
Journal of Machine Learning Research 23 (2022) 1-41 Submitted 2/19; Revised 12/21; Published 7/22

Solving L1-regularized SVMs and Related Linear Programs:
Revisiting the Effectiveness of Column and Constraint

Generation

Antoine Dedieu antoine@vicarious.com
Vicarious AI
Union City, CA 94587, USA

Rahul Mazumder rahulmaz@mit.edu
MIT Sloan School of Management and Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Haoyue Wang haoyuew@mit.edu

Operations Research Center

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Editor: Mark Schmidt

Abstract

The linear Support Vector Machine (SVM) is a classic classification technique in machine
learning. Motivated by applications in high dimensional statistics, we consider penalized
SVM problems involving the minimization of a hinge-loss function with a convex sparsity-
inducing regularizer such as: the L1-norm on the coefficients, its grouped generalization
and the sorted L1-penalty (aka Slope). Each problem can be expressed as a Linear Pro-
gram (LP) and is computationally challenging when the number of features and/or sam-
ples is large—the current state of algorithms for these problems is rather nascent when
compared to the usual L2-regularized linear SVM. To this end, we propose new computa-
tional algorithms for these LPs by bringing together techniques from (a) classical column
(and constraint) generation methods and (b) first order methods for non-smooth convex
optimization—techniques that appear to be rarely used together for solving large scale
LPs. These components have their respective strengths; and while they are found to be
useful as separate entities, they appear to be more powerful in practice when used together
in the context of solving large-scale LPs such as the ones studied herein. Our approach
complements the strengths of (a) and (b)—leading to a scheme that seems to significantly
outperform commercial solvers as well as specialized implementations for these problems.
We present numerical results on a series of real and synthetic data sets demonstrating the
surprising effectiveness of classic column/constraint generation methods in the context of
challenging LP-based machine learning tasks.

Keywords: large scale linear programming, `1-penalization, slope, hinge loss, column
generation, constraint generation, first order methods

c©2022 Antoine Dedieu, Rahul Mazumder and Haoyue Wang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/19-104.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/19-104.html

Dedieu, Mazumder and Wang

1. Introduction

The linear Support Vector Machine (SVM) (Vapnik, 2013; Hastie et al., 2009) is a fundamen-
tal tool for binary classification. Given training data (xi, yi)

n
i=1 with feature vector xi ∈ Rp

and label yi ∈ {−1, 1}, the task is to learn a linear classifier of the form sign(xTβ + β0)
where, β0 ∈ R is the offset term. The popular L2-regularized linear SVM (aka L2-SVM)
considers the minimization problem

min
β∈Rp,β0∈R

n∑
i=1

(
1− yi(xTi β + β0)

)
+

+
λ

2
‖β‖22, (1)

where, (a)+ := max{a, 0} is often noted as the hinge-loss function; and λ ≥ 0 regularizes
the L2-norm of the coefficients β. Several algorithms have been proposed to efficiently
solve Problem (1). Popular approaches include stochastic subgradient methods on the pri-
mal form (Bottou, 2010; Shalev-Shwartz et al., 2007), coordinate descent methods on a
dual (Hsieh et al., 2008) and cutting plane algorithms (Joachims, 2006; Franc and Sonnen-
burg, 2008).

The L1-SVM estimator: The L2-SVM estimator generally leads to a dense estimate for
β—towards this end, the L1 penalty (Bradley and Mangasarian, 1998; Hastie et al., 2009) is
often used as a convex surrogate to encourage sparsity (i.e., few nonzeros) in the coefficients.
This leads to one of the problems we consider in this paper, namely, the L1-SVM problem:

min
β∈Rp,β0∈R

n∑
i=1

(
1− yi(xTi β + β0)

)
+

+ λ‖β‖1, (2)

which can be written as a Linear Program (LP), as shown in Section 2.2. The regularization
parameter λ ≥ 0 controls the L1-norm of β. Off-the-shelf solvers, including commercial LP
solvers (e.g., Gurobi, Cplex) work very well for small/moderate sized problems, but become
expensive in solving Problem (2) when n and/or p is large, such as when n ≈ p ≈ 104; or p ≈
106 and n is a few hundred. Some high-quality specialized solvers for Problem (2) include:
a homotopy based method to compute the entire piecewise linear regularization path in
β (Hastie et al., 2004); methods based on Alternating Direction Method of Multipliers
(ADMM) or operator splitting (Balamurugan et al., 2016; O’Donoghue et al., 2019). Pang
et al. (2017) proposes a parametric simplex (PSM) approach to solve Problem (2) leading to
a pair of primal/dual solutions at optimality. The authors demonstrate that their method
achieves state-of-the-art performance for some LP-based sparse learning tasks1 compared
to a benchmark ADMM-based implementation “flare” (Li et al., 2015). Our experiments
suggest that for problems with small n ≈ 100 and large p ≈ 50, 000, PSM works well.
However, it becomes inefficient as soon as n is large: for example, with n ≈ 104 and p ≈ 100,
PSM can take hours and require large amounts of memory, while the methods we propose
here take a few seconds with minimal memory. Mangasarian (2006) propose a perturbation
approach that reformulates the L1-SVM problem as an unconstrained smooth minimization
problem by including an additional regularization term. They apply Newton-type methods

1. The largest example studied in this work is the Dantzig Selector problem with n = 200 samples and
p = 5, 000 features.

2

L1-SVM and Related LPs with Column and Constraint Generation

to solve the resulting problem. Such Newton-type methods as discussed in Mangasarian
(2006) require expensive matrix inversions.

In this paper, our goal is to propose new computational algorithms for the L1-SVM LP by
revisiting classical operations research tools such as column and constraint generation with
origins in 1950s (Ford Jr. and Fulkerson, 1958)—these methods appear to have been some-
what underutilized in the context of the L1-SVM problem and relatives of the L1-penalty,
that we consider here. To improve the performance of column/constraint generation-based
methods we use relatively recent first order convex optimization techniques.

We note that there are several appealing L1-regularized classifiers and efficient algo-
rithms that consider a smooth loss function (e.g, logistic, squared hinge loss, etc)—see for
example, Friedman et al. (2010a); Yuan et al. (2010). Different loss functions have different
operating characteristics: in particular, smooth loss functions lead to estimators that are
different from the hinge loss as in the L1-SVM problem (Hastie et al., 2009). Our goal in
this paper is not to pursue an empirical analysis of the relative merits/de-merits of different
loss functions which have been documented in earlier literature. Rather, we focus on algo-
rithms for the hinge loss function with penalty functions that are representable as linear
programs.

The Group-SVM estimator: In several applications, sparsity is structured—the co-
efficient indices are naturally found to occur in groups that are known a-priori and it is
desirable to select or, set to zero, a whole group together as a “unit”. In this context, a
group version of the usual L1 norm is often used to improve the performance and inter-
pretability of the model (Yuan and Lin, 2006; Huang and Zhang, 2010). We consider the
popular L1/L∞ penalty (Bach et al., 2011) leading to the Group-SVM Problem:

min
β∈Rp, β0∈R

n∑
i=1

(
1− yi(xTi β + β0)

)
+

+ λ
G∑
g=1

‖βg‖∞ (3)

where, g = 1, . . . , G denotes a group index and the groups are disjoint. In addition, βg de-
notes the subvector of coefficients belonging to group g and β = (β1, . . . ,βG). Problem (3)
can be expressed as an LP and our approach with suitable modifications, applies to this
problem as well.

The Slope-SVM estimator: The third problem we study in this paper is of a different
flavor and is inspired by the sorted L1-penalty aka the Slope norm (Bogdan et al., 2015;
Bellec et al., 2018), popularly used in the context of penalized least squares problems for its
useful statistical properties. For a pre-specified sequence of tuning parameters λ1 ≥ . . . ≥
λp ≥ 0, the Slope-SVM problem is given by:

min
β∈Rp, β0∈R

n∑
i=1

(
1− yi(xTi β + β0)

)
+

+

p∑
j=1

λj |β(j)|, (4)

where |β(1)| ≥ . . . ≥ |β(p)| are the ordered values of |βi|, i = 1, . . . , p. Unlike Problems (2)
and (3) where the penalty function is separable or block separable, the penalty function
in (4) is not separable in the coefficients. We show in Section 3 that Problem (4) can be
expressed as an LP with O(n+p) variables and an exponential number (in p) of constraints,

3

Dedieu, Mazumder and Wang

consequently posing challenges in optimization. Despite the large number of constraints,
we show that the LP can be solved with column/constraint generation. We note that
using standard reformulation methods (Boyd and Vandenberghe, 2004, See Section A.1),
Problem (4) can for example, be modeled with CVXPY and solved using a commercial solver
like Gurobi for small-sized problems. However, the computations become expensive when
λis are distinct which is the case in Bogdan et al. (2015)—for these cases, CVXPY can handle
problems up to n ≈ 100, p ≈ 200 whereas, our approach can solve problems with p ≈ 50, 000
within a few seconds.

First order methods: First order methods (Nesterov, 2004) have enjoyed great success
in solving large scale structured convex optimization problems arising in machine learning
applications. Methods such as proximal gradient and its accelerated variants for example,
are appealing candidates for the minimization of smooth functions and also problems of the
composite form (Nesterov, 2013), wherein accelerated gradient methods enjoy a convergence
rate of O(1/

√
ε) to obtain an ε-accurate solution. For the nonsmooth SVM problems i.e.,

Problems (2), (3) and (4) discussed above, Nesterov’s smoothing method (Nesterov, 2005)
which replaces the hinge-loss with a smooth approximation can be used to obtain algorithms
with a convergence rate of O(1/ε). This approach is explored in Section 4. While this
procedure along with additional screening heuristics (Tibshirani et al., 2012) can lead to
low accuracy solutions relatively fast; in our experience, the basic version of this algorithm
takes a long time to obtain a solution with higher accuracy when n and/or p are large.
Similarly, first order methods based on Becker et al. (2011) and O’Donoghue et al. (2019);
Balamurugan et al. (2016) also appear to experience increased run times as the problem
sizes become large.

What this paper is about: In this paper, we propose an efficient algorithmic framework
for L1-SVM, Group-SVM and Slope-SVM using tools in column/constraint generation that
make use of some basic structural properties of solutions to these problems, as we discuss
below.

Note that large values of λ will encourage an optimal solution to Problem (2), β̂ (say),
to be sparse. This sparsity will be critical to solve Problem (2) when p� n—we anticipate
to solve Problem (2) without having to create an LP model with all p variables. To this
end, we use column generation, a classical method in mathematical optimization/operations
research originating in the context of solving integer programs during late 1950s (Ford Jr.
and Fulkerson, 1958; Dantzig and Wolfe, 1960)—See also Desrosiers and Lübbecke (2005)
for a nice review on this topic. We also make use of another structural aspect of a solution
to Problem (2) when n is large and p is small. Suppose most of the samples can be classified
correctly via a linear classifier—then, at an optimal solution, 1 ≤ yi(x

T
i β + β0) and hence

α̃i := (1−yi(xTi β+β0))+ will be zero for many indices i = 1, . . . , n. We leverage this sparsity
in α̃i’s to develop efficient algorithms for Problem (2), using constraint generation (Ford Jr.
and Fulkerson, 1958; Desrosiers and Lübbecke, 2005) methods. This allows us to solve (2)
without explicitly creating an LP model with n samples.

To summarize, there are two characteristics special to an optimal solution of Problem (2):
(a) sparsity in the SVM coefficients, i.e., β and/or (b) sparsity in α̃i’s. Column generation
can be used to handle (a); constraint generation can be used to address (b)—in problems
where both n, p are large, we propose to combine both column and constraint generation.

4

L1-SVM and Related LPs with Column and Constraint Generation

To our knowledge, while column generation and constraint generation are used separately in
the context of solving large scale LPs, using them together, in the context of the L1-SVM
problem is novel. For solving these, usually small, subproblems we rely on powerful LP
solvers such as the simplex based algorithms of Gurobi—they lead to a pair of primal-dual
solutions and also possess excellent warm-starting capabilities. Our approach applies to
the Group-SVM Problem (3) with suitable modifications. We also extend our approach to
handle the Slope-SVM problem (4), which requires a fairly involved use of column/constraint
generation. Numerical evidence presented here suggests that column/constraint generation
methods are modular, simple and powerful tools—they should perhaps be considered more
frequently to solve machine learning tasks based on LPs, even beyond the ones studied here.

The column/constraint generation methods mentioned above, are found to benefit from a
good initialization. To this end, we use first order optimization methods to get approximate
solutions with low computational cost. These solutions serve as decent initializations and
are subsequently improved to deliver optimal solutions as a part of our column and/or
constraint generation framework. This approach is found to be useful in all the three
problems studied here.

To our knowledge, our work is novel in that we bring together first order methods in
convex optimization and column/constraint generation algorithms for solving large scale
LPs, in the context of solving a problem of key importance in machine learning. A Python
implementation of our methods can be found at: https://github.com/wanghaoyue123/

Column-and-constraint-generation-for-L1-SVM-and-cousins.

Organization of paper: The rest of this paper is organized as follows. Section 2 presents
an overview of column/constraint generation methods; and then discusses their instantiation
for the L1-SVM and Group-SVM problems. Section 3 discusses the Slope-SVM problem.
Section 4 discusses how first order methods can be used to get approximate solutions for
these problems. Section 5 presents numerical results.

Notation: For an integer a we use [a] to denote {1, 2, . . . , a}. The ith entry of a vector
u is denoted by ui. For a set A, we use the notation |A| to denote its size. For a positive
semidefinite matrix A, we denote its largest eigenvalue by σmax(A). For a vector x ∈ Rn
and a subset B ⊆ [n], we let xB denote the sub-vector of x corresponding to the indices in
the set B.

2. Column and constraint generation for L1-SVM and its group extension

As we allude to earlier, column and constraint generation algorithms have a long history in
mathematical optimization and operations research (Ford Jr. and Fulkerson, 1958; Dantzig
and Wolfe, 1960). Here we present an outline of these methods for a generic LP. We
subsequently discuss their applications to Problems (2) and (3).

2.1 Methodology for Column and Constraint Generation

The basic idea of column generation is to start with a candidate set of columns and incremen-
tally add new columns into the model until some optimality conditions are met. Consider
the primal LP problem (P) where, n̄, p̄ are integers and A ∈ Rn̄×p̄, b ∈ Rn̄, c ∈ Rp̄ are
problem data. We assume that the optimal objective value of (P) is finite. The strong

5

https://github.com/wanghaoyue123/Column-and-constraint-generation-for-L1-SVM-and-cousins
https://github.com/wanghaoyue123/Column-and-constraint-generation-for-L1-SVM-and-cousins

Dedieu, Mazumder and Wang

duality theorem (cf Bertsimas and Tsitsiklis (1997), Theorem 4.4) states that this optimum
is equal to that of the dual problem (D):

(P) : min
θ∈Rp̄

cTθ (D) : max
q∈Rn̄

qTb

s.t. Aθ ≥ b, θ ≥ 0 s.t. qTA ≤ c q ≥ 0.

Let us consider the case where p̄ is large compared to n̄ and we anticipate an optimal
solution of (P) to have few nonzeros. Let Aj denote the jth column of A. Consider a
subset of columns B ⊂ [p̄] and the corresponding reduced primal/dual problems:

(PB) : min
θB∈R|B|

∑
j∈B

cjθj (DB) : max
q∈Rn̄

qTb

s.t.
∑
j∈B

Ajθj ≥ b, θB ≥ 0 s.t. qTAj ≤ cj , j ∈ B, q ≥ 0.

Let θ̃B and q̃ be a pair of primal/dual solutions to the restricted problems (PB) and
(DB). Let θ̂ be an extension of θ̃B to Rp̄ i.e., θ̂B = θ̃B and θ̂Bc = 0. While θ̂ is a feasible
solution for (P), it may not be optimal for (P). An optimality certificate can be obtained
via q̃, by checking if q̃ is feasible for (D). Specifically, let the reduced cost for variable j be
defined as c̄j := cj − q̃TAj . If c̄j ≥ 0 for all j /∈ B, then q̃ is optimal for (D); and θ̂ is an
optimal solution for (P).

Column generation: Column generation uses the principle outlined above. It is expected
to be useful when p̄ � n̄, and an optimal solution to (P) has few nonzeros. We start
with a subset of columns say, B—i.e., a guess for the support of a minimizer of (P) for
which (PB) is feasible. Given B, we solve the restricted problem (PB); and have a pair of
primal/dual solutions for (PB)/(DB). If all the reduced costs are nonnegative, we declare
convergence and stop. Otherwise, we find a column (or a collection of columns) outside
B with the most negative reduced cost(s), update B, and re-solve the updated problem
(PB) by making use of the warm-start capabilities of a simplex-based LP solver. If B is
only allowed to increase—i.e., we do not drop variables—then this process converges after
finitely many iterations. Convergence guarantees of this procedure are formally discussed
in Section 2.3. Upon termination, column generation leads to a pair of primal/dual optimal
solutions to (P)/(D).

Constraint generation: We now consider the case when n̄ � p̄. Suppose at an optimal
solution to (P), only a small fraction of the n̄ constraints aTi θ ≥ bi for i ∈ [n̄] are active
or binding. Then, an optimal solution can be potentially obtained by considering only a
small subset of the n̄ constraints. This inspires the use of a constraint generation algorithm,
which can also be interpreted as column generation (Bertsimas and Tsitsiklis, 1997) on the
dual Problem (D).

2.2 Primal and Dual Formulations of L1-SVM

We present an LP formulation for Problem (2):

6

L1-SVM and Related LPs with Column and Constraint Generation

Pλ ([n], [p]) min
ξ∈Rn,β0∈R
β+, β−∈Rp

n∑
i=1

ξi + λ

p∑
j=1

β+
j + λ

p∑
j=1

β−j (5a)

s.t. ξi + yix
T
i β

+ − yixTi β− + yiβ0 ≥ 1 i ∈ [n] (5b)

ξ ≥ 0, β+ ≥ 0, β− ≥ 0.

Above, the positive and negative parts of βi are denoted as β+
i = max{βi, 0} and

β−i = max{−βi, 0} respectively, and ξi’s are auxiliary continuous variables corresponding
to the hinge-loss function. The feasible set of Problem (5) is nonempty. A dual of (5) is
the following LP:

Dλ ([n], [p]) max
π∈Rn

n∑
i=1

πi

s.t. −λ ≤
n∑
i=1

yixijπi ≤ λ j ∈ [p]

yTπ = 0

0 ≤ πi ≤ 1 i ∈ [n].

(6)

For Problems (5) and (6), standard complementary slackness conditions lead to:

(1− πi)ξi = 0, πi
(
ξi + yix

T
i β + yiβ0 − 1

)
= 0 i ∈ [n]. (7)

Let (β∗(λ), β∗0(λ)) and π∗(λ) denote optimal solutions for Problems (5) and (6). In what
follows, for notational convenience, we will drop the dependence of an optimal solution
on λ when there is no confusion. We make a few observations regarding the geometry of
an L1-SVM solution following standard SVM terminology (Hastie et al., 2009). For easier
notation, we denote αi = yix

T
i (β+ − β−) + yiβ0 for all i. Note that ξi = max{1 − αi, 0}

for all i. If a point i is correctly classified, we have ξi = 0; and if this point is away from
the margin, then we have 0 > 1 − αi and hence πi = 0 (from (7)). Note that if point i is
misclassified, then ξi > 0 and πi = 1. Furthermore, based on the value of πi, we have the
following cases: (i) If πi = 0, then αi ≥ 1; (ii) If πi = 1 then 1 ≥ αi and (iii) If πi ∈ (0, 1)
then αi = 1. The SVM coefficients can be estimated from the samples lying on the margin
i.e., for all i such that αi = 1. In particular, if an optimal solution to the L1-SVM problem
has κ-many nonzeros in β, then (β, β0) can be computed based on (κ + 1)-many samples
lying on the margin2.

2. Note that here we assume that the corresponding feature columns form a full rank matrix.

7

Dedieu, Mazumder and Wang

2.3 Column and Constraint Generation for L1-SVM

We discuss how column and constraint generation applies to the L1-SVM Problem (2) for
a given λ. Given a set of candidate features J ⊆ [p] and a subset of samples I ⊆ [n], we
form the column and constraint restricted L1-SVM problem as

Pλ(I,J) min
ξ∈R|I|, β0∈R
β+, β−∈R|J |

∑
i∈I

ξi + λ
∑
j∈J

β+
j + λ

∑
j∈J

β−j

s.t. ξi +
∑
j∈J

yixijβ
+
j −

∑
j∈J

yixijβ
−
j + yiβ0 ≥ 1 i ∈ I

ξ ≥ 0, β+ ≥ 0, β− ≥ 0,

(8)

and the corresponding dual problem is

Dλ(I,J) max
π∈R|I|

∑
i∈I

πi

s.t. −λ ≤
∑
i∈I

yixijπi ≤ λ j ∈ J∑
i∈I

yiπi = 0

0 ≤ πi ≤ 1 i ∈ I.

(9)

Let (β̂+
j , β̂

−
j)j∈J , β̂0 and (ξ̂i)i∈I be an optimal solution of Pλ(I,J), and let (π̂i)i∈I be

an optimal solution of Dλ(I,J). Define β̂
+

and β̂
−

to be the vectors in Rp which are
obtained from (β̂+

j , β̂
−
j)j∈J by padding coordinates outside J with zeros. Similarly, define

ξ̂ and π̂ to be the vectors in Rp obtained from (ξ̂i)i∈I and (π̂i)i∈I respectively by padding
coordinates outside I with zeros. Using this notation, the tuple (β̂, β̂0) is a candidate

approximate solution to the L1-SVM problem i.e., Problem (2). (Recall that, β̂ = β̂
+− β̂−,

and the candidate solution (β̂, β̂0) is obtained from the column-and-constraint restricted
Problem (8)).

For j ∈ [p] \ J and i ∈ [n] \ I, define:

β̄+
j = λ−

∑
i∈I

yixij π̂i, β̄−j = λ+
∑
i∈I

yixij π̂i,

π̄i = 1− yi
(∑
j∈J

xij β̂j + β̂0

)
.

(10)

Above, β̄+
j , β̄−j are reduced costs of variables β+

j and β−j respectively. A similar notation
applies to π̄i. Note that if

min
{
β̄+
j , β̄

−
j

}
≥ 0 ∀ j ∈ [p] \ J ; and π̄i ≤ 0 ∀ i ∈ [n] \ I, (11)

then (β̂, β̂0, ξ̂) is an optimal solution of Pλ([n], [p]) and π̂ is an optimal solution ofDλ([n], [p]).
To see this, we first note that the condition in (11) ensures that (β̂, β̂0, ξ̂) and π̂ are feasible
solutions to Pλ([n], [p]) and Dλ([n], [p]) respectively. The objective value of Pλ([n], [p]) at a

8

L1-SVM and Related LPs with Column and Constraint Generation

solution (β̂, β̂0, ξ̂) is the same as the objective value of Pλ(I,J) with (β̂+
j , β̂

−
j)j∈J , β̂0 and

(ξ̂i)i∈I . Also, the objective value of Dλ([n], [p]) with π̂ is the same as the objective value
of Dλ(I,J) with (π̂i)i∈I . Hence, by strong duality we know that (β̂, β̂0, ξ̂) is an optimal
solution of Pλ([n], [p]) and π̂ is an optimal solution of Dλ([n], [p]).

When the condition in (11) does not hold, (β̂, β̂0) is not an optimal solution of Prob-
lem (2). The following theorem provides an upper bound on the primal optimality gap for
the solution (β̂, β̂0).

Theorem 1 Let z∗ denote the optimal objective value of Pλ([n], [p]). Denote

ẑ :=

n∑
i=1

(
1− yi(xTi β̂ + β̂0)

)
+

+ λ‖β̂‖1. (12)

Using the notation in (10), let us define

ε̃1 := max
i∈[n]\I

{max {π̄i, 0}} , ε̃2 := − min
j∈[p]\J

{
min{β̄+

j , β̄
−
j , 0}

}
. (13)

If (β∗, β∗0) is an optimal solution to Problem (2), then the following holds

z∗ ≤ ẑ ≤ z∗ + ε̃1(n− |I|) + ε̃2‖β∗‖1. (14)

Proof The first inequality follows by noting that z∗ is the optimal objective value for
Problem (2). Below we prove the second inequality in (14). By the definition of ε̃2 we have

λ−
∣∣∣ n∑
i=1

yixij π̂i

∣∣∣ = λ−
∣∣∣∑
i∈I

yixij π̂i

∣∣∣ ≥ −ε̃2 ∀j ∈ [p] \ J . (15)

On the other hand, since (π̂i)i∈I is a feasible solution of Dλ(I,J) we have

λ−
∣∣∣ n∑
i=1

yixij π̂i

∣∣∣ = λ−
∣∣∣∑
i∈I

yixij π̂i

∣∣∣ ≥ 0 ∀j ∈ J . (16)

Combining the two inequalities above we have

−λ− ε̃2 ≤
n∑
i=1

yixij π̂i ≤ λ+ ε̃2 ∀j ∈ [p]. (17)

In addition, we have
∑n

i=1 yiπ̂i =
∑

i∈I yiπ̂i = 0 and 0 ≤ π̂i ≤ 1 for all i ∈ [n]. So (π̂i)
n
i=1

is a feasible solution for the problem Dλ+ε̃2([n], [p]). Let (ξ∗,β∗+,β∗−, β∗0) be an optimal
solution of Pλ([n], [p]), then it is also a feasible solution of Pλ+ε̃2([n], [p]). Hence by weak
duality we have

n∑
i=1

π̂i ≤
n∑
i=1

ξ∗i + (λ+ ε̃2)

p∑
j=1

(β∗+j + β∗−j) = z∗ + ε̃2‖β∗‖1. (18)

On the other hand, by (10), we have(
1− yi(xTi β̂ + β̂0)

)
+

= max{π̄i, 0} ∀ i ∈ [n] \ I. (19)

9

Dedieu, Mazumder and Wang

From the definition of ẑ in (12), we have the following:

ẑ =
∑
i∈I

(
1− yi(xTi β̂ + β̂0)

)
+

+
∑

i∈[n]\I

max{π̄i, 0}+ λ‖β̂‖1

≤
∑
i∈I

(
1− yi(xTi β̂ + β̂0)

)
+

+ ε̃1(n− |I|) + λ‖β̂‖1

=
∑
i∈I

(
1− yi(xTi β̂ + β̂0)

)
+

+ ε̃1(n− |I|) + λ
∑
j∈J
|β̂j |, (20)

where, the first line above uses (19), and the inequality above uses the definition of ε̃1.

Since
∑

i∈I(1−yi(xTi β̂+ β̂0))+ +λ
∑

j∈J |β̂j | is the optimal objective value of Pλ(I,J),
it holds by strong duality

∑
i∈I

(
1− yi(xTi β̂ + β̂0)

)
+

+ λ
∑
j∈J
|β̂j | =

∑
i∈I

π̂i =

n∑
i=1

π̂i. (21)

Combining (18), (20) and (21) we complete the proof.

Theorem 1 provides an upper bound on the primal optimality gap ẑ− z∗ in terms of ε̃1 and
ε̃2 — suggesting termination criteria for column-and-constraint generation.

Remark 2 Note that the values ε̃1 and ε̃2 defined in (13) quantify the violation of the
conditions in (11). By definition, it holds ε̃1 ≥ 0 and ε̃2 ≥ 0. If ε̃1 = ε̃2 = 0, then the
condition in (11) is satisfied, and the inequality in (14) reduces to z∗ = ẑ.

In the following, we discuss three important special cases of the column-and-constraint
generation algorithm discussed above: (a) n � p; (b) n � p; and (c) n ≈ p with both n
and p large.

2.3.1 Column Generation when p� n

For the case when p is much larger than n (and n is small), we set I = [n] in Problem (8)
and consider a column generation method that adjusts J in each iteration. More precisely,
in each iteration, we solve a subproblem P([n],J). Then we compute the reduced cost
according to (10), and expand J by adding the indices j for which min{β̄+

j , β̄
−
j } is lower

than a pre-specified (negative) threshold. We summarize the algorithm below.

Algorithm 1: Column generation for L1-SVM
Input: X, y, regularization parameter λ, a convergence threshold ε ≥ 0, an initial set of
columns J .

Output: A near-optimal solution (β̂, β̂0) for the L1-SVM Problem (2).

1. Repeat Steps 2 to 3 until J stabilizes.

2. Solve the problem Pλ ([n],J).

10

L1-SVM and Related LPs with Column and Constraint Generation

3. Form the set J ε := {j ∈ [p]\J | min{β̄+
j , β̄

−
j } ≤ −ε}. Update J ← J ∪ J ε; and go

to Step 2 (with LP warm-starting enabled).

Algorithm 1 expands with no deletion the set of columns in the restricted problem—this
converges in a finite number of iterations, bounded above by p. The cost of Algorithm 1
also depends upon the size of J—if this becomes comparable to p, then the cost of solv-
ing Pλ([n],J) will be large. However, assuming that a solution to the L1-SVM problem
corresponds to a sparse β, then using a good initialization for J , the worst case behavior
may not be observed in practice—see our results in Section 5 for empirical support. In addi-
tion, thanks to simplex warm-start capabilities, one can compute a solution to the updated
version of the restricted L1-SVM problem quite efficiently.

The following corollary presents a special case of Theorem 1 when we use Algorithm 1
(column generation).

Corollary 3 Let (β̂, β̂0) be the solution obtained by Algorithm 1 and ẑ be the corresponding
objective value of Problem (2), as defined in (12). Let z∗ be the optimal objective value and
(β∗, β∗0) be an optimal solution to Problem (2). Then it holds that

0 ≤ ẑ − z∗ ≤ ε‖β∗‖1.

There are variants of the column generation procedure where, instead of continually
expanding the set of columns in the restricted problem, one can also drop variables—
see Desrosiers and Lübbecke (2005). This is useful if the size of J becomes so large that the
restricted problem becomes difficult to solve. If we only expand the set of columns in the
restricted problem, as in Algorithm 1, we obtain a sequence of decreasing objective values
across the column generation iterations. If one were to both add and delete columns, one
may not obtain a monotone sequence of objective values. In this case, additional care is
needed to ensure convergence of the resulting procedure (Desrosiers and Lübbecke, 2005).

Initializing column generation with a candidate set of columns: In practice, Al-
gorithm 1 is found to benefit from a good initial choice for J . To obtain a reasonable
estimate of J with low computational cost, we list a couple of options that we found to be
useful.

(i) First order methods: Section 4 discusses first order methods to obtain an approximate
solution to the L1-SVM problem, which can be used to initialize J .

(ii) Regularization path: We compute a path or grid of solutions to the L1-SVM problem us-
ing Algorithm 1, for a decreasing sequence of λ values: λ ∈ {λ0, . . . , λM}. This is discussed
below.

Computing a regularization path with column generation. Note that the subgradi-

ent condition of optimality for the L1-SVM Problem (2) is given by: λ·sign(β∗j) =
n∑
i=1

yixijπ
∗
i

where, for a scalar u, sign(u) denotes a subgradient of u 7→ |u|. When λ is larger than
λmax := maxj∈[p]

∑n
i=1 |xij |, an optimal solution to Problem (2) is zero: β∗(λ) = 0.

Let I+, I− denote the sample indices corresponding to the classes with labels +1 and
−1, respectively; and let N+, N− denote their respective sizes. If N+ ≥ N−, then for

11

Dedieu, Mazumder and Wang

λ ≥ λmax a solution to Problem (6) is πi(λ) = N−/N+, ∀i ∈ I+ and πi(λ) = 1, ∀i ∈ I−. For
λ = λmax using (10), the minimum of the reduced costs of the variables β+

j and β−j is

min
{
β̄+
j (λmax), β̄−j (λmax)

}
= λmax −

∣∣∣N−
N+

∑
i∈I+

yixij +
∑
i∈I−

yixij

∣∣∣. (22)

When λ = λ1 is slightly smaller than λmax, we initialize column generation by selecting J
as a small subset of variables that minimize the right-hand side of (22). Once we obtain a
solution to Problem (2) at λ1, we compute a solution for a smaller value of λ by using LP
warm-start along with column generation. Consequently, this leads to solutions for a grid
of λ values, as summarized below.

Algorithm 2: Regularization path algorithm for L1-SVM

Input: X, y, convergence tolerance ε (for column generation), a grid of decreasing λ values:
{λ0 = λmax, . . . , λM = λ}, a small integer j0.
Output: A sequence of solutions (β∗(λi), β

∗
0(λi)) for i = 0, . . . ,M on a grid of λ-values

for the L1-SVM Problem (2).

1. Let β∗(λ0) = 0 and assign J (λ0) to the j0 variables minimizing the rhs of (22).

2. For ` ∈ {1, . . . ,M} initialize J (λ`) ← J (λ`−1), β∗(λ`) ← β∗(λ`−1) and β∗0(λ`) ←
β∗0(λ`−1). Run column generation to obtain the new estimate β∗(λ`) with J (λ`) de-
noting the corresponding columns.

2.3.2 Constraint Generation when n� p

For the case when n is much larger than p (and p is small), we set J = [p] in Problem (8)
and consider a constraint generation method that updates I in each iteration. In particular,
we solve the subproblem P(I, [p]), and subsequently update I by adding the indices i ∈
[n] \ I with π̄i larger than a threshold. We repeat this process till convergence, as formally
summarized below.

Algorithm 3: Constraint generation for L1-SVM

Input: X, y, regularization parameter λ, a tolerance threshold ε ≥ 0, an initial set of
constraints indexed by I.

Output: A near-optimal solution (β̂, β̂0) for the L1-SVM Problem (2).

1. Repeat Steps 2 and 3 until I stabilizes.

2. Solve the problem Pλ(I, [p]).

3. Let Iε := {i ∈ [n] \ I | π̄i > ε}. Update I ← I ∪ Iε, and go to Step 2 (with LP
warm-starting enabled).

The following corollary is a special case of Theorem 1 when we use Algorithm 3 (con-
straint generation), and provides an upper bound on the optimality gap of the solution
computed by Algorithm 3.

12

L1-SVM and Related LPs with Column and Constraint Generation

Corollary 4 Let (β̂, β̂0) be a solution obtained by Algorithm 3 and ẑ be the corresponding
objective value of Problem (2) as defined in (12). Let Î be the index set delivered by Algo-
rithm 3 upon termination, and let z∗ be the optimal objective value of Problem (2). Then
it holds that

0 ≤ ẑ − z∗ ≤ (n− |Î|)ε.

Initialization: Similar to the case of column generation discussed above, the constraint
generation procedure also benefits from a good initialization scheme. To this end, we use
first order methods as described in Section 4—specifically, the method we use for large n
(and small p), is discussed in Section 4.4.2.

Alternatively, similar to the case of column generation, we can also compute a regular-
ization path with LP warm-start continuation.

2.3.3 Column and Constraint Generation when Both n and p Are large

When both n and p are large, we use a combination of column and constraint generation
to solve L1-SVM. In particular, we update both the sets I and J , as outlined below.

Algorithm 4: Combined column and constraint generation for L1-SVM
Input: X, y, a regularization coefficient λ, tolerance thresholds ε1, ε2 ≥ 0, initial subsets
I and J .
Output: A near-optimal solution (β̂, β̂0) for the L1-SVM Problem (2).

1. Repeat Steps 2 to 4 until I and J stabilize.

2. Solve the problem Pλ(I,J).

3. Let Iε1 := {i ∈ [n] \ I | π̄i > ε1}. Update I ← I ∪ Iε1 .

4. Let J ε2 := {j ∈ [p] \ J | min{β̄+
j , β̄

−
j } ≤ −ε2}. Update J ← J ∪ J ε2 ; and go to

Step 2.

By the updating rule of Algorithm 4, it holds ε̃1 ≤ ε1 and ε̃2 ≤ ε2 upon termination.
Recall that (β∗, β∗0) is an optimal solution to Problem (2) with corresponding optimal
objective value z∗. Therefore, by Theorem 1, the optimality gap has the upper bound
ẑ − z∗ ≤ ε1(n − |Î|) + ε2‖β∗‖1, where Î is the set I upon termination of Algorithm 4.
Section 4.4.3 discusses the use of first order optimization methods to initialize I and J .

2.4 Application to the Group-SVM Problem

We now discuss application of column/constraint generation to the Group-SVM Prob-
lem (3). We first introduce some notation that we will use—we let Ig ⊂ [p] denote the
indices corresponding to group g for g ∈ [G].

13

Dedieu, Mazumder and Wang

Column generation: Below we present an LP formulation for Problem (3). We introduce
auxiliary variables v = (vg)g∈[G] such that vg refers to the L∞-norm of the coefficients βg:

(Group-SVM) min
ξ∈Rn,β0∈R,

β+, β−∈Rp,v∈RG

n∑
i=1

ξi + λ
G∑
g=1

vg

s.t. ξi + yix
T
i β

+ − yixTi β
− + yiβ0 ≥ 1 i ∈ [n]

vg − β+
j − β

−
j ≥ 0 j ∈ Ig, g ∈ [G]

ξ ≥ 0, β+ ≥ 0, β− ≥ 0, v ≥ 0.

(23)
A dual of Problem (23) is given by:

(Dual-Group-SVM) max
π∈Rn

n∑
i=1

πi

s.t.
∑
j∈Ig

∣∣∣∣ n∑
i=1

yixijπi

∣∣∣∣ ≤ λ g ∈ [G]

yTπ = 0

0 ≤ πi ≤ 1 i ∈ [n].

(24)

Following the description in Section 2.1, we apply column generation on the groups. Here,
the reduced cost of group g is given as:

β̄g = λ−
∑
j∈Ig

∣∣∣∣∣
n∑
i=1

yixijπi

∣∣∣∣∣ , (25)

and we include into the model (a subset of) groups g for which β̄g is smaller than a small
negative tolerance.

Computing a regularization path: The regularization path algorithm (Algorithm 2)
presented in Section 2.3.1 can be adapted to the Group-SVM problem. First, note that:

β∗(λ) = 0, ∀λ ≥ λmax = max
g∈[G]

∑
j∈Ig

n∑
i=1

|xij |. (26)

For λ = λmax, the reduced cost of variables corresponding to group g is given by the “group”
analogue of (22):

β̄g = λmax −
∑
j∈Ig

∣∣∣∣∣∣N−N+

∑
i∈I+

yixij +
∑
i∈I−

yixij

∣∣∣∣∣∣ . (27)

We can obtain a small set of groups maximizing the rhs of (27). We use these groups to
initialize the LP solver to solve Problem (23) for the next small value of λ, using column
generation.

We repeat this process for smaller values of λ using warm-start continuation.

Constraint generation and column generation: When n is large (but the number of
groups is small) constraint generation can be used for the Group-SVM problem in a manner

14

L1-SVM and Related LPs with Column and Constraint Generation

similar to that used for the L1-SVM problem. Similarly, column and constraint generation
can be applied together to obtain computational savings when both n and the number of
groups are large.

Initialization: As discussed for the L1-SVM problem, we can use first order methods
to obtain a low-accuracy solution for the Group-SVM problem—these are discussed in
Section 4. This can be used to initialize the set of nonzero groups (for column generation),
relevant constraints (for constraint generation), and both groups and constraints (for the
combined column-and-constraint generation procedure).

3. Column and constraint generation for Slope-SVM

Here we discuss the Slope-SVM estimator i.e., Problem (4). For a p-dimensional regular-
ization parameter λ with coordinates sorted as: λ1 ≥ . . . ≥ λp ≥ 0, we let

‖β‖S :=

p∑
j=1

λj |β(j)| (28)

denote the Sorted L1-norm or the Slope-norm—we borrow this term inspired by the “Slope
estimator” (Bogdan et al., 2013) and acknowledge a slight abuse in terminology. Note that
for convenience, we drop the dependence on λ in the notation ‖ · ‖S .

We note that the epigraph of ‖β‖S i.e., {(β, η) | ‖β‖S ≤ η} admits an LP formula-
tion using O(p2) many variables and O(p2) many constraints (cf Section A.1)—given the
problem-sizes we seek to address, we do not pursue this route. Rather, we make use of the
observation that the epigraph can be expressed with exponentially many linear inequali-
ties (Section 3.1) when using O(p)-many variables. The large number of constraints make
column/constraint generation methodology for the Slope penalty quite different than the
L1-SVM example. However, as we will discuss, our procedure does not require us to ex-
plicitly enumerate the exponentially many inequalities. To our knowledge, the procedure
we present here for the Slope-SVM problem is novel. Section 3.1 discusses a constraint
generation method that greatly reduces the number of constraints needed to model the epi-
graph. Section 3.2 discusses the use of column generation to exploit sparsity in β when p is
large. Finally, Section 3.3 combines these two features to address the Slope SVM problem.
We note that even for large p and small n settings, both column and constraint generation
methods are needed for the Slope penalty, making it different from the L1-penalty, where
column generation alone suffices. In what follows, we concentrate on the case where n is
small but p is large—if n is also large, a further layer of constraint generation might be
needed to efficiently handle sparsity arising from the hinge-loss.

15

Dedieu, Mazumder and Wang

3.1 Constraint Generation for Slope-SVM

Reformulation of Slope-SVM: Note that Problem (4) can be expressed as:

MS(C, [p]) min
ξ∈Rn, β0,η∈R,
β+, β−∈Rp

n∑
i=1

ξi + η

s.t. ξi + yix
T
i β

+ − yixTi β− + yiβ0 ≥ 1 i ∈ [n] (29a)

(β+, β−, η) ∈ C (29b)

ξ ≥ 0, β+ ≥ 0, β− ≥ 0,

where, β = β+ − β−; and β+, β− ∈ Rp+ denote the positive and negative parts of β,
respectively. In line (29b) we express the Slope penalty in the epigraph form with C defined
as:

C :=

(β+, β−, η)

∣∣∣∣ η ≥ p∑
j=1

λjβ
+
(j) +

p∑
j=1

λjβ
−
(j), β+, β− ∈ Rp+

 ,

where, we use the notation β+
(1) + β−(1) ≥ . . . ≥ β+

(p) + β−(p) and remind ourselves that

|βi| = β+
i + β−i for all i. Below we show that (29b) can be expressed via linear inequalities

involving (β+,β−).
We first introduce some notation. Let Sp denote the set of all permutations of {1, . . . , p},

with |Sp| = p!. For a permutation φ ∈ Sp, we let (φ(1), . . . , φ(p)) denote the corresponding
rearrangement of (1, . . . , p). Using this notation, the Slope norm can be expressed as:

‖β‖S =

p∑
j=1

λj |β(j)| = max
φ∈Sp

p∑
j=1

λj |βφ(j)| = max
ψ∈Sp

p∑
j=1

λψ(j)|βj |. (30)

As a consequence, we have the following lemma:

Lemma 5 The Slope norm ‖β‖S admits the following representation

‖β‖S = max
w∈W [p]

wT (β+ + β−) = max
w∈W [p]

0

wT (β+ + β−),

where, W [p]
0 := Conv

(
W [p]

)
is the convex hull of W [p], where

W [p] :=
{
w ∈ Rp | ∃ψ ∈ Sp s.t. wj = λψ(j), j ∈ [p]

}
. (31)

Proof Note that a linear function maximized over a bounded polyhedron reaches its
maximum at one of the extreme points of the polyhedron—this leads to:

max
w∈W [p]

0

wT (β+ + β−) = max
w∈W [p]

wT (β+ + β−). (32)

Using the definition of W [p], we get that the rhs of (32) is maxψ∈Sp
∑p

j=1 λψ(j)|βj | which is
in fact the Slope norm ‖β‖S .

The following remark provides a description of W [p] for special choices of λ.

16

L1-SVM and Related LPs with Column and Constraint Generation

Remark 6 (a) If all the coefficients are equal i.e., λ1 = . . . = λp and ‖β‖S = λ‖β‖1,
then W [p] is a singleton. (b) If all the coefficients are distinct i.e., λ1 > . . . > λp, then
each permutation ψ ∈ Sp is associated with a unique vector in W [p] and W [p] contains p!
elements.

Using Lemma 5, we can derive an LP formulation of Problem (29) by modeling C in (29b)
as:

C =

{(
β+, β−, η

) ∣∣∣∣ β+,β− ∈ Rp, η ≥ max
w∈W [p]

wT (β+ + β−)

}
, (33)

where, W [p] is defined in (31). The resulting LP formulation (29) has at most n constraints
from (29a). There are at most p! constraints associated with (29b) by virtue of (33). We
note that many constraints in (33) are redundant: for example, the maximum is attained
corresponding to the inverse of permutation φ (denoted by φ−1), where |βφ(1)| ≥ . . . ≥
|βφ(p)|. This motivates the use of constraint generation techniques.

Constraint generation: We proceed by replacing W [p] with a smaller subset and solve
the resulting LP. We subsequently refine this approximation if (29b) is violated. Formally,
let us consider a collection of vectors w(1), . . . ,w(t) ∈ W [p] leading to a superset Ct of C:

C ⊆ Ct :=

(β+, β−, η)

∣∣∣∣ β+,β− ∈ Rp, η ≥
p∑
j=1

w
(`)
j β+

j +

p∑
j=1

w
(`)
j β−j , ∀` ≤ t

 . (34)

By replacing C in (29b) by Ct, we get an LP denoted by MS(Ct, [p]) which is a relaxation
of MS(C, [p]). Let (β∗, η∗) be a solution of MS(Ct, [p]). If this is not an optimal solution
at a tolerance threshold ε ≥ 0, we will expand Ct if

η∗ + ε <

p∑
j=1

λj |β∗(j)| = ‖β
∗‖S .

To this end, consider a permutation ψt+1 ∈ Sp such that |β∗ψt+1(1)| ≥ . . . ≥ |β∗ψt+1(p)|. If

ψ−1
t+1 denotes the inverse of ψt+1, we obtain w(t+1) ∈ W [p] such that:

w
(t+1)
j = λψ−1

t+1(j) ∀j ∈ [p], (35)

and solve the resulting LP. We continue adding these additional constraints (aka cuts), till
no further cuts need to be added—this leads to a (near)-optimal solution toMS(C, [p]). We
note that the first vector w(1) can be obtained by applying (35) on an estimator obtained
from the first order optimization schemes (cf Section 4). Our algorithm is summarized
below for convenience.

Algorithm 5: Constraint generation for Slope-SVM
Input: X, y, a vector of Slope coefficients {λj}j∈[p], a tolerance threshold ε > 0, a vector

w(1) ∈ W [p].
Output: A near-optimal solution (β∗, β∗0) for the Slope-SVM Problem (4).

1. Repeat Steps 2 to 3 (for t ≥ 1) till no further cuts need to be added.

17

Dedieu, Mazumder and Wang

2. Solve the model MS(Ct, [p]) with Ct as in (34). Let (β∗, η∗) be the corresponding
decision variables.

3. Let ψt+1 ∈ Sp be such that |β∗ψt+1(1)| ≥ . . . ≥ |β∗ψt+1(p)|. If condition η∗ + ε ≥∑p
j=1 λj |β∗ψt+1(j)| is not satisfied, we add a new cut w(t+1) ∈ W [p] as per (35); update

Ct+1 and go to Step 2.

3.2 Dual Formulation and Column Generation for Slope-SVM

When the amount of regularization is high, the Slope penalty (with λi > 0 for all i) may
lead to many zeros in the coefficient vector β at an optimal solution to Problem (4)—
computational savings are possible if we can leverage this sparsity when p is large. To this
end, we use column generation along with the constraint generation algorithm described
in Section 3.1. In particular, given a set of columns J = {J (1), . . . ,J (|J |)} ⊂ [p], we
consider a restricted version of Problem (4) with βj = 0, j /∈ J :

min
β∈Rp,β0∈R

n∑
i=1

(
1− yi(xTi β + β0)

)
+

+ ‖β‖S s.t. βj = 0, j /∈ J .

The above can be expressed as an LP similar to Problem (29) but with fewer columns

MS

(
CJ ,J

)
min

ξ∈Rn, β0, η∈R,
β+
J , β

−
J∈R

|J |

n∑
i=1

ξi + η

s.t. ξi +
∑
j∈J

yixijβ
+
j −

∑
j∈J

yixijβ
−
j + yiβ0 ≥ 1 i ∈ [n]

(β+
J , β

−
J , η) ∈ CJ

ξ ≥ 0, β+
J ≥ 0, β−J ≥ 0,

(36)
where, βJ is a sub-vector of β restricted to J and CJ is the adaption of (33) restricted to
βJ :

CJ :=

{(
β+
J , β

−
J , η

) ∣∣∣∣ β+
J ,β

−
J ∈ R|J |, η ≥ max

wJ∈WJ
wT
J (β+

J + β−J)

}
, (37)

where, wJ ∈ R|J | and WJ is defined as:

WJ :=

{
wJ

∣∣∣∣ ∃ψ ∈ S|J | s.t. wJ (j) = λψ(j), ∀j ≤ |J |
}
.

Since column generation is equivalent to constraint generation on the dual problem, to
determine the set of columns to add to J in Problem (36), we need the dual formulation
of Slope-SVM.

Dual formulation for Slope-SVM: We first present a dual (Zeng and Figueiredo, 2014)
of the Slope norm:

max

{
βTz

∣∣∣∣ β ∈ Rp, ‖β‖S ≤ 1

}
= max

k≤p


 k∑
j=1

λj

−1
k∑
j=1

|z(j)|

 . (38)

18

L1-SVM and Related LPs with Column and Constraint Generation

The identity (38) follows from the observation that the maximum will be attained at an
extreme point of the polyhedron PS = {β | ‖β‖S ≤ 1} ⊂ Rp. We describe these extreme
points. We fix k ∈ [p], and a subset A ⊂ {1, . . . , p} of size k—the extreme points of PS hav-

ing support A have their nonzero coefficients to be equal, with absolute value
(∑k

j=1 λj

)−1
.

Finally, (38) follows by taking a maximum over all k ∈ [p].

A dual of Problem (36) is given by:

max
π∈Rn,q∈Rp

n∑
i=1

πi

s.t. max
k=1,...,|J |


 k∑
j=1

λj

−1
k∑
j=1

|q(j)|

 ≤ 1

qj =

n∑
i=1

yixijπi, j ∈ [p]

yTπ = 0

0 ≤ πi ≤ 1, i ∈ [n].

(39)

We now discuss how additional columns can be appended to J in Problem (36) to perform
column generation. Let π∗ ∈ Rn be an optimal solution of Problem (39). We compute the
associated q∗ and sort its entries such that |q∗(1)| ≥ . . . ≥ |q

∗
(|J |)|. The first constraint in (39)

leads to:

max
k=1,...,|J |


k∑
j=1

|q∗(j)| −
k∑
j=1

λj

 ≤ 0. (40)

Now, for each column j /∈ J , we compute its corresponding q∗(j) and insert it into the

sorted sequence |q∗(1)| ≥ . . . ≥ |q
∗
(|J |)|. This insertion costs at most O(|J |) flops: we update

J ← J ∪{j} and denote the sorted entries by: |q∗
(1)
| ≥ . . . ≥ |q∗

(|J |+1)
|. We add a column

j /∈ J to the current model if:

max
k=1,...,|J |+1


k∑
j=1

|q∗
(j)
| −

k∑
j=1

λj

 > ε, (41)

and this costs O(|J | + 1) flops. Therefore, the total cost of sorting the vector q∗ and
scanning through all columns that are not in the current model to identify negative reduced
costs, is of the order O (|J | log |J |+ 2(p− |J |)|J |). This approach can be computationally
expensive. To this end, we propose an alternative method having a smaller cost with O (|J |)
flops. Indeed, by combining Equations (40) and (41), a column j /∈ J will be added to the
model if it satisfies:

|qj | ≥ λ|J |+1 + ε. (42)

This shows that the cost of adding a new column for Slope-SVM is the same as that in
L1-SVM. The column generation algorithm is summarized below.

19

Dedieu, Mazumder and Wang

Algorithm 6: Column generation for Slope-SVM
Input: X, y, a sequence of Slope coefficients {λj}, a threshold ε > 0, an initial set of
columns J .
Output: A near-optimal solution (β∗, β∗0) for the Slope-SVM Problem (4).

1. Repeat Steps 2 and 3 until convergence.

2. Solve the model MS

(
CJ ,J

)
in Problem (36) with warm-start (if available).

3. Identify the columns J ε ⊂ {1, . . . , p} \J that need to be added by using criterion (42).
Update J ← J ∪ J ε, and go to Step 2.

3.3 Pairing Column and Constraint Generation for Slope-SVM

We discuss how to combine the column generation (Section 3.2) and constraint generation
(Section 3.1) methods outlined above to solve the Slope SVM problem.

For a set of columns J and constraints associated withw
(1)
J , . . . ,w

(t)
J ∈ WJ , we consider

the following problem

MS

(
CJt ,J

)
min

ξ∈Rn, β0∈R, η∈R
β+
J , β

−
J∈R

|J |

n∑
i=1

ξi + η

s.t. ξi +
∑
j∈J

yixijβ
+
j −

∑
j∈J

yixijβ
−
j + yiβ0 ≥ 1 i ∈ [n]

(β+
J , β

−
J , η) ∈ CJt

ξ ≥ 0, β+
J ≥ 0, β−J ≥ 0,

(43)
where, CJt (and CJ) is a restriction of Ct (and C, respectively) to the columns J . Formally,

CJt :=

{(
β+
J , β

−
J , η

) ∣∣∣∣ β+
J , β

−
J ∈ R|J |, η ≥ (w

(`)
J)T (β+

J + β−J), ∀` ≤ t
}
⊃ CJ .

We use the method in Section 3.1 to refine CJt . We use the method of Section 3.2—see
criterion (42)—to add a set of columns to J . Let J ε denote these additional columns
with coordinates J ε(k) for k = 1, . . . , |J ε|—we will also assume that the elements have
been sorted by increasing reduced costs. For notational purposes, we will need to map3 the
existing cuts of WJ onto WJ∪J ε . To this end, we make the following definition:

w(`)
m = λ|J |+k, ∀m ∈ J ε, ∀` ≤ t. (44)

We summarize our algorithm below.

Algorithm 7: Column-and-constraint generation for Slope-SVM
Input: X, y, a sequence of Slope coefficients {λj}, a convergence threshold ε ≥ 0.

Initialization of β∗ and J (e.g., using the first order method in Section 4.3). Define w
(1)
J as

per (35).
Output: A near-optimal solution β∗ for the Slope-SVM Problem (4).

3. In other words, the existing vectors w
(`)
J are in R|J | and we need to extend them to R|J |+|J

ε|. Therefore,
we need to define the coordinates corresponding to the new indices J ε.

20

L1-SVM and Related LPs with Column and Constraint Generation

1. Repeat Steps 2 to 4 until no cut can be added and J stabilizes.

2. Solve the model MS

(
CJt ,J

)
in Problem (43) (with warm-starting enabled).

3. If η <
∑|J |

j=1 λj |β∗(j)| − ε, add a new cut w
(t+1)
J ∈ WJ as in Equation (35) and define

CJt+1.

4. Identify columns J ε ⊂ {1, . . . , p} \J that need to be added (based on criterion (42)).

Map the cuts w
(1)
J , . . .w

(t+1)
J to WJ∪J ε via (44). Update J ← J ∪ J ε and go to

Step 2.

4. First order methods to obtain a low-accuracy solution

The computational performance of the column/constraint generation methods described
above for Problems (2), (3) and (4), is found to benefit from a good initialization. For
example, a good estimate of the initial set of columns can improve the overall efficiency
of a column generation algorithm for Problem (2). We refer the reader to Desrosiers and
Lübbecke (2005) for additional discussions on the importance of having a good initialization
for column generation. Finding a good and computationally inexpensive initialization for
general problems can be challenging. In our case, we propose to leverage low-accuracy
solutions4 available from first order methods (Nesterov, 2004).

Problems (2), (3) and (4) are nonsmooth: We use Nesterov’s smoothing technique (Nes-
terov, 2005) to smooth the nonsmooth hinge-loss function and use proximal gradient descent
on the composite version (Nesterov, 2013) of the problem5. These solutions serve as rea-
sonable initial estimates for the sets of columns (constraints) necessary for the column
(respectively, constraint) generation methods. When the number of samples and/or fea-
tures become larger, a direct application of the first order methods becomes expensive and
we use additional heuristics for scalability as discussed in Section 4.4.

4.1 Solving the Composite Form with Nesterov’s Smoothing

Note that for a scalar u, we have max{0, u} = 1
2(u + |u|) = max|w|≤1

1
2(u + wu) and this

maximum is achieved when w = sign(u). Hence, the hinge-loss can be expressed as:

n∑
i=1

(zi)+ = max
‖w‖∞≤1

n∑
i=1

1

2
[zi + wizi] , (45)

where zi = 1− yi(xTi β + β0). One can obtain a smooth approximation of (45) as follows:

Hτ (z) := max
‖w‖∞≤1

∑
i∈[n]

1

2
[zi + wizi]−

τ

2
‖w‖22, (46)

where, τ > 0 is a parameter that controls the amount of smoothness in Hτ (z) and how well
it approximates H0(z) =

∑n
i=1(zi)+. This is formalized in the following lemma adapted

from Nesterov (2005):

4. As our experiments demonstrate, obtaining high accuracy solutions via first order methods can become
prohibitively expensive especially, when compared to the column/constraint algorithms presented here.

5. For the Group-SVM problem, we use proximal block coordinate methods instead of proximal gradient
methods as they lead to better numerical performance.

21

Dedieu, Mazumder and Wang

Lemma 7 The function z 7→ Hτ (z) is an O(τ)-approximation for the hinge loss H0(z)
i.e., H0(z) ∈ [Hτ (z), Hτ (z)+nτ/2] for all z. Furthermore, Hτ (z) has Lipschitz continuous
gradient with parameter 1/(4τ), i.e., ‖∇Hτ (z)−∇Hτ (z′)‖2 ≤ 1/(4τ)‖z− z′‖2 for all z, z′.

Let us define:

F τ (β, β0) = max
‖w‖∞≤1

{
n∑
i=1

1

2

[
1− yi(xTi β + β0) + wi(1− yi(xTi β + β0))

]
− τ

2
‖w‖22

}
. (47)

By Lemma 7, it follows that F τ (β, β0) is a uniform O(τ)-approximation to the hinge-loss
function. The gradient of F τ is given by:

∇F τ (β, β0) = −1

2

n∑
i=1

(1 + wτi)yix̃i ∈ Rp+1, (48)

where wτ is the optimal solution in (47). In addition, (β, β0) 7→ ∇F τ (β, β0) is Lipschitz
continuous with parameter Cτ = σmax(X̃T X̃)/(4τ), where X̃n×(p+1) is a matrix with ith
row (xi, 1).

We use a proximal gradient method (Beck and Teboulle, 2009) to the following composite
form of the smoothed-hinge-loss SVM problem with regularizer Ω(β)

min
β∈Rp,β0∈R

F τ (β, β0) + Ω(β), (49)

where, Ω(β) = λ‖β‖1 for L1-SVM, Ω(β) = λ
∑G

g=1 ‖βg‖∞ for Group-SVM and Ω(β) =
‖β‖S for Slope-SVM. For these choices, the proximal/thresholding operators can be com-
puted efficiently, as we discuss next.

4.2 Thresholding Operators

For notational convenience we set γ = (β, β0) ∈ Rp+1. Following Nesterov (2004); Beck and
Teboulle (2009), for L ≥ Cτ we have that γ 7→ QL(γ;α) is an upper bound to γ 7→ F τ (γ),
i.e, for all α,γ ∈ Rp+1:

F τ (γ) ≤ QL(γ;α) := F τ (α) +∇F τ (α)T (γ −α) +
L

2
‖γ −α‖22. (50)

The proximal gradient method requires solving the following problem:

γ̂ = arg min
γ

{QL(γ;α) + Ω(γ)} = arg min
γ

1

2

∥∥∥∥γ − (α− 1

L
∇F τ (α)

)∥∥∥∥2

2

+
1

L
Ω(γ). (51)

We denote: γ̂ = (β̂, β̂0). Note that β̂0 is simple to compute and β̂ can be computed via the
following thresholding operator:

SµΩ(η) := arg min
β∈Rp

1

2
‖β − η‖22 + µΩ(β) (52)

for some µ > 0. Computation of the thresholding operator is discussed below for specific
choices of Ω.

22

L1-SVM and Related LPs with Column and Constraint Generation

Thresholding operator when Ω(β) = ‖β‖1: In this case, SµΩ(η) is available via com-
ponentwise soft-thresholding where, the scalar soft-thresholding operator is given by:

arg min
u∈R

1

2
(u− c)2 + µ|u| = sign(c)(|c| − µ)+.

Thresholding operator when Ω(β) =
∑

g∈[G] ‖βg‖∞: We first consider the projection
operator that projects onto an L1-ball with radius µ > 0

S̃ 1
µ‖·‖1

(η) := arg min
β

1

2
‖β − η‖22 s.t.

1

µ
‖β‖1 ≤ 1. (53)

From standard results pertaining to the Moreau decomposition (Moreau, 1962; Bach et al.,
2011) we have:

Sµ‖.‖∞(η) + S̃ 1
µ‖·‖1

(η) = η (54)

for any η. Note that S̃ 1
µ‖·‖1

(η) can be computed via a simple sorting operation (Van

Den Berg and Friedlander, 2007, 2008; Condat, 2016), leading to a solution for Sµ‖.‖∞(η).
This observation can be used to solve Problem (52) with the L1/L∞ Group regularizer by
noticing that the problem separates across the G groups.

Thresholding operator when Ω(β) =
∑

i∈[p] λi|β(i)|: For the Slope regularizer, Prob-
lem (52) reduces to the following optimization problem:

min
β

1

2
‖β − η‖22 + µ

∑
i

λi|β(i)|. (55)

As noted by Bogdan et al. (2015), at an optimal solution to Problem (55), the signs of βj
and ηj are the same. In addition, since λi’s are decreasing, a solution to Problem (55) can be
found by solving the following close relative to the isotonic regression problem (Robertson,
1988)

min
u

1

2
‖u− η̃‖22 +

p∑
j=1

µλjuj s.t. u1 ≥ . . . ≥ up ≥ 0, (56)

where, η̃ is a decreasing re-arrangement of the absolute values of η, with η̃i ≥ η̃i+1 for all
i. If û is a solution to Problem (56)—then its ith coordinate ûi corresponds to |β̂(i)| where,

β̂ is an optimal solution of Problem (55).

4.3 Deterministic First Order Algorithms

(Accelerated) Proximal gradient descent: Let us denote the mapping (51) α 7→ γ̂
by the operator: γ̂ := Θ(α). The basic version of the proximal gradient descent algorithm
performs the updates: αT+1 = Θ(αT), for T ≥ 1, after starting with α1 = (β1, β

0
1). The

accelerated gradient descent algorithm (Beck and Teboulle, 2009), which enjoys a faster
convergence rate performs updates with a minor modification. It starts with α1 = α̃0, q1 =
1 and then performs the updates: α̃T+1 = Θ(αT) where, αT+1 = α̃T + qT−1

qT+1
(α̃T − α̃T−1)

23

Dedieu, Mazumder and Wang

and qT+1 = (1 +
√

1 + 4q2
T)/2. This algorithm requires O(1/ε) iterations to reach an ε-

optimal solution for the original problem with the hinge-loss. We perform these updates
till some tolerance criterion is satisfied, for example, ‖αT+1 − αT ‖ ≤ η for some tolerance
level η > 0. In most of our examples (cf Section 5), we set a generous tolerance of η = 10−3

or run the algorithm with a limit on the total number of iterations, usually a few hundred
in our experiments6.

Block Coordinate Descent (CD) for the Group-SVM problem: We describe a
cyclical proximal block coordinate (CD) descent algorithm (Wright, 2015) for the smooth
hinge-loss function with the group regularizer. For the group-SVM experiments considered
in Section 5, the block CD approach was found to exhibit superior numerical performance
compared to a full gradient-based procedure. We note that Qin et al. (2013) explore block
CD like algorithms for a family of group Lasso type problems7 but our approaches differ.

We perform a proximal gradient step on the gth group of coefficients with all other
blocks and β0 held fixed. This is given by the following update:

βt+1
g ∈ arg min

βg

1

2

∥∥∥∥βg − βtg − 1

Cτg

{
∇F τ (βt+1

1 , . . .βt+1
g−1,β

t
g, . . .β

t
G, β

t
0)
}
Ig

∥∥∥∥2

2

+
λ

Cτg
‖βg‖∞,

(57)
where {∇F τ (·)}Ig denotes the gradient restricted to the coordinates Ig and Cτg is its asso-

ciated Lipschitz constant: Cτg = σmax(XT
IgXIg)/4τ . We cyclically update the coefficients

across each group g ∈ [G] and then update β0. This continues till some convergence criterion
is met.

Computational savings are possible for this block CD algorithm by a careful accounting
of floating point operations (flops). As one moves from one group to the next, the whole
gradient can be updated easily. To this end, note that the gradient ∇F τ (β, β0) restricted
to block g is given by:

{∇F τ (β, β0)}Ig = −1

2
XT
Ig {y ◦ (1 + wτ)} ,

where ‘◦’ denotes element-wise multiplication. If wτ is known, the above computation
requires n|Ig| flops. Recall that wτ depends upon β via: wτi = min

(
1, 1

2τ |zi|
)

sign(zi) where

zi = 1−yi(xTi β+β0), ∀i. If β changes from βold to βnew, then wτ changes via an update in
Xβ—this change can be efficiently computed by noting that: Xβnew =

∑
g∈[G] XIgβ

new
g =

Xβold + XIg∆βg where, ∆βg = βnew
g − βold

g is a change that is only restricted to block g.
Hence updating wτ also requires n|Ig| operations. The above suggests that one sweep of
block CD across all the coordinates has a cost similar to that of computing a full gradient.
In addition, techniques like active set updates and warm-start continuation (Friedman et al.,
2010b) can lead to improved computational performance for CD, in practice.

6. This choice is user-dependent—there is a tradeoff between computation time and the quality of solution.
We recommend using a low accuracy solution as its purpose is to serve as an initialization for the
column/constraint generation method

7. Qin et al. (2013) consider a different class of problems than those studied here. They consider a squared
error loss function and use exact minimization for every block.

24

L1-SVM and Related LPs with Column and Constraint Generation

4.4 Scalability Heuristics for Large Problem instances

When n and/or p becomes large, the first order algorithms discussed above become expen-
sive. Recall that the goal of the first order methods is to get a low-accuracy solution for
the SVM problem and in particular, an estimate of the initial columns and/or constraints
for the column/constraint generation algorithms. Hence, for scalability purposes, we use
principled heuristics as a wrapper around the first order methods, discussed above.

4.4.1 Correlation Screening when p is Large and n is Small

When p� n, we use a feature screening method inspired by correlation screening (Tibshi-
rani et al., 2012), to restrict the number of features. We apply the first order methods on
this reduced set of features. Usually, for L1-SVM and Slope-SVM, we select for example,
the top 10n columns with highest absolute inner product8 with the output. For the Group-
SVM problem: for each group, we compute the inner products between every feature within
this group and the response, and take their L1-norm. We then sort these numbers and take
the top n groups.

4.4.2 A Subsampling Heuristic when n is Large and p is Small

The methods described in Section 4.3 become expensive due to gradient computations when
n becomes large. When n is large but p is small, we use a subsampling method inspired
by Lee et al. (2017). To get an approximate solution to Problem (2) we apply the algorithm
in Section 4.3 on a subsample (yi,xi), i ∈ A with sample-indices A ⊂ [n]. To adjust the

dependence of λ on the sample size, we set λ← |A|
n λ and approximately solve Problem (2)

by using the algorithms in Section 4.3. Let the solution obtained be given by β̂(A). We
obtain β̂(Aj) for different subsamples Aj , j ∈ [Q] and average the estimators9 to get:

β̄Q = 1
Q

∑
j∈[Q] β̂(Aj). We maintain a counter for Q, and stop as soon as the average

stabilizes10, i.e., ‖β̄Q − β̄Q−1‖ ≤ µTol for some tolerance threshold µTol. The estimate β̄Q
is used to obtain the violated constraints for the SVM problem and serves to initialize the
constraint generation method.

4.4.3 A Subsampling Heuristic when Both n and p are Large

In problems where both n and p are large, we use a combination of the ideas described
above in Sections 4.4.1 and 4.4.2. More specifically, we choose a subsample Aj and for
this subsample, we use correlation screening to reduce the number of features and obtain
an estimator β̂(Aj). We then average these estimators across Ajs, to obtain β̄Q. If the
support of β̄Q is too large, we sort the absolute values of the coefficients and retain the
top few hundred coefficients in absolute value to initialize the column generation method.
The estimator β̄Q is used to identify the samples for which the hinge-loss is nonzero—these
indices are used to initialize the constraint generation method.

8. Note that the features are standardized to have unit L2-norm

9. We note that the estimates β̂(Aj) can all be computed in parallel.

10. We note that when n is large (but p is small), the estimator β̂(Aj) will serve as a proxy of a minimizer
of Problem (2) (van de Geer, 2000)—we average the estimators β̂(Aj)’s to reduce variance.

25

Dedieu, Mazumder and Wang

5. Experiments

We demonstrate the performance of our different methods on synthetic and real data sets.
All computations are performed in Python 3.6 on the MIT Engaging Cluster with 1 CPU
and 16GB of RAM. We use Gurobi 9.0.2 (Gurobi Optimization, 2021) in our experiments
involving Gurobi’s LP solver. Sections 5.1, 5.2 and 5.3 present results for the L1-SVM,
Group-SVM and Slope-SVM problems, respectively.

5.1 Computational Results for L1-SVM

We present herein our computational experience with regard to the L1-SVM problem.

Data Generation: We consider n samples from a multivariate Gaussian distribution with
covariance matrix Σ = ((σij)) with σij = ρ if i 6= j and σij = 1 otherwise. Half of the
samples are from the +1 class and have mean µ+ = (1k0 , 0p−k0). The other half are from
the −1 class and have mean µ− = −µ+. We standardize the columns of X to have unit
L2-norm. In the following results with synthetic data sets, unless otherwise mentioned, we
take ρ = 0.1, and k0 = 10.

Accuracy Metric: For an algorithm ‘Alg’, a regularization parameter λ, we let fAlg
λ,i be the

objective value obtained by ‘Alg’ for the unconstrained problem (2), in the i-th replication
of the experiment. We let f∗λ,i be an estimate of the optimal objective value, set to be the
best objective value among all methods. The Averaged Relative Error (ARE) in terms of
objective value of a method ‘Alg’ is given by:

ARE =
1

R

R∑
i=1

(fAlg
λ,i − f

∗
λ,i)/f

∗
λ,i,

where R is the total number of replications. Note that ARE depends on λ, ‘Alg’ and R;
but we drop the dependence for notational convenience.
We note that there are various other measures that can be used to assess the performance
of an algorithm: candidates include test misclassification error, false positives/negatives,
sparsity of the solution, etc. As the focus of our work is on optimization performance i.e,
how well an algorithm performs in optimizing the LP (2), we consider the metric ‘ARE’ to
compare the performance of different methods.

5.1.1 Synthetic Data sets for Large p and Small n

Different initializations for column generation: We first study the role of different
initialization schemes in column generation (or, CLG in short) for solving the L1-SVM
problem. We consider a fixed value of the regularization parameter, set to λ = 0.01λmax;
and compare the following three schemes:

(a) RP-CLG: We compute a solution to Problem (2) at the desired value of λ, using a
regularization path (RP) or continuation approach. We compute solutions on a grid
of 7 regularization parameter values in the range [1

2λmax, λ] using column generation
(CLG) for every value of the regularization parameter.

(b) FO-CLG: This is the column generation method initialized with a first order (FO)
method (cf Section 4.3) with smoothing parameter τ = 0.2. We use a termination

26

L1-SVM and Related LPs with Column and Constraint Generation

criterion of η = 10−3 or a maximum number of Tmax = 200 iterations for the first order
method. We use correlation screening to retain the top 10n features before applying
the first order method. The time displayed includes the time taken to run the first
order method. For reference, we report the time taken to run column generation
excluding the time of the first order method: “CLG wo FO”.

(c) Cor. screening: This initializes the column generation method by using correlation
screening to retain the top 50 features.

Runtime vs p Optimization Error (ARE) vs p

1K 2K 5K 10K 20K 50K 100K 200K 500K
0

20

40

60

80

100

Ti
m

e(
s)

CLG wo FO
FO-CLG
RP-CLG
Cor. screening

1K 2K 5K 10K 20K 50K 100K 200K 500K
0

1

2

3

4

5

6

AR
E

1e 6

FO-CLG
RP-CLG
Cor. screening

Number of Features (p) Number of Features (p)

Figure 1: Comparison of different initialization schemes for the column generation method
for the L1-SVM LP. Left panel shows runtime (s) versus p. Right panel shows the
corresponding optimization error i.e., ARE, versus p. Here we consider n = 100
and vary p in the range 1, 000 to 500, 000.

The comparative timings between FO-CLG and Cor. screening show the effectiveness of
using a first order method to initialize the column generation method. Method (a) computes
a regularization path using column generation to arrive at a solution for the desired value
of λ—it does not use any first order method like Method (b). Thus any timing difference
between methods (a) and (b) can be attributed to the first order methods for warm-starting.

Figure 1 shows the results for synthetic data sets with n = 100, k0 = 10, ρ = 0.1 and
different values of p in the range 1000 to 500, 000. The results are averaged across R = 10
replications. In this figure, for the column generation methods, we consider a reduced cost
threshold of ε = 0.001, and set the maximum number of columns to be added in each
iteration as 1000. The left panel in Figure 1 presents the run times and the right figure
presents the ARE of different methods. As p increases, the run time for column generation
when initialized with correlation screening, increases. Column generation is found to benefit
the most when initialized with the first order method—recall that this algorithm is denoted
by FO-CLG. The runtime of the first order method is negligible compared to the time taken by
column generation, as seen from the nearly overlapping profiles of FO-CLG and CLG wo FO.
The accuracies of the different procedures (a)—(c) are all quite high with ARE∼ 10−6.

27

Dedieu, Mazumder and Wang

Comparison with benchmarks: We compare the performance of two column-generation
methods RP-CLG and FO-CLG with the following benchmarks:

(d) PSM: This is a state-of-the-art algorithm (Pang et al., 2017) which is a parametric
simplex based solver. We use the software made available by Pang et al. (2017) with
default parameter-settings.

(e) FOM: This is our first order method based on accelerated gradient descent, denoted by
FOM. We use τ = 0.02 for a maximum of T = 100, 000 iterations. We terminate the
algorithm if the maximum iteration limit is reached or the L2-norm of the difference
in β across the past two iterations is less than 10−3.

(f) SGD: This runs a stochastic sub-gradient algorithm on the L1-SVM Problem (2). We
use Python’s scikit-learn package implementation SGDClassifier with fixed num-
ber of 10, 000 iterations. The learning rate is set to the “optimal” parameter.

(g) SCS: This is the Splitting Conic Solver (O’Donoghue et al., 2019) which is a variant of
the ADMM method (Boyd et al., 2011). We use version 2.1.2 with default parameter
settings. The solver is called through CVXPY (Diamond and Boyd, 2016) interface.

(h) Gurobi: This is the LP solver of Gurobi (Gurobi Optimization, 2021) with default
setting for solving the full L1-SVM LP. The solver is called through CVXPY.

Note that all the benchmarks above optimize for the L1-SVM objective function. The only
exception is FOM which considers a smooth approximation of the hinge-loss.

Table 1 presents the results for different methods: the top panel shows the case with
λ = 0.05λmax, and the bottom panel shows results with λ = 0.2λmax. Here we run RP-CLG

and FO-CLG with reduced cost tolerance ε = 0.01. For each combination (n, p) = (100, 10K),
(n, p) = (300, 10K) and (n, p) = (100, 50K), and for each method considered, we show the
runtime and associated ARE. Here, results are averaged over 5 replications, and numbers
within parenthesis denote standard errors. For the instance in Table 1 with n = 100 and
p = 50K, we run FOM for 2000 iterations—in this instance, using a tolerance threshold of
10−3 does not lead to a solution with high optimization accuracy.

In addition, to give an idea of the sparsity level of the solution across the chosen λ-
values, we present the support size of an optimal solution β̂, as computed by Gurobi.
We also report the number of columns |J | in the restricted problem, upon termination
of FO-CLG. From Table 1, it can be seen that our proposed methods: RP-CLG and FO-CLG

outperform all the benchmark methods in runtime by a factor of 30X ∼ 500X. In terms
of solution accuracy, our column generation methods reach an ARE ∼ 10−5 or smaller, and
appear to be comparable to that of Gurobi, PSM. The operator splitting method SCS leads
to solutions of low-accuracy: the ARE ∼ 10−3 for (n, p) = (100, 10K) and (300, 10K), and
the ARE is slightly larger ∼ 10−1—10−2 for (n, p) = (100, 50K). SGD and FOM also lead to
low-accuracy solutions; with FOM leading to somewhat better performance compared to SCS

and SGD. We note that the poor performance of SGD in Table 2 should not come as a surprise,
as stochastic subgradient methods are perhaps not designed for small n and large p settings.
In addition, given our earlier discussion, deterministic subgradient methods for nonsmooth

28

L1-SVM and Related LPs with Column and Constraint Generation

λ = 0.05λmax

n = 100, p = 10K n = 300, p = 10K n = 100, p = 50K

Method Time (s) ARE Time (s) ARE Time (s) ARE

PSM 15.3(1.23) 6.9e-12(1.43e-12) 193.8(24.94) 1.8e-11(5.46e-12) 178.1(10.05) 2.0e-11(8.45e-12)
SGD 34.4(0.36) 9.5e-02(9.98e-03) 108.8(0.45) 6.1e-02(5.22e-03) 172.0(0.87) 1.6e-01(3.01e-02)
SCS 76.3(3.68) 1.4e-03(4.47e-04) 186.9(2.88) 1.2e-03(1.02e-04) 456.5(7.19) 7.3e-01(6.40e-01)
FOM 12.4(0.90) 2.0e-02(4.31e-04) 21.4(1.20) 9.1e-03(2.53e-04) 92.0(4.65) 3.0e-02(3.77e-04)
Gurobi 34.5(1.68) 0.0e+00(0.00e+00) 93.1(8.66) 0.0e+00(0.00e+00) 250.0(8.89) 0.0e+00(0.00e+00)
RP-CLG 0.4(0.03) 5.5e-06(3.81e-06) 2.0(0.14) 1.0e-06(6.43e-07) 3.3(0.56) 8.5e-06(5.79e-06)
FO-CLG 0.6(0.07) 6.7e-06(3.21e-06) 2.0(0.14) 7.6e-06(4.84e-06) 1.4(0.12) 2.0e-05(8.16e-06)

‖β̂‖0 & |J | 55.0 & 265.8 92.8 & 218.2 65.6 & 257.8

λ = 0.2λmax

n = 100, p = 10K n = 300, p = 10K n = 100, p = 50K

Method Time (s) ARE Time (s) ARE Time (s) ARE

PSM 9.5(0.61) 3.9e-13(1.33e-13) 87.9(13.15) 8.9e-13(3.69e-13) 153.0(10.03) 2.9e-12(1.41e-12)
SGD 51.9(0.47) 1.1e-02(1.89e-03) 162.6(0.44) 5.3e-03(6.88e-04) 260.4(1.64) 1.1e-02(2.29e-03)
SCS 84.4(2.63) 3.0e-03(7.26e-04) 201.6(22.27) 2.3e-03(9.70e-04) 420.7(10.80) 4.2e-02(6.05e-03)
FOM 8.2(0.35) 3.7e-03(3.01e-04) 15.5(0.79) 1.0e-03(7.59e-05) 125.6(0.13) 6.4e-03(5.38e-04)
Gurobi 26.2(0.89) 0.0e+00(0.00e+00) 53.3(8.16) 0.0e+00(0.00e+00) 264.9(15.96) 0.0e+00(0.00e+00)
RP-CLG 0.5(0.10) 1.4e-07(9.93e-08) 0.4(0.08) 1.8e-08(1.65e-08) 4.8(0.20) 9.1e-07(8.18e-07)
FO-CLG 0.3(0.00) 2.2e-08(1.92e-08) 0.9(0.03) 0.0e+00(0.00e+00) 0.9(0.04) 6.5e-07(4.57e-07)

‖β̂‖0 & |J | 36.8 & 73.6 30.8 & 42.8 53.0 & 144.8

Table 1: L1-SVM, Synthetic data set (p� n): Training time (s) for L1-SVM: our proposed
column generation method versus various benchmarks on synthetic data sets. We
show two different values of λ: we select λ = 0.05λmax for the top table, and
λ = 0.2λmax for the bottom table. Each table presents results for different values
of (n, p) with p� n. For each table, the last row presents the number of nonzeros
in β̂, which is an optimal solution to the L1-SVM problem. We also present the
number of columns, |J |, in the restricted problem, upon termination of FO-CLG.
Results are averaged over 5 replications; and the numbers with parenthesis denote
standard errors. For a cleaner display, all positive values below 10−15 are displayed
as zero.

problems have a slower convergence compared to Nesterov’s smoothing technique—the FOM

presented here is an instance of Nesterov’s smoothing technique (see Section 4).
Performance of CLG for difference tolerance levels ε: Table 1 above presents the
results for FO-CLG for ε = 0.01. In Figure 2 we study sensitivity to the choice of ε—we present
the runtime and ARE of FO-CLG under different tolerance values ε ∈ {0.01, 0.03, 0.1, 0.3, 1}
for λ = 0.05λmax. It can be seen that the ARE of FO-CLG changes with ε, and a value of
ε = 0.01 generally leads to a solution of high-accuracy. As ε decreases, the runtime slightly
increases.
Computing a path of solutions: The results above discuss obtaining a solution to the
L1-SVM problem for a fixed value of λ. Here we present results for computing L1-SVM
solutions for a grid of λ values—we focus on comparing the performances of our column
generation methods: RP-CLG and FO-CLG. We fix n = 1000, p = 100K, k0 = 10, ρ = 0.1, and
consider a sequence of 50 values of λ:

λ = κλmax, κ ∈ {0.01, 0.02, . . . , 0.49, 0.50}. (58)

29

Dedieu, Mazumder and Wang

0.01 0.03 0.1 0.3 1
Tolerance

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ti

m
e(

s) n=100, p=10K
n=300, p=10K
n=100, p=50K

0.01 0.03 0.1 0.3 1
Tolerance

10 5

10 4

10 3

10 2

AR
E

n=100, p=10K
n=300, p=10K
n=100, p=50K

Tolerance (ε) Tolerance (ε)

Figure 2: Runtime (s) and ARE of FO-CLG under different tolerance levels ε for the L1-SVM
LP. We consider three different problem-sizes as indicated in the figure legends.

For convenience, let us denote the different values of λ by λ1 > λ2 > · · · > λm—here, we
take m = 50. For RP-CLG, we solve the problems in the order λ1, λ2, . . . , λm−1, λm, and use
the solution at λi as a warm start to compute the solution at λi+1 using column generation.
For FO-CLG, we solve the problems for different λi’s independently—we use a solution from
our first order method to initialize the initial set of columns for column generation. In the
left panel of Figure 3, we present the runtime for both methods at each λi. We also present
CLG wo FO which is the runtime of column generation excluding the time taken by the first
order method. In the right panel of Figure 3, we present the support size of the solution β̂,
which is denoted by “beta supp” in the figure. As shown in Figure 3, when λ decreases, the
support size of the solution increases, and the runtimes of both RP-CLG and FO-CLG increase.
The performance of RP-CLG, which performs warm-starts along the sequence of λ-values,
appears to be superior to FO-CLG. As FO-CLG does not use regularization-path continuation,
one can compute solutions for the different λi-values in parallel, which is not possible with
the sequential approach RP-CLG. Note however, in our experiments, the L1-SVM solutions
for the different λi values are computed sequentially and not in parallel. Based on this
experiment, we recommend using RP-CLG when one wishes to compute a path of solutions
to the L1-SVM problem, in a sequential fashion.

5.1.2 Synthetic Data sets for Large n and Small p

When n� p, we consider the numerical performance of the constraint generation procedure:

(i) FO-CNG: This is our constraint generation (CNG) method when initialized with a
subsampling based first order (FO) heuristic as discussed in Section 4.4.

For FO-CNG, we use a reduced cost convergence threshold of ε = 0.01. We limit the number
of constraints to be added to at most 400. We note that the number 400 is somewhat ad
hoc, and can be generally fine-tuned for improved performance.

We compare FO-CNG with several benchmarks: SGD, SCS, FOM, Gurobi as discussed in
Section 5.1.1. We do not present the results for PSM as this was found to be much slower
on these instances with large n (In some cases, PSM encountered numerical issues).

30

L1-SVM and Related LPs with Column and Constraint Generation

0.0 0.1 0.2 0.3 0.4 0.5
lambda

100

101

102
Ti

m
e(

s)
RP-CLG
FO-CLG
CLG wo FO

0.0 0.1 0.2 0.3 0.4 0.5
lambda

25

50

75

100

125

150

175

be
ta

 su
pp

.

RP-CLG
FO-CLG

κ (here, κ = λ/λmax) κ (here, κ = λ/λmax)

Figure 3: L1-SVM solutions on a regularization path. Here n = 1K and p = 100K. The
left figure presents runtime (s) versus κ, defined in (58). The right figure presents
support size of β denoted by “beta supp.”, i.e., number of nonzero SVM coeffi-
cients β for different values of κ. The two profiles for “beta supp”, as available
from algorithms FO-CLG and RP-CLG, are almost identical.

Table 2 presents the results for λ = 0.001λmax and λ = 0.01λmax. For each choice
of λ, we consider (n, p) = (10K, 100), (10K, 300) and (50K, 100), and we present results
averaged over 5 replications. As constraint generation leverages sparsity in ξ, to get an idea
of the sparsity of the problem we are dealing with, we present (i) the support size of the
solution ξ̂, computed by Gurobi; and (ii) the number of constraints |I| in the restricted
problem, upon termination of FO-CNG. From Table 2, it appears that FO-CNG outperforms
other methods by a factor 4X ∼ 30X. In particular, FO-CNG has better performance when
λ is small. Note that as we consider the setting where n � p, a small value of λ imparts
less shrinkage on the SVM coefficients β. Hence, the support size of ξ̂ is small—in other
words, the number of mis-classified samples is small. As a result, the constraint generation
method speeds up overall runtime making FO-CNG computationally attractive. Both FO-CNG

and Gurobi reach high accuracy solutions. The accuracy of solutions obtained by FO-CNG

is considerably higher compared to SGD, SCS and FOM. In this example we have n� p, and
we observe that SGD works well compared to the examples in Section 5.1.1 where p� n.

Finally, we note that in the examples considered in Table 2 when λ is very large and
the support size of ξ̂ is close to n, the runtime of FO-CNG is likely going to increase.

5.1.3 Synthetic Data sets for n ≈ p

We study the performance of the algorithms when both n and p are comparable and moder-
ately large. We consider the following method with both column and constraint generation:

(j) FO-CLCNG: This is the combined column-and-constraint generation method, denoted
by the shorthand CLCNG (i.e., Algorithm 4), initialized with the first order method
discussed11 in Section 4.4.3. The column/constraint generation reduced cost thresh-
olds are set to be equal ε := ε1 = ε2.

11. For the subsampling heuristic, once the average estimate was obtained, we took the top 200 coefficients
with largest magnitude, to initialize the set of columns for column generation.

31

Dedieu, Mazumder and Wang

λ = 0.001λmax

n = 10K, p = 100 n = 10K, p = 300 n = 50K, p = 100

Method Time (s) ARE Time (s) ARE Time (s) ARE

SGD 54.2(4.05) 1.8e-02(8.78e-04) 117.4(2.89) 4.5e-02(2.19e-03) 313.1(3.19) 7.4e-03(3.77e-04)
SCS 51.4(4.03) 1.7e-04(4.31e-05) 117.6(1.74) 5.2e-04(1.90e-04) 241.9(11.19) 3.9e-05(7.35e-06)
FOM 170.1(3.40) 2.8e-03(1.39e-04) 207.0(9.03) 5.9e-03(1.12e-04) 1147.4(35.85) 5.9e-04(1.73e-05)
Gurobi 66.3(3.52) 0.0e+00(0.00e+00) 133.8(5.48) 0.0e+00(0.00e+00) 626.6(42.49) 0.0e+00(0.00e+00)
FO-CNG 3.0(0.06) 1.3e-05(1.12e-05) 6.3(0.24) 2.1e-15(0.00e+00) 20.8(0.22) 0.0e+00(0.00e+00)

‖ξ̂‖0 & |I| 87.8 & 443.8 88.8 & 362.2 538.6 & 2277.8

λ = 0.01λmax

n = 10K, p = 100 n = 10K, p = 300 n = 50K, p = 100

Method Time (s) ARE Time (s) ARE Time (s) ARE

SGD 55.6(2.88) 4.0e-03(3.51e-04) 130.1(4.50) 8.2e-03(2.38e-04) 326.7(5.36) 3.6e-03(1.28e-04)
SCS 28.1(3.99) 2.3e-05(3.62e-06) 79.6(7.68) 3.2e-05(6.57e-06) 112.9(7.21) 1.2e-05(3.27e-06)
FOM 47.8(0.90) 5.8e-04(1.05e-05) 68.8(4.00) 1.0e-03(3.21e-05) 297.4(0.82) 1.3e-04(5.87e-06)
Gurobi 49.3(1.84) 0.0e+00(0.00e+00) 104.1(5.43) 0.0e+00(0.00e+00) 377.8(15.05) 0.0e+00(0.00e+00)
FO-CNG 9.0(0.26) 3.5e-06(3.16e-06) 11.4(0.32) 8.3e-06(3.14e-06) 32.4(0.83) 1.3e-06(4.80e-07)

‖ξ̂‖0 & |I| 501.4 & 1090.2 472.2 & 813.8 2559.4 & 3472.8

Table 2: L1-SVM, Synthetic data set (n � p): Training time for L1-SVM versus different
benchmarks on synthetic data sets. We show two different values of λ: λ =
0.001λmax for the top table and λ = 0.01λmax for the bottom table. Each table
presents results for different values of (n, p) with n � p. For each table, the last
row presents the number of nonzeros in ξ in an optimal solution to the problem
and the number of active constraints |I| upon termination of FO-CNG. For a cleaner
display, all positive values below 10−15 are displayed as zero.

For FO-CLCNG, we use ε = 0.01 and limit the maximum number of columns/constraints that
are added at an iteration to 400. We compare FO-CLCNG with benchmarks including SGD,
SCS, FOM, Gurobi under the same setting as Section 5.1.1. Once again, PSM is found to be
significantly slow as n is large, hence we do not include it in our results. Table 3 presents the
results for λ = 0.01λmax and λ = 0.1λmax, with (n, p) = (3K, 3K), (2K, 5K) and (5K, 2K).
Note that in these examples, X is dense so we do not consider larger problem-sizes—larger
n, p values with a sparse X are considered in Section 5.1.4.

Table 3 presents runtimes (s) and ARE values across 5 independent experiments. In
addition, to get an idea of the sparsity level of the problem, we also present the support sizes
of the solutions β̂ and ξ̂, as computed by Gurobi. We also list the number of columns and
constraints i.e., |J | and |I|, in the restricted problem, upon termination of FO-CLCNG. As
shown in Table 3, for λ = 0.01λmax, FO-CLCNG has a 7X ∼ 30X speedup over other methods.
For λ = 0.1λmax, FO-CLCNG has a 4X ∼ 50X speedup over other methods. At the same
time, it is important to note that the ARE of FO-CLCNG is around 10−5 ∼ 10−6—notably
better than that of SCS, FOM and SGD.

Performance under different tolerance levels ε: Table 3 presents results of FO-CLCNG
for a fixed value of ε = 0.01. In Figure 4, to understand sensitivity to the choice of ε, we
present the runtime and ARE of FO-CLCNG under different choices of ε ∈ {0.01, 0.03, 0.1, 0.3, 1}
for λ = 0.01λmax. The presented results are the mean of 5 independent replications. Simi-
lar to Figure 2, it can be seen in Figure 4, that as ε decreases from 1 to 0.01, the ARE of

32

L1-SVM and Related LPs with Column and Constraint Generation

λ = 0.01λmax

n = 3K, p = 3K n = 2K, p = 5K n = 5K, p = 2K

Method Time (s) ARE Time (s) ARE Time (s) ARE

SGD 393.3(32.06) 1.4e-01(7.79e-03) 387.3(25.89) 4.2e-01(1.20e-02) 486.9(46.32) 4.5e-02(1.28e-03)
SCS 281.8(34.91) 1.7e-04(1.73e-05) 261.7(37.13) 3.0e-04(7.05e-05) 426.3(37.83) 1.3e-04(2.44e-05)
FOM 100.6(9.74) 5.2e-03(1.27e-04) 93.4(5.33) 7.9e-03(1.83e-04) 142.3(12.46) 3.0e-03(5.39e-05)
Gurobi 103.9(27.61) 0.0e+00(0.00e+00) 109.8(31.84) 0.0e+00(0.00e+00) 585.9(57.41) 0.0e+00(0.00e+00)
FO-CLCNG 14.1(0.40) 3.5e-07(2.59e-07) 9.9(0.11) 8.2e-06(2.11e-06) 20.2(0.44) 3.6e-06(2.82e-06)

‖β̂‖0 & |J | 170.2 & 646.4 162.0 & 692.0 188.0 & 634.2

‖ξ̂‖0 & |I| 132.8 & 565.2 87.6 & 533.4 221.4 & 668.8

λ = 0.1λmax

n = 3K, p = 3K n = 2K, p = 5K n = 5K, p = 2K

Method Time (s) ARE Time (s) ARE Time (s) ARE

SGD 521.6(40.17) 3.5e-03(1.80e-04) 527.9(26.79) 5.8e-03(6.02e-04) 539.5(24.21) 2.4e-03(2.41e-04)
SCS 150.5(22.98) 3.4e-04(4.09e-05) 178.7(9.48) 3.8e-04(1.12e-04) 259.2(26.38) 8.2e-05(1.40e-05)
FOM 62.2(4.98) 2.6e-04(1.36e-05) 60.5(2.72) 4.4e-04(4.86e-05) 71.0(5.52) 1.3e-04(1.47e-05)
Gurobi 47.6(6.74) 0.0e+00(0.00e+00) 44.4(5.67) 0.0e+00(0.00e+00) 354.9(116.66) 0.0e+00(0.00e+00)
FO-CLCNG 11.7(0.14) 3.1e-06(1.65e-06) 8.3(0.13) 8.2e-07(6.71e-07) 18.7(0.16) 1.2e-06(6.69e-07)

‖β̂‖0 & |J | 56.8 & 255.8 68.4 & 322.2 48.0 & 235.8

‖ξ̂‖0 & |I| 750.8 & 1053.2 504.8 & 751.2 1287.0 & 1657.4

Table 3: L1-SVM, Synthetic data set (n ≈ p): Training time for L1-SVM versus state-
of-art methods on synthetic data sets. We show two different values of λ: λ =
0.01λmax for the top table and λ = 0.1λmax for the bottom table. Each table
presents results for different values of (n, p) with n ≈ p. For each table, the last
row presents the number of nonzeros in β and ξ in an optimal solution to the
problem and the number of active variables and constraints, upon termination of
FO-CLCNG. For a cleaner display, all positive values below 10−15 are displayed as
zero.

FO-CLCNG decreases from 10−1 to 10−5 ∼ 10−6, while the runtime only increases slightly.
Therefore, a tolerance of ε = 0.01 appears to be sufficiently small and leads to a fairly high
accuracy for the numerical experiments considered.

5.1.4 Real Data Sets with Large n and p

Finally, we assess the quality of our hybrid column-and-constraint generation method:
FO-CLCNG on large real data sets. For a fair comparison, we compare different methods
in terms of their ability to optimize the same L1-SVM optimization problem. We con-
sider three popular open-source data sets rcv1, news20 and real-sim that can be found at
https://www.csie.ntu.edu.tw/~cjlin/liblinear/. We also consider a larger data set
derived from rcv1: We augment the original features of rcv1 with noisy features obtained
by randomly selecting a collection of features from the original data set, and randomly per-
muting the rows of the selected features. We denote this augmented data set by rcv1-aug.
Similarly, we form an augmented version of the data set real-sim that we denote by
real-sim-aug. Note that all these data sets are sparse—the number of nonzero entries in
X, denoted by nnz(X), is quite small compared to np; and we use sparse matrices (scipy
implementation) to deal with sparse matrix/vector multiplications.

33

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Dedieu, Mazumder and Wang

0.01 0.03 0.1 0.3 1
Tolerance

8

10

12

14

16

18

20
Ti

m
e(

s) n=3K, p=3K
n=2K, p=5K
n=5K, p=2K

0.01 0.03 0.1 0.3 1
Tolerance

10 6

10 5

10 4

10 3

10 2

10 1

AR
E

n=3K, p=3K
n=2K, p=5K
n=5K, p=2K

Tolerance (ε) Tolerance (ε)

Figure 4: Runtime (s) and optimization error (ARE) of FO-CLCNG under different choices
of the tolerance threshold ε. We consider 3 different (n, p)-values. This figure
mirrors Figure 2 that shows results for column generation alone: FO-CLG.

We compare FO-CLCNG with benchmark methods Gurobi, SGD and SCS. All methods are
run under the settings explained in Section 5.1.1, except that here we run SGD for 20, 000
epochs to arrive at an ARE∼ 10−2—10−3.

Table 4 presents the sizes of the data sets considered, the runtime (in seconds) and
ARE for different algorithms. We consider a sequence of 11 values of λ = κλmax where
κ lies in the range κ ∈ [0.003, 0.3]. To make the comparisons fair, all algorithms are run
independently for different λ-values; and we present the average runtime and ARE for a
value of λ. In the last row of each sub-table, we present the minimum, mean and maximum
of the value ‖β̂‖0 + ‖ξ̂‖0 over the path of λ-values. The numbers are presented in the form
of the triplet “(min, mean, max)”; and (β̂, ξ̂) is the solution obtained from FO-CLCNG.

On the data sets rcv1 and rcv1-aug, our proposed method FO-CLCNG outperforms SCS
and Gurobi in runtime by a factor of 3X ∼ 8X and delivers solutions of higher accuracy
i.e., lower ARE. For other two data sets news20 and real-sim-aug, algorithms Gurobi and
SCS would run out of memory (we set a 16GB memory limit) for some values of λ. As
our column-and-constraint generation procedure operates on a smaller reduced problem, it
consumes less memory. The solutions of FO-CLCNG have high accuracy with ARE around
10−6. By comparing FO-CLCNG and SGD, we see that the runtime of 20,000 epochs of SGD

is comparable to that of FO-CLCNG on the rcv1 data set, while it is slower than FO-CLCNG

on other data sets. Note however that the optimization accuracy of the SGD solutions is
significantly worse compared to FO-CLCNG.

5.2 Computational Results for Group-SVM

We now study the performance of the column generation algorithm presented in Section 2.4
for the Group-SVM Problem (3).

Data Generation: Here, the covariates are drawn from a multivariate Gaussian with
covariance Σ. The p covariates are divided into G groups each of the same size pG. Within
each group, covariates have pairwise correlation of ρ, and covariates are uncorrelated across

34

L1-SVM and Related LPs with Column and Constraint Generation

Data set: rcv1
(n = 16194, p = 47237, nnz=1.20e+06)

method Time (s) ARE

Gurobi 442.0 0.0e+00
SCS 1185.9 2.2e-04
SGD 256.3 1.2e-02
FO-CLCNG 142.9 1.0e-06

‖ξ̂‖0 + ‖β̂‖0 (3212, 6538, 10580)

Data set: rcv1-aug
(n = 16194, p = 236185, nnz=6.00e+06)

method Time (s) ARE

Gurobi 1590.5 0.0e+00
SCS 3318.8 9.2e-04
SGD 1419.3 1.4e-02
FO-CLCNG 442.2 1.1e-06

‖ξ̂‖0 + ‖β̂‖0 (3997, 6765, 10512)

Data set: news20
(n = 15997, p = 1355191, nnz=7.31e+06)

method Time (s) ARE

Gurobi - -
SCS - -
SGD 2014.4 4.3e-03
FO-CLCNG 112.0 0.0e+00

‖ξ̂‖0 + ‖β̂‖0 (7106, 10010, 13853)

Data set: real-sim-aug
(n = 57847, p = 104795, nnz=1.47e+07)

method Time (s) ARE

Gurobi - -
SCS - -
SGD 2908.9 2.5e-03
FO-CLCNG 955.3 0.0e+00

‖ξ̂‖0 + ‖β̂‖0 (11975, 18931, 26632)

Table 4: L1-SVM on real data sets where both n, p are large. We compare our method
F0-CLCNG versus other benchmarks in terms of runtime and ARE on a range of
λ-values, as discussed in the text. A “-” means that the method would not run due
to memory limitations and/or numerical problems. The last row of every sub-table
provides the (minimum, average, maximum)-tuple of the support-size ‖ξ̂‖0 +‖β̂‖0
where the minimum, average and maximum values are taken across the sequence
of λ-values considered.

groups. All variances are equal. Half of the samples are from the +1 class with population
mean µ+ = (1pG , . . . ,1pG ,0pG , . . . ,0pG) where we have k0 many sub-vectors 1pG . The
remaining half of the samples from class −1 have population mean µ− = −µ+. In the
following example, we take ρ = 0.1, pG = 10 and k0 = 10.

Group-SVM (p� n)

n = 100, p = 10K n = 300, p = 10K n = 100, p = 30K

Method Time (s) ARE Time (s) ARE Time (s) ARE

SCS 78.1(16.05) 8.7e-04(1.10e-04) 82.6(14.65) 7.0e-04(2.89e-04) 287.4(21.38) 1.1e-02(5.55e-03)
Gurobi 120.8(5.16) 0.0e+00(0.00e+00) 321.7(14.19) 0.0e+00(0.00e+00) 503.8(26.53) 0.0e+00(0.00e+00)
FO-CLG 2.1(0.17) 0.0e+00(0.00e+00) 3.8(0.13) 0.0e+00(0.00e+00) 2.3(0.14) 0.0e+00(0.00e+00)

Table 5: Training time (s) and ARE for Group-SVM versus various benchmarks on synthetic
data sets, λ = 0.1λmax. For a cleaner display, all positive values below 10−15 are
displayed as zero.

Comparison with benchmarks: We compare our column generation method FO-CLG

with SCS and Gurobi. Both SCS and Gurobi are called through CVXPY under its default
settings. Our method FO-CLG (cf Section 2.4) applies column generation after initialization

35

Dedieu, Mazumder and Wang

with the block coordinate descent procedure (cf Section 4.3). We use a smoothing parameter
τ = 0.2 to smooth the hinge-loss, and use a CD method restricted to the top n groups
obtained via correlation screening (cf Section 4.4.1). We use a reduced cost tolerance of
ε = 0.01 in the column generation method. Table 5 shows the results on synthetic data sets
with (n, p) = (100, 10K), (300, 10K) and (100, 30K) and set λ = 0.1λmax. The reported
values are based on 5 independent replications. We can see that on these examples, FO-CLG
outperforms the other two methods by a factor of at least 30X in runtime, and also delivers
a solution with high accuracy, as seen from the ARE values.

5.3 Computational Results for Slope-SVM

We present the computational performance of the column-and-constraint generation meth-
ods presented in Section 3.3 for the Slope-SVM Problem (4). The synthetic data is simulated
as in Section 5.1.1—we set n = 100, k0 = 10, ρ = 0.1.

Comparison when λis are not all distinct: We are not aware of any publicly available
specialized implementation for the Slope SVM problem. We use the CVXPY modeling frame-
work to model (See Section A.1) the Slope SVM problem and solve it using state-of-the art
general purpose solvers like Ecos and Gurobi. We first consider a special instance of the
Slope penalty (28) that corresponds to the coefficients λi = 2λ̃ for i ≤ k0 and λi = λ̃ for
i > k0; where λ̃ = 0.01λmax. We solve the resulting problem with both the Ecos and Gurobi
solvers, denoted by “CVXPY Ecos” and “CVXPY Gurobi”, respectively. We compare them
with our proposed column-and-constraint generation algorithm, referred to as “FO-CLCNG”.
For our method, we first run the first order algorithm presented in Section 4.3 with τ = 0.2.
We restrict the optimization of the first order method to the 10n columns with highest
absolute correlations with the response. The column-and-constraint generation algorithm
(cf Section 3.3) uses a tolerance level of ε = 0.001. We limit the number of columns added
at each iteration to 10. For reference, we also report the run time of our algorithm by ex-
cluding the time taken by the initialization step—this is denoted by “CLCNG wo FO”. The
results, averaged over 5 replications, are presented in Table 6. Results in Table 6 indicate
that our proposed method FO-CLCNG exhibits a 50X—110X improvement compared to com-
peting solvers. In some cases, when p ≥ 50K, CVXPY Ecos encounters numerical problems
and hence would not run. On the other hand, we note that FO-CLCNG has the best ARE for
p ≥ 20K even when compared with CVXPY Gurobi. This may be because the model size is
large and CVXPY Gurobi appears to use a low-accuracy termination condition.

Comparison when λis are distinct: Here we consider a different sequence of λ-values.
Following Bellec et al. (2018), we set λj =

√
log(2p/j)λ̃ with λ̃ = 0.01λmax. We observed

that CVXPY could not handle even small instances of this problem—in particular, the Ecos
solver crashed for n = 100, p = 200. We compare our proposed method FO-CLCNG with the
first order method (cf. Section 4.3) applied to the full smoothed Slope-SVM problem with
τ = 0.2. Due to the high per iteration cost of the first order method FOM, we terminate the
method after a few iterations—the associated ARE is reported within parenthesis. Table 7
compares our methods—we use the same synthetic data set as in the previous Slope-SVM
example. We average the results over 5 replications though the first order method was run
for one replication due to its long run time.

36

L1-SVM and Related LPs with Column and Constraint Generation

Slope-SVM (p� n)

FO-CLCNG CLCNG wo FO CVXPY Ecos CVXPY Gurobi

p Time (s) ARE Time (s) Time (s) ARE Time (s) ARE

10k 1.7(0.07) 1.3e-06 1.2(0.05) 64.3(6.81) 7.0e-12 84.0(2.86) 0.0e+00
20k 3.0(0.01) 0.0e+00 2.5(0.00) 130.5(3.17) 1.7e-05 221.9(5.64) 1.7e-05
50k 7.1(0.35) 0.0e+00 6.6(0.34) - - 842.3(20.06) 9.1e-06
100k 16.5(0.02) 0.0e+00 15.9(0.02) - - 1837.3(70.44) 4.1e-06

Table 6: Training times and ARE of our column-and-constraint generation method for
Slope-SVM versus CVXPY—we took n = 100, λi/λj = 2 for all i ∈ [k0] and j > k0,
as described in the text. When the number of features are in the order of tens
of thousands, our proposed method FO-CLCNG enjoys nearly a 100X speedup in
run time. A ‘-’ symbol denotes that the corresponding algorithm encountered
numerical problems.

Slope-SVM (p� n)

FO-CLCNG CLCNG wo FO FOM

p Time (s) ARE Time (s) Time (s) ARE

10k 1.4(0.11) 0.0e+00(0.00e+00) 0.5(0.05) 164.6 3.0e-01
20k 1.6(0.09) 0.0e+00(0.00e+00) 0.7(0.04) 427.3 3.2e-01
50k 3.3(0.20) 0.0e+00(0.00e+00) 2.4(0.14) 1633.8 3.2e-01

Table 7: Training times and ARE of our column-and-constraint generation procedure for
Slope-SVM with coefficients λj =

√
log(2p/j)λ̃, as discussed in the text. We

consider synthetic data sets with n = 100 and a large number of features. Our
proposed approach FO-CLCNG appears to outperform the first order methods in
runtimes by at least 100-times. In addition, FO-CLCNG delivers solutions of higher
accuracy compared to FOM.

Acknowledgments

The authors would like to thank the Action Editor and three anonymous reviewers for their
helpful comments and constructive feedback that helped improve the paper. This research
was supported in part, by grants from the Office of Naval Research: ONR-N000141812298
(YIP), the National Science Foundation: NSF-IIS-1718258 and IBM.

37

Dedieu, Mazumder and Wang

Appendix A. Appendix

A.1 Another Formulation for the Slope Norm

Without loss of generality, we consider a vector α ≥ 0. Now note that for every m ∈ [p],
we can represent α(1) + . . .+ α(m) ≤ sm as

α(1) + . . .+ α(m) ≤ sm, α ≥ 0 ⇐⇒

{
0 ≤ α ≤ θm1 + vm

mθm + 1Tvm ≤ sm,
(59)

with variables α,vm ∈ Rp, θm ∈ R and 1 ∈ Rp being a vector of all ones. Note that the rhs
formulation in (59) has O(p) variables and O(p)-constraints. Note that we can write:

p∑
j=1

λjα(j) =

p∑
m=1

λ̃m(α(1) + . . .+ α(m)),

where, λ̃m = λm − λm−1 for all m ∈ {1, . . . , p}. Therefore, representing
∑p

j=1 λjα(j) ≤ η
will require a representation (59) for m = 1, . . . , p—this will lead to a formulation with
O(p2) variables and O(p2) constraints, which can be quite large as soon as p becomes a few
hundred.

References

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Convex op-
timization with sparsity-inducing norms. Optimization for Machine Learning, 5:19–53,
2011.

P. Balamurugan, Anusha Posinasetty, and Shirish Shevade. ADMM for training sparse
structural SVMs with augmented l1 regularizers. In Proceedings of the 2016 SIAM In-
ternational Conference on Data Mining, pages 684–692. SIAM, 2016.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Stephen R. Becker, Emmanuel J. Candès, and Michael C. Grant. Templates for convex
cone problems with applications to sparse signal recovery. Mathematical programming
computation, 3(3):165, 2011.

Pierre C. Bellec, Guillaume Lecué, Alexandre B. Tsybakov, et al. Slope meets Lasso:
improved oracle bounds and optimality. The Annals of Statistics, 46(6B):3603–3642,
2018.

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997.

Malgorzata Bogdan, Ewout van den Berg, Weijie Su, and Emmanuel Candes. Statistical
estimation and testing via the sorted l1 norm. arXiv preprint arXiv:1310.1969, 2013.

38

L1-SVM and Related LPs with Column and Constraint Generation

Ma lgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J.
Candès. Slope adaptive variable selection via convex optimization. The annals of applied
statistics, 9(3):1103, 2015.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine learning, 3(1):1–122, 2011.

Paul S. Bradley and Olvi L. Mangasarian. Feature selection via concave minimization and
support vector machines. In ICML, volume 98, pages 82–90, 1998.

Laurent Condat. Fast projection onto the simplex and the `1 ball. Mathematical Program-
ming, 158(1):575–585, 2016.

George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs. Opera-
tions research, 8(1):101–111, 1960.

Jacques Desrosiers and Marco E. Lübbecke. A primer in column generation. In Column
generation, pages 1–32. Springer, 2005.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Lester Randolph Ford Jr. and Delbert R. Fulkerson. A suggested computation for maximal
multi-commodity network flows. Management Science, 5(1):97–101, 1958.

Vojtěch Franc and Soeren Sonnenburg. Optimized cutting plane algorithm for support
vector machines. In Proceedings of the 25th international conference on Machine learning,
pages 320–327. ACM, 2008.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010a.

J.H. Friedman, T. Hastie, and R. Tibshirani. Regularized paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 2010b.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.

gurobi.com.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regularization
path for the support vector machine. Journal of Machine Learning Research, 5(Oct):
1391–1415, 2004.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer New York, 2 edition, 2009.

39

http://www.gurobi.com
http://www.gurobi.com

Dedieu, Mazumder and Wang

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings
of the 25th international conference on Machine learning, pages 408–415. ACM, 2008.

Junzhou Huang and Tong Zhang. The benefit of group sparsity. The Annals of Statistics,
38(4):1978–2004, 2010.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217–
226. ACM, 2006.

Jason D. Lee, Qiang Liu, Yuekai Sun, and Jonathan E. Taylor. Communication-efficient
sparse regression. Journal of Machine Learning Research, 18(5):1–30, 2017.

Xingguo Li, Tuo Zhao, Xiaoming Yuan, and Han Liu. The flare package for high dimensional
linear regression and precision matrix estimation in r. J. Mach. Learn. Res., 16:553–557,
2015.

Olvi L. Mangasarian. Exact 1-norm support vector machines via unconstrained convex
differentiable minimization. Journal of Machine Learning Research, 7(Jul):1517–1530,
2006.

Jean-Jacques Moreau. Dual convex functions and proximal points in a Hilbert space. CR
Acad. Sci. Paris Ser. At Math., 255:2897–2899, 1962.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Norwell, 2004.

Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140(1):125–161, 2013.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. SCS: Splitting conic
solver, version 2.1.2. https://github.com/cvxgrp/scs, November 2019.

Haotian Pang, Han Liu, Robert J. Vanderbei, and Tuo Zhao. Parametric simplex method for
sparse learning. In Advances in Neural Information Processing Systems, pages 188–197,
2017.

Zhiwei Qin, Katya Scheinberg, and Donald Goldfarb. Efficient block-coordinate descent
algorithms for the group Lasso. Mathematical Programming Computation, 5(2):143–169,
2013.

Tim Robertson. Order restricted statistical inference. Wiley, New York., 1988.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-
gradient solver for SVM. In Proceedings of the 24th international conference on Machine
learning, pages 807–814. ACM, 2007.

40

https://github.com/cvxgrp/scs

L1-SVM and Related LPs with Column and Constraint Generation

Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan
Taylor, and Ryan J. Tibshirani. Strong rules for discarding predictors in Lasso-type
problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74
(2):245–266, 2012.

Sara A van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge University
Press, 2000.

Ewout Van Den Berg and Michael P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

Ewout Van Den Berg and Michael P. Friedlander. Probing the Pareto frontier for basis
pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008. doi:
10.1137/080714488. URL http://link.aip.org/link/?SCE/31/890.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):
3–34, 2015.

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of op-
timization methods and software for large-scale l1-regularized linear classification. The
Journal of Machine Learning Research, 11:3183–3234, 2010.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

Xiangrong Zeng and Mário A. T. Figueiredo. The ordered weighted `1 norm: Atomic
formulation, dual norm, and projections. CoRR, abs/1409.4271, 2014. URL http://

arxiv.org/abs/1409.4271.

41

http://link.aip.org/link/?SCE/31/890
http://arxiv.org/abs/1409.4271
http://arxiv.org/abs/1409.4271

	Introduction
	Column and constraint generation for L1-SVM and its group extension
	Methodology for Column and Constraint Generation
	Primal and Dual Formulations of L1-SVM
	Column and Constraint Generation for L1-SVM
	Column Generation when p n
	Constraint Generation when n p
	Column and Constraint Generation when Both n and p Are large

	Application to the Group-SVM Problem

	Column and constraint generation for Slope-SVM
	Constraint Generation for Slope-SVM
	Dual Formulation and Column Generation for Slope-SVM
	Pairing Column and Constraint Generation for Slope-SVM

	First order methods to obtain a low-accuracy solution
	Solving the Composite Form with Nesterov's Smoothing
	Thresholding Operators
	Deterministic First Order Algorithms
	Scalability Heuristics for Large Problem instances
	Correlation Screening when p is Large and n is Small
	A Subsampling Heuristic when n is Large and p is Small
	A Subsampling Heuristic when Both n and p are Large

	Experiments
	Computational Results for L1-SVM
	Synthetic Data sets for Large p and Small n
	Synthetic Data sets for Large n and Small p
	Synthetic Data sets for n p
	Real Data Sets with Large n and p

	Computational Results for Group-SVM
	Computational Results for Slope-SVM

	Appendix
	Another Formulation for the Slope Norm

