we use sufficient-statistic perturbation to define methods for model av-
eraging and selection. If we took a naive approach to the problem, the variance of the
perturbation term would grow exponentially in the number of predictors. With sufficient-
statistic perturbation, the variance of the perturbation term grows quadratically in the
number of predictors. The methods for model selection are consistent under conditions
that are similar to those needed for consistency without privacy constraints. In Section 5.1,
we propose a strategy that quantifies the uncertainty introduced by the mechanisms that
is analogous to the one pursued in Section 4.2.

From a practical point of view, we give guidelines for maximizing the statistical utility of
the methods in finite samples. We illustrate the performance of our methods in Sections 4.4
and 5.2. We include additional results from the simulation studies in the Appendix.

The proofs of the Propositions stated in the main text can be found in the Appendix A.

1.3 Notation

Extrema appear often in Section 4 because the methods are based on censored statistics.
Our notation for them is a ∨ b = max(a, b) and a ∧ b = min(a, b). The censored statistics
are of the form T c = (T ∨ a) ∧ b: that is, T c = a whenever T ≤ a and T c = b whenever
T ≥ b (with the understanding that a < b).

We use the following notation for probability distributions. The p-variate normal distri-
bution with mean µ and covariance matrix Σ is Np(µ,Σ), the Laplace distribution with loca-
tion parameter µ and scale parameter b is L1(µ, b), and the (p×p)-dimensional Wishart dis-
tribution with degree of freedom n > p−1 and positive-definite scale matrix V is Wp(n, V ).

In the case of matrices, all of them are assumed to be full-rank unless otherwise stated.
Our notation for basic matrix operations and special matrices is as follows. The matrix
transpose of A is A′, the perpendicular projection operator onto the column space of A is
PA = A(A′A)−1A′, and the upper Cholesky factor of A is A1/2. The (n× n)−dimensional
zero matrix is 0n×n and the (n × n)-dimensional identity matrix is In. For vectors, the
usual p-norm on Rd is ‖·‖p. The zero vector is 0n = (0, 0, ... n), 0)′ and the vector of ones is
1n = (1, 1, ... n), 1)′. The expectation of a random variable X is E(X) and the variance is
Var(X).

2. Brief Review of Differential Privacy

Differential privacy (Dwork et al., 2006, 2014) is a probabilistic property of randomized
algorithms. Intuitively, differential privacy limits how much we can learn about individual
entries in a data set.

In the literature, randomized algorithms that ensure differential privacy are referred to
as mechanisms. Conceptually, mechanisms are functions M that take data D as inputs
and output a randomM(D) that is, in some sense, private. In the definition of differential
privacy, a key notion is that of neighboring data sets. Two data sets D and D̃ are neighbors,
which is denoted by D ∼ D̃, if they only differ in one row.
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Definition 1 ((ε, δ)-differential privacy) Let ε > 0 and 0 ≤ δ ≤ 1. A mechanism M
satisfies (ε, δ)-differential privacy if, for all D ∼ D̃ any M-measurable set S, we have
P [M(D) ∈ S] ≤ exp(ε)P [M(D̃) ∈ S] + δ.

When δ = 0, we retrieve ε-differential privacy, which is the most popular formalization
of privacy in the literature. When ε is small, the privacy of M increases; in such cases,
the probability distributions of M(D) and M(D̃) are forced to be similar, so the output
of M is not very sensitive to small changes in D. On the other hand, as ε increases, the
distributions of M(D) and M(D̃) are allowed to be more different, which decreases the
privacy of the output. When 0 < δ ≤ 1, Definition 1 allows M(D) to release outputs that
lead to a “high privacy loss” with probability δ (see Section 2 in Dwork et al. (2014) for
details).

In this article, M(D) are perturbed versions of confidential statistics T (D). The scale
of the perturbation depends on the global sensitivity of T (D), a concept we define below.

Definition 2 (Global sensitivity) Let T be a statistic mapping data to Rd. The global
sensitivity of T is defined as ∆p = supD∼D̃‖T (D)− T (D̃)‖p.

A key property of differential privacy is that transformations of (ε, δ)-differentially pri-
vate statistics are (ε, δ)-differentially private. In the literature, this is known as the post-
processing property of differential privacy. We use this property frequently; for example,
we use it to find posterior probabilities of hypotheses given Bayes factors.

3. Brief Review of Bayes Factors and Information Criteria

In this section, we review basic facts about Bayes factors and information criteria that
are relevant for our purposes. This is not meant to be a comprehensive review; we refer
the reader to Berger and Pericchi (2001), Liang et al. (2008), and Bayarri et al. (2012)
for further background on Bayesian methods and Claeskens et al. (2008) for information
criteria.

3.1 Hypothesis Testing

In Section 4, we introduce differentially private methods for hypothesis testing. We cover
Bayesian approaches that are based on Bayes factors and non-Bayesian approaches that are
based on likelihood-ratio tests and information criteria. Now, we review some core concepts
in Bayesian and non-Bayesian testing that are helpful for contextualizing our work.

Let y = (y1, ... , yn) be a vector collecting independent and identically distributed obser-
vations from a statistical model with sampling density f(y | θ) =

∏n
i=1 f(yi | θ), for θ ∈ Θ.

Our goal is testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0 and Θ1 are disjoint subsets
of Θ.

In the Bayesian paradigm, all unknowns have probability distributions associated to
them, including the hypotheses H0 and H1 and the parameter θ. Before observing any
data, the uncertainty in the hypotheses is reflected in the prior probabilities P (H0) and
P (H1) = 1 − P (H0). The uncertainty in θ is usually expressed conditionally through the
prior distributions π(θ | H0) and π(θ | H1). Upon observing data, the uncertainty about θ
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and the hypotheses is updated in the posterior distribution, which is simply the conditional
distribution of these unknowns given the data.

A key quantity in Bayesian hypothesis testing is the Bayes factor, which is defined as

B10 =

∫
θ∈Θ1

π(θ | H1)f(y | θ)ν(dθ)/

∫
θ∈Θ0

π(θ | H0)f(y | θ) ν(dθ)

for a dominating measure ν(·).
Bayes factors are important in Bayesian testing for several reasons. For example, if

o10 = P (H1)/P (H0) are the prior odds of the hypotheses, then the posterior probability of
H1 is

P (H1 | y) = o10B10/(1 + o10B10),

which depends on the data only through the Bayes factor B10. Bayes factors can be moti-
vated as ratios of integrated likelihoods that quantify the evidence in favor of H1 relative
to H0 (Berger et al., 1999). There have been efforts to categorize the strength of evidence
in favor or against H1 based on the magnitude of B10 alone. Perhaps the most popular
categorization is “Jeffreys’ scale of evidence” (Jeffreys (1939), see Table 1).

Table 1: Jeffreys’ scale of evidence for Bayes factors (Jeffreys, 1939)
Bayes factor Interpretation

B10 < 1 H0 supported

1 < B10 < 101/2 Evidence against H0, but not worth more than a bare mention

101/2 < B10 < 10 Evidence against H0 substantial

10 < B10 < 103/2 Evidence against H0 strong

103/2 < B10 < 102 Evidence against H0 very strong
B10 > 102 Evidence against H0 decisive

Logarithms of Bayes factors are naturally symmetric about zero. To see this, assume
that H0 and H1 are equally likely a priori. Then, the posterior probability of H1 is the
standard logistic function in logB10: that is, P (H1 | D) = 1/[1+exp(− logB10)]. Changing
the sign of logB10 leads to the complement 1 − P (H1 | D), and P (H1 | D) = 1/2 if and
only if logB10 = 0.

In Bayesian hypothesis testing, the priors π(θ | H0) and π(θ | H1) must be chosen
carefully. Vague priors on θ, which are commonplace in estimation problems, can lead
to posterior probabilities that overwhelmingly support H0 no matter what the data are.
This phenomenon is known in the literature as Lindley’s paradox (see Lindley (1957) and
Robert (2014)), and it can occur when H1 represents a larger set than H0. In normal linear
regression problems, mixtures of g-priors have been studied carefully in Liang et al. (2008)
and Bayarri et al. (2012). They avoid Lindley’s paradox by having a fixed scale matrix
and they have other desirable properties such as invariance of Bayes factors with respect to
changes of measurement units and large-sample consistency. In Sections 4 and 5, we work
with priors within this class.

From a non-Bayesian perspective, we propose working with likelihood-ratio tests and
information criteria. The likelihood ratio of H1 to H0 is defined as
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Λ10 = max
θ∈Θ1

f(y | θ)/max
θ∈Θ0

f(y | θ).

The likelihood ratio Λ10 is similar to the Bayes factor B10, but instead of averaging the
likelihoods with weights given by π(θ | H1) and π(θ | H0), the likelihoods are maximized
under H1 and H0. Likelihood ratio tests are standard within the field of statistics and their
properties are well-characterized (see, for example, Lehmann and Romano (2005)). Under
mild conditions, the transformed log-likelihood ratio 2 log Λ10 is asymptotically distributed
as chi-squared under H0 and consistent under H1.

Finally, we define the class of information criteria

I10 = n−ρ/2 Λ10,

which encompasses AIC for ρ = 2p/ log n, BIC for ρ = p, and the likelihood ratio statistic
Λ10 for ρ = 0. For a fixed ρ, the information criterion I10 can be interpreted as a penalized
likelihood ratio, where ρ acts as a penalty for model complexity. For the normal linear
model, likelihood-ratio tests and AIC fail to be consistent under H0; BIC, on the other
hand, is consistent under H0 and H1. We refer the reader to Chapter 4 in the monograph
Claeskens et al. (2008) for a more general version of this result and a discussion on related
issues.

3.2 Model Averaging and Selection

In Section 5, we focus on model averaging and selection. The context is a regression problem
where there is an outcome variable Y ∈ Rn and p predictors collected in a design matrix
X ∈ Rn×p. We do not know which variables in X, if any, should be included in our model
for Y given X. This type of uncertainty is often referred to as model uncertainty. For an
introduction to the topic with a strong Bayesian flavor, we recommend Draper (1995).

Model uncertainty can be parameterized through a binary vector γ ∈ {0, 1}p that indi-
cates active predictors: γi = 0 if the ith predictor is not active and γi = 1 if it is. Concep-
tually, we assume that there is a true model generating the data identified by T ∈ {0, 1}p.
Given finite data D, we are do not know what the truth (T ) is. From a Bayesian perspective,
we can put a prior on γ and find posterior probabilities to quantify this uncertainty; from
a non-Bayesian perspective, we can find a point estimate of γ or average our uncertainty
over it with rules inspired by Bayesian procedures.

For each model, which we identify by its active predictors in γ ∈ {0, 1}p, we can compute
a Bayes factor or information criterion relative to the null model, which does not include
any active predictors. We denote these null-based Bayes factors and information criteria
Bγ0 and Iγ0, respectively. With these, we can perform model selection after maximizing
over γ or we can find model-averaged estimates with weights proportional to Bγ0 or Iγ0.

4. Hypothesis Testing

In this section, we describe differentially private methods for testing a null hypothesis H0

against an alternative H1. The methodology described here can be applied in general, but in
Section 4.1 we focus on nested linear regression models, for which we have found theoretical
guarantees.
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Our methods are based on the subsample and aggregate technique (Nissim et al., 2007).
It consists in splitting the data into M disjoint subgroups, computing statistics within the
subgroups, and averaging the results. The output is made differentially private by adding
a perturbation term η. The variance of η is increasing in the global sensitivity (i.e., the
range) of the statistics involved.

We apply the subsample and aggregate technique as follows. First, we split the data
into M disjoint subgroups of sample size b1, b2, ... , bM (

∑M
i=1 bi = n) and compute censored

statistics T ci = (Ti ∨ L) ∧ U ∈ [L,U ] for i ∈ {1, 2, ... ,M}, where Ti are raw statistics
computed from confidential data. After censoring the Ti, we know that they have global
sensitivity ∆ = U − L. Finally, we release the noisy average

∑M
i=1 T

c
i /M + η, where η is

a random perturbation term that ensures (ε, δ)-differential privacy. If δ = 0, then η ∼
L1(0,∆/(Mε)); if 0 < δ ≤ 1, then η ∼ N1(0, a∆2/(2Mε)), where a is a constant that can
be computed with Algorithm 1 in Balle and Wang (2018).

The confidential statistics Ti are logarithms of Bayes factors or logarithms of information
criteria. We justify working on a logarithmic scale for Bayes factors in the subsequent
paragraphs. A similar argument can be used to justify this choice for information criteria.

Let Bc
10,i be the censored Bayes factor in the ith subgroup. Naively, one could release the

noisy average
∑M

i=1B
c
10,i/M + η. Unfortunately, that approach has undesirable properties.

Under both the Laplace and analytic Gaussian mechanisms, η is supported on R and
symmetric around zero, whereas B10 is always non-negative and shows equal support to H0

and H1 when B10 = 1. If there are no privacy constraints, Bayes factors satisfy B01 = B−1
10 ,

but in general
∑M

i=1B
c
01,i/M + η 6= (

∑M
i=1B

c
10,i/M + η)−1.

Alternatively, we propose working on a logarithmic scale, defining

log B̃10 =
M∑
i=1

logBc
10,i/M + η, logBc

10,i = (logB10,i ∨ L) ∧ U.

Logarithms of Bayes factors are supported on R and, as we argued in Section 3, they have
a natural symmetry around zero, so it is sensible to add a zero mean perturbation term
on that scale. After exponentiating, we obtain a geometric mean of censored Bayes factors
with a multiplicative perturbation:

B̃10 = exp(η)

(
M∏
i=1

Bc
10,i

)1/M

.

Since the distribution of η is symmetric, (B̃10)−1 is equal in distribution to B̃01, and it is
exactly equal to B̃01 when η = 0 (i.e., when there are no privacy constraints). Geometric
means of Bayes factors have appeared in the objective Bayesian literature in geometric
intrinsic Bayes factors (Berger and Pericchi, 1996).

The statistic B̃10 is based on censored Bayes factors that are supported on [L,U ]. How-
ever, the support of B̃10 is not [L,U ] after introducing the perturbation term η. This issue
can be solved by censoring B̃10, defining

B∗10 = (B̃10 ∨ L∗) ∧ U∗, (1)
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where L∗ = exp(L) and U∗ = exp(U). With B∗10, we can define the differentially private
posterior probability of H1 given D as P ∗(H1 | D) = [1 − P (H0)]B∗10/{P (H0) + [1 −
P (H0)]B∗10}.

Following the same reasoning, we can define a differentially private information criterion

I∗10 = (Ĩ10 ∨ L∗) ∧ U∗ (2)

Ĩ10 = exp(η)

(
M∏
i=1

Ic10,i

)1/M

Ic10,i = (b
−ρ/2
i Λ10,i ∨ L) ∧ U.

4.1 Nested Linear Regression Models

Consider the normal linear model

Y = X0β0 +Xβ + σW, W ∼ Nn(0n, In),

where X0 ∈ Rn×p0 and X ∈ Rn×p are full-rank and n > p+ p0. In this section, we present
differentially private methods for testing H0 : β = 0p against H1 : β 6= 0p. The set of
predictors in X0 is common to H0 and H1 and it can be, for instance, an intercept 1n.

For the Bayesian methods, we define our priors after reparameterizing the model. We
rewrite the model as Y = X0ψ + V β + σW for V = (In − PX0)X and ψ = β0 +
(X ′0X0)−1X ′0Xβ. In this parameterization, the common predictors X0 are orthogonal to V ,
which is specific to H1. If X0 is an intercept 1n, the reparameterization simply centers the
predictors in X.

Our prior specification is

π(ψ, σ2) ∝ 1/σ2, π(β | σ2, H1) =

∫ ∞
0

Np(β | 0p, gσ2(V ′V )−1)π(g) ν(dg).

where ν is an appropriate dominating measure. We allow the prior measure on g to depend
on n and p, but not on Y .

The prior on (ψ, σ2) is the right-Haar prior for this problem, which is improper, whereas
β | σ2, H1 is a mixture of g-priors. This class of priors has strong theoretical support (see
Liang et al. (2008) and Bayarri et al. (2012) for details). For example, it leads to Bayes
factors and posterior probabilities of hypotheses that are invariant with respect to invertible
linear transformations of the design matrix V , such as changes of units. This property would
not be satisfied if we had chosen a diagonal covariance matrix for β | g, σ2, H1.

The prior distribution for β0 and σ2 is improper, so the marginal distributions can only
be defined up to arbitrary multiplicative constants. We use the same constants for both H0

and H1, which is justified by the principle of invariance (Berger et al., 1998) and predictive
matching arguments (Bayarri et al., 2012).

When the data are not confidential, we can report the Bayes factor (Liang et al., 2008):

B10 =

∫ ∞
0

(g + 1)(n−p−p0)/2[1 + g(1−R2)]−(n−p0)/2 π(g) ν(dg), (3)
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where R2 = Y ′PV Y/Y
′(In−PX0)Y or, from a non-Bayesian perspective, we can report the

information criterion

I10 = n−ρ/2Λ10 = n−ρ/2(1−R2)−n/2. (4)

If there are privacy constraints, B10 or I10 cannot be released directly. We propose
applying the subsample and aggregate technique to release differentially private versions of
B10 and I10. That is, we split up the data set into M disjoint subgroups of sample sizes
b1, b2, ... , bM (

∑M
i=1 bi = n), define priors πi(gi) and penalties ρi for i ∈ {1, 2, ... ,M}, and

release B∗10 and I∗10 as defined in Equations (1) and (2), respectively.

Proposition 1 below states that B∗10 and I∗10 are consistent under some regularity condi-
tions. Consistency does not follow from Liang et al. (2008) for various reasons. First, there
is a growing number of subgroups and the sample sizes within the subgroups grow to infin-
ity. Another difference is that the Bayes factors are censored and there is a perturbation
term η. Our result does not follow directly from Smith (2011), either. Smith (2011) studies
the asymptotic behavior of averages

∑M
i=1 Ti/M released with the subsample and aggregate

method. If T ∗i is the “true value” of Ti, Lemma 6 in Smith (2011) assumes that
√
bi(Ti−T ∗i )

is asymptotically normal, E(Ti) − T ∗i ∈ O(1/bi), and E{[
√
bi(Ti − T ∗i )]3} ∈ O(1). Further-

more, the results in Smith (2011) are for independent and identically distributed data. In
our case, it is unclear whether the asymptotic conditions are satisfied (if they are, it would
require proof), and we would need additional assumptions on, at least, the design matrices,
the priors πi(gi), and the penalties ρi. Instead of verifying the conditions in Smith (2011),
our proof uses a union bound and tail inequalities for R2.

Proposition 1 Under the regularity conditions listed below, B∗10 and I∗10 are consisten:
under H0, B∗10 →P 0 and I∗10 →P 0; under H1, (B∗10)−1 →P 0 and (I∗10)−1 →P 0.

1. Well-specified model: The raw confidential data are generated from the normal
linear model described in this section.

2. Growth of M and bi: limn→∞M = ∞ and limn→∞ infi∈1:M bi = ∞. If p ≥ 2,
limn→∞ supi∈1:M M/bi = 0 and, if p = 1, limn→∞ supi∈1:M M

√
log bi/bi = 0.

3. Censoring limits: limn→∞ L = −∞, limn→∞ U =∞.

4. Privacy parameters: The privacy parameters ε and δ are such that limn→∞(U −
L)/(Mε) = limn→∞ a(U − L)2/(Mε) = 0.

5. Design matrices: Under H1, limn→∞ infi∈1:M β′TX
′
iXiβT /(σ

2
T bi) > 0, where βT and

σ2
T are the fixed true values of β and σ2, respectively.

6. Priors on gi and penalties ρi:

lim
n→∞

sup
i∈1:M

∫ ∞
0

b
p/2
i (gi + 1)−p/2πi(gi) ν(dgi) <∞, ρi ≤ max(p, log bi)

lim
n→∞

inf
i∈1:M

∫ ∞
bi

b
p/2
i (gi + 1)−p/2πi(gi) ν(dgi) > 0, ρi ≥ p.
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Assumption 1 states that the model for the confidential data is well-specified. We explic-
itly state this assumption because it is not necessarily satisfied in Section 5. Assumption 2
implies that both the number of subgroups M and the sample sizes within the subgroups bi
grow to infinity, and it imposes conditions on the growth of M relative to the growth of bi.
Assumption 3 assumes that the censoring limits increase with the sample size. Assumption
4 is related to the privacy parameters ε and δ. It holds for fixed ε and δ, but it also includes
cases where ε and δ depend on n. However, the dependency has to be such that, ultimately,
η converges to zero in probability: the privacy parameters cannot decrease too fast, relative
to the censoring limits. Assumption 5 is a regularity condition on design matrices that is
commonly made in the literature (see Equation (22) in Liang et al. (2008) or Equation (17)
in Bayarri et al. (2012)). Finally, when combined with the previous assumptions, Assump-
tion 6 is sufficient for establishing consistency. It imposes conditions on the prior on gi or,
from a non-Bayesian perspective, the model complexity penalties ρi. Priors such as Zellner’s
g-prior with gi = bi, the robust prior proposed in Bayarri et al. (2012), and Zellner-Siow
(Zellner and Siow, 1980) satisfy the conditions. The differentially private version of BIC
satisfies the conditions on ρi, but AIC and the likelihood ratio statistic do not. When there
are no privacy constraints, both AIC and the likelihood ratio statistic fail to be consistent
under H0 (Claeskens et al., 2008).

Data-splitting is a commonly used strategy for analyzing big data (see, for instance, Chen
et al. (2021) for a review on the topic). Proposition 1 establishes consistency of mixtures
of g-priors and information criteria if the data are split into independent subgroups, with
or without privacy constraints (the latter corresponds to the case where ε → ∞). To the
best of our knowledge, there are no equivalent results in the literature.

The Bayes factors and information criteria we work with are misspecified, since the
observed values are perturbed averages of censored statistics. Therefore, Proposition 1
can be of interest to those studying the properties of Bayesian procedures under model
misspecification models, in the spirit of Rossell and Rubio (2019).

4.2 Quantifying the Uncertainty Introduced by the Mechanism

Given a differentially private Bayes factor, likelihood ratio or information criterion, we can
find a confidence interval that quantifies the uncertainty introduced by the privacy-ensuring
mechanism.

Let T̃ =
∑n

i=1 T
c
i /M + η be a differentially private statistic, and let η1−α/2 be the

(1−α/2)-th quantile of the perturbation term η. Then, C̃α = T̃ ±η1−α/2 = [l̃α, ũα] is a 1−α
confidence interval for

∑n
i=1 T

c
i /M . The interval can be shortened because

∑n
i=1 T

c
i /M ∈

[L,U ], so C1−α = [(l̃α∨L)∧U, (ũα∨L)∧U ] is also a 1−α confidence interval for
∑n

i=1 T
c
i /M .

Confidence intervals for transformations f(T̃ ) can be found by applying f to the the
endpoints of C1−α. For Bayes factors of H1 to H0, the transformation is f(x) = exp(x); for
posterior probabilities of H1, it is f(x) = [1−P (H0)] exp(x)/{P (H0)+ [1−P (H0)] exp(x)}.

4.3 Effects of Censoring and Data-splitting

The subsample and aggregate technique requires the specification of censoring limits L < U
and a number of subgroups M . These choices affect the performance of the methods, which
is well-acknowledged in the literature (see Evans et al. (2020), Covington et al. (2021), and
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Ferrando et al. (2022)). These articles focus on bias correction to obtain unbiased point
estimates and valid confidence intervals. Our context is different: since we are concerned
with hypothesis testing, the bias correction takes the form of correcting critical values to
ensure appropriate type I errors.

Differentially private likelihood ratios Λ∗10 are not distributed as their non-private coun-
terparts. Therefore, the critical values for rejecting H0 with Λ∗10 must be bias-corrected to
guarantee adequate type I error rates.

We can find corrected critical values for Λ∗10 via simulation. In the linear regression
model, Λ∗10 depends on the data only through R2

i , which under H0 are distributed as beta
with shape parameters p/2 and (bi − p− p0)/2. We can repeatedly simulate R2

i under H0,
compute Λ∗10, and estimate the correct critical value with empirical quantiles. In contexts
other than linear regression models, the adjustments can be done approximately since, under
mild conditions, Wilks’ theorem establishes that the transformed likelihood ratio statistic
2 log Λ10 is asymptotically distributed as chi-squared under H0.

In the remainder of this section, we quantify the effects of censoring and splitting the data
in terms of bias-variance trade-offs. In Appendix B, we present the results of a simulation
study that aims to quantify these trade-offs. Our conclusion is consistent with what we
report here.

Given the symmetric nature of logarithms of Bayes factors (explained in Section 3), we
specify symmetric censoring limits L = −C and U = C for C > 0. Information criteria with
penalties as specified in Proposition 1 (a prime example being BIC) are consistent under
H0 and H1, so it is sensible to specify symmetric censoring limits for their logarithms. On
the other hand, log-likelihood ratios are non-negative for nested models (which is the case
we consider in Section 4), so L = 0 is a natural lower bound for them. In what follows,
we assume that the confidential statistics are censored with the limits we have described in
this paragraph.

Let T̃ =
∑n

i=1 T
c
i /M+η be an ε-differentially private statistic released by the subsample

and aggregate technique (similar arguments can be made for (ε, δ)-differentially private
statistics with δ > 0). Then,

Var(T̃ ) =

[
n∑
i=1

Var(T ci ) + 2∆2/ε2

]
/M2.

The variance of T̃ is clearly decreasing in the number of subgroups M , and it is increasing
in the sensitivity ∆ = U − L because Var(T ci ) is increasing in ∆.

The bias of the differentially private T̃ with respect to T , which is the statistic we would
obtain without censoring or splitting the data, can be decomposed into the bias induced by
censoring plus the bias induced by splitting the data:

E(T̃ − T )︸ ︷︷ ︸
total bias

= E

{
M∑
i=1

T ci /M −
M∑
i=1

Ti/M

}
︸ ︷︷ ︸

censoring bias

+E

{
M∑
i=1

Ti/M − T

}
︸ ︷︷ ︸

data-splitting bias

.

The censoring bias is decreasing in the sensitivity ∆ and the number of subgroups M . In
the case of logarithms of Bayes factors and information criteria, where the censoring is
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symmetric about zero, the censoring bias is

1

M

M∑
i=1

{P (Ti ≤ −C) [−C −E(Ti | Ti ≤ −C)] + P (Ti ≥ C) [C −E(Ti | Ti ≥ C)]} .

The censoring bias would be zero if the Ti were symmetric about zero. However, the
distributions of logarithms of Bayes factors and information criteria tend to be asymmetric
because they are consistent: under H0, logarithms of Bayes factors and information criteria
tend to be negative, favoring the null; under H1, they tend to be positive, favoring the
alternative. If the distribution of the Ti is not symmetric about zero, the censoring bias
decreases in ∆ = 2C and M . In the case of log-likelihood ratio statistics, the censoring bias
is

1

M

M∑
i=1

P (Ti ≥ U)[U −E(Ti | Ti ≥ U)],

which is decreasing in the upper censoring limit U and the number of subgroups M .
The data-splitting bias is harder to characterize generally but, through examples and

simulations, we observe that it is typically increasing in the number of subsets. In the case
that the subgroups are balanced (bi = b for all i ∈ {1, 2, ... ,M}) the data-splitting bias is

E

{
M∑
i=1

Ti/M − T

}
= E(Ti − T ),

where Ti is the same statistic as T but computed with fewer observations. If Ti and T were
functions like the sample mean, this term would be zero, but for our statistics, this bias will
be non-zero (in general). Intuitively, if the number of subgroups is large and Ti is based
on a smaller sample, the bias will tend to increase. This phenomenon occurs empirically in
Section 4.4 and Appendix B, where the bias increases as the number of subgroups increase.
For a more analytical argument, the example below considers the case where Ti and T are
log-likelihood ratios. In this case, we are able to find the data-splitting bias under the null
hypothesis. This example is relevant because our information criteria and Bayes factors
depend on the data only though log-likelihood ratios.

Example 1 Assume the subgroups are balanced (bi = b for all i ∈ {1, 2, ...M}), so we have

Ti = log Λ10,i = −b log(1−R2
i )/2, T = log Λ10 = −n log(1−R2)/2.

Under H0, 1−R2
i ∼ Beta((b−p−p0)/2, p/2) and 1−R2 ∼ Beta((n−p−p0)/2, p/2). Using

properties of the beta distribution, the bias under H0 is

E(Ti − T ) =
b

2

[
ψ

(
b− p0

2

)
− ψ

(
b− p− p0

2

)]
− n

2

[
ψ

(
n− p0

2

)
− ψ

(
n− p− p0

2

)]
,

where ψ is the digamma function (Abramowitz et al., 1964). Using properties of the
digamma function, it is straightforward to see that the bias is positive and increasing as
the number of subgroups increases (i.e., as b decreases). The bias is zero, as it should be,
when there is no data-splitting and b = n.
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In conclusion, we observe two bias-variance tradeoffs:

1. Censoring: Increasing the sensitivity ∆ = U − L decreases the bias but increases
the variance of the differentially private statistic.

2. Data-splitting: Increasing the number of subgroups M decreases the variance of
the differentially private statistic. The relationship between M and the total bias
is slightly more complicated: increasing the number of subgroups decreases the cen-
soring bias, but it increases the data-splitting bias. In our empirical evaluations, we
systematically observe that the total bias of the statistic is increasing in M .

4.4 Application: High School and Beyond Survey

We analyze a random sample of 200 students from the High School and Beyond survey,
which was conducted by the National Center of Education Statistics. We obtained the data
from Diez et al. (2012). In R, they are available as data(hsb2) in library(openintro).

We consider two hypothesis tests. Both have math scores as their outcome variable Y .
In the first one, we test if the variable gender (which, in this data set, can take on the
values male or female) is predictive of math scores. Under the null hypothesis (H01), the
model contains only an intercept, whereas under the alternative (H11), the model includes
an intercept and gender as a predictor. Then, we test if read scores are predictive of math
scores when science scores are already in the model. In the null hypothesis (H02), the
model includes an intercept and science scores. Under the alternative hypothesis (H12),
the model contains an intercept, science scores, and read scores.

In Figure 1, we show the distribution of the differentially private posterior probabilities
P ∗(H11 | D) and P ∗(H12 | D) for different combinations of ε and M , simulating random
data splits and perturbation terms η ∼ L1(0,∆/(Mε)). Our prior probabilities on the
hypotheses are P (H01) = P (H02) = 0.5, and the prior on the regression coefficients is
Zellner’s g-prior with gi equal to the sample sizes of the subgroups bi. We censor logarithms
of Bayes factors at L = log((1−0.99)/0.99) and U = log((1−0.01)/0.01), which is equivalent
to censoring posterior probabilities of hypotheses at 0.01 and 0.99, respectively. Each error
bar has been computed with 104 simulations.

As expected, increasing ε and M reduces the variability in P ∗(H11 | D) and P ∗(H12 | D).
Additionally, M induces a conservative bias, in the sense that the posterior probabilities
are shrunk towards 0.5. For example, if M = 10 and ε is large, P ∗(H11 | D) ≈ 0.25 and
P ∗(H12 | D) ≈ 0.70, which are more conservative than the confidential answers P (H11 |
D) ≈ 0.07 and P (H12 | D) ≈ 0.99.

In Figure 2, we show the distributions of 2 log Λ∗10,1 and 2 log Λ∗10,2 for L = 0, U = 7,
ε = 1, and different values of 0 < δ < 1. We treat the data as fixed and quantify the
uncertainty introduced by splitting the data randomly and the perturbation term η, which
in this case is normally distributed. The non-private test of H01 against H11 does not reject
H01 at the 0.01 or 0.05 significance levels, whereas the non-private test of H02 against H12

rejects H02 at the 0.01 and 0.05 significance levels. In fact, 2 log Λ10,2 is greater than U .

As we argued in Section 4.3, the critical values for rejecting the null hypothesis have to
be corrected to take the censoring and data-splitting into account. When δ is small and
M ∈ {2, 5}, the corrected critical values (gray + and M) are larger than the uncorrected
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Figure 1: Distribution of P ∗(H11 | D) and P ∗(H12 | D) as a function of ε and M . The lower
endpoint of the error bars is the first quartile of the distribution, the midpoint is
the median, and the upper endpoint is the third quartile. The dashed lines are
the true confidential posterior probabilities.

ones (black + and M), so if we did not correct the critical values, we would have inflated
type I errors. For larger δ and M = 10, the corrected critical points are lower than the
uncorrected ones, showing that correcting critical values can increase power. The distri-
bution of 2 log Λ∗10,1 is generally below the corrected critical values, which coincides with
the confidential decision of not rejecting the null. In the case of 2 log Λ∗10,2, corrected tests
would reject the null most of the time, in agreement with the confidential answer, especially
when M > 2 and δ ≥ 0.25.

In Section B of the Appendix, we repeat the simulation study with different censoring
limits. Decreasing the sensitivity U − L decreases the variance, but it can introduce bias
and lead to tests that are not powerful. In the next subsection, we give simple guidelines
to set the censoring limits.

4.5 Guidelines

In Section 4.4, we observed a bias-variance tradeoff when choosing the number of subgroups
M : as M increases, the variability introduced by η decreases at the expense of introducing
some bias.

Before obtaining a private statistic, users can simulate mean squared errors to decide
the value of M that is most appropriate in their application. The simulations can be run
for different values of R2. Another option is using the sampling distribution of R2, which
is known, and average our uncertainty over it.
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Figure 2: Distribution of 2 log Λ∗10,1 and 2 log Λ∗10,2 as a function of δ and M . The gray + and
M are corrected critical values at the 0.01 and 0.05 significance levels, respectively.
The black + and M are uncorrected critical values. Dashed horizontal lines are
2 log Λ10,1 (first row) and U = 7 (second row).

The bounds L and U can be values of the confidential statistic that users consider
small or large enough. Stringent censoring decreases the variance of the output, but it can
introduce substantial bias if the true posterior probability or likelihood ratio lies outside
the censoring limits. In Section 4.4, we chose L and U that were equivalent to censoring
posterior probabilities at 0.01 and 0.99, respectively, since those values indicate strong
support against or in favor of hypotheses. Practictioners can also use Jeffreys’ scale of
evidence (Table 1) to censor Bayes factors instead of posterior probabilities. In the case of
likelihood ratios, we recommend setting the lower censoring bound L to 0, which is natural
in this case, and let the upper censoring value be greater than the critical value for rejection
of the non-private test to avoid loss of power. Setting U to approximately twice the critical
value performed well in our applications.

5. Model Averaging and Selection

In this section, we work with the normal linear model as defined in Section 4, but instead
of comparing two nested models, we consider all the 2p models that can be constructed by
taking subsets of columns of X. We express our model uncertainty through a binary vector
γ = (γ1, γ2, ... , γp)

′ ∈ {0, 1}p such that γj = 0 if and only if βj = 0. We use the notation
|γ| =

∑p
j=1 γj for the number of active coefficients in a model.

Given a model indexed by γ, we write the linear model as

Y = X0β0 + Vγβγ + σW, W ∼ Nn(0n, In),
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where βγ ∈ R|γ|×1 is a vector including the βj such that γj = 1 and Vγ ∈ Rn×|γ| is a matrix
with the active variables in γ. Just as we did in Section 4, we parameterize the model so
that X0 and Vγ are orthogonal. For convenience, we denote the null model where none of
the variables are active as γ = 0. The matrix X0 represents a set of predictors we are sure
to include in our model. Usually, X0 contains an intercept 1n, but it can be empty as well.
If X0 is empty, the methods in this section would be defined in analogous manner after
replacing In − PX0 by In.

From a Bayesian perspective, our prior specification on the regression coefficients βγ is
the same we had in Section 4: we put mixtures of g-priors on βγ | σ2, γ and the right-Haar
prior π(ψ, σ2) ∝ 1/σ2 on the common parameters. If γ is not the null model, the expression
for the non-private Bayes factor of model γ to the null model, denoted Bγ0, is identical to
the one in Equation (3) after substituting p by |γ| and R2 by R2

γ = Y ′PVγY/Y
′(I −PX0)Y .

If γ is the null model, we have Bγ0 = 1.

Given a prior distribution π(γ) on γ, the posterior probability of the model identified
by γ given the data D is defined as

P (γ | D) = P (γ)Bγ0/
∑

γ̃∈{0,1}p
P (γ̃)Bγ̃0,

which depends on the data only through the Bayes factors Bγ0. We assume that the prior
P (γ) can depend on p, but not on n or the design matrix. Most common choices for P (γ),
like a uniform prior P (γ) = 2−p or the hierarchical uniform prior recommended by Scott
and Berger (2010) satisfy the condition.

From a non-Bayesian perspective, the information criteria I∗γ0 are as in Equation 4 after

substituting R2 by R2
γ and ρ by ρ|γ|, where ρ|γ| is an increasing function in |γ| such as

ρ|γ| = |γ|.
We could use the method in Section 4.1 to release differentially private versions of all the

Bγ0 or Iγ0. However, if we released those 2p statistics, the variance of the private statistics
would increase exponentially in p. Instead, we propose working with a perturbed version of
a sufficient statistic whose dimension increases quadratically in p.

Let Z = (I − PX0)Y ∈ Rn×1 be the null-centered outcome variable and V ∈ Rn×p be
the design matrix of the full model that includes all p predictors, which we collect in a data
matrix D = [V ;Z]. Assuming Z ′Z > 0 almost surely, we define

G = D′D =

[
V ′V V ′Z
Z ′V Z ′Z

]
=

[
V ′V V ′Y
Y ′V Y ′(I − PX0)Y

]
.

The Gram matrix G is a sufficient statistic for the normal linear model (see, for example,
Seber and Lee (2012)). As a consequence, all of the R2

γ , Bγ0, and Iγ0 can be constructed
by taking appropriate subsets of G.

We propose releasing a noisy version of the sufficient statisticG, a technique known in the
differential privacy literature as sufficient-statistic perturbation (see, for example, McSherry
and Mironov (2009); Vu and Slavkovic (2009) and Bernstein and Sheldon (2019)).

We construct a differentially private version of G by adding a random perturbation term,
defining G∗ = G+E, where E is a random perturbation matrix that ensures differential pri-
vacy. To ensure ε-differential privacy, we use the Laplace mechanism. For (ε, δ)-differential
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privacy with 0 < ε < 1 and 0 < δ ≤ 1, we use Algorithm 2 in Sheffet (2019), which we refer
to as the Wishart mechanism.

To establish the parameters of the distribution of E, we assume that there are lower
and upper bounds for the data: that is, there are l and u such that each entry dij in D is
within the interval [l, u]. Since the response and predictors are centered, l < 0 and u > 0.
The entries of G = D′D are of the form

∑n
i=1 dijdij′ . Here, d1j is the first row and jth

column of D. If we replace this entry by another one, say d̃1j′ , then the maximum absolute
difference in the entries of G is |d1jd1j′ − d̃1j d̃1j′ |. When computing the sensitivity ∆1, we
only consider the entries where j ≥ j′ because G is symmetric. Therefore, the sensitivity
∆1 can be upper-bounded as follows:

∆1 = sup
D∼D̃

‖D′D − D̃′D̃‖1

= sup
D∼D̃

∑
j≥j′
|d1jd1j′ − d̃1j d̃1j′ |

=
∑
j≥j′

sup
D∼D̃

|d1jd1j′ − d̃1j d̃1j′ |

≤ (p+ 1)(p+ 2) sup
d11, d11′∈(u,l)

|d11d11′ |

≤ (p+ 1)(p+ 2)(l2 ∨ u2).

For the Laplace mechanism, we define the perturbation term E as a symmetric random
matrix of the form

E =


e11 e12 ... e1,p+1

e12 e22 ... e2,p+1
...

...
. . .

...
e1,p+1 e2,p+1 ... ep+1,p+1

 ,
where ejj′

iid∼ L1 (0,∆1/ε), for j ≥ j′, and ej′j = ejj′ . For the Wishart mechanism (i.e.,
Algorithm 2 in Sheffet, 2019), we need a uniform bound on the Euclidean norm of the rows
of D. Given the assumption l < dij < u, we can use

√
(p+ 1)(l2 ∨ u2) as a uniform bound.

In this case, given the bound, we define the random perturbation as E = M −E(M), where
M ∼ Wp+1(k, (p + 1)(l2 ∨ u2)Ip+1) and k = bp + 1 + 28 log(4/δ)/ε2c with 0 < ε < 1 and
0 < δ ≤ 1.

For both mechanisms, the variances of the entries in E can be high, especially for
small values of ε or δ. This, in turn, can lead to outputs that overestimate the number of
active predictors. To avoid this issue, we propose post-processing G∗ in two ways: hard-
thresholding off-diagonal elements as in Bickel et al. (2008) and adding a constant r to the
diagonal elements.

We propose thresholding the off-diagonal entries of G∗ at eλ, the λ-th percentile of Eij .
More formally, we define G∗∗ to be the matrix with typical element G∗ij1(i = j or |G∗ij | ≥
eλ). This choice can be justified as follows: if an off-diagonal entry of G∗ij = Gij + Eij is
not an extreme value in the distribution of Eij , it is likely that G∗ij is essentially Eij and
Gij is nearly zero.

Adding a constant r to the diagonal elements of G∗ can be seen as a ridge-type of
regularization that can reduce the variability of the output. It can also be used to guarantee
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that the output is positive-definite because, after adding the Laplace perturbation terms, G∗

may not be positive-definite. In fact, the hard-thresholded matrix G∗∗ need not be positive-
definite even if G∗ is positive-definite (Bickel et al., 2008). Given a symmetric matrix A,
which here can be either G∗ or G∗∗, the matrix Ar = A+ rIp+1 is positive-definite as long
as r > −eigmin(A), where eigmin(·) is a function returning the minimum eigenvalue of a
matrix.

In essence, we propose releasing a differentially private Gram matrix G∗, which we then
transform to obtain a better estimate of G. Then, we use the formulas we would use if we
had access to G after plugging in its differentially private estimate.

In our applications (in Section 5.2), we consider methods that hard-threshold G∗ and
methods that do not. That is, we compare methods that are based on G∗∗r = G∗∗+rIp+1 to
methods based on G∗r = G∗ + rIp+1, where G∗ is not hard-thresholded. In our experience,
hard-thresholding is helpful when the ground truth is sparse, but it can be detrimental
when most predictors are active. We justify this argument in Section 5.2.

Proposition 2 establishes model-selection consistency under some assumptions. More
precisely, we show that the differentially private Bayes factor of any model γ to the true
model, which can be expressed as B∗γT = B∗γ0/B

∗
T0, converges to zero in probability for

any γ 6= T . The differentially private information criteria I∗γT are also consistent under the
assumptions listed below. We proved the result by characterizing the asymptotic behavior
of G∗r , G

∗∗
r , and R2,∗

γ , and then bounding the Bayes factors and information criteria above
and below. Just as we had in Section 4, the proof covers ε and (ε, δ) differentially private
methods. The proof does not follow from Liang et al. (2008) for several reasons, one of
them being that we are not assuming that the response given the covariates is normal, since
we assume that the data are bounded.

Proposition 2 Let T ∈ {0, 1}p be a vector indexing the truly active predictors. As n→∞,
and under the regularity conditions listed below, B∗γT →P 0 and I∗γT →P 0 for any γ 6= T .

1. Boundedness: The data D are within the interval [l, u] for finite l and u.

2. Regression mean and variance: E(Y | X0, V ) = X0ψ + VTβT and Var(Y |
X0, V ) = σ2

T In, where VT ∈ Rn×pT is a matrix that contains the truly active pre-
dictors.

3. Privacy parameters: The privacy parameters ε and δ are such that the matrix
perturbation term E/n→P 0.

4. Regularization parameters: λ is fixed and r is so that limn→∞ r/n = 0.

5. Design matrices: limn→∞ V
′V/n = S1, where S1 is symmetric and positive-definite.

6. Priors on g and penalties ρ: for all 1 ≤ |γ| ≤ p, the prior π(g) satisfies

lim
n→∞

∫ ∞
0

np/2 (g + 1)−|γ|/2π(g) ν(dg) <∞

lim
n→∞

∫ ∞
n

np/2(g + 1)−|γ|/2π(g) ν(dg) > 0,
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or from a non-Bayesian perspective, ρ|γ| is increasing in |γ| and satisfies |γ| ≤ ρ|γ| ≤
|γ| ∨ log n.

The framework here is different to the one in Section 4. We assume that the confidential
data are bounded (Assumption 1) and do not assume that the distribution of the outcome
given the predictors is normal. In other words, Bayes factors and information criteria are
misspecified beyond the addition of the perturbation term E. Nonetheless, Proposition 2
shows that the methods are consistent. Our setup is also distinct to the one adopted in Lei
et al. (2018), where it is simultaneously assumed that the response is normal (Assumption 1
in Lei et al. (2018)) and bounded (Assumption 4). Assumption 2 requires that the regression
mean be well-specified and that the covariance of the response given the predictors be
spherical. Assumption 3 forces the perturbation matrix E to be so that E/n→P 0. As we
had in Section 4, it suffices to let ε and δ be fixed for it to hold. Assumption 4 imposes
conditions on the regularization parameters. The case of a non-thresholded matrix G∗r is
included as λ = 0. Assumption 5 is similar to the regularity condition on design matrices
in Proposition 1. Finally, Assumption 6 is essentially the same as the assumptions on the
priors and penalties in 2. Just as we had in Section 4, the differentially private Bayes factors
with Zellner’s g-prior with g = n, the robust prior, Zellner-Siow, and BIC are all consistent,
and so is BIC.

In the common scenario where X0 is an intercept 1n, the methods described in this
section can be conveniently implemented in R with the bas.lm function in library(BAS)

(Clyde, 2020). Given a set of predictors and an outcome variable, the bas.lm function
enumerates Bayes factors for small to moderate p and samples from the model space for large
p. The function outputs other statistics of interest such as posterior inclusion probabilities
and model-averaged estimates. To use bas.lm for our problem, we need to generate a
synthetic data set D (containing both centered predictors and outcome) whose sufficient
statistic D′D is equal to a fixed Gram matrix G, which can be G∗r or G∗∗r . Proposition 3
below shows how to obtain such a synthetic data set D = [V;Z] given a matrix G.

Proposition 3 Let U ∈ Rn×(p+1) be a full-rank matrix and define M = (In − 1n1′n/n)U .
Given a matrix G, we can generate a synthetic data set D = [V;Z] with the formula D =
M(M′M)−1/2G1/2. The synthetic data set D satisfies the identities D′D = G, V ′1n = 0p,
and Z ′1n = 0.

Proposition 3 guarantees that the outputs we obtain from running bas.lm on the syn-
thetic data D are identical to what we would find by taking subsets of G directly. In the
proposition, the matrix U is arbitrary; in practice, its entries can be simulated by sampling
independently from the uniform distribution.

5.1 Quantifying the Uncertainty Introduced by the Mechanism

With the non-thresholded methods, the private statistics are of the form G∗r = G+E+rIp+1.
Since r and the distribution of E are both known, we can define a confidence set for the non-
private G given G∗r . With such a set, it is possible to find confidence regions for summaries
of interest T (G) like least-squares estimates or inclusion probabilities.

To define a 1−α confidence set for G, we first find E1−α such that P (E ∈ E1−α) = 1−α.
For a matrix norm ‖·‖, define E1−α = {E : ‖E − E(E)‖ ≤ q1−α} where P [‖E − E(E)‖ ≤
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q1−α] = 1− α. Then, C̃1−α = {G∗r − rIp+1 − E : E ∈ E1−α} is a 1− α confidence set for G.
Since G is symmetric and positive-definite, we can intersect C̃1−α with the set of symmetric
positive-definite matrices S++ to define a 1−α confidence region C1−α = C̃1−α∩S++ whose
volume is at most that of C̃1−α. The confidence set C1−α can be transformed into T (C1−α)
to produce confidence sets for summaries of interest T (G).

We can approximate T (C1−α) with a rejection sampler. First, simulate E1, E2, ... , Ensim

from the appropriate mechanism and compute ‖Ei − E(E)‖ for i ∈ {1, 2, ... , nsim}. Then,
approximate the ((1− α)× 100)th percentile q1−α with its empirical version q̂1−α = inf{q :∑nsim

i=1 1(‖Ei −E(E)‖ ≤ q)/nsim ≥ 1− α} and define Ê1−α = {Ei : ‖Ei −E(E)‖ ≤ q̂1−α, i =

1, . . . , nsim}. After that, we can find T (Ĉ1−α); that is, compute T (G∗r − rIp+1 − Ei) for
Ei ∈ Ê1−α and only keep those such that G∗r − rIp+1 − Ei ∈ S++. This computational
strategy to construct T (C1−α) is an application of the parametric bootstrap: the quantity
to be inferred is the unknown confidential summary T (G), and the only source of randomness
is the noise injected into G to make it differentially private.

In general, the confidence set need not be an interval, but we can summarize the confi-
dence set with a histogram. To do so, we define the bins of the histogram as Bk = [tk−1, tk)
with min{T (Ĉ1−α)} = t0 < t1 < . . . < tK−1 < tK = max{T (Ĉ1−α)} and their cor-
responding relative frequencies #Bk using the number of elements of T (Ĉ1−α) that fall
in Bk, k = 1, . . . ,K. We denote the histogram summarizing T (Ĉ1−α) as Hist(T, Ĉ1−α) =
{(Bk,#Bk)}Kk=1. We can also report histograms in a density scale; that is, Hist(T, Ĉ1−α) =
{(Bk, dk)}Kk=1, where

dk =
#Bk

|T (Ĉ1−α)|(tk − tk−1)

and |T (Ĉ1−α)| denotes the cardinality of T (Ĉ1−α). While Hist(T, Ĉ1−α) displays the distri-
bution of the estimator of T (G) constrained to T (Ĉ1−α), its support, denoted by [t0, tK ],
corresponds to an 1 − α confidence interval. This is because t0 = minT (Ĉ1−α) and
tK = maxT (Ĉ1−α). Therefore, analysts can directly report [t0, tK ] as the confidence in-
terval, if desired. Additionally, analysts can use the histogram to assess whether [t0, tK ]
provides a good representation of the set T (Ĉ1−α). They can also consider if T (Ĉ1−α) would
be better represented by the union of non-adjacent intervals.

5.2 Empirical Evaluations

We evaluate the performance of the methods described in this section in a simulation study
and an application. The simulation study is similar to the one in Liang et al. (2008),
whereas the real data set is a subset of the March 2000 Current Population Survey that
was analyzed in Barrientos et al. (2019).

We implement the methods with the R package BAS (Clyde, 2020). In the simulation
study, we found Bayes factors with the Zellner-Siow prior (ZS) and information criteria
with BIC. The prior distribution on the model space π(γ) is the hierarchical uniform prior
proposed in Scott and Berger (2010). From a non-Bayesian perspective, π(γ) acts as a
function that weighs the information criteria. The results with Zellner-Siow and BIC are
almost identical. We report the outputs based on the former here and show the results with
the latter in Appendix C.
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We compare the results we obtain by hard-thresholding and not thresholding the Gram
matrix G∗. In all cases, we add a regularization parameter r to the diagonal entries of G∗.
For the Laplace mechanism, we set r to be the 99-th percentile of eigmin(E), which we find
via simulation. For the Wishart mechanism, we use the analytical expression in Remark 2
of Sheffet (2019).

5.2.1 Simulation Study

We simulate data from a normal linear model with p predictors, where p is set to 2, 6,
or 9. The sample size n (in thousands) varies from 5 to 10, 000. The number of active
predictors in the true model |T | depends on the value of p and ranges from 0 (null model
is true) to p (full model is true). Specifically, if p = 2, we set |T | ∈ {0, 1, 2}; if p = 6, we
set |T | ∈ {0, 3, 6}; and if p = 9, we set |T | ∈ {0, 4, 9}. The predictors are independently
drawn from the uniform distribution on (−2, 2). Following Hastie et al. (2017), we define
the signal-to-noise ratio (SNR) as the variance of the regression mean (which is random,
since we are simulating predictors and β) divided by σ2. In our simulations, we assume
that the intercept is zero and β is a p-dimensional vector equal to b[1, . . . , 1]′. We use
optimization to find σ2 and b such that SNR = 0.5 and the response falls within (−2, 2)
with high probability. For each combination of |T | and n, we simulate 1,000 data sets.
All the data sets we simulated are such that the response falls in (−2, 2). We consider
ε ∈ {0.5, 0.9} and, in the case of the Wishart mechanism, we set δ = 1/n.

We assess the performance of the methods by tracking Monte Carlo averages of predic-
tive mean squared errors and the posterior probability of the true model. We define the
predictive mean squared error as PMSE = n−1‖VTβT −V β∗‖22, where VT is a design matrix
containing truly active predictors, βT is the true value of β, and β∗ is the differentially
private model-averaged posterior expectation.

Figure 3 displays PMSEs for different values of n, p, ε, and |T |. As expected, the
PMSEs for both private and non-private approaches decrease as the sample size increases.
We observe that the PMSEs of the differentially private methods are smaller when ε is 0.9
compared to when ε is 0.5, and they are always higher than the non-private PMSEs. This
is expected, as larger values of ε should lead to greater statistical utility. In most cases,
the methods based on the Laplace mechanism have a lower PMSE than those based on
the Wishart mechanism. However, the Wishart mechanism seems to perform better in the
case when p is either 6 or 9, |T | is zero, and the sample size is small. Although this is
slightly less evident in the figure, upon closer inspection, we can see that methods based
on hard-thresholding tend to have a slightly lower PMSE when |T | is zero but cease to be
advantageous when |T | is large and the sample size is small.

Figure 4 displays the posterior probabilities of the true model, for the same values of n,
p, ε, and |T | that we used in Figure 3. The results are consistent with what we observed
for PMSEs. We also observe that, although all probabilities increase as the sample size
increases, the rate at which they increase depends on p. For higher values of p, the rate of
increase is lower because the computational complexity of the problem increases with the
dimension of G. The number of entries in G increases quadratically in p, and so does the
variance of the perturbation term added to ensure differential privacy. This fact affects the
convergence rate of the posterior probabilities.
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Figure 3: Simulation study: Sample size (x-axis) against log(PMSE) (y-axis) with Zellner-
Siow prior.

5.2.2 Application: Current Population Survey

The data set includes n = 49, 436 heads of households with non-negative incomes. We
consider 6 predictors: age in years (β1), age squared (β2), marital status (β3), sex (β4),
education (β5), and race (β6). All predictors are numeric or binary except for education,
which is an ordinal variable. To reduce the number of coefficients in the model, we treat
education as numeric, ranging from 1 (for less than 1st grade) to 16 (for doctoral degree).
The binary predictors are: marital status (1: civilian spouse present; 0: otherwise), sex (1:
male; 0: female), and race (1: white; 0: otherwise). The response variable is income.

In this application, the non-private inclusion probabilities are all close to one. To provide
a more challenging benchmark for our methods, we permute the rows for marital status and
education in the design matrix to artificially make the inclusion probabilities for β3 and
β5 close to zero. The predictors and the response are centered and rescaled to the interval
(−0.5, 0.5).

Figure 5 displays the posterior expected values of β1, β3, and β4 with the Zellner-Siow
prior and ε = 0.9.

We use the histograms described in Section 5.1 to define approximate 95% confidence
sets for T (G) = E(βj | G). Our choice of matrix norm is the Frobenius norm. Specifically, we
run our procedure 250 times and, for each run and a fixed collection of bins B1, . . . ,BK , we
summarize each T (Ĉ1−α) with its corresponding histogram Hist(T, Ĉ0.95) = {(Bk, dk)}Kk=1.

22



Differentially private methods for managing model uncertainty in linear regression

p = 9

|T| = 0

p = 9

|T| = 4

p = 9

|T| = 9

p = 6

|T| = 0

p = 6

|T| = 3

p = 6

|T| = 6

p = 2

|T| = 0

p = 2

|T| = 1

p = 2

|T| = 2

10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

n (thousands)

P
os

te
rio

r 
pr

ob
ab

ili
ty

 tr
ue

 m
od

el Method/Mechanism

G (not DP)

Lap Non−thresh (DP)

Wish Non−thresh (DP)

Lap Thresh (DP)

Wish Thresh (DP)

ε
0.5

0.9

Figure 4: Simulation study: Sample size (x-axis) against posterior probability of the true
model (y-axis) with Zellner-Siow prior.

If we let d
(l)
1 , . . . , d

(l)
K be the densities values of the histogram associated with the l-th run,

l = 1, . . . , 250, we define average histograms as

Hist
(
T (·) = E(βj | ·), Ĉ0.95

)
=

{(
Bk, dk =

1

250

250∑
l=1

d
(l)
k

)}K
k=1

, j ∈ {1, 3, 4}.

The results are displayed in Figure 5. In all cases, the differentially private methods
are close to the non-private answers. We can also see that the histograms are useful for
quantifying the uncertainty introduced by the mechanism, since their spread increases when
the thresholded and non-thresholded methods do not agree in their estimates.

5.3 Guidelines

Thresholded methods tend to perform best when the true number of predictors is small.
On the other hand, when most predictors are active, non-thresholded methods tend to out-
perform thresholded methods. The root cause behind this phenomenon is that thresholding
shrinks the elements in G∗, which promotes sparsity.

In practice, we recommend that users run analyses with both thresholded and non-
thresholded methods. This can be done without affecting the privacy budget of the analyst
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Figure 5: Current population survey: Posterior expectations of coefficients β1, β3, and β4

with Zellner-Siow prior and ε = 0.9. The vertical solid lines are the non-private
posterior expectations, whereas the dashed lines and dotted lines are averaged
posterior expectations estimated with non-thresholded methods and thresholded
methods, respectively.

because both G∗r and the thresholded matrix G∗∗r are post-processed versions of the same
differentially private matrix G∗.

Finally, we recommend reporting confidence sets whenever possible, since we find them
to be a valuable tool for quantifying the uncertainty introduced by the mechanisms.

6. Conclusions and Future Work

In this article, we proposed differentially private methods for hypothesis testing, model
averaging, and model selection for normal linear models. Under regularity conditions, the
methods are consistent. The regularity conditions we have imposed are similar to the
conditions used in the literature for establishing consistency of non-differentially private
methods.

Our methods for hypothesis testing are based on data-splitting and censoring statistics.
We have studied the effects of these operations on the performance of the methods. In
the case of data-splitting, increasing the number of subsets reduces the variance of the
differentially private statistics, but it adds bias. In the case of censoring, more stringent
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censoring reduces the variance, but it can lead to substantial bias if the true, confidential
statistic lies outside the uncensored range.

The methods we proposed for model averaging and selection are based on a perturbed
sufficient statistic. If we suspect that the ground truth is sparse, we recommend hard-
thresholding the perturbed sufficient statistic; however, if most predictors are active, hard-
thresholding can lead to underfitting.

The methodology proposed here could be extended in a number of ways. It would be
useful to extend the methods to generalized linear models through the framework proposed
in Li and Clyde (2018). The implementation for hypothesis testing is straightforward,
but our methods for model uncertainty, which are based on sufficient statistics, cannot be
applied directly. This obstacle can be overcome using approximate sufficient statistics, as
proposed in Huggins et al. (2017). This approach has been used successfully in estimation
problems under differential privacy constraints in Kulkarni et al. (2021). It would also be
interesting to extend the methods to survival models because health records are confidential.
In this case, the extension could adapt the framework proposed in Castellanos et al. (2021).

In our work, we have used off-the-shelf techniques for establishing differential privacy.
While we observe that our proposals can be useful in practice, it might be possible to design
more efficient mechanisms that are specifically tailored to the tasks we considered. This is
another interesting avenue for future research.
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Appendix

In Section A, we include the proofs of the propositions in the main text, as well as
auxiliary results that are helpful for proving them. In Section B we study the effects of cen-
soring and data-splitting in the High School and Beyond Survey application we considered
in Section 4. Finally, in Section C we include additional plots for the simulation study and
the application in Section 4 of the main text.

Appendix A. Proofs

We use the notation a . b and a & b to denote ∃K <∞ : a ≤ Kb and ∃K ′ <∞ : a ≥ K ′B,
respectively, with the understanding that, if we are taking limits that depend on n, K and
K ′ do not depend on n. Unless stated otherwise, vector norms are Euclidean norms; that
is, ‖x‖2=

∑p
i=1 x

2
i for x ∈ Rp. We use the Op(1) notation in our proofs, which we define

below.

Definition 1 Let Xn be a random variable taking values in Rn. Then Xn ∈ Op(1) if, for
all ε > 0, there exist nε,Mε <∞ so that for all n ≥ nε, P [ ‖Xn‖2 > M2

ε ] < ε.

A.1 Auxiliary results for Proposition 3

Proposition 2 [Birgé (2001), Laurent and Massart (2000)] Let X ∼ χ2
m(λ), Y ∼ χ2

n and
x ≥ 0. Then,

P (X ≤ m+ λ− 2
√

(m+ 2λ)x) ≤ exp(−x)

P (Y ≥ n+ 2
√
nx+ 2x) ≤ exp(−x)

Proposition 3 Let R2
i ∼ Beta(p/2, (bi − p− p0)/2) for bi > p0 + p+ 2. Then, if p ≥ 2:

P (R2
i > ki) ≤

2(1− ki)(bi−p−p0)/2

(bi − p− p0) B(p/2, (bi − p− p0)/2)
.

If p = 1:

P (R2
i > ki) ≤

1

B(1/2, (bi − 1− p0)/2)

(
(1− ki)bi−p0−2 log(1/ki)

bi − p0 − 2

)1/2

,

where B(·, ·) is the Beta function.
Proof This result is straightforward to prove, but we could not find it in the literature.
Assuming p ≥ 2:

P (R2
i > ki) =

1

B(p/2, (bi − p− p0)/2)

∫ 1

ki

xp/2−1(1− x)(bi−p−p0)/2−1 dx

≤(if p≥2)
1

B(p/2, (bi − p− p0)/2)

∫ 1

ki

(1− x)(bi−p−p0)/2−1 dx

=
2(1− ki)(bi−p−p0)/2

(bi − p− p0) B(p/2, (bi − p− p0)/2)
.
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If p = 1, using the Cauchy-Schwarz inequality:

P (R2
i > ki) =

1

B(1/2, (bi − p0 − 1)/2)

∫ 1

ki

x−1/2(1− x)(bi−p0−1)/2−1 dx

≤ 1

B(1/2, (bi − p0 − 1)/2)

(∫ 1

ki

x−1 dx

)1/2 (∫ 1

ki

(1− x)bi−p0−3 dx

)1/2

=
1

B(1/2, (bi − p0 − 1)/2)

(
(1− ki)bi−p0−2 log(1/ki)

bi − p0 − 2

)1/2

,

as required.

A.2 Proof of Proposition 1 in main text

First of all, note that

log B̃10 =
M∑
i=1

logBc
10,i/M + η, log Ĩ10 =

M∑
i=1

log Ic10,i/M + η,

and recall that logB∗10 = (log B̃10∨L)∧U and log I∗10 = (log B̃10∨L)∧U. Given Assumption
3, the censoring is asymptotically irrelevant. In other words, for any fixed a ∈ R, there
exists a finite N such that n ≥ N implies that P (logB∗10 > a) = P (log B̃10 > a) and
P (log I∗10 > a) = P (log Ĩ10 > a). For that reason, we show consistency by studying the
asymptotic behavior of B̃10 and Ĩ10. Asymptotically, the effect of η is irrelevant as well
since, by Assumption 4, η →P 0.

It remains to show that averages of censored logarithms of Bayes factors and information
criteria are consistent. We prove consistency by cases. First, we show consistency when H0

is true. Then, we show consistency when H1 is true.

Case H0 is true: We prove consistency for Bayes factors first. The proof for information
criteria is very similar.

Using the inequality (1 + x/n)n ≤ exp(x), we can bound the non-private Bayes factor
as follows:

B10,i =

∫ ∞
0

(gi + 1)−p/2
[
1 +

giR
2
i

1 + gi(1−R2
i )

](bi−p0)/2

πi(gi) ν(dgi)

≤ exp

(
bi − p0

2

R2
i

1−R2
i

)∫ ∞
0

(gi + 1)−p/2 πi(gi) ν(dgi)

= exp

(
bi − p0

2

R2
i

1−R2
i

)
Iπi .
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Let a ∈ R be a fixed constant. By Assumption 3, there exists a finite N so that n ≥ N
implies L < a < U . Using a union bound, for n ≥ N :

P

(
1

M

M∑
i=1

logBc
10,i > a

)
≤

M∑
i=1

P (logBc
10,i > a)

≤
M∑
i=1

P (R2
i > ki),

where ki = ti/(1 + ti) for ti = 2[a− log Iπi ]/(bi − p0), which is positive for bi large enough

since limn→∞ supi∈1:M

∫∞
0 b

p/2
i (gi + 1)−p/2πi(gi) ν(dgi) <∞ by Assumption 6.

Let p ≥ 2. Under H0, R2
i ∼ Beta(p/2, (bi − p − p0)/2). We show that

∑M
i=1 P (R2

i >
ki) goes to zero with the help of Proposition 3 and the inequality for the beta function
1/B(x, y) ≤ (x + y)x+y−1/(xx−1yy−1) (see e.g. Equation 4 in Grenié and Molteni (2015)).
We also use the inequality (1+x/k)−k ≤ exp(−x)(1−x2/k)−1 for x = bi(a−log Iπi)/(bi−p0)
and k = bi/2, which is valid for |x| ≤ k. The condition is satisfied when the sample size is
large enough by Assumption 6.

Putting it all together:

M∑
i=1

P (R2
i > ki) ≤

M∑
i=1

2(1− ki)(bi−p−p0)/2

(bi − p− p0) B(p/2, (bi − p− p0)/2)

.
M∑
i=1

(bi − p− p0)p/2−1(1− ki)bi/2

=

M∑
i=1

(bi − p− p0)p/2−1

[1 + 2[a− log Iπi ]/(bi − p0)]bi/2

.
M∑
i=1

(bi − p− p0)p/2−1Iπi

. sup
i∈1:M

M

bi − p− p0
b
p/2
i Iπi

→ 0.

In the last steps, we used Assumptions 2 and 6. We can use essentially the same argument
to show consistency for information criteria under H0 when p ≥ 2. In this case, ki =

1− b−ρi/bii exp(−2a/bi) and

P

(
M∑
i=1

log Ic10,i/M > a

)
.

M∑
i=1

P (R2
i > ki)

.
M∑
i=1

b
(p−ρi)/2−1
i

. sup
i∈1:M

M

bi
b
(p−ρi)/2
i

→ρi≥p 0.
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Let p = 1. We can use the same strategy we used for p ≥ 2, but with the appro-
priate bounds and assumptions. Once again, we can use the inequalities 1/B(x, y) ≤
(x+ y)x+y−1/(xx−1yy−1), Proposition 3, and assumptions as needed.

More explicitly:

M∑
i=1

P (R2
i > ki) ≤

M∑
i=1

1

B(1/2, (bi − 1− p0)/2)

(
(1− ki)bi−p0−2 log(1/ki)

bi − p0 − 2

)1/2

.
M∑
i=1

[
(1− ki)bi−p0−2 log(1/ki)

]1/2

.
M∑
i=1

Iπi log(1/ki)
1/2

.
M∑
i=1

Iπi [log(bi/ log bi)]
1/2

.
M∑
i=1

b
−1/2
i [log(bi/ log bi)]

1/2

.M sup
i∈1:M

√
log(bi/ log bi)/bi

→ 0,

as required. Using the same argument, we can prove consistency under H0 for information
criteria when p = 1:

P

(
M∑
i=1

log Ic10,i/M > a

)
.

M∑
i=1

P (R2
i > ki)

.
M∑
i=1

(1− ki)(bi−3)/2 log(1/ki)
1/2

.ρi≥1 b
−ρi−ρi/bi
i

√
log bi

.
M
√

log bi
bi

b
1−ρi(1−1/bi)
i

→ 0,

which competes the proof.
Case H1 is true: First, we show that

lim
n→∞

P
(
∀i ∈ 1 : M,R2

i ≥ b−0.5
i

)
= 1.

Under H1, R2
i

ind.∼ noncentralBeta(p/2, (bi − p − p0)/2, λi), where λi = β′X ′iXiβ/σ
2 is the

noncentrality parameter of the noncentral beta distribution (type I). In other words, we can
write

R2
i =

Xi

Xi + Yi
; Xi ∼ χ2

p(λi) ⊥ Yi ∼ χ2
bi−p−p0 .
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Let ai = b−0.5
i /(1− b−0.5

i ). Then,

R2
i > b−0.5

i ⇔ Xi

Yi
> ai

Let ki = ai[(bi − p− p0) + 2
√

(bi − p− p0)b0.5i + 2b0.5i ]. Then,

P (Xi/Yi > ai) ≥ P (Xi > ki)P (Yi < ki/ai).

Provided that λi + p > ki, Proposition 2 ensures that

P (Xi > ki) ≥ 1− exp

(
−(p+ λi − ki)2

4(p+ 2λi)

)
.

The condition λi + p > ki is satisfied for a large enough sample size for all i ∈ {1, 2, ... ,M}
under Assumption 5. On the other hand, also by Proposition 2,

P (Yi < ki/ai) ≥ 1− exp(−b0.5i ),

Thus, under Assumption 2:

P{∀i ∈ 1 : M,R2
i ≥ b−0.5

i } ≥
M∏
i=1

{P (Xi > ki)P (Yi < ki/ai)}

≥ inf
i∈1:M

{[
1− exp

(
−(p+ λi − ki)2

4(p+ 2λi)

)]bi [
1− exp(−b0.5i )

]bi}M/bi

→ 1,

as required.

Conditioning on the high probability event {∀i ∈ 1 : M,R2
i ≥ b

−0.5
i }:

1

M

M∑
i=1

logBc
10,i ≥

1

M

M∑
i=1

log

∫ ∞
0

(gi + 1)(bi−p−p0)/2

[1 + gi(1− b−0.5
i )](bi−p0)/2

πi(gi) ν(dgi)

& log inf
i∈1:M

[
bi + 1

bi(1− b−0.5
i ) + 1

](bi−p0)/2 ∫ ∞
bi

(gi + 1)−p/2πi(gi) ν(dgi)

→∞

and, with high probability,

1

M

M∑
i=1

log Ic10,i & inf
i∈1:M

log

(
b
−ρi/2
i

(1− b−0.5
i )bi/2

)
→∞,

which completes the proof.
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A.3 Auxiliary results for Proposition 2

Proposition 4 (Hanson-Wright inequality; see e.g. Rudelson et al. (2013)). Let W be a
random vector in Rn. Let {Wi}ni=1 be the components of W . Let E(Wi) = 0 and 0 < K <∞
be a constant so that E[exp(W 2

i /K
2)] < 2. Let A be a n×n real matrix. Then, for a constant

c > 0,

P [|W ′AW − E(W ′AW )| > t] ≤ 2 exp

{
−c t

K2
min

(
t

K2‖A‖2F
,

1

‖A‖op

)}
,

where ‖A‖F =
√

tr(A′A) is the Frobenius norm of A and ‖A‖op = sup‖x‖6=0‖Ax‖/‖x‖.

Proposition 5 (Convergence of G∗r and G∗∗r ) Under the assumptions of Proposition 2 in
the main text, G∗r/n→P G∞ and G∗∗r /n→P G∞, a constant symmetric matrix.

Proof Let G∗/n = G/n + E/n. The entries Eij/n converge to zero in probability by
Assumption 3.

We show that G/n→P G∞ with G∞ symmetric. Recall that

G/n =

[
V ′V/n V ′Z/n
Z ′V/n Z ′Z/n

]
.

We establish the convergence of G/n to G∞ by establishing the convergence of the blocks.
All the probability statements, expectations, and variances in this proof are given X0 and
V .

By Assumption 5, limn→∞ V
′V/n = S1. Then,

lim
n→∞

E(V ′Z/n) = lim
n→∞

V ′VTβT /n = S2βT

lim
n→∞

Var(V ′Z/n) = lim
n→∞

σ2
T

n2
V ′V = 0p×p

V ′Z/n→P S2βT ,

where S2 is a submatrix of S1.

Let us study the asymptotic behavior of Z ′Z/n. We can write

Z ′Z/n = Q/n+ 2β′TV
′
TY/n− β′TV ′TVTβT /n,

Q = [Y − E(Y )]′(In − PX0)[Y − E(Y )].

On the one hand,

lim
n→∞

E(2β′TV
′
TY/n− β′TV ′TVTβT /n) = lim

n→∞
β′TV

′
TVTβT /n = β′TS3βT

lim
n→∞

Var(2β′TV
′
TY/n− β′TV ′TVTβT /n) = lim

n→∞

4σ2
T

n2
β′TV

′
TVTβT = 0

2β′TV
′
TY/n− β′TV ′TVTβT /n→P β

′
TS3βT ,

where S3 is a submatrix of S1.
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We can show that Q/(n− p0)→P σ
2
T with the Hanson-Wright inequality, which in turn

implies that Q/n →P σ2
T . We have E[Q/(n − p0)] = σ2

T . Define W = Y − E(Y ). Then,
E(W ) = 0n and W 2

i are uniformly bounded since both Y and E(Y ) are by Assumption 1.
Therefore, we can pick a finite constant K satisfying E[exp(W 2

i /K
2)] < 2.

Applying the Hanson-Wright inequality, for any given ε > 0,

P [|Q/(n−p0)−σ2
T | > ε] ≤ 2e−2cεmin[ε(K2‖(I−PX0

)/(n−p0)‖F )−1,(‖(I−PX0
)/(n−p0)‖op)−1] →n→∞ 0,

because ‖(I−PX0)/(n−p0)‖op = ‖(I−PX0)/(n−p0)‖F = 1/
√
n− p0 → 0 as n→∞. This

implies Q/n→P σ
2
T and Z ′Z/n→P σ

2
T + β′TS3βT .

We have shown that

G/n→P G/n =

[
S1 S2βT
β′TS

′
2 σ2

T + β′TS3βT

]
= G∞.

Therefore, we have G∗/n→P G∞.

In the case of the non-thresholded matrix G∗r , we have established that G∗r/n = G∗/n+
r/nIp+1 →P G∞ since r/n→ 0 by Assumption 4. In the case of G∗∗r , there is an indicator
that can hard-threshold off-diagonal elements. Let G∗∗ij /n = G∗ij/n1(i = j or |G∗ij |/n ≥
eλ/n) be the (i, j)-th entry of G∗∗. On the one hand, limn→∞ eλ/n = 0 because the variance
of Eij is finite and does not depend on n. For i = j the indicator is equal to 1. For i 6= j:

E[1(|G∗ij |/n ≥ eλ/n)] = P [|G∗ij |/n ≥ eλ/n]→ 1

Var[1(|G∗ij |/n ≥ eλ/n] = P [|G∗ij |/n ≥ eλ/n]− P [|G∗ij |/n ≥ eλ/n]2 → 0

1(|G∗ij |/n ≥ eλ/n)→P 1.

By Slutzky’s lemma, we have that G∗∗ij /n→ G∞,ij for all i, j. This is enough to show that

G∗/n → G∞. Finally, since G∗∗r = G∗∗ + rIp+1 and r/n → 0 by Assumption 4, we have
G∗∗r /n→P G∞, as required.

Proposition 6 (Convergence of noisy R2) Given G∗r or G∗∗r and a model-indexing vector
γ ∈ {0, 1}p, we can construct a differentially private version of R2

γ, denoted R2,∗
γ . Let T ∈

{0, 1}p be the index of the true model. Under the regularity conditions stated in Proposition 5
and assuming that Z ′Z is not equal to zero almost surely, the following are true:

1. If γ does not nest T (i.e. if there exists i such that Ti = 1 and γi = 0), then
R2,∗
γ → R2

γ,∞ and R2,∗
T → R2

T,∞ with R2
γ,∞ < R2

T,∞.

2. If the T = 0p is the null model, then nR2,∗
γ is in Op(1).

3. If γ nests T (i.e. if Ti = 1 implies γi = 1), then [(1 − R2,∗
T )/(1 − R2,∗

γ )](n−p0)/2 is in
Op(1).
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Proof We prove the three statements separately.

Proof of statement 1. The proofs of R2
γ →P R2

γ,∞ and R2,∗
γ →P R2

γ,∞ are a direct
consequence of Proposition 5. Note that

R2
γ =

Z ′Vγ(V ′γVγ)−1V ′γZ

Z ′Z
=
Z ′PVγZ/n

Z ′Z/n
.

On the one hand, n/Z ′Z →P 1/(σ2
T + β′TS3βT ). Then, V ′γZ are subvectors of V ′Z, so

V ′γZ/n converges to a subvector of S2βT . Similarly, V ′γVγ/n converges to a submatrix of S1

and, since we assume that V is full-rank, V ′γVγ is invertible for any γ. This implies that
R2
γ converges in probability to some constant R2

γ,∞, which has to be between zero and one
because Vγ(V ′γVγ)−1Vγ is a projection matrix and Z ′PXZ ≤ Z ′Z for any projection matrix
PX .

The convergence of the noisy R2,∗
γ to R2

γ,∞ can be established after noting that R2,∗
γ can

be constructed by taking submatrices of G∗r or G∗∗r and multiplying and dividing terms as
needed. We can invoke Proposition 5 and Slutzky’s lemma and conclude that R2,∗

γ →P R
2
γ,∞,

as required.

It remains to show that if γ does not nest the true model T , R2
γ,∞ < R2

T,∞. To see this,
note that

lim
n→∞

E(Z ′PVγZ/n) = lim
n→∞

β′TX
′
TPVγXTβT /n, lim

n→∞
Var(Z ′PVγZ/n) = 0,

and β′TX
′
TPVγXTβT < β′TX

′
TXTβT = β′TX

′
TPVTXTβT , which implies R2

γ,∞ < R2
T,∞.

Proof of statement 2. If T is the null model, we show that nR2,∗
γ is in Op(1). It is

useful to write

nR2,∗
γ =

1√
n

(Z ′V )∗γ

[
(V ′V )∗γ

n

]−1
(V ′Z)∗γ

1√
n

(Z ′Z)∗/n
.

By Proposition 5, we know that the denominator converges in probability to a constant. It
is enough to show that the numerator is in Op(1). The matrix

[
(V ′V )∗γ/n

]−1
is in Op(1) by

Proposition 5. It remains to show that (V ′Z)∗γ/
√
n is in Op(1). Let w∗ = (V ′Z) + E2 and

kλ the appropriate threshold for the off-diagonal elements of G∗∗. Then,

‖ 1√
n

(V ′Z)∗γ‖2 ≤
1

n
‖w∗ 1(|w∗| > kλ)‖2

≤ 1

n
‖w∗‖2

≤ 1

n
‖V ′Z‖2 +

1

n
‖E2‖2.

It suffices to show that both the error E2/
√
n and the non-private V ′Z/

√
n are in Op(1).

Each of the Eij in E has a finite variance that does not depend on n. Therefore, each
Eij/
√
n has a variance that goes to zero and, since E2 has p elements, ‖E2/

√
n‖ is in Op(1).

It only remains to show that V ′Z/
√
n is in Op(1), which we show using the Hanson-Wright

inequality.
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First, note that ‖V ′Z/
√
n‖2 = Z ′V V ′Z/n. Then, since we are assuming that the true

model is the null model:

E(Z ′V V ′Z/n) =
σ2

n
tr(V ′V )→n→∞ c > 0.

The limit is a positive constant because V ′V/n converges to a symmetric positive-definite
matrix by Assumption 5, which also implies limn→∞‖V V ′/n‖F <∞ and limn→∞‖V V ′/n‖op <
∞. From here, we can apply the Hanson-Wright inequality to establish that |Z ′V V ′Z/n−
E(Z ′V V ′Z/n)| is in Op(1) and, since E(Z ′V V ′Z/n) converges to a constant, we conclude
that Z ′V V ′Z/n is in Op(1), as required.

Proof of statement 3. Finally, we show that if γ nests T , [(1−R2,∗
T )/(1−R2,∗

γ )](n−p0)/2

is in Op(1). Consider the non-private [(1−R2
T )/(1−R2

γ)](n−p0)/2. We can write[
1−R2

T

1−R2
γ

](n−p0)/2

=

[
1 +

2

n− p0

Z ′(PVγ − PVT )Z

2Z ′(In − PVγ )Z/(n− p0)

](n−p0)/2

≤ exp

(
Z ′(PVγ − PVT )Z

2Z ′(In − PVγ )Z/(n− p0)

)
.

The denominator Z ′(In−PVγ )Z/(n−p0) converges to a constant. This fact follows directly
given the asymptotic behavior of Z ′PVγZ/n and Z ′Z/n we just described in the proof of the
first statement. The same is true for the private version of the statistic, using the argument
we used for R2,∗

γ .
The numerator Z ′(PVγ − PVT )Z is in Op(1), which can be shown using the Hanson-

Wright inequality. The expectation is E[Z ′(PVγ − PVT )Z] = σ2(|γ| − |T |). Let Qγ =
Z ′(PVγ − PVT )Z − σ2(|γ| − |T |). Applying the Hanson-Wright inequality

P (Qγ > M) ≤ 2 exp

{
−c M

K2
min

(
M

K2(|γ| − |T |)
, 1

)}
,

where K is a constant that can be chosen in a similar way as we did in Proposition 5. The
right-hand side can be made arbitrarily close to zero by increasing M , which establishes
that Qγ and Z ′(PVγ − PVT )Z are in Op(1). The same is true for the private version of the

statistic, using an argument which is similar to the one we used for showing that nR2,∗
γ is in

Op(1) when the true model is the null model. Both (V ′Z)∗γ/
√
n and (V ′Z)∗T /

√
n converge

to their private versions (V ′Z)γ/
√
n and (V ′Z)T /

√
n because the error goes to zero and

the indicator converges (see Proposition 5 and the earlier proof for nR2,∗
γ for more detailed

versions of these arguments). The private (V ′V )∗γ also converge to their non-private versions
(see e.g. Proposition 5). Therefore, the private (Z ′(PVγ −PVT )Z)∗ has the same asymptotic
behavior as the private Z ′(PVγ−PVT )Z, which we have shown to be in Op(1). This completes
the proof.

A.4 Proof of Proposition 2 in main text

We consider two cases: one where the true model is the null model and another one where
the true model is not the null model.
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True model is the null model: Let γ be a model that is not the null model. Then,
we have

B∗γ0 ≤ exp

(
n− p0

2

R2,∗
γ

1−R2,∗
γ

)∫ ∞
0

(g + 1)−|γ|/2 π(g) ν(dg).

The integral converges to zero by Assumption 6 and the exponential term is in Op(1)

because, by Proposition 6, we know that nR2,∗
γ is in Op(1). Therefore, for any model γ

which is not the null model, B∗γ0 →P 0. A similar argument works for information criteria.
In such case,

I∗γ0 ≤ n−ρ|γ|/2 exp

(
n

2

R2,∗
γ

1−R2,∗
γ

)
→P 0.

True model is not the null model: We study the asymptotic behavior of B∗γT , where
T is the true model and γ is a model that is not the true model. We split this case into
two subcases: one where γ nests the true model, and another one where γ does not nest
the true model.

First, note that, since we are working with null-based Bayes factors,

B∗γT =
B∗γ0(1−R2,∗

T )(n−p0)/2

B∗T0(1−R2,∗
T )(n−p0)/2

we will bound the numerator and denominator separately and put our bounds together.
First, we bound the numerator:

B∗γ0(1−R2,∗
T )(n−p0)/2 =

∫ ∞
0

(g + 1)−|γ|/2

[
1 + g(1−R2,∗

T )−R2,∗
T

1 + g(1−R2,∗
γ )

](n−p0)/2

π(g) ν(dg)

≤

(
1−R2,∗

T

1−R2,∗
γ

)(n−p0)/2 ∫ ∞
0

(g + 1)−|γ|/2 π(g) ν(dg).

Then, we bound the denominator:

B∗T0(1−R2,∗
T )(n−p0)/2 ≥

∫ ∞
n

(g + 1)−|T |/2

[
1−

R2,∗
T

1 + g(1−R2,∗
T )

](n−p0)/2

π(g) ν(dg)

≥

[
1−

R2,∗
T

1 + n(1−R2,∗
T )

](n−p0)/2 ∫ ∞
n

(g + 1)−|T |/2 π(g) ν(dg).

Putting the bounds together and using Assumption 6:

B∗γT ≤

(
1−R2,∗

T

1−R2,∗
γ

)(n−p0)/2(
1−

R2,∗
T

1 + n(1−R2,∗
T )

)−(n−p0)/2 ∫∞
0 (g + 1)−|γ|/2 π(g) ν(dg)∫∞
n (g + 1)−|T |/2 π(g) ν(dg)

. n(|T |−|γ|)/2

(
1−R2,∗

T

1−R2,∗
γ

)(n−p0)/2

exp(R2,∗
γ /(1−R2,∗

γ )).
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When γ nests T , n(|T |−|γ|)/2 goes to zero and the remaining terms are in Op(1) by Proposi-
tion 6, so B∗γT converges to zero in probability. When γ does not nest T , we show that

An = n(|T |−|γ|)/2[(1−R2,∗
T )/(1−R2,∗

γ )](n−p0)/2 →P 0

Let Rn = (1−R2,∗
T )/(1−R2,∗

γ ), which converges in probability to a constant less than one.
Taking logarithms

log
{
n(|T |−|γ|)/2R(n−p0)/2

n

}
=
n− p0

2
[(|T | − |γ|) log n/(n− p0) + logRn] ,

which diverges to −∞ in probability, so An →P 0 The remaining term in the upper bound
for B∗γT is in Op(1). Therefore, we have shown that B∗γT →P 0.

The proof for information criteria is essentially the same, but we do not need to bound
integrals. Indeed,

I∗γT = n(ρ|T |−ρ|γ|)/2

(
1−R2,∗

T

1−R2,∗
γ

)n/2
,

and we can use the same arguments we used for B∗γT to show that I∗γT is consistent.

A.5 Proof of Proposition 3 in main text

Let U ∈ Rn×(p+1) be a full-rank matrix and defineM = (In−PX0)U . Given a Gram matrix
G, we can generate a synthetic data setD = [V;Z] with the formulaD =M(M′M)−1/2G1/2.
In other words, we have D′D = G:

D′D = G1/2M(M′M)−1/2M′M(M′M)−1/2G1/2 = G1/2G1/2 = G.

The synthetic data are also centered (the same way that V and Z are centered in our
construction of D). This is true because D is pre-multiplied by In−PX0 , so it is orthogonal
to the span of X0 = 1n.

Appendix B. Effects of censoring and data-splitting: High School and
Beyond Survey

In this section, we revisit the High School and Beyond Survey data set (Section 4.4) to study
the effects of setting different censoring limits. For concreteness, we restrict our attention
to the test of H02 against H12; that is, the hypothesis test where we wish to know if read

scores are predictive of math scores when science scores are already a covariate in the
model. The results for the test of H01 against H11 are similar. The simulation setup is the
same as described in Section B. The only changes are the censoring limits.

In Figure 6, we display the results for the differentially private posterior probability of
H12 for different values of ε and M . We censor the posterior probability of H12 at [0.35, 0.65],
[0.25, 0.75], [0.01, 0.99], and [0.001, 0.999]. The true, non-private posterior probability of
H12 is near 1. For all censoring limits, increasing the number of subgroups decreases the
variance of the output, but it induces a bias that shrinks the probability to 0.5. More
stringent censoring limits reduce the variance as well, but come at the cost of potential
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bias: for instance, censoring the posterior probability at [0.35, 0.65] is clearly too stringent,
since the true posterior probability is much higher than the upper limit.

In Figure 7, we display the analogous result for likelihood ratios. In this case, the lower
censoring limit is set to L = 0, which is a natural lower bound for likelihood ratios. The gray
+ and M are calibrated critical values for rejection of H02 at significance at levels 0.01 and
0.05, respectively. The upper censoring limits U are set to 1, 2, 7, and 10. We arrive at the
same conclusions we reached with the Bayesian analysis. The true, non-private likelihood
ratio is above 10, and if we censor at a much lower value (such as 1 or 2) the test fails to
be powerful. The test performs best if the lower bound is 10, in which case the test is quite
powerful, especially for M ≥ 5 and δ ≥ 0.25.
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Figure 6: Distribution of P ∗(H12 | D) as a function of ε, M , and censoring limits. The lower
endpoint of the error bars is the first quartile of the distribution, the midpoint is
the median, and the upper endpoint is the third quartile. The dashed lines are
the non-private posterior probabilities.
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Figure 7: Distribution of 2 log Λ∗10,1 and 2 log Λ∗10,2 as a function of δ, M , and censoring
upper limit U . The gray + and M are corrected critical values at the 0.01 and
0.05 significance levels, respectively.

Appendix C. Additional Plots for Simulation Study

In this section, we include additional plots for the simulation study in Section 5.2. We show
results with BIC combined with least-squares estimates, as well as results for additional
values of ε that were not included in the main text. The interpretation of the plots is the
same: thresholded methods perform best when |T | is small, and non-thresholded methods
perform best when |T | is large.
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Figure 8: Simulation study: Sample size (x-axis) against log(PMSE) (y-axis) with BIC
prior.
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Figure 9: Simulation study: Sample size (x-axis) against posterior probability of the true
model (y-axis) with BIC prior.
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