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Abstract

We introduce the submodularity ratio as a measure of how “close” to submodular a set
function f is. We show that when f has submodularity ratio γ, the greedy algorithm for
maximizing f provides a (1− e−γ)-approximation. Furthermore, when γ is bounded away
from 0, the greedy algorithm for minimum submodular cover also provides essentially an
O(log n) approximation for a universe of n elements.

As a main application of this framework, we study the problem of selecting a subset
of k random variables from a large set, in order to obtain the best linear prediction of
another variable of interest. We analyze the performance of widely used greedy heuristics;
in particular, by showing that the submodularity ratio is lower-bounded by the smallest 2k-
sparse eigenvalue of the covariance matrix, we obtain the strongest known approximation
guarantees for the Forward Regression and Orthogonal Matching Pursuit algorithms.

As a second application, we analyze greedy algorithms for the dictionary selection prob-
lem, and significantly improve the previously known guarantees. Our theoretical analysis
is complemented by experiments on real-world and synthetic data sets; in particular, we
focus on an analysis of how tight various spectral parameters and the submodularity ratio
are in terms of predicting the performance of the greedy algorithms.

1. Introduction

Over the past 10–15 years, submodularity has established itself as one of the workhorses
of the Machine Learning community. A function f mapping sets to real numbers is called
submodular if f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ) whenever S ⊆ T . One of the most
popular consequences of submodularity is that greedy algorithms perform quite well for
maximizing the function subject to a cardinality constraint. Specifically, suppose that f is
non-negative, monotone, and submodular, and consider the algorithm that, for k iterations,
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adds the element xi+1 that has largest marginal gain f(Si ∪{xi+1})− f(Si) with respect to
the current set Si. By a classic result of Nemhauser et al. (1978), this algorithm guarantees
that the final set achieves a function value within a factor 1− 1/e of the optimum set S∗ of
cardinality k.

This approximation guarantee has been applied in a large number of settings; see, e.g., a
survey in (Krause and Golovin, 2014). Of course, greedy algorithms are also popular when
the objective function is not submodular. Typically, when f is not submodular, the greedy
algorithm, though perhaps still useful in practice, will not provide theoretical performance
guarantees. However, one might suspect that when f is “close to” submodular, then the
performance of the greedy algorithm should degrade gracefully.

In the present article (Section 2), we formalize this intuition by defining a measure of
“approximate submodularity” which we term submodularity ratio, and denote by γ. We
prove that when a function f has submodularity ratio γ, the greedy algorithm gives a
(1 − e−γ)-approximation; in particular, whenever γ is bounded away from 0, the greedy
algorithm guarantees a solution within a constant factor of optimal. We also show that
for the complementary Minimum Submodular Cover problem, where the goal is to find the
smallest set S with f(S) ≥ C for a given value C, the greedy algorithm gives essentially an
O(log n) approximation when γ is bounded away from 0.

Subset Selection for Regression. To illustrate the usefulness of the approximate sub-
modularity framework, we analyze greedy algorithms for the problem of Subset Selection
for Regression: select a subset of k variables from a given set of n observation variables
which, taken together, “best” predict another variable of interest. This problem has many
applications ranging from feature selection, sparse learning and dictionary selection in ma-
chine learning, to sparse approximation and compressed sensing in signal processing. From
a machine learning perspective, the variables are typically features or observable attributes
of a phenomenon, and we wish to predict the phenomenon using only a small subset from
the high-dimensional feature space. In signal processing, the variables usually correspond
to a collection of dictionary vectors, and the goal is to parsimoniously represent another
(output) vector. For many practitioners, the prediction model of choice is linear regression,
and the goal is to obtain a linear model using a small subset of variables, to minimize the
mean square prediction error or, equivalently, maximize the squared multiple correlation
R2 (Johnson and Wichern, 2002; Miller, 2002).

Thus, we formulate the Subset Selection problem for Regression as follows: Given the
(normalized) covariances between n variables Xi (which can in principle be observed) and
a variable Z (which is to be predicted), select a subset of k � n of the variables Xi and a
linear prediction function of Z from the selected Xi that maximizes the R2 fit. (A formal
definition is given in Section 3.) The covariances are usually obtained empirically from
detailed past observations of the variable values.

The above formulation is known (see, e.g., (Das and Kempe, 2008)) to be equivalent
to the problem of sparse approximation over dictionary vectors: the input consists of a
dictionary of n feature vectors xi ∈ Rm, along with a target vector z ∈ Rm, and the goal
is to select at most k vectors whose linear combination best approximates z. The pairwise
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covariances of the previous formulation are then exactly the inner products of the dictionary
vectors.1

This problem is NP-hard (Natarajan, 1995), so no polynomial-time algorithms are
known to solve it optimally for all inputs. Two approaches are frequently used for ap-
proximating such problems: greedy algorithms (Miller, 2002; Tropp, 2004; Gilbert et al.,
2003; Zhang, 2008) and convex relaxation schemes (Tibshirani, 1996; Candès et al., 2005;
Tropp, 2006; Donoho, 2005). For our formulation, a disadvantage of convex relaxation tech-
niques is that they do not provide explicit control over the target sparsity level k of the
solution; additional effort is needed to tune the regularization parameter.

Greedy algorithms are widely used in practice for subset selection problems; for example,
they are implemented in all commercial statistics packages. They iteratively add or remove
variables based on simple measures of fit with Z. Two of the most well-known and widely
used greedy algorithms are the subject of our analysis: Forward Regression (Miller, 2002)
and Orthogonal Matching Pursuit (Tropp, 2004). (These algorithms are defined formally
in Section 3).

Our main result is that using the approximate submodularity framework, approximation
guarantees much stronger than all previously known bounds can be obtained quite imme-
diately. Specifically, we show that the relevant submodularity ratio for the R2 objective is
lower-bounded by the smallest (2k)-sparse eigenvalue λmin(C, 2k) of the covariance matrix
C of the observation variables. Combined with our general bounds for approximately sub-
modular functions, this immediately implies a (1 − e−λmin(C,2k))-approximation guarantee
for Forward Regression. For Orthogonal Matching Pursuit, a similar analysis leads to a
somewhat weaker guarantee of essentially (1− e−λmin(C,2k)

2
). In a precise sense, our analy-

sis thus shows that the less singular C (or its small principal submatrices) are, the “closer
to” submodular the R2 objective. Previously, Das and Kempe (2008) had shown that R2 is
truly submodular when there are no “conditional suppressor” variables; however, the latter
is a much stronger condition.

Most previous results for greedy subset selection algorithms (e.g., (Gilbert et al., 2003;
Tropp, 2004; Das and Kempe, 2008)) had been based on coherence of the input data, i.e.,
the maximum correlation µ between any pair of variables. Small coherence is an extremely
strong condition, and the bounds usually break down when the coherence is ω(1/k). On the
other hand, most bounds for greedy and convex relaxation algorithms for sparse recovery
are based on a weaker sparse-eigenvalue or Restricted Isometry Property (RIP) condition
(Zhang, 2009, 2008; Lozano et al., 2009; Zhou, 2009; Candès et al., 2005). However, these
results apply to a different objective: minimizing the difference between the actual and
estimated coefficients of a sparse vector. Simply extending these results to the subset
selection problem adds a dependence on the largest k-sparse eigenvalue and only leads to
weak additive bounds.

Dictionary Selection. As a second illustration of the approximate submodularity frame-
work, we obtain much tighter theoretical performance guarantees for greedy algorithms for
dictionary selection (Krause and Cevher, 2010). In the Dictionary Selection problem, we are
given s target vectors, and a candidate set V of feature vectors. The goal is to select a set

1. For this reason, the dimension m of the feature vectors only affects the problem indirectly, via the
accuracy of the estimated covariance matrix.
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D ⊂ V of at most d feature vectors, which will serve as a dictionary in the following sense.
For each of the target vectors, the best k < d vectors from D will be selected and used to
achieve a good R2 fit; the goal is to maximize the average R2 fit for all of these vectors. (A
formal definition is given in Section 4.) The problem of finding a dictionary of basis func-
tions for sparse representation of signals has several applications in machine learning and
signal processing. Krause and Cevher (2010) showed that greedy algorithms for dictionary
selection can perform well in many instances, and proved additive approximation bounds
for two specific algorithms, SDSMA and SDSOMP (defined in Section 4). Our approximate
submodularity framework directly yields stronger multiplicative approximation guarantees.

Our theoretical analysis is complemented by experiments comparing the performance of
the greedy algorithms and a baseline convex-relaxation algorithm for subset selection on
two real-world data sets and a synthetic data set. We also evaluate the submodularity ratio
of these data sets and compare it with other spectral parameters: while the input covariance
matrices are close to singular, the submodularity ratio actually turns out to be significantly
larger.

While the submodularity ratio is always lower-bounded by the smallest (sparse) eigen-
value, our experiments reveal that this lower bound can be loose. This happens when there
are small (sparse) eigenvalues, but the predictor variable is not badly aligned with their
eigenspace. Hence, computing the submodularity ratio explicitly (although it appears com-
putationally intensive to do so) can lead to stronger post hoc approximation guarantees. In
this context, we also discuss ways in which a more careful analysis of the greedy algorithms
allows significantly stronger post hoc approximation guarantees.

Our main contributions can be summarized as follows:

1. We introduce (in Section 2) the notion of the submodularity ratio as a predictor of the
performance of greedy algorithms. We show that a submodularity ratio of γ leads to
a (1− e−γ)-approximation guarantee for the greedy algorithm for maximum coverage.
For the minimum cover probem, we show essentially a logn

γ approximation guarantee
for the greedy algorithm.

2. Using the approximate submodularity framework, in Section 3, we obtain the strongest
known theoretical performance guarantees for greedy algorithms for subset selection.
In particular, we show that the Forward Regression and OMP algorithms are within
a 1− e−γ factor and 1− e−(γ·λmin) factor of the optimal solution, respectively (where
the γ and λ terms are appropriate submodularity and sparse-eigenvalue parameters).

3. Again using the approximate submodularity framework, in Section 4, we obtain the
strongest known theoretical guarantees for algorithms for dictionary selection, im-
proving on the results of Krause and Cevher (2010). In particular, we show that the
SDSMA algorithm is within a factor γ

λmax
(1− 1

e ) of optimal.

4. We evaluate our theoretical bounds for subset selection by running greedy and L1-
relaxation algorithms on real-world and synthetic data, and show how the various
submodular and spectral parameters correlate with the performance of the algorithms
in practice.
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1.1 Related and Subsequent Work

We provide an overview of related work both in the context of subset selection (and its
variants) and in submodular optimization, as well as a discussion of work that appeared
subsequent to the conference version of the present article.

1.1.1 Subset Selection and Sparse Recovery

There has been a lot of related work in the statistics, machine learning and signal processing
communities on problems with sparsity constraints (such as sparse recovery, compressed
sensing, sparse approximation and feature selection).

In sparse recovery, one is given an n×m dictionary φ of m vectors in Rn (where n < m),
along with another vector y ∈ Rn. It is known that y has some sparse representation in
terms of k vectors of φ, up to a small noise term ε, and the goal is to recover the coefficients
α given y, φ and ε. There has been a lot of recent interest in greedy and convex relaxation
techniques for the sparse recovery problems, both in the noiseless and noisy setting. For
L1 relaxation techniques, Tropp (2006) showed conditions based on the coherence (i.e., the
maximum correlation between any pair of variables) of the dictionary that guaranteed near-
optimal recovery of a sparse signal. In (Candès et al., 2005; Donoho, 2005), it was shown
that if the target signal is truly sparse, and the dictionary obeys a Restricted Isometry
Property (RIP), then L1 relaxation can almost exactly recover the true sparse signal. Other
results (Zhao and Yu, 2006; Zhou, 2009) also prove conditions under which L1 relaxation
can recover a sparse signal. Though related, the above results are not directly applicable
to our subset selection formulation, since the goal in sparse recovery is to recover the true
coefficients of the sparse signal, as opposed to our problem of minimizing the prediction
error of an arbitrary signal subject to a specified sparsity level.

For greedy sparse recovery, Zhang (2008, 2009) and Lozano et al. (2009) provided condi-
tions based on sparse eigenvalues under which Forward Regression and Forward-Backward
Regression can recover a sparse signal. As with the L1 results for sparse recovery, the
objective function analyzed in these papers is somewhat different from that in our subset
selection formulation; furthermore, these results are intended mainly for the case when the
predictor variable is truly sparse. Simply extending these results to our problem formulation
gives weaker, additive bounds and requires stronger conditions than our results.

The papers by Das and Kempe (2008), Gilbert et al. (2003) and Tropp et al. (2003);
Tropp (2004) analyzed greedy algorithms for sparse approximation, which as mentioned
previously is equivalent to our subset selection formulation presented in this work. In par-
ticular, they obtained a 1 + Θ(µ2k) multiplicative approximation guarantee for the mean
square error objective and a 1 − Θ(µk) guarantee for the R2 objective, whenever the co-
herence µ of the dictionary is O(1/k). These results are thus weaker than those presented
here, since they do not apply to instances with even moderate correlations of ω(1/k).

Other analysis of greedy methods includes the work of Natarajan (1995), which proved
a bicriteria approximation bound for minimizing the number of vectors needed to achieve
a given prediction error.

As mentioned earlier, the paper by Krause and Cevher (2010) analyzed greedy algo-
rithms for the dictionary selection problem, which generalizes subset selection to prediction
of multiple variables. They too use a notion of approximate submodularity to provide ad-
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ditive approximation guarantees. Since their analysis is for a more general problem than
subset selection, applying their results directly to the subset selection problem predictably
gives much weaker bounds than those presented in this paper for subset selection. Fur-
thermore, even for the general dictionary selection problem, our techniques can be used to
significantly improve their analysis of greedy algorithms and obtain tighter multiplicative
approximation bounds (as shown in Section 4).

In general, we note that the performance bounds for greedy algorithms derived using the
coherence parameter are usually the weakest, followed by those using the Restricted Isome-
try Property, then those using sparse eigenvalues, and finally those using the submodularity
ratio. (We show an empirical comparison of these parameters in Section 5.)

1.1.2 Submodular Maximization and Curvature

In the context of submodular maximization, the celebrated result of Nemhauser et al. (1978)
proved that the greedy algorithm obtained a (1 − 1/e)-approximation for maximizing any
monotone, submodular set function subject to a uniform matroid. The same guarantee was
obtained by Calinescu et al. (2011) for an arbitrary matroid constraint, using a continuous
variant of the greedy algorithm.

While we are not aware of prior work on defining a notion of how far a function is
from being submodular (or analyzing greedy algorithms for such functions), there is a well-
known notion of curvature (Conforti and Cornuéjols, 1984; Vondrák, 2010) that captures
how far a submodular function is from being modular. In particular, the total curvature of a
submodular set function is defined as c = 1−minS,j /∈S

fS(j)
f∅(j)

, where fS(j) = f(S∪ j)−f(S).

(Additional related notions include average curvature and monotonicity ratio; see (Iyer,
2015) for a discussion.) Intuitively c measures how far away f is from being modular,
and is equal to 0 if f is modular. Conforti and Cornuéjols (1984) analyzed the greedy
algorithm for submodular maximization in terms of the c parameter, and showed a 1

c (1−e
−c)

approximation for a uniform matroid. The result was extended to an arbitrary matroid by
Vondrák (2010), and an improved guarantee of (1−c/e) was obtained recently by Sviridenko
et al. (2015). Curvature was also used by Iyer et al. (2013) to obtain improved bounds for
submodular function approximation, PMAC-learning and submodular minimization.

Another notion of approximate modularity was recently proposed by Chierichetti et al.
(2015), who defined a function to be ε-approximately modular if it satisfies all the modularity
requirements to within an ε additive error. Chierichetti et al. (2015) analyzed how close (in
the l∞ distance) any approximately modular function can be to a modular function.

Note that both the notions of total curvature and approximate modularity are different
from the submodularity ratio proposed in this paper, which measures how far a set function
is from being submodular.

1.1.3 Subsequent Work

Subsequent to our work introducing the submodularity ratio, several papers have used this
notion for analyzing greedy algorithms for machine learning applications. Das et al. (2012)
proposed diversity-promoting spectral regularizers for feature selection, and used the sub-
modularity ratio to analyze a hybrid greedy and local search algorithm for the diverse feature
selection problem. Grubb and Bagnell (2012) analyzed greedy algorithms for learning an
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ensemble of anytime predictors that automatically trade computation time with predictive
accuracy. Using the submodularity ratio, the authors provide an approximation guarantee
for the performance of their ensemble algorithm. Kusner et al. (2014) analyzed greedy
methods for training a tree of classifiers for feature-cost sensitive learning, and show that
the objective function for obtaining a cost-sensitive tree of classifiers is approximately sub-
modular. Qian et al. (2015) proposed a Pareto optimization approach for subset selection in
sparse regression and analyzed the performance of their algorithm using the submodularity
ratio.

Most directly following up on our initial work is a recent result of Elenberg et al. (2018)
that extends our analysis of greedy algorithms for subset selection from the linear regression
setting to arbitrary Generalized Linear Models. The main result is a lower bound on any
function’s submodularity ratio in terms of its restricted strong convexity and smoothness
parameters, which can then be used to obtain approximation guarantees for greedy feature
selection algorithms.

2. Approximate Submodularity

We begin by defining our notion of approximate submodularity, and explaining its rela-
tionship with the traditional notion of submodularity. Then, we show that approximation
results for greedy algorithms degrade gracefully as the function becomes less and less sub-
modular.

2.1 Submodularity Ratio

We introduce the notion of submodularity ratio for a general set function, which captures
“how close” to submodular the function is. Let X be a universe of elements, and Let
f : 2X → R+ be a non-negative set function.

Definition 1 (Monotonicity, Submodularity) 1. f is monotone iff f(S) ≤ f(T )
whenever S ⊆ T .

2. f is submodular iff f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) whenever S ⊆ T .

Our definition of the submodularity ratio smoothly interpolates between functions that
are submodular and those that are far from so.

Definition 2 (Submodularity Ratio) The submodularity ratio of a monotone function
f with respect to a set U and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S f(L ∪ {x})− f(L)

f(L ∪ S)− f(L)
, (1)

where we define 0/0 := 1. Thus, the submodularity ratio captures how much more f can
increase by adding any subset S of size k to L, compared to the combined benefits of adding
its individual elements to L. That Definition 2 generalizes submodularity is captured by
the following proposition.

Proposition 3 f is submodular if and only if γU,k ≥ 1 for all U and k.
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Proof. First, assume that γU,k ≥ 1 for all U and k. By choosing k = 2 and S = {x, y} in
Equation (1), we obtain that f(L∪{x})+f(L∪{y}) ≥ f(L∪{x, y})+f(L), or, rearranged,
f(L ∪ {x}) − f(L) ≥ f(L ∪ {x, y}) − f(L ∪ {y}). Now, when we have two sets S and
T = S ∪ {x1, x2, . . . , xk}, define Si := S ∪ {x1, . . . , xi} for 0 ≤ i ≤ k. Setting L = Si now
gives us that f(Si ∪ {x})− f(Si) ≥ f(Si+1 ∪ {x})− f(Si+1). Induction on i now completes
the proof.

Conversely, assume that f is submodular. In Equation (1), let S = {x1, . . . , xk} and Si =
{x1, . . . , xi}, and write a telescoping series f(L∪S)−f(L) =

∑k−1
i=0 f(L∪Si+1)−f(L∪Si).

By submodularity of f , we can bound

f(L ∪ Si+1)− f(L ∪ Si) = f(L ∪ Si ∪ {xi+1})− f(L ∪ Si) ≤ f(L ∪ {xi+1})− f(L),

which gives us a lower bound of 1 on the ratio.

Remark 4 The submodularity ratio is defined as a minimum over exponentially many val-
ues, and in general, it is NP-hard to compute exactly (more recently, Bai and Bilmes (2018)
showed that it cannot be computed in polynomial time in the value oracle model). This is
a property it shares with the well-known Restricted Isometry Property (RIP) (Candès and
Tao, 2005): computing the RIP of a matrix is essentially equivalent to computing the ex-
pansion of a graph, yet the guarantees for sparse approximation algorithms are frequently
expressed in terms of the RIP.

Whether one can efficiently approximate the submodularity ratio to within non-trivial
factors is an interesting open question. Approximating it would allow one to at least derive
post hoc approximation guarantees, i.e., to give the user guarantees on the approximation
quality for the specific instance that was solved. In the appendix, we discuss some (fairly
strong) assumptions under which one can derive non-trivial lower bounds on the submodu-
larity ratio.

Typically, rather than computing the submodularity ratio on a given instance, one would
use problem-specific insights to derive a priori lower bounds on the submodularity ratio in
terms of quantities that are easier to compute exactly or approximately. For example, in
the primary application studied here (linear regression), the submodularity ratio is lower-
bounded by the (easy to compute) smallest eigenvalue of the covariance matrix, and more
tightly bounded by the (not so easy to compute) smallest 2k-sparse eigenvalue of the covari-
ance matrix. Recently, Elenberg et al. (2018) showed how to derive similar lower bounds
for a more general class of linear objective functions. We anticipate that similar types of
bounds can be obtained for other classes of objectives.

2.2 The Greedy Algorithm for Maximum Coverage

Probably the most widely used fact about (monotone) submodular functions is that a simple
greedy algorithm approximately optimizes the function subject to a cardinality constraint.2

This is a celebrated result by Nemhauser et al. (1978). Specifically, Nemhauser et al. (1978)
analyzed the following algorithm.

Let SNG be the final set Sk returned by the algorithm. The following theorem of
Nemhauser et al. (1978) is widely used in the Machine Learning and related communities:

2. Many other algorithmic optimization problems are easier for submodular function. Some of them are
discussed in Section 6.
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Algorithm 1 The Nemhauser Greedy Algorithm for a non-negative, monotone, and sub-
modular set function f on a universe X .

1: Initialize S0 = ∅.
2: for each iteration i+ 1 = 1, 2, . . . do
3: Let xi+1 ∈ X be an element maximizing f(Si ∪ {xi+1}), and set Si+1 = Si ∪ {xi+1}.
4: Output Sk.

Theorem 5 (Nemhauser et al. (1978)) The set SNG returned by the Nemhauser Greedy
Algorithm guarantees that f(SNG) ≥ (1 − 1

e ) · f(S∗k), where S∗k is the set maximizing f(S)
among all size-k sets S.

The centerpiece of our algorithmic analysis is a generalization of Theorem 5 to approx-
imately submodular functions.

Theorem 6 Let f be a nonnegative, monotone set function, and OPT be the maximum
value of f obtained by any set of size k. Then, the set SNG selected by the Nemhauser
Greedy Algorithm has the following approximation guarantee:

f(SNG) ≥
(

1− e−γSNG,k
(f)
)
·OPT.

Notice that for submodular functions, because γSNG,k(f) ≥ 1, our theorem recovers the
result of Nemhauser et al. (1978) as a special case.

Proof. We carry out the analysis in somewhat more generality than needed here, since
most of it will be useful in Section 2.3. Let k be the number of iterations that Algorithm 1
was run, and SNG

i the set of elements greedily chosen in the first i iterations. Let SNG
i be

the set of variables chosen by the Nemhauser Greedy Algorithm (Algorithm 1) in the first
i iterations. Define A(i) = f(SNG

i ) − f(SNG
i−1) to be the gain obtained from the variable

chosen by the algorithm in iteration i. Then f(SNG) =
∑k

i=1A(j).
For simplicity of notation, we write f(x/S) to denote f({x} ∪ S) − f(S), and f(T/S)

to denote f(T ∪ S) − f(S), for any element x ∈ X and sets S and T . We will also write
γSNG,k to denote γSNG,k(f).

Let S∗ be some (optimum) set of k∗ variables, achieving a value of (at least) C. Let
Si = S∗ \ SNG

i . By monotonicity of f and the fact that Si ∪ SNG
i ⊇ S∗, we have that

f(Si ∪ SNG
i ) ≥ C. We will show that at least one of the x ∈ Si is a good candidate in

iteration i + 1 of the algorithm. First, the joint contribution of Si, conditioned on the set
SNG
i , must be fairly large: f(Si/S

NG
i ) = f(Si ∪ SNG

i ) − f(SNG
i ) ≥ C − f(SNG

i ). Using
Definition 2, as well as SNG

i ⊆ SNG and |Si| ≤ k∗,∑
x∈Si

f(x/SNG
i ) ≥ γSNG

i ,|Si| · f(Si/S
NG
i ) ≥ γSNG,k∗ · f(Si/S

NG
i ).

Let x̂ ∈ argmaxx∈Si f(x/SNG
i ) maximize f(x̂/SNG

i ). Then we get that

f(x̂/SNG
i ) ≥

γSNG,k∗

|Si|
· f(Si/S

NG
i ) ≥

γSNG,k∗

k∗
· f(Si/S

NG
i ).
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Since the x̂ above was a candidate to be chosen in iteration i + 1, and the algorithm
chose a variable xi+1 such that f(xi+1/S

NG
i ) ≥ f(x/SNG

i ) for all x /∈ SNG
i , we obtain that

A(i+ 1) ≥
γSNG,k∗

k∗
· f(Si/S

NG
i ) ≥

γSNG,k∗

k∗
· (C − f(SNG

i )) ≥
γSNG,k∗

k∗
· (C −

i∑
j=1

A(j)).

We will use the above inequality to prove by induction on t that

C −
t∑
i=1

A(i) ≤ C · (1−
γSNG,k∗

k∗
)t ≤ C · e−γSNG,k∗ ·

t
k∗ . (2)

The base case is clearly true for t = 0. Suppose that the inequality is true after t
iterations. Then, at iteration t+ 1, we have

C −
t+1∑
i=1

A(i) = C −
t∑
i=1

A(i)−A(t+ 1)

≤ C −
t∑
i=1

A(i)−
γSNG,k∗

k∗
· (C −

t∑
i=1

A(i))

= (C −
t+1∑
i=1

A(i)) ·
(

1−
γSNG,k∗

k∗

)
≤ C ·

(
1−

γSNG,k∗

k∗

)t+1
,

thus completing the inductive proof. Using Inequality(2) with k = k∗, t = k − 1 and
C = OPT, we obtain that

f(SNG) =
k∑
i=1

A(i) ≥ OPT ·
(

1− e−γSNG,k

)
.

This completes the proof of the approximation guarantee.

Remark 7 As the submodularity ratio goes to 0, the approximation guarantee of Theorem 6
deteriorates and becomes 0 in the limit. This is not surprising: in the limit, the definition
does not place any restrictions on the function f . Without any restrictions on f , not
only can the greedy algorithm perform arbitrarily poorly, but the same may be true for any
efficient algorithm, since f might be a function that is provably hard to approximate to
within any non-trivial factor.

Indeed, the goal of Theorem 6 is not to provide a universal approximation guarantee, but
rather to outline conditions under which running the greedy algorithm comes with provable
approximation guarantees. Practitioners run greedy algorithms routinely without any guar-
antees, and the submodularity ratio may provide guidance under what conditions doing so
has theoretical justification, even when the objective function f is not submodular.

10



Approximate Submodularity and its Applications

2.3 The Greedy Algorithm for Minimum Submodular Cover

The “complementary” problem to submodular function maximization is minimum submod-
ular cover, where the goal is to find a smallest set S with f(S) ≥ C, a given target value.
The name derives from one of the most common instance of submodular functions: coverage
functions.3 Here, the elements x correspond to sets, and the function value f is the size of
the union of the selected sets. In the Maximum Coverage Problem, the goal is to maximize
the size of the union by selecting k sets, and in the Minimum Set Cover Problem, the goal
is to cover all elements selecting as few sets as possible.

For both problems, the greedy algorithm (Algorithm 1) provides essentially best possible
guarantees. The only difference is the termination condition: for maximum coverage, the
algorithm is terminated when k sets are selected, while for minimum cover, the algorithm
is terminated when all elements (or a given number) have been covered. For the Minimum
Set Cover Problem, the greedy algorithm achieves a lnn approximation, which is best
possible unless P = NP. For more general monotone submodular functions, the results are
somewhat less clean to express, but are summarized by the following theorem of Wolsey
(1982).

Theorem 8 (Theorem 1 of Wolsey (1982)) Let f be nonnegative, monotone and sub-
modular, and let n = |X |. For any given C, let k∗(C) be the size of the smallest set S ⊆ V
such that f(S) ≥ C. Let k be the size of the set SNG selected by Algorithm 1 when run until
f(S) ≥ C. Then,

k ≤

(
1 + log

(
C

C − f(SNG
k−1)

))
· k∗(C),

where SNG
k−1 is the set selected by Algorithm 1 after k − 1 iterations.

If f is integer valued, then

k ≤ (1 + log(θ)) · k∗,

where θ = maxx∈X f(x) is the maximum value of the set function obtained by a single
element.

We show that Theorem 8, too, extends gracefully to approximately submodular functions
f .

Theorem 9 Let f be a nonnegative and monotone function, and let n = |X |. For any
given C, let k∗(C) be the size of the smallest set S ⊆ V such that f(S) ≥ C. Let k be the
size of the set SNG selected by Algorithm 1 when run until f(S) ≥ C. Then,

k ≤ 1 +
1

γSNG,k∗(C)(f)
· log

(
C

C − f(SNG
k−1)

)
· k∗(C),

where SNG
k−1 is the set selected by Algorithm 1 after k − 1 iterations.

3. A characterization of coverage functions in terms of functional properties akin to submodularity is given
by Salek et al. (2010).

11



Das and Kempe

Proof. We use the same notation as in the proof of Theorem 6. For notational conve-
nience, write k∗ = k∗(C). Let k be the number of iterations taken by Algorithm 1, so that
f(SNG

k ) ≥ C and f(SNG
k−1) < C. Thus f(SNG) =

∑k
j=1A(j).

Let S∗ be a smallest set (i.e., |S∗| = k∗) with f(S∗) ≥ C. Substituting t = k − 1 into
Equation (2) and solving for k, we obtain that

k ≤ 1 +
1

γSNG,k∗(f)
· log

(
C

C − f(SNG
k−1)

)
· k∗,

as claimed.

As with Wolsey’s result for submodular functions, the bounds can be improved when f
is integer-valued.

Theorem 10 Assume that f is integer-valued, in addition to all conditions (and notation)
of Theorem 9. Let θ = maxx∈X f(x) is the maximum value of the set function obtained by
any single element. Then, the number k of elements selected by Algorithm 1 satisfies

k ≤ 1 +
1

γSNG,k∗(C)(f)
· log(C) · k∗(C),

k ≤

(
1 +

1

γSNG,k∗(C)(f)
log

(
θ

γ∅,k∗(f)

))
· k∗(C).

Proof. The first result follow directly from Theorem 9, because C − f(SNG
k−1) ≥ 1 for

integer-valued functions.

For the second result, substitute t = k∗

γ
SNG,k∗ (f)

· log
(
f(S∗)
k∗

)
into Inequality (2) to obtain

that

C − f(SNG
t ) ≤ C · e−

γ
SNG,k∗
k∗ ·t ≤ k∗.

Because f is a monotone and integer-valued, f(SNG
i ) − f(SNG

i−1) ≥ 1 for all remaining
iterations i, and it takes at most k∗ additional iterations to reach a value of C. Hence,

k ≤ t+ k∗ =

(
1 +

1

γSNG,k∗(f)
· log(C/k∗)

)
· k∗ ≤

(
1 +

1

γSNG,k∗(f)
· log

(
θ

γ∅,k∗(f)

))
· k∗.

The inequality C/k∗ ≤ θ/γ∅,k∗(f) is directly from Definition 2.

The same techniques can be used to obtain the following bicriteria approximation guar-
antee below. The bicriteria guarantees are similar in spirit to, for instance, (Krause and
Golovin, 2014, Theorem 1.5). We believe that similar results for submodular functions are
folklore among researchers, though we are unaware of a reference stating precisely the form
we give here.

Theorem 11 For any ε ∈ (0, 1), if Algorithm 1 is run until f(SNG) ≥ (1− ε) · C, the size
of the set SNG that is returned is at most 1

γ
SNG,k∗ (f)

log(1ε ) · k
∗(C).

12
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Proof. For the proof, simply substitute t = 1
γ
SNG,k∗ (f)

log(1ε ) · k
∗(C) into Inequality (2).

A particularly clean corollary of this theorem is obtained when ε = 1/e. In that case,
we obtain a (1− 1/e) approximation by increasing the set size by a factor 1

γ
SNG,k∗ (f)

. Thus,

instead of a smooth degradation of the customary (1 − 1/e) approximation guarantee, we
can choose a smooth increase in the size of the set that the greedy algorithm is allowed to
select, and thus retain the customary (1− 1/e) approximation, even for functions that are
only approximately submodular.

3. Subset Selection for Regression

As our first and main application of the approximate submodularity framework, we ana-
lyze greedy algorithms for subset selection in regression. The goal in subset selection is
to estimate a predictor variable Z using linear regression on a small subset from the set
of observation variables X = {X1, . . . , Xn}. We use Var[Xi], Cov[Xi, Xj ] and ρ(Xi, Xj)
to denote the variance, covariance and correlation of random variables, respectively. By
appropriate normalization, we can assume that all the random variables have expectation
0 and variance 1. The matrix of covariances between the Xi and Xj is denoted by C, with
entries ci,j = Cov[Xi, Xj ]. Similarly, we use b to denote the covariances between Z and the
Xi, with entries bi = Cov[Z,Xi]. Formally, the Subset Selection problem can now be stated
as follows:

Definition 12 (Subset Selection) Given pairwise covariances among all variables, as
well as a parameter k, find a set S ⊂ X of at most k variables Xi and a linear predictor Z ′ =∑

i∈S αiXi of Z, maximizing the squared multiple correlation (Diekhoff, 2002; Johnson and
Wichern, 2002)

R2
Z,S =

Var[Z]− E
[
(Z − Z ′)2

]
Var[Z]

.

R2 is a widely used measure for the goodness of a statistical fit; it captures the fraction
of the variance of Z explained by variables in S. Because we assumed Z to be normalized
to have variance 1, it simplifies to R2

Z,S = 1− E
[
(Z − Z ′)2

]
.

For a set S, we use CS to denote the submatrix of C with row and column set S, and
bS to denote the vector with only entries bi for i ∈ S. For notational convenience, we
frequently do not distinguish between the index set S and the variables {Xi | i ∈ S}. Given
the subset S of variables used for prediction, the optimal regression coefficients αi are well
known to be aS = (αi)i∈S = C−1S · bS (see, e.g., (Johnson and Wichern, 2002)), and hence
R2
Z,S = bᵀ

SC
−1
S bS . Thus, the subset selection problem can be phrased as follows: Given C,

b, and k, select a set S of at most k variables to maximize R2
Z,S = bᵀ

S(C−1S )bS .4

Many of our results are phrased in terms of eigenvalues of the covariance matrix C and
its submatrices. Covariance matrices are positive semidefinite, so their eigenvalues are real

4. We assume throughout that CS is non-singular. For some of our results, an extension to singular matrices
is possible using the Moore-Penrose generalized inverse.
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and non-negative (Johnson and Wichern, 2002). We denote the eigenvalues of a positive
semidefinite matrix A by λmin(A) = λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) = λmax(A). We use
λmin(C, k) = minS:|S|=k λmin(CS) to refer to the smallest eigenvalue of any k×k submatrix of
C (i.e., the smallest k-sparse eigenvalue), and similarly λmax(C, k) = maxS:|S|=k λmax(CS).5

We also use κ(C, k) to denote the largest condition number (the ratio of the largest and
smallest eigenvalue) of any k × k submatrix of C. This quantity is strongly related to the
Restricted Isometry Property in (Candès et al., 2005). We also use µ(C) = maxi 6=j |ci,j | to
denote the coherence, i.e., the maximum absolute pairwise correlation between the Xi vari-
ables. Recall the L2 vector and matrix norms: ‖x‖2 =

√∑
i |xi|2, and ‖A‖2 = λmax(A) =

max‖x‖2=1 ‖Ax‖2. We also use ‖x‖0 = |{i | xi 6= 0}| to denote the sparsity of a vector x.

The Rayleigh-Ritz representation for ‖A‖2 is useful in bounding λmin(A), as for any

vector x, we have λmin(A) ≤ ‖Ax‖2‖x‖2 .

The part of a variable Z that is not correlated with the Xi for all i ∈ S, i.e., the part
that cannot be explained by the Xi, is called the residual (see (Diekhoff, 2002)), and defined
as Res(Z, S) = Z −

∑
i∈S αiXi.

3.1 Approximate Submodularity of R2

The key insight enabling our analysis is a bound on the submodularity ratio of the R2

function. To avoid notational clutter, when we are specifically concerned with the R2

objective defined on the variables Xi, we omit the function name in the definition of the
submodularity ratio, and simply write

γU,k = min
L⊆U,S:|S|≤k,S∩L=∅

∑
i∈S(R2

Z,L∪{Xi} −R
2
Z,L)

R2
Z,S∪L −R2

Z,L

= min
L⊆U,S:|S|≤k,S∩L=∅

(bLS)ᵀbLS
(bLS)ᵀ(CLS )−1bLS

,

where CL and bL are the normalized covariance matrix and normalized covariance vector
corresponding to the set {Res(X1, L),Res(X2, L), . . . ,Res(Xn, L)}.

Our key lemma can now be stated as follows:

Lemma 13 γU,k ≥ λmin(C, k + |U |) ≥ λmin(C).

For all our analysis in this paper, we will use |U | = k, and hence γU,k ≥ λmin(C, 2k).
Thus, the smallest 2k-sparse eigenvalue is a lower bound on this submodularity ratio; as we
show later, it is often a weak lower bound.

Before proving Lemma 13, we first introduce two lemmas that relate the eigenvalues of
a normalized covariance matrix with those of its submatrices.

Lemma 14 Let C be the covariance matrix of n zero-mean random variables X1, X2, . . . , Xn,
each of which has variance at most 1. Let Cρ be the corresponding correlation matrix of
the n random variables, that is, Cρ is the covariance matrix of the variables after they are
normalized to have unit variance. Then λmin(C) ≤ λmin(Cρ).

5. Computing λmin(C, k) is NP-hard. In Appendix A we describe how to efficiently approximate the values
for some scenarios.
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Proof. Since Cρ is obtained by normalizing the variables such that they have unit variance,
we get Cρ = DᵀCD, where D is a diagonal matrix with diagonal entries di = 1√

Var[Xi]
.

Since both Cρ and C are positive semidefinite, we can perform Cholesky factorization
to get lower-triangular matrices Aρ and A such that C = AAᵀ and Cρ = AρA

ᵀ
ρ. Hence

Aρ = DᵀA.
Let σmin(A) and σmin(Aρ) denote the smallest singular values of A and Aρ, respectively.

Also, let v be the singular vector corresponding to σmin(Aρ). Then,

‖Av‖2 = ‖D−1Aρv‖2 ≤ ‖D−1‖2‖Aρv‖2 = σmin(Aρ)‖D−1‖2 ≤ σmin(Aρ),

where the last inequality follows since

‖D−1‖2 = max
i

1

di
= max

i

√
Var[Xi] ≤ 1.

Hence, by the Courant-Fischer theorem, σmin(A) ≤ σmin(Aρ), and consequently, λmin(C) ≤
λmin(Cρ).

Lemma 15 Let λmin(C) be the smallest eigenvalue of the covariance matrix C of n random
variables X1, X2, . . . , Xn, and λmin(C ′) be the smallest eigenvalue of the (n−1)×(n−1) co-
variance matrix C ′ corresponding to the n−1 random variables Res(X1, Xn), . . . ,Res(Xn−1, Xn).
Then λmin(C) ≤ λmin(C ′).

Proof. Let λi and λ′i denote the eigenvalues of C and C ′, respectively. Also, let c′i,j denote
the entries of C ′. Using the definition of the residual, we get that

c′i,j = Cov[Res(Xi, Xn),Res(Xj , Xn)] = ci,j −
ci,ncj,n
cn,n

,

c′i,i = Var[Res(Xi, Xn)] = ci,i −
c2i,n
cn,n

.

Defining D = 1
cn,n
· [c1,n, c2,n, . . . , cn−1,n]ᵀ · [c1,n, c2,n, . . . , cn−1,n], we can write C{1,...,n−1} =

C ′+D. To prove λ1 ≤ λ′1, let e′ = [e′1, . . . , e
′
n−1]

ᵀ be the eigenvector of C ′ corresponding to

the eigenvalue λ′1, and consider the vector e = [e′1, e
′
2, . . . , e

′
n−1,− 1

cn,n

∑n−1
i=1 e

′
ici,n]ᵀ. Then,

C · e = [ y0 ], where

y = − 1

cn,n

n−1∑
i=1

e′ici,n[c1,n, c2,n, . . . , cn−1,n]ᵀ + C{1,...,n−1} · e′

= − 1

cn,n

n−1∑
i=1

e′ici,n[c1,n, c2,n, . . . , cn−1,n]ᵀ +D · e′ + C ′ · e′

= C ′ · e′.

Thus, C · e = [λ′1e
′
1, λ
′
1e
′
2, . . . , λ

′
1e
′
n−1, 0]ᵀ = λ′1[e

′
1, e
′
2, . . . , e

′
n−1, 0]ᵀ ≤ λ′1‖e‖2, which by

Rayleigh-Ritz bounds implies that λ1 ≤ λ′1.

Using the above two lemmas, we now prove Lemma 13.
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Proof of Lemma 13. Since

(bLS)ᵀ(CLS )−1bLS
(bLS)ᵀbLS

≤ max
x

xᵀ(CLS )−1x

xᵀx
= λmax((CLS )−1) =

1

λmin(CLS )
,

we can use Definition 2 to obtain that

γU,k ≥ min
(L⊆U,S:|S|≤k,S∩L=∅)

λmin(CLS ).

Next, we relate λmin(CLS ) with λmin(CL∪S), using repeated applications of Lemmas 14
and 15. Let L = {X1, . . . , X`}; for each i, define Li = {X1, . . . , Xi}, and let C(i) be the

covariance matrix of the random variables {Res(X,L \ Li) | X ∈ S ∪ Li}, and C
(i)
ρ the

covariance matrix after normalizing all its variables to unit variance. Then, Lemma 14

implies that for each i, λmin(C(i)) ≤ λmin(C
(i)
ρ ), and Lemma 15 shows that λmin(C

(i)
ρ ) ≤

λmin(C(i−1)) for each i > 0. Combining these inequalities inductively for all i, we obtain
that

λmin(CLS ) = λmin(C(0)
ρ ) ≥ λmin(C(`)) = λmin(CL∪S) ≥ λmin(C, |L ∪ S|).

Finally, since |S| ≤ k and L ⊆ U , we obtain γU,k ≥ λmin(C, k + |U |).

3.2 Forward Regression

We now use our approximate submodularity framework along with the result of Lemma 13
to achieve theoretical performance bounds for Forward Regression and Orthogonal Matching
Pursuit, which are widely used in practice. We also analyze the Oblivious algorithm, one
of the simplest greedy algorithms for subset selection. Throughout the remainder of this
section, we use OPT = maxS:|S|=k R

2
Z,S to denote the optimum R2 value achievable by any

set of size k.

We begin with an analysis of Forward Regression, which is the standard algorithm used
by many researchers in medical, social, and economic domains.6

Algorithm 2 The Forward Regression (also called Forward Selection) algorithm.

1: Initialize S0 = ∅.
2: for each iteration i+ 1 = 1, 2, . . . do
3: Let Xi+1 be a variable maximizing R2

Z,Si∪{Xi+1}, and set Si+1 = Si ∪ {Xi+1}.
4: Output Sk.

Notice that Forward Regression is exactly the special case of the general Nemhauser
Greedy Algorithm (Algorithm 1) applied to the R2 objective.

Our main result is the following theorem.

6. There is some inconsistency in the literature about naming of greedy algorithms. Forward Regression
is sometimes also referred to as Orthogonal Matching Pursuit (OMP). We choose the nomenclature
consistent with Miller (2002) and Tropp (2004).
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Theorem 16 The set SFR selected by Forward Regression has the following approximation
guarantees:

R2
Z,SFR ≥ (1− e−γSFR,k) ·OPT

≥ (1− e−λmin(C,2k)) ·OPT

≥ (1− e−λmin(C,k)) ·Θ((
1

2
)1/λmin(C,k)) ·OPT.

The first inequality is just an application of Theorem 6 to the R2 objective, and the
second inequality follows directly from Lemma 13 by noticing that |SFR| = k. Thus, our
proof will focus on the third inequality, which relates the performance measured with respect
to the smallest k-sparse eigenvalue to that measured with respect to the smallest 2k-sparse
eigenvalue. We begin with a general lemma that bounds the amount by which the R2 value
of a set and the sum of R2 values of its elements can differ.

Lemma 17 Let C and b be the covariance matrix and covariance vector corresponding to
a predictor variable Z and a set S of random variables X1, X2, . . . , Xn that are normalized
to have zero mean and unit variance. Then,

1

λmax(C)

n∑
i=1

R2
Z,Xi ≤ R

2
Z,{X1,...,Xn} ≤

1

γ∅,n

n∑
i=1

R2
Z,Xi ≤

1

λmin(C)

n∑
i=1

R2
Z,Xi .

Proof. Let the eigenvalues of C−1 be λ′1 ≤ λ′2 ≤ . . . ≤ λ′n, with corresponding orthonormal
eigenvectors e1, e2, . . . , en. We write b in the basis {e1, e2, . . . , en} as b =

∑
i βiei. Then,

R2
Z,{X1,...,Xn} = bᵀC−1b =

∑
i

β2i λ
′
i.

Because λ′1 ≤ λ′i for all i, we get λ′1
∑

i β
2
i ≤ R2

Z,{X1,...,Xn}, and
∑

i β
2
i = bᵀb =

∑
iR

2
Z,Xi

,
because the length of the vector b is independent of the basis it is written in. Also, by

definition of the submodularity ratio, R2
Z,{X1,...,Xn} ≤

∑
i β

2
i

γ∅,n
. Finally, because λ′1 = 1

λmax(C) ,

and using Lemma 13, we obtain the result.

The next lemma relates the optimal R2 value using k elements to the optimal R2 using
k′ < k elements.

Lemma 18 For each k, let S∗k ∈ argmax|S|≤k R
2
Z,S be an optimal subset of at most k vari-

ables. Then, for any k′ = Θ(k) such that 1
λmin(C,k)

< k′ < k, we have that R2
Z,S∗

k′
≥ R2

Z,S∗k
·

Θ((k
′

k )1/λmin(C,k)), for large enough k. In particular, R2
Z,S∗

k/2
≥ R2

Z,S∗k
·Θ((12)1/λmin(C,k)), for

large enough k.

Proof. We first prove that R2
Z,S∗k−1

≥ (1 − 1
kλmin(C,k)

)R2
Z,S∗k

. Let T = Res(Z, S∗k); then,

Cov[Xi, T ] = 0 for all Xi ∈ S∗k , and Z = T +
∑

Xi∈S∗k
αiXi, where α = (αi) = C−1S∗k

· bS∗k are
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the optimal regression coefficients. We write Z ′ = Z − T . For any Xj ∈ S∗k , by definition
of R2, we have that

R2
Z′,S∗k\{Xj}

= 1−
α2
jVar[Xj ]

Var[Z ′]
= 1−

α2
j

Var[Z ′]
;

in particular, this implies that R2
Z′,S∗k−1

≥ 1− α2
j

Var[Z′] for all Xj ∈ S∗k .

Focus now on j minimizing α2
j , so that α2

j ≤
‖α‖22
k . As in the proof of Lemma 17, by

writing α in terms of an orthonormal eigenbasis of CS∗k , one can show that |αᵀCS∗kα| ≥

‖α‖22λmin(CS∗k ), or ‖α‖22 ≤
|αᵀCS∗

k
α|

λmin(CS∗
k
) . Furthermore, αᵀCS∗kα = Var[

∑
Xi∈S∗k

αiXi] = Var[Z ′],

so R2
Z′,S∗k−1

≥ 1− 1
kλmin(CS∗

k
) . Finally, by definition, R2

Z′,S∗k
= 1, so

R2
Z,S∗k−1

R2
Z,S∗k

≥
R2
Z′,S∗k−1

R2
Z′,S∗k

≥ 1− 1

kλmin(CS∗k )
≥ 1− 1

kλmin(C, k)
.

Now, applying this inequality repeatedly, we get

R2
Z,S∗

k′
≥ R2

Z,S∗k
·

k∏
i=k′+1

(1− 1

iλmin(C, i)
).

Let t = d1/λmin(C, k)e, so that the previous bound implies R2
Z,S∗

k′
≥ R2

Z,S∗k
·
∏k
i=k′+1

i−t
i .

Most of the terms in the product telescope, giving us a bound of R2
Z,S∗k
·
∏t
i=1

k′−t+i
k−t+i . Since∏t

i=1
k′−t+i
k−t+i converges to (k

′

k )t with increasing k (keeping t constant), we get that for large
k,

R2
Z,S∗

k′
≥ R2

Z,S∗k
·Θ((

k′

k
)t) ≥ R2

Z,S∗k
·Θ((

k′

k
)1/λmin(C,k)).

This completes the proof.

Using the above lemmas, we now prove the main theorem.

Proof of Theorem 16. As mentioned earlier, the first inequality is a direct corollary of
Theorem 6, obtained by replacing f with the R2 function. The second inequality follows
directly from Lemma 13 and the fact that |SFR| = k.

By applying the above result after k/2 iterations, we obtain R2
Z,SNG

k/2

≥ (1− e−λmin(C,k)) ·

R2
Z,S∗

k/2
. Now, using Lemma 18 and monotonicity of R2, we get

R2
Z,SNG

k
≥ R2

Z,SNG
k/2
≥ (1− e−λmin(C,k)) ·Θ((

1

2
)1/λmin(C,k)) ·R2

Z,S∗k
,

proving the third inequality.

18



Approximate Submodularity and its Applications

Algorithm 3 The Orthogonal Matching Pursuit algorithm.

1: Initialize S0 = ∅.
2: for each iteration i+ 1 = 1, 2, . . . do
3: LetXi+1 be a variable maximizing |Cov[Res(Z, Si), Xi+1]|, and set Si+1 = Si∪{Xi+1}.
4: Output Sk.

3.3 Orthogonal Matching Pursuit

The second greedy algorithm we analyze is Orthogonal Matching Pursuit (OMP), frequently
used in signal processing domains.

By applying similar techniques as in the previous section, we can also obtain approxi-
mation bounds for OMP. We start by proving the following lemma that lower-bounds the
variance of the residual of a variable.

Lemma 19 Let A be the (n + 1) × (n + 1) covariance matrix of the normalized variables
Z,X1, X2, . . . , Xn. Then Var[Res(Z, {X1, . . . , Xn})] ≥ λmin(A).

Proof. The matrix A is of the form A =

(
1 bᵀ

b C

)
. We use A[i, j] to denote the matrix

obtained by removing the ith row and jth column of A, and similarly for C. Recalling that

the (i, j) entry of C−1 is (−1)i+j det(C[i,j])
det(C) , and developing the determinant of A by the first

row and column, we can write

det(A) =

n+1∑
j=1

(−1)1+ja1,j det(A[1, j])

= det(C) +
n∑
j=1

(−1)jbj det(A[1, j + 1])

= det(C) +
n∑
j=1

(−1)jbj

n∑
i=1

(−1)i+1bi det(C[i, j])

= det(C)−
n∑
j=1

n∑
i=1

(−1)i+jbibj det(C[i, j])

= det(C)(1− bᵀC−1b).

Therefore, using that Var[Z] = 1,

Var[Res(Z, {X1, . . . , Xn})] = Var[Z]− bᵀC−1b =
det(A)

det(C)
.

Because det(A) =
∏n+1
i=1 λ

A
i and det(C) =

∏n
i=1 λ

C
i , and λA1 ≤ λC1 ≤ λA2 ≤ λC2 ≤ . . . ≤ λAn+1

by the eigenvalue interlacing theorem, we get that det(A)
det(C) ≥ λ

A
1 , proving the lemma.

The above lemma, along with an analysis similar to the proof of Theorem 16, can be
used to prove the following approximation bounds for OMP:
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Theorem 20 The set SOMP selected by orthogonal matching pursuit has the following ap-
proximation guarantees:

R2
Z,SOMP ≥ (1− e−(γSOMP,k

·λmin(C,2k))) ·OPT

≥ (1− e−λmin(C,2k)
2
) ·OPT

≥ (1− e−λmin(C,k)
2
) ·Θ((

1

2
)1/λmin(C,k)) ·OPT.

Proof. We begin by proving the first inequality. Using notation similar to that in the
proof of Theorem 16, we let S∗k be the optimum set of k variables, SOMP

i the set of variables
chosen by OMP in the first i iterations, and Si = S∗k \ SOMP

i . For each Xj ∈ Si, let X ′j =

Res(Xj , S
OMP
i ) be the residual of Xj conditioned on SOMP

i , and write S′i = {X ′j | Xj ∈ Si}.
Consider some iteration i + 1 of OMP. We will show that at least one of the X ′i is a

good candidate in this iteration. Let ` maximize R2
Z,X′`

, i.e., ` ∈ argmax(j:X′j∈S′i)R
2
Z,X′j

. By

Lemma 19,

Var[X ′`] ≥ λmin(CSiG∪{X
′
`}

) ≥ λmin(C, 2k).

The OMP algorithm chooses a variable Xm to add which maximizes |Cov[Res(Z, SiG), Xm]|.
Thus, Xm maximizes

Cov[Res(Z, SiG), Xm]2 = Cov[Z,Res(Xm, S
i
G)]2 = R2

Z,Res(Xm,SiG)
·Var[Res(Xm, S

i
G)].

In particular, this implies

R2
Z,Res(Xm,SiG)

≥ R2
Z,X′`
·

Var[X ′`]

Var[Res(Xm, SiG)]

≥ R2
Z,X′`
· λmin(C, 2k)

Var[Res(Xm, SiG)]
≥ R2

Z,X′`
· λmin(C, 2k),

because Var[Res(Xm, S
i
G)] ≤ 1. As in the proof of Theorem 6, R2

Z,X′`
≥

γ
SOMP,k

k · R2
Z,S′i

, so

R2
Z,Res(Xm,SiG)

≥ R2
Z,S′i
·
λmin(C,2k)·γSOMP,k

k . With the same definition of A(i) as in the proof

of Theorem 6, we get that A(i+ 1) ≥
λmin(C,2k)γSOMP,k

k · (OPT−
∑i

j=1A(j)). An inductive
proof now shows that

R2
Z,SG

=
k∑
i=1

A(i) ≥ (1− e−λmin(C,2k)·γSOMP,k) ·R2
Z,S∗k

.

The proofs of the other two inequalities follow the same pattern as the proof for Forward
Regression.

3.4 Oblivious Algorithm

As a baseline, we also consider a greedy algorithm which completely ignores C and simply
selects the k variables individually most correlated with Z.

Lemma 17 immediately implies a simple bound for the oblivious algorithm:
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Algorithm 4 The oblivious algorithm.

1: Sort the Xi by non-increasing bi values.
2: Return {X1, X2, . . . , XK}.

Theorem 21 The set SOBL selected by the oblivious algorithm has the following approxi-
mation guarantees:

R2
Z,SOBL ≥

γ∅,k
λmax(C, k)

·OPT ≥ λmin(C, k)

λmax(C, k)
·OPT.

Proof. Let S be the set chosen by the oblivious algorithm, and S∗k the optimum set of
k variables. By definition of the oblivious algorithm,

∑
i∈S R

2
Z,Xi

≥
∑

i∈S∗k
R2
Z,Xi

, so using

Lemma 17, we obtain that

R2
Z,S ≥

∑
i∈S R

2
Z,Xi

λmax(C, k)
≥
∑

i∈S∗k
R2
Z,Xi

λmax(C, k)
≥

γ∅,k
λmax(C, k)

R2
Z,S∗k

.

The second inequality of the theorem follows directly from Lemma 13.

4. Dictionary Selection Bounds

To demonstrate the wider applicability of the approximate submodularity framework, we
next obtain a tighter analysis for two greedy algorithms for the dictionary selection problem,
introduced by Krause and Cevher (2010).

The Dictionary Selection problem generalizes the Subset Selection problem by consider-
ing s predictor variables Z1, Z2, . . . , Zs. The goal is to select a dictionary D of d observation
variables, to optimize the average R2 fit for the Zi using at most k vectors from D for each.
Formally, the Dictionary Selection problem is defined as follows:

Definition 22 (Dictionary Selection) Given all pairwise covariances among the Zj and
Xi variables, as well as parameters d and k, find a set D of at most d variables from
{X1, . . . , Xn} maximizing

F (D) =
s∑
j=1

max
S⊂D,|S|=k

R2
Zj ,S .

4.1 The Algorithm SDSMA

The SDSMA algorithm generalizes the oblivious greedy algorithm to the problem of Dic-
tionary Selection. It replaces the R2

Zj ,S
term in Definition 22 with its modular approxi-

mation f(Zj , S) =
∑

i∈S R
2
Zj ,Xi

. Thus, it greedily tries to maximize the function F̂ (D) =∑s
j=1 maxS⊂D,|S|=k f(Zj , S), over sets D of size at most d; the inner maximum can be

computed efficiently using the oblivious algorithm.

Using Lemma 17, we obtain the following multiplicative approximation guarantee for
SDSMA:
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Algorithm 5 The SDSMA algorithm for dictionary selection.

1: Initialize D0 = ∅.
2: for each iteration i+ 1 = 1, 2, . . . do
3: Let Xi+1 be a variable maximizing F̂ (D ∪ {Xm}), and set Si+1 = Si ∪ {Xi+1}.
4: Output Dd.

Theorem 23 Let DMA be the dictionary selected by the SDSMA algorithm, and D∗ the
optimum dictionary of size |D| ≤ d, with respect to the objective F (D) from Definition 22.
Then,

F (DMA) ≥
γ∅,k

λmax(C, k)
(1− 1

e
) · F (D∗) ≥ λmin(C, k)

λmax(C, k)
(1− 1

e
) · F (D∗).

Proof. Let D̂ be a dictionary of size d maximizing F̂ (D). Because f(Zj , S) is monotone
and modular in S, F̂ is a monotone, submodular function. Hence, using the submodularity
results of Nemhauser et al. (1978) and the optimality of D̂ for F̂ ,

F̂ (DMA) ≥ F̂ (D̂) · (1− 1

e
) ≥ F̂ (D∗) · (1− 1

e
).

Now, by applying Lemma 17 for each Zj , it is easy to show that F̂ (D∗) ≥ γ∅,k ·F (D∗), and

similarly F̂ (DMA) ≤ λmax(C, k) · F (DMA). Thus we get F (DMA) ≥ γ∅,k
λmax(C,k)

(1− 1
e )F (D∗).

The second part now follows from Lemma 13.

Note that these bounds significantly improve the previous additive approximation guarantee
obtained by Krause and Cevher (2010): F (DMA) ≥ (1 − 1

e ) · F (D∗) − (2 − 1
e ) · k · µ(C).

In particular, when µ(C) > Θ(1/k), i.e., even just one pair of variables has moderate
correlation, the approximation guarantee of Krause and Cevher becomes trivial.

4.2 The Algorithm SDSOMP

We also obtain a multiplicative approximation guarantee for the greedy SDSOMP algorithm,
introduced by Krause and Cevher for dictionary selection. Our bounds for SDSOMP are
much stronger than the additive bounds obtained by Krause and Cevher. However, for
both our results and theirs, the performance guarantees for SDSOMP are much weaker than
those for SDSMA.

The SDSOMP algorithm generalizes the Orthogonal Matching Pursuit algorithm for sub-
set selection to the problem of dictionary selection. In each iteration, it adds a new element
to the currently selected dictionary by using Orthogonal Matching Pursuit to approximate
the estimation of max|S|=k R

2
Zj ,S

.

We now show how to obtain a multiplicative approximation guarantee for SDSOMP.
The following definitions are key to our analysis; the first two are from Definition 22 and
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Algorithm 6 The SDSOMP algorithm for dictionary selection.

1: Initialize D0 = ∅.
2: for each iteration i+ 1 = 1, 2, . . . do
3: Let Xi+1 be a variable maximizing

∑s
j=1R

2
Zj ,SOMP(Di∪{Xi+1},Zj ,k) where

SOMP(D,Z, k) denotes the set selected by Orthogonal Matching Pursuit for
predicting Z using k variables from D.

4: Set Si+1 = Si ∪ {Xi+1}.
5: Output Dd.

Theorem 23.

F (D) =

s∑
j=1

max
S⊂D,|S|=k

R2
Zj ,S ,

F̂ (D) =

s∑
j=1

max
S⊂D,|S|=k

f(Zj , S),

F̃ (D) =
s∑
j=1

R2
Zj ,SOMP(D,Zj ,k)

.

We first prove the following lemma about approximating the function F̂ (D) by F̃ (D):

Lemma 24 For any set D, we have that

(1− e−λmin(C,2k)
2
)

λmax(C, k)
· F̂ (D) ≤ F̃ (D) ≤ F̂ (D)

γ∅,k
.

Proof. Using Theorem 20 and Lemma 17 and summing up over all the Zj terms, we
obtain that

F̃ (D) ≥ (1− e−λmin(C,2k)
2
) · F (D) ≥ (1− e−λmin(C,2k)

2
)

F̂ (D)

λmax(C, k)
.

Similarly, using Lemma 17 and the fact that maxS⊂D,|S|=k R
2
Zj ,S
≥ R2

Zj ,SOMP (D,Zj ,k)
, we

have

F̂ (D) ≥ γ∅,k · F (D) ≥ γ∅,k · F̃ (D).

Using the above lemma, we now prove the following bound for SDSOMP:

Theorem 25 Let DOMP be the dictionary selected by the SDSOMP algorithm, and D∗ the
optimum dictionary of size |D| ≤ d, with respect to the objective F (D) from Definition 22.
Then,

F (DOMP) ≥ F (D∗) ·
γ∅,k

λmax(C, k)
· (1− e−(p·γ∅,k))

d− d · p · γ∅,k + 1
≥ F (D∗) · λmin(C, k)

λmax(C, k)
· (1− e−(p·γ∅,k))

d− d · p · γ∅,k + 1
,

where p = 1
λmax(C,k)

· (1− e−λmin(C,2k)
2
).
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Proof. Let D̂ be the dictionary of size d that maximizes F̂ (D). We first prove that
F̂ (DOMP) is a good approximation to F̂ (D̂).

Let SNG
i be the variables chosen by SDSOMP after i iterations. Define Si = D̂ \ SNG

i .
By monotonicity of F̂ , we have that F̂ (Si ∪ SNG

i ) ≥ F̂ (D̂).

Let X̂ ∈ Si be the variable maximizing F̂ (SNG
i ∪ {X̂}), and similarly X̃ ∈ Si be the

variable maximizing F̃ (SNG
i ∪ {X̃}).

Since F̂ is a submodular function, it is easy to show (using an argument similar to the

proof of Theorem 16) that F̂ (SNG
i ∪ {X̂})− F̂ (SNG

i ) ≥ F̂ (D̂)−F̂ (SNG
i )

d .

Now, using Lemma 24 above, and the optimality of X̃ for F̃ (SNG
i ∪ {X̃}), we obtain

that

1

γ∅,k
· F̂ (SNG

i ∪ {X̃}) ≥ F̃ (SNG
i ∪ {X̃}) ≥ F̃ (SNG

i ∪ {X̂}) ≥ p · F̂ (SNG
i ∪ {X̂}).

Thus, F̂ (SNG
i ∪ {X̃}) ≥ p · γ∅,k · F̂ (SNG

i ∪ {X̂}), or

F̂ (SNG
i ∪ {X̃})− F̂ (SNG

i ) ≥ p · γ∅,k · (F̂ (SNG
i ∪ {X̂})− F̂ (SNG

i ))− (1− p · γ∅,k)F̂ (SNG
i ).

Define A(i) = F̂ (SNG
i ) − F̂ (SNG

i−1) to be the gain, with respect to F̂ , obtained from

the variable chosen by SDSOMP in iteration i. Then F̂ (DOMP) =
∑d

i=1A(i). From the
preceding paragraphs, we obtain

A(i+ 1) ≥
p · γ∅,k
d

· (F̂ (D̂)− (1 +
d

p · γ∅,k
− d)

i∑
j=1

A(j)).

Since the above inequality holds for each iteration i = 1, 2, . . . , d, a simple inductive
proof shows that

F̂ (D̂)−
d∑
i=1

A(i) ≤ F̂ (D̂) · (1−
pγ∅,k
d

)d + (d− dpγ∅,k) ·
d∑
i=1

A(i).

Rearranging the terms and simplifying, we get that

F̂ (DOMP) =
d∑
i=1

A(i) ≥ F̂ (D̂) · (1− e−(p·γ∅,k))

d− dpγ∅,k + 1
≥ F̂ (D∗) · (1− e−(p·γ∅,k))

d− dpγ∅,k + 1
,

where the last inequality is due to the optimality of D̂ for F̂ .

Now, using Lemma 17 for each Zj term, it can be easily seen that F̂ (D∗) ≥ γ∅,k ·F (D∗).

Similarly, using Lemma 3.3 on the set DOMP, we have F (DOMP) ≥ 1
λmax(C,k)

· F̂ (DOMP).

Using the above inequalities, we therefore get the desired bound

F (DOMP) ≥ F (D∗) ·
γ∅,k

λmax(C, k)
· (1− e−(p·γ∅,k))

d− d · p · γ∅,k + 1
.

The second inequality of the Theorem now follows directly from Lemma 13.
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5. Experiments

In this section, we evaluate Forward Regression (FR) and OMP empirically, on two real-
world and one synthetic data set. We compare the two algorithms against an optimal
solution (OPT), computed using exhaustive search, the oblivious greedy algorithm (OBL),
and the L1-regularization/Lasso (L1) algorithm (in the implementation of Koh et al. (2008)).
Beyond the algorithms’ performance, we also compute the various spectral parameters from
which we can derive lower bounds. Specifically, these are

1. the submodularity ratio: γSFR,k, where SFR is the subset selected by forward regres-
sion.

2. the smallest sparse eigenvalues λmin(C, k) and λmin(C, 2k). (In some cases, computing
λmin(C, 2k) was not computationally feasible due to the problem size.)

3. the sparse inverse condition number κ(C, k)−1. As mentioned earlier, the sparse in-
verse condition number κ(C, k) is strongly related to the Restricted Isometry Property
in (Candès et al., 2005).

4. the smallest eigenvalue λmin(C) = λmin(C, n) of the entire covariance matrix.

The aim of our experiments is twofold: First, we wish to evaluate which among the
submodular and spectral parameters are good predictors of the performance of greedy al-
gorithms in practice. Second, we wish to highlight how the theoretical bounds for subset
selection algorithms reflect on their actual performance. Our analytical results predict that
Forward Regression should outperform OMP, which in turn outperforms Oblivious. For
Lasso, it is not known whether strong multiplicative bounds, like the ones we proved for
Forward Regression or OMP, can be obtained.

5.1 Data Sets

Because several of the spectral parameters (as well as the optimum solution) are NP-hard
to compute, we restrict our experiments to data sets with n ≤ 30 features, from which k ≤ 8
are to be selected. We stress that the greedy algorithms themselves are very efficient, and
the restriction on data set sizes is only intended to allow for an adequate evaluation of the
results.

Each data set contains m > n samples, from which we compute the empirical covariance
matrix (analogous to the Gram matrix in sparse approximation) between all observation
variables and the predictor variable; we then normalize it to obtain C and b. We evaluate
the performance of all algorithms in terms of their R2 fit; thus, we implicitly treat C and
b as the ground truth, and also do not separate the data sets into training and test cases.

Our data sets are the Boston Housing Data, a data set of World Bank Development
Indicators, and a synthetic data set generated from a distribution similar to the one used
by Zhang (2008). The Boston Housing Data (available from the UCI Machine Learning
Repository) is a small data set frequently used to evaluate ML algorithms. It comprises
n = 15 features (such as crime rate, property tax rates, etc.) and m = 516 observations.
Our goal is to predict housing prices from these features. The World Bank Data (available
from http://databank.worldbank.org) contains an extensive list of socio-economic and
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health indicators of development, for many countries and over several years. We choose a
subset of n = 29 indicators for the years 2005 and 2006, such that the values for all of the
m = 65 countries are known for each indicator. (The data set does not contain all indicators
for each country.) We choose to predict the average life expectancy for those countries.

To perform tests in a controlled fashion, we also generate random instances from a
known distribution similar to one used by Zhang (2008): There are n = 29 features, and
m = 100 data points are generated from a joint Gaussian distribution with moderately high
correlations of 0.6. The target vector is obtained by generating coefficients uniformly from
0 to 10 along each dimension, and adding noise with variance σ2 = 0.1. Notice that the
target vector is not truly sparse. As for the other two data sets, the covariances are then
taken to be the empirical ones of the generated data. The plots we show are the average
R2 values for 20 independent runs of the experiment.

5.2 Results

We run the different subset selection algorithms for values of k from 2 through 8, and plot
the R2 values for the selected sets. When including all of the features, the R2 value is close
to 1 in all data sets, implying that nearly all of the variance in the function to be predicted
can be explained by the features.

Figures 1, 3 and 5 show the results for the three data sets. The main insight is that on
all data sets, Forward Regression performs optimally or near-optimally, and OMP is only
slightly worse. This is despite the fact that (as we discuss shortly) the spectral properties
would not necessarily predict such near-optimal performance. Lasso performs somewhat
worse on all data sets, and, not surprisingly, the baseline oblivious algorithm performs even
worse. The last fact implies that the optimal solution is non-trivial in that it must account
for correlation between the observation variables. The order of performance of the greedy
algorithms match the order of the strength of the theoretical bounds we derived for them.

On the World Bank data (Figure 3), all algorithms perform quite well with just 2–3
features already. The main reason is that adolescent birth rate is by itself highly predictive
of life expectancy, so the first feature selected by all algorithms already contributes high R2

value.

Figures 2, 4 and 6 show the different spectral quantities for the data sets, for varying
values of k. Both of the real-world data sets are nearly singular, as evidenced by the small
λmin(C) values. In fact, the near-singularities manifest themselves for small values of k
already; in particular, since λmin(C, 2) is already small, we observe that there are pairs of
highly correlated observations variables in the data sets. Thus, the bounds on approximation
we would obtain by considering merely λmin(C, k) or λmin(C, 2k) would be quite weak.
Notice, however, that they are still quite a bit stronger than the inverse condition number
κ(C, k)−1: this bound — which is closely related to the RIP property frequently at the
center of sparse approximation analysis — takes on much smaller values, and thus would
be an even looser bound than the eigenvalues.

On the other hand, the submodularity ratios γSFR,k for all the data sets are much larger
than the other spectral quantities (almost 5 times larger, on average, than the corresponding
λmin(C) values). Notice that unlike the other quantities, the submodularity ratios are not
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Figure 4: World Bank parameters

monotonically decreasing in k — this is due to the dependency of γSFR,k on the set SFR,
which is different for every k.

The discrepancy between the small values of the eigenvalues and the good performance
of all algorithms shows that bounds based solely on eigenvalues can sometimes be loose.
Significantly better bounds are obtained from the submodularity ratio γSFR,k , which takes
on values above 0.2, and significantly larger in many cases. While not entirely sufficient
to explain the performance of the greedy algorithms, it shows that the near-singularities
of C do not align unfavorably with b, and thus do not provide an opportunity for strong
supermodular behavior that adversely affects greedy algorithms.

The synthetic data set we generated is somewhat further from singular, with λmin(C) ≈
0.11. However, the same patterns persist: the simple eigenvalue based bounds, while some-
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Figure 6: Synthetic Data parameters

what larger for small k, still do not fully predict the performance of greedy algorithms,
whereas the submodularity ratio here is close to 1 for all values of k. This shows that the
near-singularities do not at all provide the possibility of strongly supermodular benefits of
sets of variables. Indeed, the plot of R2 values on the synthetic data is concave, an indicator
of submodular behavior of the function.

The above observations suggest that bounds based on the submodularity ratio are better
predictors of the performance of greedy algorithms, followed by bounds based on the sparse
eigenvalues, and finally those based on the condition number or RIP property.

5.3 Narrowing the gap between theory and practice

Our theoretical bounds, though much stronger than previous results, still do not fully predict
the observed near-optimal performance of Forward Regression and OMP on the real-world
datasets. In particular, for Forward Regression, even though the submodularity ratio is less
than 0.4 for most cases, implying a theoretical guarantee of roughly 1 − e−0.4 ≈ 33%, the
algorithm still achieves near-optimal performance. While gaps between worst-case bounds
and practical performance are commonplace in algorithmic analysis, they also suggest that
there is scope for further improving the analysis, by looking at more fine-grained parameters.

Indeed, a slightly more careful analysis of the proof of Theorem 16 and our definition of
the submodularity ratio reveals that we do not really need to calculate the submodularity
ratio over all sets S of size k while analyzing the greedy steps of Forward Regression. We
can ignore sets S whose submodularity ratio is low, but whose marginal contribution to the
current R2 is only a small fraction (say, at most ε). This is because the proof of Theorem
16 shows that for each iteration i + 1, we only need to consider the submodularity ratio
for the set Si = S∗k \ SNG

i , where SNG
i is the set selected by the greedy algorithm after i

iterations, and S∗k is the optimal k-subset. Thus, if R2
Z,Si∪SNG

i
≤ (1 + ε) · R2

Z,SNG
i

, then the

currently selected set must already be within a factor 1
1+ε of optimal.
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By carefully pruning such sets (using ε = 0.2) while calculating the submodularity ratio,
we see that the resulting values of γSFR,k are much higher (more than 0.8), thus significantly
reducing the gap between the theoretical bounds and experimental results. Table 1 shows
the values of γSFR,k obtained using this method.

The results suggest an interesting direction for future work: namely, to characterize for
which sets the submodular behavior of R2 really matters.

Data Set k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Boston 0.9 0.91 1.02 1.21 1.36 1.54 1.74
World Bank 0.8 0.81 0.81 0.81 0.94 1.19 1.40

Table 1: Improved estimates for submodularity ratio

6. Discussion and Concluding Remarks

In this paper, we defined a notion of approximate submodularity. We showed that it nat-
urally captures the performance degradation of the greedy algorithm. As a concrete appli-
cation of the framework, we connected the submodularity ratio with spectral parameters
of the covariance matrix to obtain the strongest known approximation guarantees for the
Forward Selection and Orthogonal Matching Pursuit algorithms for regression. As a sec-
ond example, we gave improved approximation guarantees for known greedy algorithms for
dictionary selection.

We believe that our techniques for analyzing greedy algorithms using a notion of “ap-
proximate submodularity” are not specific to subset selection and dictionary selection, and
could also be used to analyze other problems in compressed sensing and sparse recovery.
A natural further direction is hence to identify other applications of the approximate sub-
modularity technique.

While approximation guarantees for the greedy algorithm are perhaps the most widely
used consequence of submodularity, they are far from the only one. Some other useful
consequences include the following:

1. In valid utility games (Vetta, 2002), where utility functions are essentially submodular
and interact with each other in certain ways, equilibria always achieve high social
welfare.

2. A monotone submodular function can be approximately maximized subject to a Knap-
sack constraint (Sviridenko, 2004), Matroid constraint (Vondrák, 2008) or combina-
tions thereof (e.g., (Chekuri et al., 2011)).

3. If the function f is submodular, but not necessarily monotone, it can be approximately
maximized, with or without a cardinality constraint. Without a cardinality constraint,
it can also be exactly minimized.

It would be desirable to verify whether some of these results gracefully degrade when the
submodularity ratio is bounded away from 0. The third property (optimization of non-
monotone submodular functions) seems unlikely to carry over, as our definition was targeted
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at monotone submodular functions. This raises the natural question of whether there is a
more general definition of approximate submodularity that retains the positive results of
the present work while also yielding an analogue to some or all of the above properties.

Our bicriteria approximation guarantees, trading off a maximization of coverage against
a minimization of cost, could be generalized to more general constraints. For instance, Iyer
and Bilmes (Iyer and Bilmes, 2013) give bicriteria approximation guarantees for maximizing
a submodular function subject to a submodular cost constraint, or minimizing a submodular
function subject to a submodular coverage constraint. It is natural to ask whether similar
guarantees can be obtained for approximately submodular functions.

As discussed in Remark 4, it is open how well one can approximate the submodularity
ratio of a given function f in general; being able to do so would allow one to obtain
approximation guarantees at least for specific instances. Alternatively, it may be possible
to establish approximation hardness results for computing the submodularity ratio.

The approximation guarantees of the greedy algorithm are worst when the covariance
matrix is singular, or close to singular. When the covariance matrix is estimated from data
(rather than explicitly given), the natural variance in data generated from joint distributions
may keep it from being too close to singular. A detailed investigation would constitute an
interesting direction for future work, though to be useful, it would have to provide a lower
bound of ω(1/ log n) on the smallest (sparse) eigenvalue.
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Appendix A. Estimating λmin(C, k)

Several of our approximation guarantees are phrased in terms of λmin(C, k). Finding the
exact value of λmin(C, k) is NP-hard in general; here, we show how to estimate lower
and upper bounds. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of C, and e1, e2, . . . , en
the corresponding eigenvectors. A first simple bound can be obtained directly from the
eigenvalue interlacing theorem: λ1 ≤ λmin(C, k) ≤ λn−k+1.

One case in which good lower bounds on λmin(C, k) can possibly be obtained is when
only a small (constant) number of the λi are small. The following lemma allows a bound in
terms of any λj ; however, since the running time by the implied algorithm is exponential
in j, and the quality of the bound depends on λj , it is useful only in the special case when
λj � 0 for a small constant j.

Lemma 26 Let Vj be the vector space spanned by the eigenvectors e1, e2, . . . , ej, and define

βj = max
y∈Vj ,x∈Rn,‖y‖2=‖x‖2=1,‖x‖0≤k

|x · y|.

Then, λmin(C, k) ≥ λj+1 · (1− βj).
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Proof. Let x′ ∈ Rn, ‖x′‖2 = 1, ‖x‖0 ≤ k be an eigenvector corresponding to λmin(C, k).
Let αi be the coefficients of the representation of x′ in terms of the ei: x′ =

∑n
i=1 αiei.

Thus,
∑n

i=1 α
2
i = 1, and we can write

λmin(C, k) = x′
ᵀ
Cx′ =

n∑
i=1

α2
iλi ≥ λj+1(1−

j∑
i=1

α2
i ).

Since
∑j

i=1 α
2
i is the length of the projection of x onto Vj , we have

j∑
i=1

α2
i = max

y∈Vj ,‖y‖2=1
|x′ · y| ≤ max

y∈Vj ,x∈Rn,‖x‖2=‖y‖2=1,‖x‖0≤k
|y · x|,

completing the proof.

Since all the λj can be computed easily, the crux in using this bound is finding a
good bound on βj . Next, we show a PTAS (Polynomial-Time Approximation Scheme) for
approximating βj , for any constant j.

Lemma 27 For every ε > 0, there is a 1− ε approximation for calculating βj, running in
time O((nε )j).

Proof. Any vector y ∈ Vj with ‖y‖2 = 1 can be written as y =
∑j

i=1 ηiei with ηi ∈ [−1, 1]
for all i. The idea of our algorithm is to exhaustively search over all y, as parametrized
by their ηi entries. To make the search finite, the entries are discretized to multiples of
δ = ε ·

√
k/(nj). The total number of such vectors to search over is (2/δ)j ≤ (n/ε)j .

Let x̂, ŷ attain the maximum in the definition of βj , and write ŷ =
∑j

i=1 η̂iei. For

each i, let ηi be η̂i, rounded to the nearest multiple of δ, and y =
∑j

i=1 ηiei. Then,

‖ŷ − y‖2 ≤ ‖δ
∑j

i=1 ej‖2 = δ
√
j.

The vector x′ = argmaxx∈Rn,‖x‖2=1,‖x‖0≤k |y · x| is of the following form: Let I be

the set of k indices i such that |yi| is largest, and γ =
√∑

i∈I y
2
i . Then, x′i = 0 for

i /∈ I and x′i = yi/γ for i ∈ I. Notice that given y, we can easily find x′, and because
|x̂ · y| ≤ |x′ · y| ≤ |x̂ · ŷ|, we have

||x̂ · ŷ| − |x′ · y||
|x̂ · ŷ|

≤ ||x̂ · ŷ| − |x̂ · y||
|x̂ · ŷ|

≤ ‖x̂‖2‖ŷ − y‖2
|x̂ · ŷ|

≤ δ
√
j

|x̂ · ŷ|
≤ δ

√
jn/k.

The last inequality follows since the sum of the k largest entries of ŷ is at least k/
√
n, so

by setting xi = 1/
√
k for each of those coordinates, we can attain at least an inner product

of
√
k/n, and the inner product with x̂ cannot be smaller.

The value output by the exhaustive search over all discretized values is at least |x′ · y|,
and thus within a factor of 1− δ

√
jn
k = 1− ε of the maximum value, attained by x̂, ŷ.
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