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Abstract

Crowdsourcing has gained immense popularity in machine learning applications for obtaining large
amounts of labeled data. Crowdsourcing is cheap and fast, but suffers from the problem of low-
quality data. To address this fundamental challenge in crowdsourcing, we propose a simple pay-
ment mechanism to incentivize workers to answer only the questions that they are sure of and skip
the rest. We show that surprisingly, under a mild and natural “no-free-lunch” requirement, this
mechanism is the one and only incentive-compatible payment mechanism possible. We also show
that among all possible incentive-compatible mechanisms (that may or may not satisfy no-free-
lunch), our mechanism makes the smallest possible payment to spammers. We further extend our
results to a more general setting in which workers are required to provide a quantized confidence for
each question. Interestingly, this unique mechanism takes a “multiplicative” form. The simplicity
of the mechanism is an added benefit. In preliminary experiments involving over 900 worker-task
pairs, we observe a significant drop in the error rates under this unique mechanism for the same or
lower monetary expenditure.

Keywords: high-quality labels, supervised learning, crowdsourcing, mechanism design, proper
scoring rules

1. Introduction

Complex machine learning tools such as deep learning are gaining increasing popularity and are be-
ing applied to a wide variety of problems. These tools require large amounts of labeled data (Hinton
et al., 2012; Raykar et al., 2010; Deng et al., 2009; Carlson et al., 2010). These large labeling tasks
are being performed by coordinating crowds of semi-skilled workers through the Internet. This is
known as crowdsourcing. Generating large labeled data sets through crowdsourcing is inexpensive
and fast as compared to employing experts. Furthermore, given the current platforms for crowd-
sourcing such as Amazon Mechanical Turk and many others, the initial overhead of setting up a
crowdsourcing task is minimal. Crowdsourcing as a means of collecting labeled training data has
now become indispensable to the engineering of intelligent systems. The crowdsourcing of labels
is also often used to supplement automated algorithms, to perform the tasks that are too difficult
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to accomplish by machines alone (Khatib et al., 2011; Lang and Rio-Ross, 2011; Bernstein et al.,
2010; Von Ahn et al., 2008; Franklin et al., 2011).

Most workers in crowdsourcing are not experts. As a consequence, labels obtained from crowd-
sourcing typically have a significant amount of error (Kazai et al., 2011; Vuurens et al., 2011; Wais
et al., 2010). It is not surprising that there is significant emphasis on having higher quality labeled
data for machine learning algorithms, since a higher amount of noise implies requirement of more
labels for obtaining the same accuracy in practice. Moreover, several algorithms and settings are not
very tolerant of data that is noisy (Long and Servedio, 2010; Hanneke and Yang, 2010; Manwani
and Sastry, 2013; Baldridge and Palmer, 2009); for instance, Long and Servedio (2010) conclude
that “a range of different types of boosting algorithms that optimize a convex potential function
satisfying mild conditions cannot tolerate random classification noise.” Recent efforts have focused
on developing statistical techniques to post-process the noisy labels in order to improve its qual-
ity (e.g., Raykar et al., 2010; Zhou et al., 2012; Chen et al., 2013; Dawid and Skene, 1979; Karger
et al., 2011; Liu et al., 2012; Zhang et al., 2014; Ipeirotis et al., 2014; Zhou et al., 2015; Khetan
and Oh, 2016; Shah et al., 2016c). However, when the inputs to these algorithms are highly erro-
neous, it is difficult to guarantee that the processed labels will be reliable enough for subsequent use
by machine learning or other applications. In order to avoid “garbage in, garbage out”, we take a
complementary approach to this problem: cleaning the data at the time of collection.

We consider crowdsourcing settings where the workers are paid for their services, such as in
the popular crowdsourcing platforms of Amazon Mechanical Turk (mturk.com), Crowdflower
(crowdflower.com) and other commercial platforms, as well as internal crowdsourcing plat-
forms of companies such as Google, Facebook and Microsoft. These commercial platforms have
gained substantial popularity due to their support for a diverse range of tasks for machine learn-
ing labeling, varying from image annotation and text recognition to speech captioning and machine
translation. We consider problems that are objective in nature, that is, have a definite answer. Fig-
ure la depicts an example of such a question where the worker is shown a set of images, and for
each image, the worker is required to identify if the image depicts the Golden Gate Bridge.

Our approach builds on the simple insight that in typical crowdsourcing setups, workers are
simply paid in proportion to the amount of tasks they complete. As a result, workers attempt to
answer questions that they are not sure of, thereby increasing the error rate of the labels. For the
questions that a worker is not sure of, her answers could be very unreliable (Wais et al., 2010; Kazai
et al., 2011; Vuurens et al., 2011; Jagabathula et al., 2014). To ensure acquisition of only high-
quality labels, we wish to encourage the worker to skip the questions about which she is unsure, for
instance, by providing an explicit “I’m not sure” option for every question (see Figure 1b). Given
this additional option, one must also ensure that the worker is indeed incentivized to skip the ques-
tions that she is not confident about. In a more general form, we consider eliciting the confidence
of the worker for each question at multiple levels. For instance, in addition to “I’m not sure”, we
may also provide options like “absolutely sure”, and “moderately sure” (see Figure 1c). The goal
is to design payment mechanisms that incentivize the worker to attempt only those questions for
which they are confident enough, or alternatively, report their confidences truthfully. As we will
see later, this significantly improves the aggregate quality of the labels that are input to the machine
learning algorithms. We will term any payment mechanism that incentivizes the worker to do so as
“incentive compatible”.

In addition to incentive compatibility, preventing spammers is another desirable requirement
from incentive mechanisms in crowdsourcing. Spammers are workers who answer randomly with-
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DOUBLE OR NOTHING

a Is this the Golden Gate Bridge? b Is this the Golden Gate Bridge?

O Yes Yes
. ) No
() No
O I'm not sure

C Isthis the Golden Gate Bridge?

Yes O Moderately sure () Absolutely sure
No O Moderately sure () Absolutely sure
O I'm not sure

Figure 1: Different interfaces for a task that requires the worker to answer the question “Is this the
Golden Gate Bridge?”: (a) the conventional interface; (b) with an option to skip; (c) with
multiple confidence levels.

out regard to the question being asked, in the hope of earning some free money, and are known to
exist in large numbers on crowdsourcing platforms (Wais et al., 2010; Bohannon, 2011; Kazai et al.,
2011; Vuurens et al., 2011). The presence of spammers can significantly affect the performance of
any machine learning algorithm that is trained on this data. It is thus of interest to deter spammers by
paying them as low as possible. An intuitive objective, to this end, is to ensure a minimum possible
payment to spammers who answer randomly. For instance, in a task with binary-choice questions,
a spammer is expected to have half of the attempted answers incorrect; one may thus wish to set
the payment to its minimum possible value if half or more of the attempted answers are wrong. In
this paper, however, we impose strictly and significantly weaker requirement, and then show that
there is one and only one incentive-compatible mechanism that can satisfy this weak requirement.
Our requirement is referred to as the “no-free-lunch” axiom. In the skip-based setting, it says that
if all the questions attempted by the worker are answered incorrectly, then the payment must be
the minimum possible. The no-free-lunch axiom for the general confidence-based setting is even
weaker: if the worker indicates the highest confidence level for all the questions she attempts in the
gold standard, and furthermore if all these responses are incorrect, then the payment must be the
minimum possible. We term this condition the “no-free-lunch” axiom. In the general confidence-
based setting, we want to make the minimum possible payment if the worker indicates the highest
confidence level for all the questions she attempts and if all these responses are incorrect.

In order to test whether our mechanism is practically viable, and to assess the quality of the
final labels obtained, we conducted experiments on the Amazon Mechanical Turk crowdsourcing
platform. In our preliminary experiments that involved several hundred workers, we found that
the quality of data consistently improved by use of our schemes as compared to the standard set-
tings, often by two-fold or higher, with the total monetary expenditure being the same or lower as
compared to the conventional baseline.
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1.1 Summary of Contributions

We propose a payment mechanism for the aforementioned setting (“incentive compatibility” plus
“no-free-lunch”), and show that surprisingly, this is the only possible mechanism. We also show that
additionally, our mechanism makes the smallest possible payment to spammers among all possible
incentive compatible mechanisms that may or may not satisfy the no-free-lunch axiom. Interest-
ingly, our payment mechanism takes a multiplicative form: the evaluation of the worker’s response
to each question is a certain score, and the final payment is a product of these scores. This mecha-
nism has additional appealing features in that it is simple to compute, and is also simple to explain
to the workers. Our mechanism is applicable to any type of objective questions, including multiple
choice annotation questions, transcription tasks, etc. In preliminary experiments on Amazon Me-
chanical Turk involving over 900 worker-task pairs, the quality of data improved significantly under
our unique mechanism, with the total monetary expenditure being the same or lower as compared
to the conventional baseline.

1.2 Related Literature

The framework of “strictly proper scoring rules” (Brier, 1950; Savage, 1971; Gneiting and Raftery,
2007; Lambert and Shoham, 2009) provides a general theory for eliciting information for settings
where this information can subsequently be verified by the mechanism designer, for example, by
observing the true value some time in the future. In our work, this verification is performed via the
presence of some “gold standard” questions in the task. Consequently, our mechanisms can also be
called “strictly proper scoring rules”. It is important to note that the framework of strictly proper
scoring rules, however, provides a large collection of possible mechanisms and does not guide the
choice of a specific mechanism from this collection (Gneiting and Raftery, 2007). In this work, we
show that for the crowdsourcing setups considered, under a very mild condition we term the “no-
free-lunch” axiom, the mechanism proposed in this paper is the one and only strictly proper scoring
rule.

Interestingly, proper scoring rules have another interesting connection with machine learning
techniques: quoting Buja et al. (2005), “proper scoring rules comprise most loss functions currently
in use: log-loss, squared error loss, boosting loss, and as limiting cases cost-weighted misclassifi-
cation losses.” The present paper does not investigate this aspect of proper scoring rules, and we
refer the reader to Bithlmann and Hothorn (2007); Mease et al. (2007); Buja et al. (2005) for more
details.

In this paper, we assume the existence of some gold standard questions whose answers are
known a priori to the system designer. As a result, the payment to a worker is determined solely
by her own work. There are settings where gold standard questions may not be available, for in-
stance, when obtaining gold standard questions is too expensive, or when the questions pertain to
subjective preferences (Shah and Wainwright, 2015; Shah et al., 2016b; Chen et al., 2016) instead
of labeling data. A parallel line of literature (Miller et al., 2005; Dasgupta and Ghosh, 2013; Prelec,
2004; Wolfers and Zitzewitz, 2004; Conitzer, 2009) addresses such settings without gold standard
questions. The idea in the mechanisms designed therein is to reward the agents based on certain
criteria that compares certain elicited data from the agents with each other, and typically involves
asking agents to predict other agents’ responses. The mechanisms designed often provide weaker
guarantees (such as that of truth-telling being a Nash equilibrium) due to the absence of a gold
standard answer to compare with. This line of literature includes work on peer-prediction (Miller
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et al., 2005; Dasgupta and Ghosh, 2013), the Bayesian truth serum (Prelec, 2004) and prediction
markets (Wolfers and Zitzewitz, 2004; Conitzer, 2009).

The design of statistical inference algorithms for denoising the data obtained from workers is
an active topic of research (Raykar et al., 2010; Zhou et al., 2012; Wauthier and Jordan, 2011; Chen
et al., 2013; Khetan and Oh, 2016; Dawid and Skene, 1979; Karger et al., 2011; Liu et al., 2012;
Zhang et al., 2014; Vempaty et al., 2014; Ipeirotis et al., 2014; Zhou et al., 2015; Shah et al., 2016c).
In addition, several machine learning algorithms accommodating errors in the data have also been
designed (Angluin and Laird, 1988; Cano et al., 2001; Lee et al., 2004; Chu et al., 2004). These
algorithms are typically oblivious to the elicitation procedure. Our work nicely complements this
line of research in that these inference algorithms may now additionally employ the higher quality
data and the specific structure of the elicited data for an improved denoising efficiency.

Another relevant problem in crowdsourcing is that of choosing which workers to hire or effi-
ciently matching workers to tasks, and such problems are studied in Yuen et al. (2011); Ho et al.
(2013); Zhou et al. (2014); Anari et al. (2014) under different contexts. Our work assumes that a
worker is already matched, and focuses on incentivizing that worker to respond in a certain manner.
A recent line of work has focused on elicitation of data from multiple agents in order to perform
certain specific estimation tasks (Fang et al., 2007; Dekel et al., 2008; Cai et al., 2015). In contrast,
our goal is to ensure that workers censor their own low-quality (raw) data, without restricting our
attention to any specific downstream algorithm or task.

1.3 Organization

The organization of this paper is as follows. We present the formal problem setting in Section 2.
In Section 3 we consider the skip-based setting: We present our proposed mechanism and show
that it is the only mechanism which satisfies the requirements discussed above. In Section 4, we
then consider the more general setting of eliciting a quantized value of the worker’s confidence.
We construct a mechanism for this setting, which also takes a multiplicative form, and prove its
uniqueness. In Section 5 we prove that imposing a requirement that is only slightly stronger than
our proposed no-free-lunch axiom leads to impossibility results. In Section 6 we present synthetic
simulations and real-world experiments on Amazon Mechanical Turk to evaluate the potential of our
setting and algorithm to work in practice. We conclude the paper with a discussion on the various
modeling choices, future work, and concluding remarks in Section 7.

The paper contains three appendices. In Appendix A we prove all theoretical results whose
proofs are not presented in the main text. We provide more details of the experiments in Appendix B.
In Appendix C we extend our results to a setting where workers aim to maximize the expected value
of some “utility” of their payments.

2. Setting and Notation

In the crowdsourcing setting that we consider, one or more workers perform a task, where a task
consists of multiple guestions. The questions are objective, by which we mean, each question has
precisely one correct answer. Examples of objective questions include multiple-choice classification
questions such as Figure 1, questions on transcribing text from audio or images, etc.

For any possible answer to any question, we define the worker’s confidence about an answer as
the probability, according to her belief, of this answer being correct. In other words, one can assume
that the worker has (in her mind) a probability distribution over all possible answers to a question,
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and the confidence for an answer is the probability of that answer being correct. As a shorthand,
we also define the confidence about a question as the confidence for the answer that the worker
is most confident about for that question. We assume that the worker’s confidences for different
questions are independent. Our goal is that for every question, the worker should be incentivized
to skip if her confidence for that question is below a certain pre-defined threshold, otherwise select
the answer that she is most confident about, and if asked, also indicate a correct (quantized) value
of her confidence for the answer.
Specifically, we consider two settings:

o Skip-based. For each question, the worker can either choose to ‘skip’ the question or provide an
answer (Figure 1b).

e Confidence-based. For each question, the worker can either ‘skip’ the question or provide an
answer, and in the latter case, indicate her confidence for this answer as a number in {1,..., L}
(Figure 1c). We term this indicated confidence as the ‘confidence-level’. Here, L represents the
highest confidence-level, and ‘skip’ is considered to be a confidence-level of 0. !

One can see from the aforementioned definition that the confidence-based setting is a generalization
of the skip-based setting (the skip-based setting corresponds to L = 1). The goal is to ensure that for
a given set of intervals that partition [0, 1], for every question the worker is incentivized to indicate
‘skip’ or choose the appropriate confidence-level when her confidence for that question falls in the
corresponding interval. The choice of these intervals will be defined subsequently in the skip-based
and confidence-based sections (Section 3 and Section 4) respectively.

Let N denote the total number of questions in the task. Among these questions, we assume the
existence of some “gold standard” questions, that is, a set of questions whose answers are known
to the requester. Let G (1 < G < N) denote the number of gold standard questions. The G gold
standard questions are assumed to be distributed uniformly at random in the pool of N questions
(of course, the worker does not know which G of the N questions form the gold standard). The
payment to a worker for a task is computed after receiving her responses to all the questions in the
task. The payment is based on the worker’s performance on the gold standard questions. Since the
payment is based on known answers, the payments to different workers do not depend on each other,
thereby allowing us to consider the presence of only one worker without any loss in generality.

We will employ the following standard notation. For any positive integer K, the set {1,..., K}
is denoted by [K]. The indicator function is denoted by 1, i.e., 1{z} = 1if z is true, and 0 otherwise.

Let x1, ...,z denote the evaluations of the answers that the worker gives to the G' gold stan-
dard questions, and let f denote the scoring rule, i.e., a function that determines the payment to the
worker based on these evaluations x1, ..., xg.

In the skip-based setting, z; € {—1,0,+1} for all ¢ € [G]. Here, “0” denotes that the worker
skipped the question, “—1” denotes that the worker attempted to answer the question and that answer
was incorrect, and “+4-1” denotes that the worker attempted to answer the question and that answer
was correct. The payment function is f : {—1,0, +1}¢ — R.

In the confidence-based setting, z; € {—L,...,+L} for all i € [G]. Here, we set z; = 0 if the
worker skipped the question, and for [ € {1,..., L}, we set z; = [ if the question was answered

1. When the task is presented to the workers, the word ‘skip’ or the numbers {1, ..., L} are replaced by more compre-
hensible phrases such as “I don’t know”, “moderately sure”, “absolutely sure”, etc.
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correctly with confidence [ and x; = —I if the question was answered incorrectly with confidence /.
The function f : {—L,...,+L}% — R specifies the payment to be made to the worker.

The payment is further associated to two parameters, fmax and fmin. The parameter fimax
denotes the budget, i.e., the maximum amount that is paid to any individual worker for this task:

max f(21,...,2G) = Mtmax-
Tl TG

The amount fi,x 1S thus the amount of compensation paid to a perfect worker for her work. Further,
one may often also have the requirement of paying a certain minimum amount to any worker. The
parameter fimin (< fimax) denotes this minimum payment: the payment function must also satisfy

min  f(x1,...,2¢) > Mmin-
T1,. TG

For instance, crowdsourcing platforms today allow payments to workers, but do not allow imposing
penalties: this condition gives min = 0.

We assume that the worker attempts to maximize her overall expected payment. In what fol-
lows, the expression ‘the worker’s expected payment’ will refer to the expected payment from the
worker’s point of view, and the expectation will be taken with respect to the worker’s confidences
about her answers and the uniformly random choice of the GG gold standard questions among the N
questions in the task. A payment function f is called incentive compatible if the expected payment
of the worker under this payment function is strictly maximized when the worker answers in the
manner desired.”> The specific requirements of the skip-based and the confidence-based settings
are discussed subsequently in their respective sections to follow. In the remainder of this section,
we formally define the concepts of the worker’s expected payment and incentive compatibility; the
reader interested in understanding the paper at a higher level may skip directly to the next section
without loss in continuity.

Let 2 denote the set of options for each question. We assume that €2 is a finite set, for instance,
the set { Yes, No} for a task with binary-choice questions, or the set of all strings of at most a certain
length for a task with textual responses. Let Q € [0, 1]2*N denote the beliefs of a worker for the
N questions asked. Specifically, for any question i € [N] and any option w € €2, let (), ; represent
the probability, according to the worker’s belief, that option w is the correct answer to question .
Then from the law of total probability, any valid ¢ must have } ., Qu; = 1 forevery i € [N].
The value of () is unknown to the mechanism.

Let us first define the notion of the expected payment (from the worker’s point of view) for
any given response of the worker to the questions. For any question ¢ € [N], suppose the worker
indicates the confidence-level ¢; € {0, ..., L}. Forevery question ¢ € [N] such that&; # 0, letw; €
Q) denote the option selected by the worker; whenever &; = 0, indicating a skip, we let w; take any
arbitrary value in (2. Furthermore, let p; = ()., ; denote the probability, according to the worker’s
belief, that the chosen option wj is the correct answer to question ¢. For notational purposes, we also
define a vector ' = (e1,...,eq) € {—1,1}%. Then for the given responses, for the worker beliefs
@, and under payment mechanism f, the worker’ expected payment ' 7 : ({0,..., L} xQ)Y — R

2. Such a notion of incentive compatibility is often called “strict incentive compatibility”; we drop the prefix term
“strict” for brevity.
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is given by the expression:

FQ,f(élu Wiy ovey €N7 WN)

G . 1—¢;
= (]{/) ( Z Z (f(elij"'aﬁngc)H(pji) —gel(l _pji) 2 ) - (D

G/ (j1,Ja) E€{-1,1}C =1
g{177N}

In the expression (1), the outermost summation corresponds to the expectation with respect to the
randomness arising from the unknown positions of the gold standard questions. The inner sum-
mation corresponds to the expectation with respect to the worker’s beliefs about the correctness of
her responses. Note that the right hand side of (1) implicitly depends on (w1, . ..,wy) through the
values (p1,...,pn). Also note that for every question ¢ such that & = 0, the right hand side of (1)
does not depend on the values of w; and p;; this is because the choice &; = 0 of skipping question ¢
implies that the worker did not select any particular option.

We will now use the the definition of the expected payment of the worker to define the notion of
incentive compatibility. To this end, for any valid probabilities @, let A(Q) C ({0,..., L} x Q)&
denote an associated set of “desired” responses. By this we mean that every a € ({0, ..., L} x Q)¥
represents a possible response to the set of N questions, and the goal is to incentivize the worker to
provide any one response in the set .A(Q). Then a mechanism f is termed incentive compatible if

Lo f(a) >Tgs(a’) forevery a € A(Q), every a’ ¢ A(Q), and every valid Q.

The goal is to design mechanisms that are incentive compatible, that is, incentivize the workers to
respond in a certain manner. The specific choice of “desired responses” for the skip-based and the
confidence-based settings are discussed subsequently in their respective sections. We begin with the
skip-based setting.

3. Skip-based Setting

In this section, we consider the setting where for every question, the worker can choose to either
answer the question or to skip it; no additional information is asked from the worker. See Figure 1b
for an illustration.

3.1 Setting

Let T € (0, 1) be a predefined value. The goal is to design payment mechanisms that incentivize the
worker to skip the questions for which her confidence is lower than 7', and answer those for which
her confidence is higher than 7". * Moreover, for the questions that she attempts to answer, she must
be incentivized to select the answer that she believes is most likely to be correct. The value of T is
chosen a priori based on factors such as budget constraints, the targeted quality of labels, and/or the
choice of the algorithm used to subsequently aggregate the responses of multiple workers. In this
paper, we assume that the value of the threshold 7' is specified to us.

Now the space of all possible mechanisms for this problem may be rather wide. Thus in order
to narrow down our search, we impose the following additional simple and natural requirement:

3. In the event that the confidence about a question is exactly equal to 7', the worker may choose to answer or skip.
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Axiom 1 (No-free-lunch Axiom) If all the answers attempted by the worker in the gold standard

are wrong, then the payment is the minimum possible. More formally, f(z1,...,2G) = [min fOr
every evaluation (x1, . ..,xq) such that 0 < Zf’;l 1{z; #0} = Zszl 1{z; = —1}.

One may expect a payment mechanism to impose the restriction of minimum payment to spammers
who answer randomly. For instance, in a task with binary-choice questions, a spammer is expected
to have 50% of the attempted answers incorrect; one may thus wish to set a the minimum possi-
ble payment if 50% or more of the attempted answers were incorrect. The no-free-lunch axiom
which we impose is however a significantly weaker condition, mandating minimum payment if a/l
attempted answers are incorrect.

3.2 Payment Mechanism

We now present our proposed payment mechanism in Algorithm 1.

Algorithm 1: Incentive mechanism for skip-based setting

e Inputs:

» Threshold T’
» Budget parameters fimax and fimin

» Evaluations (z1,...,2g) € {—1,0,+1}% of the worker’s answers to the G' gold
standard questions

e Setaa_1 =0, ag =1, a+1:%

e The payment is
G
flz1,...,2¢) = %Ham + Lmin,

i=1

where k£ = (fimax — ,umin)TG.

The proposed mechanism has a multiplicative form: each answer in the gold standard is given
a score based on whether it was correct (score = %), incorrect (score = 0) or skipped (score = 1),
and the final payment is simply a product of these scores (scaled and shifted by constants). The
mechanism is easy to describe to workers: For instance, if T' = % G = 3, tmax = 80 cents and
Umin = O cents, then the description reads:

“The reward starts at 10 cents. For every correct answer in the 3 gold standard questions,
the reward will double. However, if any of these questions are answered incorrectly, then
the reward will become zero. So please use the ‘I’m not sure’ option wisely.”

Observe how this payment rule is similar to the popular ‘double or nothing’ paradigm (Double or
Nothing, 2014).

The algorithm makes a minimum payment if one or more attempted answers in the gold standard
are wrong. Note that this property is significantly stronger than the no-free-lunch axiom which we
originally required, where we wanted a minimum payment only when all attempted answers were
wrong. Surprisingly, as we prove shortly, Algorithm 1 is the only incentive-compatible mechanism
that satisfies no-free-lunch.
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The following theorem shows that this mechanism indeed incentivizes a worker to skip the
questions for which her confidence is below 7', while answering those for which her confidence is
greater than 7. In the latter case, the worker is incentivized to select the answer which she thinks is
most likely to be correct.

Theorem 2 The mechanism of Algorithm 1 is incentive-compatible and satisfies the no-free-lunch
axiom.

In the remainder of this subsection, we present the proof of Theorem 2. The reader may go
directly to subsection 3.3 without loss in continuity.

Proof of Theorem 2. The proposed payment mechanism satisfies no-free-lunch since the payment
iS fmin When there are one or more wrong answers in the gold standard. It remains to show that the
mechanism is incentive compatible. To this end, observe that the property of incentive-compatibility
does not change upon any shift of the mechanism by a constant value or any scaling by a positive
constant value. As a result, for the purposes of this proof, we can assume without loss of generality
that fimin = 0.

We will first assume that, for every question that the worker does not skip, she selects the answer
which she believes is most likely to be correct. Under this assumption we will show that the worker
is incentivized to skip the questions for which her confidence is smaller than 7" and attempt if it is
greater than 7T'. Finally, we will show that the mechanism indeed incentivizes the worker to select
the answer which she believes is most likely to be correct for the questions that she doesn’t skip. In
what follows, we will employ the notation & = fimaT'C.

Let us first consider the case when G = N. Let p1, ..., pn be the confidences of the worker for
questions 1,..., N respectively. Further, let pi1) > -+ > pp) > T > piny1) = -+ 2 pv) be
the ordered permutation of these confidences (for some number m). Let {(1), ..., (/N)} denote the

corresponding permutation of the N questions. If the mechanism is incentive compatible, then the
expected payment received by this worker should be maximized when the worker answers questions
(1),...,(m) and skips the rest. Under the mechanism proposed in Algorithm 1, this action fetches
the worker an expected payment of

Py Pm)
Kp T
Alternatively, if the worker answers the questions {i1,...,ig}, with p;; > --- > p;, > T >

Pi,yy > -+ > Dig for some value v, then the expected payment is

K & pig

Diy bi,

_KT T )
P P(m)

_HT T’ @)

where inequality (3) holds because p% < 1 V j > v and holds with equality only when 5 = v.
Inequality (4) is a result of % > 1 V j < m and holds with equality only when v = m. It follows
that the expected payment is (strictly) maximized when i; = (1),...,ig = (m) as required.

The case of G < N is a direct consequence of the result for G = N, as follows. When
G < N, from a worker’s point of view, the set of G questions is distributed uniformly at random in

10
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the superset of IV questions. However, for every set of G questions, the relations (2), (3), (4) and
their associated equality/strict-inequality conditions hold. The expected payment is thus (strictly)
maximized when the worker answers the questions for which her confidence is greater than 7" and
skips those for which her confidence is smaller than 7T'.

One can see that for every question that the worker chooses to answer, the expected payment
increases with an increase in her confidence. Thus, the worker is incentivized to select the answer
that she thinks is most probably correct.

Finally, since £ = fimaxT® > 0 and T € (0,1), the payment is always non-negative and
satisfies the fmax-budget constraint.

3.3 Uniqueness of this Mechanism

While we started out with a very weak condition of no-free-lunch of that requires a minimum pay-
ment when all attempted answers are wrong, the mechanism proposed in Algorithm 1 is signifi-
cantly more strict and pays the minimum amount when any of the attempted answers is wrong. A
natural question that arises is: can we design an alternative mechanism satisfying incentive compat-
ibility and no-free-lunch that operates somewhere in between? The following theorem answers this
question in the negative.

Theorem 3 The mechanism of Algorithm 1 is the only incentive-compatible mechanism that satis-
fies the no-free-lunch axiom.

Theorem 3 gives a strong result despite imposing very weak requirements. To see this, recall
our earlier discussion on deterring spammers, that is, making a low payment to workers who answer
randomly. For instance, when the task comprises binary-choice questions, one may wish to design
mechanisms which make the minimum possible payment when the responses to 50% or more of the
questions in the gold standard are incorrect. The no-free-lunch axiom is a much weaker requirement,
and the only mechanism that can satisfy this requirement is the mechanism of Algorithm 1.

The proof of Theorem 3 is based on the following key lemma, establishing a condition that any
incentive-compatible mechanism must necessarily satisfy. Note that this lemma does not require
the no-free-lunch axiom.

Lemma 4 Any incentive-compatible mechanism f must satisfy, for every gold standard question
(S {17 sy G} andevery (yla e Yi-1, Y1, - - 7yG) € {_]—7 07 1}G_1;

Tf(y17 sy Yi—1, 1ayi+17 R 7yG) + (1 - T)f(y17 ey Yi—1, _17yi+17 o 7yG)
= f(y17' "7yi—1707yi+17' "7yG) .

The proof of Lemma 4 is provided in Appendix A.1. Using this lemma, we will now prove Theo-
rem 3. The reader interested in further results and not the proof may feel free to jump to Subsec-
tion 3.4 without any loss in continuity.

Proof of Theorem 3. The property of incentive-compatibility does not change upon any shift of
the mechanism by a constant value or any scaling by a positive constant value. As a result, for the
purposes of this proof, we can assume without loss of generality that pi,;, = 0.

11
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We will first prove that any incentive-compatible mechanism satisfying the no-free-lunch axiom
must make a zero payment if one or more answers in the gold standard are incorrect. The proof
proceeds by induction on the number of skipped questions S in the gold standard. Let us assume
for now that in the G questions in the gold standard, the first question is answered incorrectly, the
next (G — 1 — S) questions are answered by the worker and have arbitrary evaluations, and the
remaining S questions are skipped. The proof proceeds by an induction on .S. Suppose S = G — 1.
In this case, the only attempted question is the first question and the answer provided by the worker
to this question is incorrect. The no-free-lunch axiom necessitates a zero payment in this case, thus
satisfying the base case of our induction hypothesis. Now we prove the hypothesis for some S under
the assumption of it being true when the number of questions skipped in the gold standard is (S +1)
or more. From Lemma 4 (with ¢ = G — S — 1) we have

Tf(_l’ Y2, YG-5-2; 1’ 0’ e ’0) + (1 - T)f(_l)y27 - Yg-5-2, _17 07 cee ,O)
= f(-1,y2,-..,Y6-5-2,0,0,...,0)
= 07

where the final equation is a consequence of our induction hypothesis: The induction hypothesis is
applicable since f(—1,y2,...,yg-5-2,0,0,...,0) corresponds to the case when the last (S + 1)
questions are skipped and the first question is answered incorrectly. Now, since the payment f must
be non-negative and since 7" € (0, 1), it must be that

f(—1,3/27"-,yGfoQ,lan--ao) :07

and

f(=1L,y2,...,y6—5-2,—1,0,...,0) = 0.

This completes the proof of our induction hypothesis. Furthermore, each of the arguments above
hold for any permutation of the GG questions, thus proving the necessity of zero payment when any
one or more answers are incorrect.

We will now prove that when no answers in the gold standard are incorrect, the payment must
be of the form described in Algorithm 1. Let x be the payment when all G questions in the gold
standard are skipped. Let C' be the number of questions answered correctly in the gold standard.
Since there are no incorrect answers, it follows that the remaining (G — C') questions are skipped.
Let us assume for now that the first C' questions are answered correctly and the remaining (G — C')
questions are skipped. We repeatedly apply Lemma 4, and the fact that the payment must be zero
when one or more answers are wrong,

1 1-T
f@,...,1,1,0,...,0) = =f(1,...,1,0,0,...,0) — —— f(1,...,1,—-1,0,...,0)
—_—— N — T ~~— ——— T ~——— ~———
Cc-1 G-C Cc-1 G-C Cc-1 G-C
= f(17 7170707 70)7
Cc-1 G-C

and so on to obtain

12
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In order to abide by the budget, we must have the maximum payment as fyax = HT%. It follows
that kK = pmax?'©. Finally, the arguments above hold for any permutation of the G questions, thus
proving the uniqueness of the mechanism of Algorithm 1.

3.4 Optimality against Spamming Behavior

As discussed earlier, crowdsourcing tasks, especially those with multiple choice questions, often
encounter spammers who answer randomly without heed to the question being asked. For instance,
under a binary-choice setup, a spammer will choose one of the two options uniformly at random
for every question. A highly desirable objective in crowdsourcing settings is to deter spammers.
To this end, one may wish to impose a condition of making the minimum possible payment when
the responses to 50% or more of the attempted questions in the gold standard are incorrect. A
second desirable metric could be to minimize the expenditure on a worker who simply skips all
questions. While the aforementioned requirements were deterministic functions of the worker’s
responses, one may alternatively wish to impose requirements that depend on the distribution of
the worker’s answering process. For instance, a third desirable feature would be to minimize the
expected payment to a worker who answers all questions uniformly at random. We now show
that interestingly, our unique multiplicative payment mechanism simultaneously satisfies all these
requirements. The result is stated assuming a multiple-choice setup, but extends trivially to non-
multiple-choice settings.

Theorem 5.A (Distributional) Consider any value A € {0, ...,G}. Among all incentive-compatible
mechanisms (that may or may not satisfy no-free-lunch), Algorithm I pays strictly the smallest
amount to a worker who skips some A of the questions in the the gold standard, and chooses an-
swers to the remaining (G — A) questions uniformly at random.

Theorem 5.B (Deterministic) Consider any value B € (0,1]. Among all incentive-compatible
mechanisms (that may or may not satisfy no-free-lunch), Algorithm I pays strictly the smallest
amount to a worker who gives incorrect answers to a fraction B or more of the questions attempted
in the gold standard.

We see from this result that the multiplicative payment mechanism of Algorithm 1 thus possesses
very useful properties geared to deter spammers, while ensuring that a good worker will be paid a
high enough amount. To illustrate this point, let us compare the mechanism of Algorithm 1 with the
popular additive class of payment mechanisms.

Example 1 Consider the popular class of “additive” mechanisms, where the payments to a worker
are added across the gold standard questions. This additive payment mechanism offers a reward
of % for every correct answer in the gold standard, % for every question skipped, and 0 for
every incorrect answer. Importantly, the final payment to the worker is the sum of the rewards across
the G gold standard questions. One can verify that this additive mechanism is incentive compatible.
One can also see that that as guaranteed by our theory, this additive payment mechanism does not
satisfy the no-free-lunch axiom.

Suppose each question involves choosing from two options. Let us compute the payment that
these two mechanisms make under a spamming behavior of choosing the answer randomly to each
question. Given the 50% likelihood of each question being correct, on can compute that the additive

13
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mechanism makes a payment of "5* in expectation. On the other hand, our mechanism pays an
expected amount of only imax2~C. The payment to spammers thus reduces exponentially with the
number of gold standard questions under our mechanism, whereas it does not reduce at all in the
additive mechanism.

Now, consider a different means of exploiting the mechanism(s) where the worker simply skips
all questions. To this end, observe that if a worker skips all the questions then the additive payment
mechanism will make a payment of pimax1. On the other hand, the proposed payment mechanism
of Algorithm 1 pays an exponentially smaller amount of pmaxTC (recall that T < 1).

We prove Theorem 5 in the rest of this subsection. The reader may feel free to jump directly to
Section 4 without any loss in continuity.

Proof of Theorem 5. The property of incentive-compatibility does not change upon any shift of
the mechanism by a constant value or any scaling by a positive constant value. As a result, for the
purposes of this proof, we can assume without loss of generality that pi,;, = 0.

Part A (Distributional). Let m denote the number of options in each question. One can verify
that under the mechanism of Algorithm 1, a worker who skips A questions and answers the rest
uniformly at random will get a payment of *j;;‘gi’ff in expectation. This expression arises due to
the fact that Algorithm 1 makes a zero payment if any of the attempted answers are incorrect, and a
payment of jipa T if the worker skips A questions and answers the rest correctly. Under uniformly
random answers, the probability of the latter event is ﬁ.

Now consider any other mechanism, and denote it as f’. Let us suppose without loss of gener-
ality that the worker attempts the first (G — A) questions. Since the payment must be non-negative,
a repeated application of Lemma 4 gives

£(1,...,1,0,...,0) > Tf'(1,...,1,0,...,0) 5)
G—-A G—A+1

>T4f(1,...,1)
= TAMma)o (6)

where (6) is a result of the p,.-budget constraint. Since there is a ﬁ chance of the (G — A)
attempted answers being correct, the expected payment under any other mechanism f’ must be at

A
least HmaxT
m

A
We will now show that if any mechanism f’ that makes an expected payment of ‘%7"}; to such
a spammer, then the mechanism must be identical to Algorithm 1. We split the proof of this part
into two cases, depending on the value of the parameter A.

Case I (A < G): In order to make an expected payment of ”gg’iA , the mechanism must achieve
the bound (6) with equality, and furthermore, the mechanism must have zero payment if any of the
(G — A) attempted questions are answered incorrectly. In other words, the mechanism f’ under
consideration must satisfy

f/(y17 e 7yG7A) O) ceey 0) = 0 \v/(ylu L) 7yG*A) € {_17 1}G_A\{1}G—A‘
A repeated application of Lemma 4 then implies

1'(0,0,...,—1) =0. @)

14
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Note that so far we considered the case when the worker attempts the first (G — A) questions. The
arguments above hold for any choice of the (G — A) attempted questions, and consequently the
results shown so far in this proof hold for all permutations of the arguments to f’. In particular,
the mechanism f’ must make a zero payment when any (G — 1) questions in the gold standard
are skipped and the remaining question is answered incorrectly. Another repeated application of
Lemma 4 to this result gives

'y, ye) =0 Y(yi,...,yq) € {0,—1}\{0}°.

This condition is precisely the no-free-lunch axiom, and in Theorem 3 we had shown that Algo-
rithm 1 is the only incentive-compatible mechanism that satisfies this axiom. It follows that our
mechanism, Algorithm 1 strictly minimizes the expected payment in the setting under considera-
tion.

Case II (A = G): In order to achieve the bound (6) with equality, the mechanism f’ must also
achieve the bound (5) with equality. Noting that we have A = G in this case, it follows that the
mechanism f’ must satisfy

#(~1,0,...,0) = 0.

This condition is identical to (7) established for Case I earlier, and the rest of the argument now
proceeds in a manner identical to the subsequent arguments in Case I.

Part B (Deterministic). Given our result of Theorem 3, the proof for the deterministic part
is straightforward. Algorithm 1 makes a payment of zero when one or more of the answers to
questions in the gold standard are incorrect. Consequently, for every value of parameter B €
(0, 1], Algorithm 1 makes a zero payment when a fraction B or more of the attempted answers are
incorrect. Any other mechanism doing so must satisfy the no-free-lunch axiom. In Theorem 3 we
had shown that Algorithm 1 is the only incentive-compatible mechanism that satisfies this axiom.
It follows that our mechanism, Algorithm 1, strictly minimizes the payment in the event under
consideration.

4. Confidence-based Setting

In this section, we will discuss incentive mechanisms when the worker is asked to select from more
than one confidence-level for every question (Figure 1c). In particular, for some L > 1, the worker
is asked to indicate a confidence-level in the range {0, ..., L} for every answer. Level 0 is the
‘skip’ level, and level L denotes the highest confidence. Note that we do not solicit an answer if
the worker indicates a confidence-level of 0 (skip), but the worker must provide an answer if she
indicates a confidence-level of 1 or higher. This makes the case of having only a ‘skip’ as considered
in Section 3 a special case of this setting, and corresponds to L. = 1.
We generalize the requirement of no-free-lunch to the confidence-based setting as follows.

Axiom 6 (Generalized-no-free-lunch axiom) If all the answers attempted by the worker in the
gold standard are selected as the highest confidence-level (level L), and all of them turn out
to be wrong, then the payment is jiyin. More formally, we require the mechanism f to satisfy
f(z1,...,2¢) = Wmin for every evaluation (x1,...,xq) that satisfies 0 < Zszl 1{x; # 0} =

S, ey = —L}.
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In the confidence-based setting, we require specification of a set of thresholds {5, TZ}IL:1 that
determine the confidence-levels that the workers should indicate. These thresholds are used to
choose the payment mechanism in a principled manner. In particular, we will require specification
of two reference points for each confidence level, and this specification generalizes the skip-based
setting.

o The first set of thresholds specifies a comparison of any confidence level with the skipping option
as a fixed reference. To this end, recall that in the skip-based setting, the threshold 7" specified
when the worker should skip a question and when she should attempt to answer. This is general-
ized to the confidence-based setting where for every level [ € [L], a fixed threshold S; specifies
the ‘strength’ of confidence-level [: If restricted to only the two options of skipping or selecting
confidence-level [ for any question, the worker should be incentivized to select confidence-level
[ if her confidence is higher than .S; and skip if her confidence is lower than .5;.

e The second set of thresholds specifies a comparison of any confidence level with its neighbors. If
a worker decides to not skip a question, she must choose one of multiple confidence-levels. A set
{T,}E_, of thresholds specify the boundaries between different confidence-levels. In particular,
when the confidence of the worker for a question lies in (7;_1,7}1), then the worker must be
incentivized to indicate confidence-level (I — 1) if her confidence is lower than 7} and to indicate
confidence-level [ if her confidence is higher than 7;. This includes selecting level L if her
confidence is higher than 77, and selecting level O if her confidence is lower than 77.

We will call a payment mechanism as incentive-compatible if it satisfies the two requirements listed
above, and also incentivizes the worker to select the answer that she believes is most likely to be
correct for every question for which her confidence is higher than 77 .

The problem setting inherently necessitates certain restrictions in the choice of the thresholds.
Since we require the worker to choose a higher level when her confidence is higher, the thresholds
must necessarily be monotonic and satisfy 0 < S1 < So < --- < Sy <land0< T} <Th < -+ <
T7, < 1. Also observe that the definitions of S and 77 coincide, and hence S; = 7T7. Additionally,
we can show (Proposition 18 in Appendix A.5) that for incentive-compatible mechanisms to exist, it
must be that 7; > S; V1 € {2,..., L}. As aresult, the thresholds must also satisfy 77 = S, Tp >
So,..., T > Sr. These thresholds may be chosen based on various factors of the problem at hand,
for example, on the post-processing algorithms, any statistics on the distribution of worker abilities,
budget constraints, etc. In this paper, we will assume that these values are given to us.

4.1 Payment Mechanism

In this section, we present our proposed payment mechanism, and prove that it is guaranteed to
satisfy our requirements. We begin with a description of the mechanism in Algorithm 2.
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Algorithm 2: Incentive mechanism for the confidence-based setting

e Inputs:

» Thresholds S1,...,S5r and T1,..., 17},

» Budget parameters pmax and pimin

» Evaluations (z1,...,2q) € {—L,...,+L}" of the worker’s answers to the G' gold standard
questions

e Seta_y,...,qp as

> o = é a_r, =0
» Forle {L—-1,...,1},
(1= 8)Tiy10001 + (1= S)(A = Tig1)aginy — (1 = Tiy1) 1—- S

and o= ———
Tiv1 — 5 1-5

o] =

» g = 1
e The payment is

G
f(xlw"axG) :KHQ$¢+Mmin

=1

\G
where £ = (fimax — Hmin) (a) :

The following theorem shows that this mechanism indeed incentivizes a worker to select an-
swers and confidence-levels as desired.

Theorem 7 The mechanism of Algorithm 2 is incentive-compatible and satisfies the generalized-
no-free-lunch axiom.

The proof of Theorem 7 follows in a manner similar to that of the proof of Theorem 2, and is
provided in Appendix A.2.

Remark 8 The mechanism of Algorithm 2 also ensures a condition stronger than the ‘boundary-
based’ definition of the thresholds {Tl}le[ 1] 8iven earlier. Under this mechanism, for every | €
[L — 1] the worker is incentivized to select confidence-level | (over all else) whenever her confidence
lies in the interval (1j,T}+1), select confidence-level O (over all else) whenever her confidence is
lower than Ty and select confidence-level L (over all else) whenever her confidence is higher than
Tr.

4.2 Uniqueness of this Mechanism

We prove that the mechanism of Algorithm 2 is unique, that is, no other incentive-compatible mech-
anism can satisfy the generalized-no-free-lunch axiom.

Theorem 9 The payment mechanism of Algorithm 2 is the only incentive-compatible mechanism
that satisfies the generalized-no-free-lunch axiom.
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The proof of Theorem 9 is provided in Appendix A.3. The proof is conceptually similar to that
of Theorem 9 but involves resolving several additional complexities that arise due to elicitation from
multiple confidence levels.

5. A Stronger No-free-lunch Axiom: Impossibility Results

Recall that the no-free-lunch axiom under the skip-based mechanism of Section 3 requires the pay-
ment to be the minimum possible if all attempted answers in the gold standard are incorrect. How-
ever, a worker who skips all the questions may still receive a payment. The generalization under
the confidence-based mechanism of Section 4 requires the payment to be the minimum possible if
all attempted answers in the gold standard were selected with the highest confidence-level and were
incorrect. However, a worker who marked all questions with a lower confidence level may be paid
even if her answers to all the questions in the gold standard turn out to be incorrect. One may thus
wish to impose a stronger requirement instead, where the minimum payment is made to workers
who make no useful contribution. This is the primary focus of this section.

Consider the skip-based setting. Define the following axiom which is slightly stronger than the
no-free-lunch axiom defined previously.

Strong-no-free-lunch: If none of the answers in the gold standard are correct, then the payment
iS fimin- More formally, strong-no-free-lunch imposes the condition f(z1,...,2G) = fimin fOr
every evaluation (z1, ..., x¢) that satisfies Z,LGZI 1{z; > 0} =0.

The strong-no-free-lunch axiom is only slightly stronger than the no-free-lunch axiom proposed
in Section 3 for the skip-based setting. The strong-no-free-lunch axiom can equivalently be written
as imposing requiring the payment to be the minimum possible for every evaluation that satisfies
Zz’G:1 1{z; # 0} = Zlel 1{xz; = —1}. From this interpretation, one can see that to the set of
events necessitating the minimum payment under the no-free-lunch axiom, the strong-no-free-lunch
axiom adds only one extra event, the event of the worker skipping all questions. Unfortunately, it
turns out that this minimal strengthening of the requirements is associated to impossibility results.

In this section we show that no mechanism satisfying the strong-no-free-lunch axiom can be
incentive compatible in general. The only exception is the case when (a) all questions are in the
gold standard (G = N), and (b) it is guaranteed that the worker has a confidence greater than 7" for
at least one of the NV questions. These conditions are, however, impractical for the crowdsourcing
setup under consideration in this paper. We will first prove the impossibility results under the strong-
no-free-lunch axiom. For the sake of completeness (and also to satisfy mathematical curiosity), we
will then provide a (unique) mechanism that is incentive-compatible and satisfies the strong-no-
free-lunch axiom for the skip-based setting under the two conditions listed above. The proofs of
each of the claims made in this section are provided in Appendix A.6.

Let us continue to discuss the skip-based setting. In this section, we will call any worker whose
confidences for all of the N questions is lower than 7" as an unknowledgeable worker, and call the
worker a knowledgeable worker otherwise.

Proposition 10 No payment mechanism satisfying the strong-no-free-lunch axiom can incentivize
an unknowledgeable worker to skip all questions. As a result, no mechanism satisfying the strong-
no-free-lunch axiom can be incentive-compatible.

The proof of this proposition, and that of all other theoretical claims made in this section, are
presented in Appendix A.6.

18



DOUBLE OR NOTHING

The impossibility result of Proposition 10 relies on trying to incentivize an unknowledgeable
worker to act as desired. Since no mechanism can be incentive compatible for unknowledgeable
workers, we will now consider only workers who are knowledgeable. The following proposition
shows that the strong-no-free-lunch axiom is too strong even for this relaxed setting.

Proposition 11 When G < N, there exists no mechanism that is incentive-compatible for knowl-
edgeable workers and satisfies the strong-no-free-lunch axiom.

Given this impossibility result for G < N, we are left with G = N which means that the true
answers to all the questions are known a priori. This condition is clearly not applicable to a crowd-
sourcing setup; nevertheless, it is mathematically interesting and may be applicable to other scenar-
ios such as testing and elicitation of beliefs about future events.

Proposition 12 below presents a mechanism for this case and proves its uniqueness. We previ-
ously saw that an unknowledgeable worker cannot be incentivized to skip all the questions (even
when G = N). Thus, in our payment mechanism, we do the next best thing: Incentivize the un-
knowledgeable worker to answer only one question, that which she is most confident about, while
incentivizing the knowledgeable worker to answer questions for which her confidence is greater
than 7" and skip those for which her confidence is smaller than 7'.

Proposition 12 Let C' be the number of correct answers and W be the number of wrong answers (in
the gold standard). Let the payment be piyin if W > 0 0or C = 0, and be (fimax — ,umin)TG_C—i- Umin
otherwise. Under this mechanism, when G = N, an unknowledgeable worker is incentivized to
answer only one question, that for which her confidence is the maximum, and a knowledgeable
worker is incentivized to answer the questions for which her confidence is greater than T and skip
those for which her confidence is smaller than T. Furthermore, when G = N, this mechanism is
the one and only mechanism that obeys the strong-no-free-lunch axiom and is incentive-compatible
for knowledgeable workers.

The following proposition shows that the strong-no-free-lunch axiom leads to negative results
in the confidence-based setting (L > 1) as well. The strong-no-free-lunch axiom is still defined as
in the beginning of Section 5, i.e., the payment is zero if none of the answers are correct.

Proposition 13 When L > 1, for any values of N and G (< N), it is impossible for any mecha-
nism to satisfy the strong-no-free-lunch axiom and be incentive-compatible even when the worker is
knowledgeable.

6. Simulations and Experiments

In this section, we present synthetic simulations and real-world experiments to evaluate the effects
of our setting and our mechanism on the final label quality.

6.1 Synthetic Simulations

We employ synthetic simulations to understand the effects of various distributions of the confidences
and labeling errors. We consider binary-choice questions in this set of simulations. Whenever a
worker answers a question, her confidence for the correct answer is drawn from a distribution P
independent of all else. We investigate the effects of the following five choices of the distribution

P:

19



SHAH AND ZHOU

16 (a) Uniform (b) Triangular s (c) Beta
— 3 —
XA
212 24 R | L 6
K4 K
e K e b
z8 16 | B | B 4
o %4 [X3 134
ES [ fesed 05505
4 8 K e Soarst 2
B B [ k=
0 0 K 20 R 0 e 1o
9 3 5 7 9 3 5 7 9
Number of workers Number of workers Number of workers
16 (d) Hammer-spammer (e) Truncated Gaussian
24
g\lZ 18
S, B [ Baseline
%4 . C .
= 12 5 BZA Skip-Multiplicative
& 4 6 K
Ko
[
0 0 detede
3 5 7 9 3 5 7 9
Number of workers Number of workers

Figure 2: Error under different interfaces for synthetic simulations of five distributions of the work-
ers’ error probabilities.

e The uniform distribution on the support [0.5, 1].

A triangular distribution with lower end-point 0.2, upper end-point 1 and a mode of 0.6.

A beta distribution with parameter values & = 5 and 3 = 1.
e The hammer-spammer distribution (Karger et al., 2011): uniform on the discrete set {0.5, 1}.
e A truncated Gaussian distribution: a truncation of A/(0.75, 0.5) to the interval [0, 1].

We compare (a) the setting where workers attempt every question, with (b) the setting where
workers skip questions for which their confidence is below a certain threshold 7. In this set of
simulations, we set 7' = 0.75. In either setting, we aggregate the labels obtained from the workers
for each question via a majority vote on the two classes. Ties are broken by choosing one of the two
options uniformly at random.

Figure 2 depicts the results from these simulations. Each bar represents the fraction of questions
that are labeled incorrectly, and is an average across 50,000 trials. (The standard error of the mean is
too small to be visible.) We see that the skip-based setting consistently outperforms the conventional
setting, and the gains obtained are moderate to high depending on the underlying distribution of the
workers’ errors. In particular, the gains are quite striking under the hammer-spammer model: this
result is not surprising since the mechanism (ideally) screens the spammers out and leaves only the
hammers who answer perfectly.

The setup of the simulations described above assumes that the workers confidences equal the
true error probabilities. In practice, however, the workers may have incorrect beliefs. The setup
also assumes that ties are broken randomly; however in practice, ties may be broken in a more
systematic manner by eliciting additional labels for only these hard questions. We now present a
second set of simulations that mitigates these biases. In particular, when a worker has a confidence
of p, the actual probability of error is assumed to be drawn from a Gaussian distribution with mean
p and standard deviation 0.1, truncated to [0, 1]. In addition, when evaluating the performance of the
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Figure 3: Errors under a model that is a perturbation of the first experiment, where the worker’s
confidence is a noisy version of the true error probability and where ties are considered
different from random decisions.

majority voting procedure, we consider a tie as having an error of 0.4. Figure 3 depicts the results
of these simulations. We observe that the results from these simulations are very similar to those
obtained in the earlier simulation setup of Figure 2.

6.2 Experiments on Amazon Mechanical Turk

We conducted preliminary experiments on the Amazon Mechanical Turk commercial crowdsourc-
ing platform (mt urk . com) to evaluate our proposed scheme in real-world scenarios. The complete
data, including the interface presented to the workers in each of the tasks, the results obtained from
the workers, and the ground truth solutions, are available on the website of the first author.

6.2.1 GOAL

Before delving into details, we first note certain caveats relating to such a study of mechanism design
on crowdsourcing platforms. When a worker encounters a mechanism for only a small amount of
time (a handful of tasks in typical research experiments) and for a small amount of money (at most a
few dollars in typical crowdsourcing tasks), we cannot expect the worker to completely understand
the mechanism and act precisely as required. For instance, we wouldn’t expect our experimental
results to change significantly even upon moderate modifications in the promised amounts, and
furthermore, we do expect the outcomes to be noisy. Incentive compatibility kicks in when the
worker encounters a mechanism across a longer term, for example, when a proposed mechanism
is adopted as a standard for a platform, or when higher amounts are involved. This is when we
would expect workers or others (e.g., bloggers or researchers) to design strategies that can game the
mechanism. The theoretical guarantee of incentive compatibility then prevents such gaming in the
long run.

We thus regard these experiments as preliminary. Our intentions towards this experimental
exercise were (a) to evaluate the potential of our algorithms to work in practice, (b) to investigate
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the effect of the proposed algorithms on the net error in the collected labeled data, and (¢) to identify
if there is any major issue of dissatisfaction among the workers.

6.2.2 EXPERIMENTAL SETUP

We conducted our experiments on the “Amazon Mechanical Turk” commercial crowdsourcing plat-
form (mturk.com). On this platform, individuals or businesses (called ‘requesters’) can post
tasks, and any individual (called a ‘worker’) may complete the task over the Internet in exchange
for a pre-specified payment. The payment may comprise of two parts: a fixed component which is
identical for all workers performing that task, and a ‘bonus’ which may be different for different
workers and is paid at the discretion of the requester.

We designed nine experiments (tasks) ranging from image annotation to text and speech recog-
nition. The individual experiments are described in more detail in Appendix B. All experiments
involved objective questions, and the responses elicited were multiple choice in five of the experi-
ments and free-form text in the rest. For each experiment, we tested three settings: (i) the baseline
conventional setting (Figure 1a) with a mechanism of paying a fixed amount per correct answer, (ii)
our skip-based setting (Figure 1b) with our multiplicative mechanism, and (iii) our confidence-based
setting (Figure 1c) with our confidence-based mechanism. For each mechanism in each experiment,
we specified the requirement of 35 workers independently performing the task. This amounts to a
total of 945 worker-tasks (315 worker-tasks for each mechanism). We also set the following con-
straints for a worker to attempt our tasks: the worker must have completed at least 100 tasks previ-
ously, and must have a history of having at least 95% of her prior work approved by the respective
requesters. In each experiment, we offered a certain small fixed payment (in order to attract the
workers in the first place) and executed the variable part of our mechanisms via a bonus payment.

6.2.3 RESULTS: RAW DATA

Figure 4 plots, for the baseline, skip-based and confidence-based mechanisms for all nine exper-
iments, the (i) fraction of questions that were answered incorrectly, (ii) fraction of questions that
were answered incorrectly among those that were attempted, (iii) the average payment to a worker
(in cents), and (iv) break up of the answers in terms of the fraction of answers in each confidence
level. The payment for various tasks plotted in Figure 4 is computed as the average of the payments
across 100 (random) selections of the gold standard questions, in order to prevent any distortion of
the results due to the randomness in the choice of the gold standard questions.

The figure shows that the amount of errors among the attempted questions is much lower in the
skip and the confidence-based settings than the baseline setting. Also observe that in the confidence-
based setting, as expected, the answers selected with higher confidence-levels are more correct. The
total money spent under each of these settings is similar, with the skip and the confidence-based
settings faring better in most cases. We also elicited feedback from the workers, in which we
received several positive comments (and no negative comments). Examples of comments that we
received: “I was wondering if it would possible to increase the maximum number of HITs I may
complete for you. As I said before, they were fun to complete. I think I did a good job completing
them, and it would be great to complete some more for you.”; “I am eagerly waiting for your bonus.”;
“Enjoyable. Thanks.”
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6.2.4 RESULTS: AGGREGATED DATA

We saw in the previous section that under the skip-based setting, the amount of error among the at-
tempted questions was significantly lower than the amount of error in the baseline setting. However,
the skip-based setting was also associated, by design, to lesser amount of data by virtue of questions
being skipped by the workers. A natural question that arises is how the baseline and the skip-based
mechanisms will compare in terms of the final data quality, i.e., the amount of error once data from
multiple workers is aggregated.

To this end, we considered the five experiments that consisted of multiple-choice questions. We
let a parameter num_workers take valuesin {3, 5, 7, 9, 11}. For each of the five experiments and
for each of the five values of num_ workers, we perform the following actions 1,000 times: for
each question, we choose num_workers workers and perform a majority vote on their responses.
If the correct answer for that question does not lie in the set of options given by the majority, we
consider it as an accuracy of zero. Otherwise, if there are m options tied in the majority vote, and
the correct answer is one of these m, then we consider it as an accuracy of 1%0% (hence, 100% if
the correct answer is the only answer picked by the majority vote). We average the accuracy across
all questions and across all iterations.

We choose majority voting as the means of aggregation since (a) it is the simplest and still
most popular aggregation method, and (b) to enable an apples-to-apples comparison design since
while more advanced aggregation algorithms have been developed for the baseline setting without
the skip (Raykar et al., 2010; Zhou et al., 2012; Wauthier and Jordan, 2011; Chen et al., 2013;
Khetan and Oh, 2016; Dawid and Skene, 1979; Karger et al., 2011; Liu et al., 2012; Vempaty et al.,
2014; Zhang et al., 2014; Ipeirotis et al., 2014; Zhou et al., 2015; Shah et al., 2016c), but design of
analogous algorithms for the new skip-based setting is still open.

The results are presented in Figure 5. We see that in most cases, our skip-based mechanism
induces a lower labeling error at the aggregate level than the baseline. Furthermore, in many of the
instances, the reduction is two-fold or higher.

All in all, in the experiments, we observe a substantial reduction in the error-rates while expend-
ing the same or lower amounts and receiving no negative comments from the workers, suggesting
that these mechanisms can work; the fundamental theory underlying the mechanisms ensures that
the system cannot be gamed in the long run. Our proposed settings and mechanisms thus have the
potential to provide much higher quality labeled data as input to machine learning algorithms.

7. Discussion and Conclusions

In this concluding section, we first discuss the modeling assumptions that we made in this paper,
followed by a discussion on future work and concluding remarks.

7.1 Modeling Assumptions

When forming the model for our problem, as in any other field of theoretical research, we had to
make certain assumptions and choices. In what follows, we discuss the reasons for the modeling
choices we made.

o Use of gold standard questions. We assume the existence of gold standard questions in the task,
i.e., a subset of questions to which the answers are known to the system designer. The existence
of gold standard is commonplace in crowdsourcing platforms (Le et al., 2010; Chen et al., 2011).

23



SHAH AND ZHOU

Baseline
mechanism

Legend

Confidence-based

multiplicative
multiplicative
mechanism

Skip-based
mechanism

5]

Confidence-based
multiplicative
mechanism:

& wrong

absolutely sure

moderately sure

[] skipped

moderately sure

& correct
& correct

]
W absolutely sure

multiplicative
mechanism:

skipped

Skip-based

_“.“.n.“.“,”;_
TSy ]
i
O
|
g 1 v
owmouno oNS OO 00000@05050
o< m- <TM AN - [colVelNES S o] o o < m A
S92UaPlU0D S9DOU3P1U0D S9DOU3PLU0D S9DOUIPIUOD == SDIUIPLUOD S92U3PlU0d S9DOU3PLU0D S92UIPLUOD S9JOUIPLUOD
Jo dn yeauq 9% Hpo dn>yeaiqo, jodneaiq oy  Jo dneauq $M jodn>eaiq9y jJodneauqo, Jodneauqy Jodneauqy  Jo dndeauq %
o) o1
(]
& Y m I [ d @ _ g e Y J =|| J <l Y . Y
= = ) o s =
= [ M [ M _ v £ _ v £ _ v o q £ _ w3 _ v 5 v
ol | d £ | o < || g 3| [ d<| g 5| g 2 o E| | qd2 [ o
= L = o [*] + © = ©
O oNowto QotoNovo o mn o n o QoNwowgogmnmonomo XoTONOVO = NTO®wo UONTO®DO SINoONOno
O -~ Qo MNHH O v m— - W2211 .m3211 :m321 OSsma- NN
nn.. (sjudd) Aed m (sju@d) Aed w (sjuad) Aed W (sjuad) Aed ° (sjuad) Aed @ (sjuad) Aed 4w (S3udd) Aed 4o (SIUDD) Aed M (sjuad) Aed
b [ o ] - s ﬂ ﬂ -
©° 2 |nru % .m > + - [}
= = [} [ P
w Y F Y o [ d <| _ R [ Y B [ d 2 _ C Y T Y
] + = : 5 S a
£ L= Mg [4F [4% qg L9y [ag [492) [
gl @2 d5 & § d4S & | &5 495 =S 4
Eagng o 4 gagao gNwve “ee<nolonzeme ggggob grewol yygwo gggg o
() =
=] paydwane m paydwane paiydwane m_mwa:ﬁw%w M paydwane paydwane paydwane paydwane paydwane
ul Buodm 9, = Ul Buoum 9, ul buoam o, : ° _..m ul Buoum 9, ul buoum o, u) Buoum o, ul buoam o, ul Buoim 9,
& U J U 2 J [ Y _ U J J
[ [ [« [ o [ [9 [v [«
_ q |l q | G q |l g | G q |l g | o
NOo oo coooo © N o< o o< NO oN<tO®o coooo N < © oo N < © oo o oooo
NN Mo~ — @COL>>Q MmN~ < MO m N~ MmN [coJVe NS S o]
M Huoim o L Huoim 9 Q Buoim o T % Q@ bHuoim W= HuoIMm 9% ) buoim 9, £ buoim % = HUOIM %

Figure 4: The error-rates in the raw data and payments in the nine experiments. Each individual bar

in the plots corresponds to one mechanism in one experiment and is generated from 35

distinct workers (this totals to 945 worker-tasks).
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Figure 5: Error-rates in the aggregated data in the five experiments involving multiple-choice tasks.

o Workers aiming to maximize their expected payments: We assume that the workers aim to max-
imize their expected payments. In many other problems in game theory, one often makes the
assumption that people are “risk-averse”, and aim to maximize the expected value of some
“utility function” of their payments. While we extend our results to general utility functions
in Appendix C in order to accommodate such requirements, we also think that the assumption of
workers maximizing their expected payments is a perfectly reasonable assumption for the crowd-
sourcing settings considered here. The reason is that each such task lasts for a handful of minutes
and is worth a few tens of cents. Workers typically perform tens to hundreds of tasks per day,
and consequently their empirical hourly wages very quickly converge to their expectation.

o Workers knowing their confidences: We understand that in practice the workers will have noisy
or granular estimates of their own beliefs. The mathematical assumption of workers knowing
their precise confidences is an idealization intended for mathematical tractability. This is one of
the reasons why we only elicit a quantized value of the workers’ beliefs (in terms of skipping or
choosing one of a finite number of confidence levels), and not try to ask for a precise value.

e Lliciting a quantized version of the beliefs: We do not directly attempt to elicit the values of the
beliefs of the workers, but instead ask them to indicate only a quantization (e.g., “I’m not sure”
or “moderately confident”, etc.). We prefer this quantization to direct assessment to real-valued
probability, motivated by the extensive literature in psychology on the coarseness of human per-
ception and processing (e.g., (Miller, 1956; Shiffrin and Nosofsky, 1994; Jones and Loe, 2013;
Shah et al., 2016a)) establishing that humans are more comfortable at providing quantized re-
sponses. This notion is verified by experiments on Amazon Mechanical Turk in Shah et al.
(2016a) where it is observed that people are more consistent when giving ordinal answers (com-
paring pairs of items) as opposed to when they are asked for numeric evaluations.

o Choosing the number of confidence levels L: In the paper we assume that the number of confi-
dence levels L is specified to us, and we provide mechanisms for any given choice of L. It is an
interesting and challenging open problem to choose L for any given application in a principled
manner. Up on increasing L, on one hand, we obtain additional nuanced information about the
workers’ beliefs, while on the other hand, workers require a greater time and effort to provide
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select the confidence level and their answers also tend to get noisier. In other words, both the
“signal” and the “noise” in the data increase with an increase in the value of L, and lead to an
interesting trade-off.

7.2 Open problems

We discuss two sets of open problems, one from the practical perspective and another on the theo-
retical front.

First, in the paper, we assumed that the number of total questions /V in a task, the number of gold
standard questions (G, and the threshold 1" for skipping (or the number and thresholds of the different
confidence levels) were provided to the mechanism. While these parameters may be chosen by hand
by a system designer based on her own experience, a more principled design of these parameters
is an important question. The choices for these parameters may have to be made based on certain
tradeoffs. For instance, a higher value of GG reduces the variance in the payments but uses more
resources in terms of gold standard questions. Or for instance, more number of threshold levels L
would increase the amount of information obtained about the workers’ beliefs, but also increase the
noise in the workers’ estimates of her own beliefs.

A second open problem is the design of inference algorithms that can exploit the specific struc-
ture of the skip-based setting. There are several algorithms and theoretical analyses in the literature
for aggregating data from multiple workers in the baseline setting (Raykar et al., 2010; Zhou et al.,
2012; Wauthier and Jordan, 2011; Chen et al., 2013; Khetan and Oh, 2016; Dawid and Skene, 1979;
Karger et al., 2011; Liu et al., 2012; Vempaty et al., 2014; Zhang et al., 2014; Ipeirotis et al., 2014;
Zhou et al., 2015; Shah et al., 2016c). A useful direction of research in the future is to develop
algorithms and theoretical guarantees that incorporate information about the workers’ confidences.
For instance, for the skip-based setting, the missing labels are not missing “at random” but are cor-
related with the difficulty of the task; in the confidence-based setting, we elicit information about
the workers’ perceived confidence levels. Designing algorithms that can exploit this information
judiciously (e.g., via confidence-weighed worker/item constraints in the minimax entropy method
of Zhou et al. (2015)) is a useful direction of future research.

7.3 Conclusions

Despite remarkable progress in machine learning and artificial intelligence, many problems are still
not solvable by either humans or machines alone. In recent years, crowdsourcing has emerged as a
powerful tool to combine both human and machine intelligence. Crowdsourcing is also a standard
means of collecting labeled data for machine learning algorithms. However, crowdsourcing is often
plagued with the problem of poor-quality output from workers.

We designed a reward mechanism for crowdsourcing to ensure collection of high-quality data.
Under a very natural “no-free-lunch” axiom, we mathematically prove that surprisingly, our mech-
anism is the only feasible reward mechanism. We further show that among all possible incentive-
compatible mechanisms, our “multiplicative” mechanism makes the strictly smallest expenditure on
spammers. In preliminary experiments, we observe a significant drop in the error rates under this
unique mechanism as compared to basic baseline mechanisms, suggesting that our mechanism has
the potential to work well in practice. Our mechanisms offer some additional benefits. The pattern
of skips or confidence levels of the workers provide a reasonable estimate of the difficulty of each
question. In practice, the questions that are estimated to be more difficult may now be delegated
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to an expert or to more non-expert workers. Secondly, the theoretical guarantees of the mechanism
may allow for better post-processing of the data, incorporating the confidence information and im-
proving the overall accuracy. The simplicity of the rules of our mechanisms may facilitate an easier
adoption among the workers.

In conclusion, given the uniqueness in theory, simplicity, and good performance observed in
practice, we envisage our ‘multiplicative’ mechanisms to be of interest to machine learning re-
searchers and practitioners who use crowdsourcing to collect labeled data.

Acknowledgments

The work of Nihar B. Shah was funded in part by a Microsoft Research PhD fellowship. We thank
John C. Platt, Christopher J. C. Burges and Christopher Meek for many inspiring discussions. We
also thank John C. Platt and Martin J. Wainwright for helping in proof-reading and polishing parts
of the manuscript. This work was done when Nihar B. Shah was an intern at Microsoft Research.

Appendix A. Proofs

In this section, we prove the claimed theoretical results whose proofs are not included in the main
text of the paper.

The property of incentive-compatibility does not change upon any shift of the mechanism by
a constant value or any scaling by a positive constant value. As a result, for the purposes of these
proofs, we can assume without loss of generality that i, = 0.

A.1 Proof of Lemma 4: The Workhorse Lemma

First we consider the case of G = N. In the set {y1,...,%i—1,Yi+1,---,Yq ), for some (n,7) €
{0,...,G —1}? such that n + v + 1 < G, suppose there are 7 elements with a value 1,  elements
with a value —1, and (G — 1 — n — ) elements with a value 0. Let us assume for now that

i=n+y+Lyi=1...;up=Lypr1=—1,...,yp+y = L, Ypty+2=0,.. .,y = 0.

Suppose the worker has confidences (p1, . .., pyt) € (T, 1]77 for the first () + ) questions,
a confidence of ¢ € (0, 1] for the next question, and confidences smaller than 7" for the remaining
(G —n —~ — 1) questions. The mechanism must incentivize the worker to answer the first (1 + )
questions and skip the last (G — n — v — 1) questions; for question (7 + 7 + 1), it must incentivize
the worker to answer if ¢ > T" and skip if ¢ < T'. Supposing the worker indeed attempts the first
(n+7) questions and skips the last (G—n—~—1) questions, letx = {z1,..., 2,4~} € {—1,1}7"7
denote the the evaluation of the worker’s answers to the first () + «) questions. Define quantities
{ritiememasrj =1—p;forj e {1,...,n},andr; = p; for j € {n+1,n+~}. The requirement
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of incentive compatibility necessitates
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The left hand side of this expression is the expected payment if the worker chooses to answer
question (1 4 7 + 1), while the right hand side is the expected payment if she chooses to skip it.
For any real-valued variable ¢, and for any real-valued constants a, b and c,

g<c
ag S b = ac=b.
q>c
As aresult,
172zj 1+Ij
T Z fxi, .. @y, —Tpt1, -, —Tpgry, 1,0,...,0) H T (1—7) 2
ze{—1,1} 17 J€M+]
2’“’ 1+,
+(1—T) Z f(xl,...,"L'n,—xn_i_l,...,—ﬂfn_;'_,y, , H T‘ 1—7“]) 2
ze{—1,1}1t7 J€m+]
1+cvj
- Z f(xla"'7xna_xn+1a'-->_:L‘77+'yfl’070>' H ’I" 2 1_T]) 2 =0.
ze{—1,1}1+7 JEM+]
(3

The left hand side of (8) represents a polynomial in (7 + ) variables {TJ}"+1 which evaluates to
zero for all values of the variables within a (7 + ~)-dimensional solid Euchdean ball. Thus, the
coefficients of the monomials in this polynomial must be zero. In particular, the constant term must
be zero. The constant term appears when z; = 1V j in the summations in (8). Setting the constant
term to zero gives

Tfx1=1,...,2p=1,—xpp1 =—1,..., —2y4y, = —1,1,0,...,0)
+(1-T)f(x1=1,...,0p =1, —xpp1 = —1,...,—xpyy = —1,-1,0,...,0)
—fler=1,...,2y=1,—2py1 = —-1,..., 2y, = —1,0,0,...,0) = 0,

as desired. Since the arguments above hold for any permutation of the G questions, this completes
the proof for the case of G = N.

Now consider the case G < N. Letg : {—1,0,1}" — R, represent the expected payment
given an evaluation of all the N answers, when the identities of the gold standard questions are
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unknown. Here, the expectation is with respect to the (uniformly random) choice of the G gold
standard questions. If (x1,...,2x) € {—1,0,1}"V are the evaluations of the worker’s answers to
the IV questions then the expected payment is

1
9(T1,. ., TN) = 5 Z f(@iy, -0 Tig)- ©)]

(G) (i1,-icq)C{1,...,.N}

Notice that when G = N, the functions f and g are identical.

In the set {y1,...,%i_1,Yit1,---,¥q}, for some (n,7) € {0,...,G — 1} withn + v < G,
suppose there are 7 elements with a value 1, v elements with a value —1, and (G — 1 —n — ~)
elements with a value 0. Let us assume fornow thati = n+~vy+ 1, y1 = 1,...,y;, = Liyp41 =
=1, ey = —Lypry2=0,...,yc = 0.

Suppose the worker has confidences {p1,...,py+} € (T, 1]"*7 for the first (n + 7) of the N
questions, a confidence of ¢ € (0, 1] for the next question, and confidences smaller than 7" for the
remaining (N — n — v — 1) questions. The mechanism must incentivize the worker to answer the
first (1 + ) questions and skip the last (N — 7 — v — 1) questions; for the (1 + v + 1)*" question,
the mechanism must incentivize the worker to answer if ¢ > T and skip if ¢ < T'. Supposing the
worker indeed attempts the first () + 7) questions and skips the last (N — 7 — v — 1) questions, let
x = {x1,..., 2544} € {—1,1}7"7 denote the the evaluation of the worker’s answers to the first
(n+ ) questions. Define quantities {r; } jc(,4~) as7; = 1 —p; forj € {1,...,n}, and r; = p; for
j € {n+ 1,7+ ~}. The requirement of incentive compatibility necessitates

-z 1tz
q Z g(x1, .. Ty, —Tyg1, - ooy —Tygry, 1,0,...,0) H r;? (L—rj)2
ze{—1,1}1+7 JE+]
ﬂ 14z
+(1—-9q) Z 9(x1, . Ty —Tyt1y - oy —Tygry, —1,0,...,0) H r;? (1—r) 2
ze{—1,1 1+ J€n+]
q<T 1-a; Itz
< Z g(xl,...,a;n,—:cnﬂ,...,—a;n_w,0,0,...,O) H rj2 (l—rj) P)
e JEM+]
(10)
Again, applying the fact that for any real-valued variable ¢ and for any real-valued constants a, b
g<c
andc,aq S b = ac =0, we get that
qg>c
Tg(xr=1,...,2y=1,—2pp1 = —1,..., —2y4, = —1,1,0,...,0)
+(1-T)g(x1=1,...,2p=1,—xpp1 =—1,...,—2yyy, = —1,-1,0,...,0)

—g(xy=1,...,2y=1,—2pp1 = —-1,..., 254, = —1,0,0,...,0) =0. (1)

The proof now proceeds via induction on the quantity (G — n — - — 1), i.e., on the number of
skipped questions in {y1, ..., ¥i—1, Yit+1,- - - , Y }- We begin with the case of (G—n—vy—1) = G—1
which implies 7 = v = 0. In this case (11) simplifies to

Tg(1,0,...,0)+ (1= T)g(-1,0,...,0) = g(0,0,...,0).
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Applying the expansion of function g in terms of function f from (9) gives
T (c1f(1,0,...,0) + c2f(0,0,...,0)) + (1 =T) (c1 f(—1,0,...,0) + c2£(0,0,...,0))
= (1£(0,0,...,0) + c2f(0,0,...,0))

for constants ¢; > 0 and c2 > 0 that respectively denote the probabilities that the first question is
picked and not picked in the set of G gold standard questions. Canceling out the common terms on
both sides of the equation, we get the desired result

Tf(1,0,...,0)+ (1= T)f(-1,0,...,0) = £(0,0,...,0).

Next, we consider the case when (G — n — v — 1) questions are skipped in the gold standard, and
assume that the result is true when more than (G — 7 — v — 1) questions are skipped in the gold
standard. In (11), the functions g decompose into a sum of the constituent f functions. These
constituent functions f are of two types: the first where all of the first (n + v + 1) questions are
included in the gold standard, and the second where one or more of the first (7 + v + 1) questions
are not included in the gold standard. The second case corresponds to situations where there are
more than (G — ) — v — 1) questions skipped in the gold standard and hence satisfies our induction
hypothesis. The terms corresponding to these functions thus cancel out in the expansion of (11).
The remainder comprises only evaluations of function f for arguments in which the first (p+~y+1)
questions are included in the gold standard: since the last (N — n — v — 1) questions are skipped
by the worker, the remainder evaluates to

Tesfs s Ypins 1,0, ..,0) + (1 = T)esf (1, - - - Yy —1,0, ..., 0)
fd 63f<y17"' 7y7]+»770707. ..,O)

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus completing
the proof.

A.2 Proof of Theorem 7: Working of Algorithm 2

We first state three properties that the constants {al}lL: _; defined in Algorithm 2 must satisfy. We
will use these properties subsequently in the proof of Theorem 7.

Lemma 14 Foreveryl € {0,...,L — 1}
T + (1 =Tigr)a_gqy = Tipra + (1= Tip)ay, (12a)

and

Siprarp1 4+ (1= Spen)a_ gy = ag = 1. (12b)
Lemmals o >a;_1>--->a_; =0.
Lemma 16 Foranym € {1,...,L}, any p > T,, and any z < m,

poyn + (1 = p)a—m > pa; + (1 — pla_, (13a)
and for any m € {0,...,L — 1}, any p < T),,4+1 and any z > m,

P, + (1 —p)a_pm > pa, + (1 —p)a_,. (13b)
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The proof of these results are available at the end of this subsection. Assuming these lemmas
hold, we will now complete the proof of Theorem 7.

The choice of a_; = 0 made in Algorithm 2 ensures that the payment is zero whenever any
answer in the gold standard evaluates to — L. This choice ensures that the no-free-lunch axiom is
satisfied. One can easily verify that the payment lies in the interval [0, tyax]. It remains to prove
that the proposed mechanism is incentive-compatible.

Define £ = (ey,...,eq) € {—1,1}¢ and E\; = (e2,...,€c). Suppose the worker has
confidences p1,...,pN for her N answers. For some (s(1),...,s(N)) € {0,...,L}" suppose
pi € (Tyys Tsiyr) Vi € {1,..., N}, ie, s(1),...,s(IN) are the correct conﬁdence levels for
her answers. Consider any other set of confidence- levels §'(1),...,s'(N). When the mechanism of

Algorithm 2 is employed, the expected payment (from the point of view of the worker) on selecting
confidence-levels s(1),...,s(N) is

Hrwl= ( ) Z Z Ho‘ez s(i) (13:) H;l (1_pji)l_2€i (14a)
G/ (5

J1,-0da) Be{—1,1}¢ i=1

c{1,..,N}
G
1 1+ei 1—es
:m Z Z (pjlas(jl) + ( pjl —s(j1) H pjl 2 (1 — pji) 5
¢ (J177JG) E\le{_l’l}G71 1=2
c{1,..,N}

(14b)

G
Z H Dji ®s(ji) pji)a—s(ji)> (14c¢)

(G) (J1,-djq) =1

C{17 7N}
> H pias () T (1= pi)a—s(p) (14d)
(G) (J1,-dc) =1
g{lva}
which is the expected payment under any other set of confidence-levels s'(1), ..., s (N). The last
inequality is a consequence of Lemma 16.
An argument similar to the above also proves that for any m € {1,..., L}, if allowed to choose

between only skipping and confidence-level m, the worker is incentivized to choose confidence-
level m over skip if her confidence is greater .S,,, and choose skip over level m if if her confidence
is smaller than S,,. Finally, from Lemma 15 we have o, > --- > a_p = 0. It follows that the
expected payment (14c) is strictly increasing in each of the values pq, ..., py. Thus the worker is
incentivized to report the answer that she thinks is most likely to be correct.

A.2.1 PROOF OF LEMMA 14

Algorithm 2 states that a_; = %}91& for all | € [L]. A simple rearrangement of the terms in this
expression gives (12b).
Towards the goal of proving (12a), we will first prove an intermediate result:

a>1>aVie{L,...,1}. (15)
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The proof proceeds via an inductionon ! € {L, ..., 2}. The case of | = 1 will be proved separately.
The induction hypothesis involves two claims: «; > 1 > «a_; and Tja; + (1 —T7)a—; > 1. The base
case is [ = L for which we know that oy, = i >1>0=a_pand Tjoy+ (1 —T))a_; = % > 1.
Now suppose that the induction hypothesis is true for ([4-1). Rearranging the terms in the expression
defining oy in Algorithm 2 and noting that 1 > T;,1 > S;, we get

(1=8) (Trrrcug1 + (1 = Tipr)a_gry) — (1= Tiya)
(1—=5) = (1= Tiya)

1-8)-(1-T11)

1-8)—(1—=T41)

o = (16)

>
=1,

From (12b) we see that the value 1 is a convex combination of «; and «_;. Since o > 1 and
S; € (0,1), it must be that a_; < 1. Furthermore, since 1} > S; we get

Tiog + (1 — Tl)a—l > S + (1 — Sl)oz_l
=1.
This proves the induction hypothesis. Let us now consider [ = 1. If . = 1 then we have o =
é > 1> 0 = a_r, and we are done. If L > 1 then we have already proved that s > 1 > a_»
and Thao + (1 — Th)a—o > 1. An argument identical to (16) onwards proves that oy > 1 > a_1.

Now that we have proved oy > a_;V [ € [L], we can rewrite the expression defining a_; in
Algorithm 2 as

1—ay
S = ——.
o — o

Substituting this expression for .S; in the definition of «y; in Algorithm 2 and making some simple
rearrangements gives the desired result (12a).

A.2.2 PROOF OF LEMMA 15

We have already shown (15) in the proof of Lemma 14 above that oy > 1 > a_; V1 € [L].

Next we will show that ay1 > oy and a_11) < ay V[ > 0. First consider [ = 0, for which
Algorithm 2 sets ap = 1, and we have already proved that vy > 1 > ;.

Now consider some [ > 0. Observe that since Sjo; + (1 — S;)a_; = 1 (Lemma 14), S;11 > S
and o > «_j, it must be that

Sipioq+ (1= Spp1)ay > 1. a7n
From Lemma 14, we also have
S + (1= Sp1)a_geny =1. (18)
Subtracting (17) from (18) we get

Siy1(aiyr —ag) + (1 = Sppa) (e —a—) <0. (19)
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From Lemma 14 we also have

T + (1 =Tig1)a_gqy = Tipia + (1= Tip)ay (20)

= Tt —ap) + (1= Tl+1)<0¢—(l+1) —a_)=0. (2D
Subtracting (19) from (21) gives
(Ti+1 — Sie) (w1 — o) + (g —a_qy1))] > 0. (22)
Since 1741 > S;41 by definition, it must be that
Q1 —Qp > (141) — O . (23)
Now, rearranging the terms in (20) gives
(41— a)Tiyr = —(a_qy1) —a—)(1 = Tip1) - 24

Since Tj41 € (0, 1), it follows that the terms (ay41 — oy) and (@_(;41) — a—;) have opposite signs.
Using (23) we conclude that a1 — o7 > 0 and a_(41) — a1 < 0.

A.2.3 PROOF OF LEMMA 16

Let us first prove (13a). First consider the case z = m — 1. From Lemma 14 we know that
Tnam—1 + (1 - Tm)a—(m—l) = Tmam + (1 - Tm)a—ma

and hence

0 = Tn(am — am-1) + Tm(a—(m—l) — ) — (a—(m—l) — Q)

< plam — am-1) + p(a—(m—l) — Qo) — (a—(m—l) —Q_m), (25)

where (25) is a consequence of p > T},, and Lemma 15. A simple rearrangement of the terms in (25)
gives (13a). Now, for any z < m, recursively apply this result to get

POy, + (1 - P)Oéfm > pam—1 + (1 - p)a—(m—l)
> pam—2 + (1 - p)a,(m,Q)

>pa, +(1—pla_. .
Let us now prove (13b). We first consider the case z = m + 1. From Lemma 14 we know that
Ty10m + (1= Tpy1)a—m = Tnrramer + (1= Tong1) a1y,
and hence
0= Tnr1(ami1 — am) + Tnga(amm — a_(mi1)) — (@em — a—(m11))

> p(aerl - am) + p(Oéfm - a—(m—i—l)) - (O‘*m - a—(m+1))7 (26)
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where (26) is a consequence of p < T,,4+1 and Lemma 15. A simple rearrangement of the terms
in (26) gives (13b). For any z > m, applying this result recursively gives

Py + (1 =pla—m > pami1 + (1 = pla_ i)
> pamy2 + (1 — p)a—(m+2)

> pa, + (1 —pla_,.

A.3 Proof of Theorem 9: Uniqueness of Algorithm 2

We will first define one additional piece of notation. Let g : {—L,...,L}¥ — R, denote the
expected payment given an evaluation of the /N answers, where the expectation is with respect to
the (uniformly random) choice of the G gold standard questions. If (z1,...,zy) € {—L, ..., L}N
are the evaluations of the worker’s answers to the N questions then the expected payment is

g(xla”'axN):T Z f(xila"'ax’ic)' (27)

(G) (i1,-iq)C{1,...,N}

Notice that when G = N, the functions f and g are identical.

The proof of uniqueness is based on a certain condition necessitated by incentive-compatibility
stated in the form of Lemma 17 below. Note that this lemma does not require the generalized-no-
free-lunch axiom, and may be of independent interest.

Lemma 17 Any incentive-compatible mechanism must satisfy, for every question i € {1,...,G},
every
WY1y Yio1sYis1s - yaq) € {—L,..., LYY, and everym € {1,..., L},

Tmf(y17 ey Yi—1, My Y1, - '7yG) + (1 - Tm)f(yla ey Yi—1, My Yy, - - '7yG)

= mf<y17 ey Yi—1, M — 17yi+17 o 7yG) + (1 - Tm)f(yh ... 7yi—17_(m - 1)7y’i+17 .. 7ZUG)
(284)

and

Smf(Z/lv s Y1, My Y1, - - 7yG) + (1 - Sm)f(ylv ey Yi1, =My Yy 1, - - - 7yG)
= fy1,- - %i-1,0,4i41, -, ¥6)- (28b)

Note that (28a) and (28b) coincide when m = 1, since 177 = S; by definition.

We first prove that any incentive compatible mechanism that satisfies the no-free-lunch axiom
must give a zero payment when one or more questions are selected with a confidence L and turn out
to be incorrect. Let us assume for now that in the G questions in the gold standard, the first question
is answered incorrectly with a confidence of L, the next (G — 1 — S) questions are answered by
the worker and have arbitrary evaluations, and the remaining .S questions are skipped. The proof
proceeds by an induction on S. If S = G — 1, the only attempted question is the first question and
this is incorrect with confidence L. The no-free-lunch axiom necessitates a zero payment in this
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case, thus satisfying the base case of our induction hypothesis. Now we prove the hypothesis for
some S under the assumption that the hypothesis is true for every S’ > S. From Lemma 4 with
m = 1, we have

Tif(~=L,ya, - ye—5-1,1,0,...,0) + (1 = 1) f(=L,y2, - - - ,yg—5-1,—1,0,...,0)
= Tlf(—L,yg, .. .,yG_S_l,0,0, .. ,0) =+ (1 — Tl)f<—L,y2, .. .,yG_S_l,0,0, .. ,0)
= f(=L,y2,..,y6-5-1,0,0,...,0)
=0 (29)

where the final equation (29) is a consequence of our induction hypothesis given the fact that
f(=L,y2,...,y6-5-1,0,0,...,0) corresponds to the case when the last (S + 1) questions are
skipped and the first question is answered incorrectly with confidence L. Now, since the payment f
must be non-negative and since 7" € (0, 1), it must be that

f(=L,ys,...,y6—-5-1,1,0,...,0) =0 (30a)

and
f(=L,y2,...,yg—s-1,—1,0,...,0) = 0. (30b)
Repeatedly applying the same argument to m = 2, ..., L gives that for every value of m, it must be

that f(—L,y2,...,y6—-5-1,m,0,...,0) = f(—=L,y2,...,yG-5-1,—m,0,...,0) = 0. This com-
pletes the proof of our induction hypothesis. Observe that each of the aforementioned arguments
hold for any permutation of the G questions, thus proving the necessity of zero payment when any
one or more answers are incorrect.

We will now prove that when no answers in the gold standard are incorrect with confidence L,
the payment must be of the form described in Algorithm 1. Let x denote the payment when all G
questions in the gold standard are skipped, i.e.,

k= f(0,...,0).
Now consider any S € {0,...,G — 1} and any (y1,...,y6-5-1,m) € {—L,...,L}“~5. The
payments {f(y1,- . .,YG-s-1,m,0,...,0)} __, must satisfy the (2L — 1) linear constraints aris-

ing out of Lemma 17 and must also satisfy f(yi,...,yg—s-1,—L,0,...,0) = 0. This set of

conditions comprises a total of 2L linearly independent constraints on the set of (2L + 1) values

{fly1,.-.,y6-5-1,m,0,...,0) TL,L:? - The only set of solutions that meet these constraints are

f(ylv"')yGf.S'*l)m)O)'"50) :Oémf(ylv---,yGfohOan--a0)7

where the constants {am}fn: 1, are as specified in Algorithm 2. Applying this argument G times,

starting from S =0to S = G — 1, gives
G
flyi, ..., ye) = /ﬁ;HOéyj.
j=1

Finally, the budget requirement necessitates fimax = < (a L)G, which mandates the value of x to be

G
Hmax (i) . This is precisely the mechanism described in Algorithm 2.
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A.4 Proof of Lemma 17: Necessary condition for any incentive-compatible mechanism

First consider the case of G = N. Forevery j € {1,...,i —1,i+ 1,...,G}, define
L—p; if y; 20
Ty = .
Dj if y; <0.

Define F\; = {e1,...,€6-1,€41,...,€g}. Foranyl € {—L,...,L} let Ay € R, denote the
expected payment (from the worker’s point of view) when her answer to the i question evaluates
to :

1z 1+e;
A= > fOner. . it Lyiieip, - yeea) [ r 2 A—r) 2
B\;€{-1,1}¢~1 JelGI\{i}
(€2
Consider a worker who has confidences {p1, ..., pi_1,Dit1,--.,pc} € (0,1)%! for questions
{1,...,i—1,i+ 1,...,G} respectively, and for question i suppose she has a confidence of ¢ €

(Tyn—1,Tm+1). For question i, we must incentivize the worker to select confidence-level m if
q > Ty, and to select (m — 1) if ¢ < T,;,. This necessitates

q<Im
qAp + (1 - Q>A—m §T qAm—1 + (1 - Q)A—(m—1)~ (32)
q>1m

Also, for question 7, the requirement of level m having a higher incentive as compared to skipping
when ¢ > S,, and vice versa when ¢ < S,,, necessitates
q<Sm
qu + (1 - Q)A—m § A0- (33)
q>Sm
Now, note that for any real-valued variable ¢, and for any real-valued constants a, b and c,
q<c
ag s b = ac=b.
q>c

Applying this fact to (32) and (33) gives

(TmAm + (1 - Tm)Afm) - (TmAmfl + (1 - Tm)A—(m—l)) =0, (34a)

(SmAm + (1 = Sp)A_p) — Ag = 0. (34b)

From the definition of A; in (31), we see that the left hand sides of (34a) and (34b) are both poly-
nomials in (G — 1) variables {7} } je(q)\ (i} and take a value of zero for all values of the variables in
a (G — 1)-dimensional solid ball. Thus, each of the coefficients (of the monomials) in both poly-
nomials must be zero, and in particular, the constant terms must also be zero. Observe that in both
these polynomials, the constant term arises only when ¢; = 1V j € [G]\{i} (which makes the
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exponent of r; to be 0 and that of (1 — ;) to be 1). Thus, setting the constant term to zero in the
two polynomials results in

Tmf(yh s Vi1, MG Yit 1, - - 'ayG) + (1 - Tm)f(yh s Yi1, =, Yik 1, - - 'ayG>

= mf(y17 ceey Yi-1, T — 17yi+17 R 7yG) + (1 - Tm)f(yh R 7Z/i—17_(m - 1)7yi+1a R 7yG)
(35a)

and
Smf(l/h < Y1, My Yit 1, - - 7yG) + (1 - Sm)f<y17 ce Yi—1, =M Yit 1, - - 7yG)
:f(yh--'7yi—1707yi+17---7yG> (35b)

thus proving the claim for the case of G = N.

Now consider the case when G < N. In order to simplify notation, let us assume ¢ = 1
without loss of generality (since the arguments presented hold for any permutation of the questions).
Suppose a worker’s answers to questions {2, ..., G} evaluate to (y2, ...,yq) € {—L,...,L}¢1,
and further suppose that the worker skips the remaining (N — G) questions. By going through
arguments identical to those for G = N, but with f replaced by g, we get the necessity of

ng(m7y27"'7yG707"')0)+(]-_Tm)g(_m)y27"')yGao)"'50)
= mg(m_lay%7?/G70770)+(1_Tm)9(_(m_ 1)7y27"'7yG707"‘70) (36&)

and

Smg(mva)'"7yG707"'50)+(1 - Sm)g(imayQP"ayGaOa"'aO):g(OvyZa"’7yG707"'70)'
(36b)

We now use this result in terms of function g to get an equivalent result in terms of function f. For
some S € {0,...,G — 1}, suppose yg—s+1 = 0,...,yc = 0. The remaining proof proceeds via
an induction on .S. We begin with § = GG — 1. In this case, (36a) and (36b) simplify to

Tmng(m,0,...,0)+ (1 —T)g(—m,0,0,...,0)
=Tng(m—1,0,...,0) 4+ (1 — Tn)g(—(m —1),0,...,0) (37a)

and
Smg(m,0,...,0)+ (1 — Sp)g(—m,0,...,0) = g(0,0,...,0) . (37b)
Applying the definition of function g from (27) leads to

T (c1f(m,0,...,0) +c2f(0,0,...,0)) + (1 = T}) (c1 f(—=m,0,...,0) + c2f(0,0,...,0))
=T (crf(m—1,0,...,0) + c2f(0,0,...,0))
F (1= Th) (1 f(—(m —1),0,...,0) + e2f(0,0,...,0)), (38a)

and

Sy (c1f(m,0,...,0) + c2£(0,0,...,0)) + (1 = Sp) (c1f(=m,0,...,0) + c2.£(0,0,...,0))
= (c1(0,0,...,0) + c2£(0,0,...,0)) (38b)
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for constants ¢; > 0 and co > 0 that respectively denote the probabilities that the first question is
picked and not picked in the set of G gold standard questions. Can celling out the common terms
on both sides of the equation, we get the desired results

T f(m,0,...,0)+ (1 —=T,,) f(—=m,0,...,0)
=Tnf(m—1,0,...,0)+ (1 = T) f(—(m —1),0,...,0)

and
Smf(m,0,...,0) + (1 — Sp) f(—m,0,...,0) = f(0,0,...,0).
Next, we consider the case of a general S € {0,...,G — 2} and assume that the result is
true when yg_s = 0,...,yg = 0. In (36a) and (36b), the functions g decompose into a sum

of the constituent f functions. These constituent functions f are of two types: the first where
all of the first (G — S) questions are included in the gold standard, and the second where one or
more of the first (G — S) questions are not included in the gold standard. The second case corre-
sponds to situations where there are more than S questions skipped in the gold standard, i.e., when
ya—s = 0,...,yg = 0, and hence satisfies our induction hypothesis. The terms corresponding to
these functions thus cancel out in the expansion of (36a) and (36b). The remainder comprises only
evaluations of function f for arguments in which the first (G — S) questions are included in the gold
standard: since the last (N — G + S) questions are skipped by the worker, the remainder evaluates
to

TmCBf(ylv e Yi—1, My Yt 1, - - 7yG) + (1 - Tm)c3f(y17 e Yi—1, My Yit 1,y - - - 7yG)
= mC3f(y17 ey Yi—1, MM — 17y’i+1a .. '7yG)
+ (1 - Tm)CSf(y17 e 7yi—1)_(m - 1),3/2‘—&-17 e 7yG)7

and

Smcsf(Y1s - Yie1, My Vit 1, - -5 ¥a) + (1= Sm)esf (Y1, - - - Yie1, =M, Yit1s - - -5 YG)
= C3f(y17 .. 'ayiflaoayiJrl) cee 7yG)7

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus completing
the proof.

A.5 Necessity of 7; > .S; for the Problem to be Well Defined

We now show that the restriction 7; > .S; was necessary when defining the thresholds in Section 4.

Proposition 18 Incentive-compatibility necessitates T; > S;V 1 € {2, ..., L}, even in the absence
of the generalized-no-free-lunch axiom.

First observe that the proof of Lemma 17 did not employ the generalized-no-free-lunch axiom,
neither did it assume 7; > .S;. We will thus use the result of Lemma 17 to prove our claim.
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Suppose the confidence of the worker for all but the first question is lower than 7} and that the
worker decides to skip all these questions. Suppose the worker attempts the first question. In order
to ensure that the worker selects the answer that she believes is most likely to be true, it must be that

f(,0,...,0) > f(-1,0,...,0) VIe[L].

We now call upon Lemma 17 where we seti = 1, m = [, yo = ..., yg = 0. Using the fact that
T, >T1Vle{2,...,L}, we get

T,f(1,0,...,0) 4+ (1 = 1)) f(—1,0,...,0)
=T f(l—1,0,...,0)+
>Ti_1f(1—1,0,...,0)
=T_1f(1—2,0,...,0)
>T_of(1—2,0,...,0)

(1 =T)f(=(l=1),0,...,0)

+ (1= o) f(~(1 = 1),0,...,0)
+ (1 - Tlfl)f(_(l - 2)707 s 70)
+ (1= Ti9)f(—(1 = 2),0,...,0)

> T f(1,0,...,0)+ (1 —T1)f(-1,0,...,0)
= (0,...,0)
=S5f(1,0,...,0)+ (1 = S;) f(-1,0,...,0).

Since f(1,0,...,0) > f(=I,0,...,0), we have the claimed result.

A.6 A Stronger No-free-lunch Axiom: Impossibility Results

In this section, we prove the various claims regarding the strong no-free-lunch axiom studied in
Section 5.

A.6.1 PROOF OF PROPOSITION 10

If the worker skips all questions, then the expected payment is zero under the strong-no-free-lunch
axiom. On the other hand, in order to incentivize knowledgeable workers to select answers when-
ever their confidences are greater than 7, there must exist some situation in which the payment is
strictly larger than zero. Suppose the payment is strictly positive when questions {1,...,z} are
answered correctly, questions {z+1, ..., 2’} are answered incorrectly, and the remaining questions
are skipped. If the confidence of the unknowledgeable worker is in the interval (0,7") for every
question, then attempting to answer questions {1,..., 2’} and skipping the rest fetches her a pay-
ment that is strictly positive in expectation. Thus, this unknowledgeable worker is incentivized to
answer at least one question.

A.6.2 PROOF OF PROPOSITION 11

Consider a (knowledgeable) worker who has a confidence of p € (7, 1] for the first question, ¢ €
(0,1) for the second question, and confidences in the interval (0,7") for the remaining questions.
Suppose the worker attempts to answer the first question (and selects the answer the believes is most
likely to be correct) and skips the last (N — 2) questions as desired. Now, in order to incentivize
her to answer the second question if ¢ > 7" and skip the second question if ¢ < T, the payment
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mechanism must satisfy

pqg(171707 . 70) + (1 _p>qg(_171707"'70) +p(1 - Q)g(la_lvov" . 70)
q<T

-+ (1 _p)<1 - Q)g(_17_170770) §Tpg(17070770) + (1 _p)g(_laovov . 70)
q>

For any real-valued variable ¢, and for any real-valued constants «a, b and c,
qg<c
ag S b = ac=b.
q>c

As aresult,

pTg(L 1707 .. 10) + (1 _p)Tg(_lv 1707 s >0) +p(1 - T)g(17 _1707 s 70)
+(1-p(1-"T)g(-1,-1,0,...,0) — pg(1,0,0,...,0) — (1 —p)g(—1,0,0,...,0) =0.
The left hand side of this equation is a polynomial in variable p and takes a value of zero for all

values of p in a one-dimensional box (7', 1]. It follows that the monomials of this polynomial must
be zero, and in particular the constant term must be zero:

Tg(-1,1,0,...,0) + (1 = T)g(-1,-1,0,...,0) — g(—1,0,0,...,0) = 0.

The strong-no-free-lunch axiom implies f(—1,—1,0,...,0) = f(-1,0,...,0) = f(0,...,0) =
0, and hence g(—1,—-1,0,...,0) = g(—1,0,0,...,0) = 0. Since T € (0, 1), we have

0=g(-1,1,0,...,0)
=c1f(—-1,1,0,...,0) + c2f(—1,0,...,0) + c2f(1,0,...,0), (39)
for some constants ¢; > 0 and co > 0 that represent the probability that the first two questions are

included in the gold standard, and the probability that the first (or, second) but not the second (or,
first) questions are included in the gold standard. Since f is a non-negative function, it must be that

£(1,0,...,0) =0.

Now suppose a (knowledgeable) worker has a confidence of p € (7', 1] for the first question and
confidences lower than 7" for the remaining (/N — 1) questions. Suppose the worker chooses to skip
the last (N — 1) questions as desired. In order to incentivize the worker to answer the first question,
the mechanism must satisfy for all p € (7}, 1],

0 < pg(1,0,...,0)+ (1 —p)g(-1,0,...,0) — g(0,0,...,0)
=pesf(1,0,...,0) + peaf(0,0,...,0) + (1 —p)esf(—1,0,...,0)
+ (1 —p)eaf(0,0,...,0) — £(0,0,...,0)
=0,

where cs3 > 0 and ¢4 > 0 are some constants. The final equation is a result of the strong-no-
free-lunch axiom and the fact that f(1,0,...,0) = 0 as proved above. This yields a contradiction,
and hence no incentive-compatible mechanism f can satisfy the strong-no-free-lunch axiom when
G < N even when allowed to address only knowledgeable workers.

Finally, as a sanity check, note that if G = N then ¢ = 0 in (39). The proof above thus doesn’t
hold when G = N.
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A.6.3 PROOF OF PROPOSITION 12

We will first show that the mechanism works as desired.
First consider the case when the worker is unknowledgeable and her confidences are of the form
T >pa 2 pe 2 Pp@3) = 2 pPq)- If she answers only the first question, then her expected
payment is
T
Let us now see her expected payment if she doesn’t follow this answer pattern. The strong-no-
free-lunch axiom implies that if the worker doesn’t answer any question then her expected payment

is zero. Suppose the worker chooses to answer questions {i1,...,i,}. In that case, her expected

payment is
Diy =P, Piy Di.
=K 40
" T T (40)
P(1) ) ?
< 41
<K ( T 41
P(1)
< K—= 42
S K (42)

where (42) uses the fact that p(qy < T. The inequality in (42) becomes an equality only when

z = 1. Now when z = 1, the inequality in (41) becomes an equality only when i; = (1). Thus

the unknowledgeable worker is incentivized to answer only one question — the one that she has the
highest confidence in.

Now consider a knowledgeable worker and suppose her confidences are of the form p;), >

“ 2 Pm) > T > pany1) = - 2 D) for some m > 1. If the worker answers questions

(1),...,(m) as desired, her expected payment is
Pa) - Pim)
T

Now let us see what happens if the worker does not follow this answer pattern. The strong-no-free-
lunch axiom implies that if the worker doesn’t answer any question then her expected payment is
zero. Now, if she answers some other set of questions, say questions {i1,...,7,} with Pa) < pip <
o < DPiy < Pm) < Piyyr < Di. < pa)- The expected payment in that case is

P Pi _ Pi | Pir

& T* T T
Piy Diy
_HT T 43)
P@) P(m)
_HT T “@4)

where inequality (43) is a result of p% < 1 V j > y and holds with equality only when y = z.
Inequality (44) is a result of p(Tj) > 1 V j < m and holds with equality only when y = m. Thus
the expected payment is maximized when i; = (1),...,4i, = (m) as desired. Finally, the payment
strictly increases with an increase in the confidences, and hence the worker is incentivized to always
consider the answer that she believes is most likely to be correct.

We now show that this mechanism is unique.
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The necessary conditions derived in Lemma 4, when restricted to the case of G = N and
Y1y Yio1,Yis1, - yaq) 7 {0}V7L, is also applicable to the present setting. This is because
the strong-no-free-lunch axiom assumed here is a stronger condition than the no-free-lunch axiom
considered in Lemma 4, and moreover, (Y1, ..., Yi—1,Yit1,s---,YG) # {O}N_1 avoids the use of
unknowledgeable workers in the proof of Lemma 4. It follows that for every questioni € {1,..., G}
and every (Y1, ..., Yi—1,Yit1, - -->yc) €{—1,0,1}¢\{0}¢1, it must be that

Tf(y17 s Yi-1, 1ayi+17 v 7l/G) + (1 - T)f(yh < Yi—1, _17yi+17 <o JJG)
:f(y1>"'7y2'71707yi+17"'7yG>- (45)

We claim that the payment must be zero whenever the number of incorrect answers W > 0.
The proof proceeds by induction on the number of correct answers C'. First suppose C' = 0 (and
W > 0). Then all questions are either wrong or skipped, and hence by the strong-no-free-lunch
axiom, the payment must be zero. Now suppose the payment is necessarily zero whenever W > 0
and the total number of correct answers is (C' — 1) or lower, for some C' € [G — 1]. Consider any
evaluation (y1,...,yg) € {—1,0,1}% in which the number of incorrect answers is more than zero
and the number of correct answers is C. Suppose y; = 1 for some i € [G], and y; = —1 for some
j € [G]\{i}. Then from the induction hypothesis, we have f(y1,...,%i—1,—1,Yit1,.--,Yq) =
flyi,e oy 4i-1,0,¥i+1,.--,yg) = 0. Applying (45) and noting that 7' € (0,1), we get that
flyi, - o vi-1, L, 9it1,- -, ya) = 0 as claimed. This result also allows us to simplify (45) to: For
every question i € {1,...,G} and every (y1,...,%i_1,¥it1,.--,¥c) € {—1,0,1}¢"1\{0}&1,

1
Fs - ¥ic1, Lyig1s -, ya) = Tf(yly s Yi-1,0,Yi11, -, Ya) - (46)

We now show that when C > 0 and W = 0, the payment must necessarily be of the form
described in the statement of Proposition 12. The proof again proceeds via an induction on the
number of correct answers C' (> 1). Define a quantity x > 0 as

k=Tf(1,0,...,0). (47

Now consider the payment f(1,%s, ..., yq) for some (yo,...,yg) € {0,1}¢71\{0}¢~! with
C correct answers. Applying (46) repeatedly (once for every ¢ such that y; = 1), we get

f<17312,-~- 7Z/G) = %

Unlike other results in this paper, at this point we cannot claim the result to hold for all permuta-
tions of the questions. This is because we have defined the quantity « in an asymmetric manner (47),
in terms of the payment function when the first question is correct and the rest are skipped. In what
follows, we will prove that the result claimed in the statement of Proposition 12 indeed holds for all
permutations of the questions.

From (46) we have

£(0,1,0,...,0) =Tf(1,1,0,...,0)
= £(1,0,0,...,0)

= K.
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Thus the payment must be « even if the second answer in the gold standard is correct and the rest
are skipped. In fact, the argument holds when any one answer in the gold standard is correct and
the rest are skipped. Thus the definition of « is not restricted to the first question alone as originally
defined in (47), but holds for all permutations of the questions. This allows the other arguments
above to be applicable to any permutation of the questions. Finally, the budget constraint of fiax
fixes the value of « to that claimed, thereby completing the proof.

A.6.4 PROOF OF PROPOSITION 13

Proposition 12 proved that under the skip-based setting with the strong-no-free-lunch axiom, the
payment must be zero when one or more answers are incorrect. This part of the proof of Proposi-
tion 12 holds even when L > 1. It follows that for any question, the penalty for an incorrect answer
is the same for any confidence-level in {1, ..., L}. Thus the worker is incentivized to always select
that confidence-level for which the payment is the maximum when the answer is correct, irrespective
of her own confidence about the question. This contradicts our requirements.

Appendix B. Details of Experiments

In this section, we provide further details about the experiments described earlier in Section 6.2. The
experiments were carried out on the Amazon Mechanical Turk (mturk . com) online crowdsourc-
ing platform in the time period June to October 2013. Figure 6 illustrates the interface shown to the
workers for each of the experiments described in Section 6.2, while Figure 7 depicts the instructions
given to the workers. The following are more details of each individual experiment. In the descrip-
tion, the notation « is as defined in Algorithm 1 and Algorithm 2, namely, x = (tmax — ,umin)TG

G
for the skip-based setting and k£ = (fimax — Mmin) ( i) for the confidence-based setting.

B.1 Recognizing the Golden Gate Bridge

A set of 21 photographs of bridges were shown to the workers, and for each photograph, they had
to identify if it depicted the Golden Gate Bridge or not. An example of this task is depicted in
Figure 6a, and the instructions provided to the worker under the three mechanisms are depicted in
Figure 7. The fixed amount offered to workers was pmin = 3 cents for the task, and the bonus
was based on 3 gold standard questions. We compared (a) the baseline mechanism with 5 cents for
each correct answer in the gold standard, (b) the skip-based mechanism with k = 5.9 and % = 1.5,
and (c) the confidence-based mechanism with k = 5.9 cents, L = 2, ap = 1.5, a1 = 1.4, a9 =
1, a—1 = 0.5, a—2 = 0. The results of this experiment are presented in Figure 4a.

B.2 Transcribing Vehicles’ License Plate Numbers from Photographs

This task presented the workers with 18 photographs of cars and asked them to transcribe the license
plate numbers from each of them (source of photographs: http://www.coolpl8z.com). An example
of this task is depicted in Figure 6b. The fixed amount offered to workers was pmin = 4 cents
for the task, and the bonus was based on 4 gold standard questions. We compared (a) the baseline
mechanism with 10 cents for each correct answer in the gold standard, (b) the skip-based mechanism
with k = 0.62 and % = 3, and (c) the confidence-based mechanism with x = 3.1 cents, L = 2,
as =2, a1 =1.95 ag =1, a_1 = 0.5 a_9 = 0. The results of this experiment are presented in
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Figure 4b. When evaluating, in the worker’s answers as well as in the true solutions, we converted
all text to upper case, and removed all spaces and punctuations. We then declared a worker’s answer
to be in error if it did not have an exact match with the true solution.

B.3 Classifying Breeds of Dogs

This task required workers to identify the breeds of dogs shown in 85 images (source of im-
ages: Khosla et al. (2011); Deng et al. (2009)). For each image, the worker was given ten breeds
to choose from. An example of this task is depicted in Figure 6¢. The fixed amount offered to
workers was pmin = 5 cents for the task, and the bonus was based on 7 gold standard questions.
We compared (a) the baseline mechanism with 8 cents for each correct answer in the gold standard,
(b) the skip-based mechanism with x = 0.78 and % = 2, and (c) the confidence-based mechanism
with k = 0.78 cents, L = 2, as = 2, a1 = 1.66, a9 = 1, a_1 = 0.67, a_o = 0. The results of
this experiment are presented in Figure 4c.

B.4 Identifying Heads of Countries

Names of 20 personalities were provided and had to be classified as to whether they were ever the
(a) President of the USA, (b) President of India, (¢) Prime Minister of Canada, or (d) neither of
these. An example of this task is depicted in Figure 6d. The fixed amount offered to workers was
tmin = 2 cents for the task, and the bonus was based on 4 gold standard questions. While the
ground truth in most other multiple-choice experiments had approximately an equal representation
from all classes, this experiment was heavily biased with one of the classes never being correct
and another being correct for just 3 of the 20 questions. We compared (a) the baseline mechanism
with 2.5 cents for each correct answer in the gold standard, (b) the skip-based mechanism with
k = 0.25 and % = 3, and (c) the confidence-based mechanism with x = 1.3 cents, L = 2,
as =2, a1 =195 ap =1, a_1 = 0.5, a_2 = 0. The results of this experiment are presented in
Figure 4d.

B.5 Identifying Flags

This was a relatively long task, with 126 questions. Each question required the workers to identify
if a displayed flag belonged to a place in (a) Africa, (b) Asia/Oceania, (c) Europe, or (d) neither of
these. An example of this task is depicted in Figure 6e. The fixed amount offered to workers was
pmin = 4 cents for the task, and the bonus was based on 8 gold standard questions. We compared
(a) the baseline mechanism with 4 cents for each correct answer in the gold standard, (b) the skip-
based mechanism with x = 0.2 and % = 2, and (c) the confidence-based mechanism with x = 0.2
cents, L =2, a2 =2, oy = 1.66, ag =1, a—1 = 0.67, a_2 = 0. The results of this experiment
are presented in Figure 4e.

B.6 Distinguishing Textures

This task required the workers to identify the textures shown in 24 grayscale images (source of
images: Lazebnik et al. (2005, Data set 1: Textured surfaces)). For each image, the worker had to
choose from 8 different options. Such a task has applications in computer vision, where it aids in
recognition of objects or their surroundings. An example of this task is depicted in Figure 6f. The
fixed amount offered to workers was pmin = 3 cents for the task, and the bonus was based on 4 gold
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standard questions. We compared (a) the baseline mechanism with 10 cents for each correct answer
in the gold standard, (b) the skip-based mechanism with x = 3.1 and % = 2, and (c) the confidence-
based mechanism with k = 3.1 cents, L = 2, a0 =2, a3 = 1.66, ag =1, a—1 = 0.67, a_2 = 0.
The results of this experiment are presented in Figure 4f.

B.7 Transcribing Text from an Image: Film Certificate

The task showed an image containing 11 (short) lines of blurry text which the workers had to
decipher. We used text from a certain certificate which movies releasing in India are provided. We
slightly modified its text in order to prevent workers from searching a part of it online and obtaining
the entire text by searching the first few transcribed lines on the Internet. An example of this task
is depicted in Figure 6g. The fixed amount offered to workers was unin, = 5 cents for the task,
and the bonus was based on 2 gold standard questions. We compared (a) the baseline mechanism
with 20 cents for each correct answer in the gold standard, (b) the skip-based mechanism with
k = 5.5 and % = 3, and (¢) the confidence-based mechanism with x = 12.5 cents, L = 2,
ag =2, 1 =195 a9 =1, a_1 = 0.5, a_2 = 0. The results of this experiment are presented in
Figure 4g. When evaluating, in the worker’s answers as well as in the true solutions, we converted
all text to upper case, and removed all spaces and punctuations. We then declared a worker’s answer
to be in error if it did not have an exact match with the true solution.

B.8 Transcribing Text from an Image: Script of a Play

The task showed an image containing 12 (short) lines of blurry text which the workers had to
decipher. We borrowed a paragraph from Shakespeare’s play ‘As You Like It.” We slightly modified
the text of the play in order to prevent workers from searching a part of it online and obtaining
the entire text by searching the first few transcribed lines on the internet. An example of this task
is depicted in Figure 6h. The fixed amount offered to workers was 5 cents for the task, and the
bonus was based on 2 gold standard questions. We compared (a) the baseline mechanism with
tmin = 20 cents for each correct answer in the gold standard, (b) the skip-based mechanism with
Kk = 5.5 and % = 3, and (¢) the confidence-based mechanism with x = 12.5 cents, L = 2,
ag =2, a1 =195 ap=1, a_; = 0.5, a_2 = 0. The results of this experiment are presented in
Figure 4h. When evaluating, in the worker’s answers as well as in the true solutions, we converted
all text to upper case, and removed all spaces and punctuations. We then declared a worker’s answer
to be in error if it did not have an exact match with the true solution.

B.9 Transcribing Text from Audio Clips

The workers were given 10 audio clips which they had to transcribe to text. Each audio clip was
3 to 6 seconds long, and comprised of a short sentence, e.g., “my favorite topics of conversation
are sports, politics, and movies.” Each of the clips were recorded in different accents using a text-
to-speech converter. An example of this task is depicted in Figure 6i. The fixed amount offered to
workers was pyin = b cents for the task, and the bonus was based on 2 gold standard questions. We
compared (a) the baseline mechanism with 20 cents for each correct answer in the gold standard,
(b) the skip-based mechanism with k = 5.5 and % = 3, and (c) the confidence-based mechanism
with Kk = 12.5 cents, L = 2, a9 = 2, a1 = 1.95, ag = 1, a_1 = 0.5, a_o = 0. The results of
this experiment are presented in Figure 4i.
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a Recognize the b Transcribe the C Mark the breed of the dog
Golden Gate Bridge license plate number Afghan Hound
Doberman
Golden Gate French Bulldog
NOT Golden Gate Tibetan Terrier
Answer | =
d Identify heads of countries © Mark the continent f Identify the texture
Mohandas Gandhi to which the flag belongs ; % granitte
. . arpe
President of the USA ’:fflc/g A Fur
President of India ESIa ceania Glass
Prime Minister of Canada urope Corduroy
None of these Wood

None of the above None of these

9 Transcribe text (playscript) R Transcribe text (certificate) . . o
- I Transcribe the audio clip

. Answer:| |
Liel:
Line2

Figure 6: Various tasks on which the payment mechanisms were tested. The interfaces shown are
that of the baseline mechanism, i.e., without the skipping or confidence choices.

a Baseline Mechanism

*** |nstructions for BONUS (Read Carefully) ***
*There are three questions whose answers are known to us, based on which the bonus is calculated
*BONUS (cents)= 5 * number of questions out of these that you correctly answer

b Skip-based multiplicative mechanism

If you are not sure about any answer, then mark "I'm not sure”
You need to mark at least something for every question, otherwise your work will be rejected

*** |Instructions for BONUS (Read Carefully) ***

* You start with 5.9 cents of bonus for this HIT

* There are three questions whose answers are known to us, based on which the bonus is calculated

* For each of these questions you answer CORRECTLY, your bonus will INCREASE BY 50% (every 1 cent will become 1.5 cents)
« If you answer any of these questions WRONG, your bonus will become ZERO

* So for questions you are not sure of, mark the "I'm not sure" option: this does not affect the bonus

€ Confidence-based multiplicative mechanism

For each answer, you also need to indicate how sure you are about that answer
If you are not sure about any answer, then mark "I don't know”
You need to mark at least something for every question, otherwise your work will be rejected

*** Instructions for BONUS (Read Carefully) ***

« If any answer marked "absolutely sure" is wrong, your bonus will become ZERO for this entire HIT (you do not get any bonus for this HIT)
* For every answer marked "absolutely sure" that is correct, your bonus will INCREASE BY 50% (every 1 cent will become 1.5 cents)

* For every answer marked "moderately sure" that is wrong, your bonus will be HALVED (every 1 cent will become half a cent)

* For every answer marked "moderately sure" that is correct, your bonus will be INCREASE BY 40% (every 1 cent will become 1.4 cents)

* Marking "I don't know" for any answer does not change your bonus

Figure 7: An example of the instructions displayed to the worker under the three mechanisms.
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Appendix C. General Utility Functions

In this section, we consider a setting where the worker, instead of maximizing her expected payment,
aims to maximize the expected value of some utility function of her payment. Consider any function
U : Ry — Z, where 7 is any interval on the real number line. We will require the function U to be
strictly increasing and to have an inverse. Examples of such functions include U (z) = log(1 + z)
withZ =Ry, U(x) = o withZ =Ry, and U(z) = 1 — e * with Z = [0, 1]. For any payment
f made to the worker (based on the evaluation of her answers to the gold standard questions), her
utility for this payment is U(f). The worker aims to maximize the expected value of U( f), where
the expectation is with respect to her beliefs regarding correctness of her answers and the uniformly
random distribution of the G gold standard questions among the set of NV questions. The function
U is assumed to be known to the worker as well as the system designer.

Consider the confidence-based setting of Section 4 (of which, the skip-based setting of Section 3
is a special case). Recall the notation {z;}$ |, {a; }f:_ ;, and x from Algorithm 2. Also recall the
(generalized-)no-free-lunch axiom which mandates a zero payment if, in the gold standard, (all
attempted questions are marked as the highest confidence L and) the answers to all the attempted
questions are incorrect. The following proposition extends the results of the main text in the paper
to this setting with utility functions.

Proposition 19 For a worker who aims to maximize function U of the payment, the one and only
mechanism that is incentive-compatible and satisfies the (generalized-)no-free-lunch axiom is

G
Payment(x1, ..., xq) = U~} (mHawi + U(,umin)> ,
i=1

where the constants {c; }ngfL are as defined in Algorithm 2 and r = (U (ftmax) — U (ftmin)) a7 .
Note that for the problem to be well defined, the interval [{tmin, fimax] Should be contained in the
interval Z. The proof of Proposition 19 follows easily from the results proved earlier in the paper,
and is provided below for completeness.

Proof of Proposition 19. We will first verify that the proposed payment is always non-negative
and satisfies the (generalized-)no-free-lunch axiom. Recall from Theorem 7 that for every evaluation
{z1,..., 2} for which the (generalized-)no-free-lunch axiom mandates a zero payment, the value
of /{HZ.Gzl g, is zero. It follows that the payment U1 (/{ Hlel g, + U(,umin)> = U Y0+
U(pfmin)) = Mmin, Where the final equation is a consequence of the invertibility of U. Further,
recall that the value of ]_[ZG:1 oz, in Algorithm 2 is never smaller than zero. Since the function U
is increasing, so is U !, and hence the payment is always non-negative.

We will now prove that the proposed payment is incentive-compatible. To this end, observe that
the utility of the proposed payment is

G
U(Payment) = U (U_l (liH Qg; + U(Nmin)))
i=1
G

= HHQQ;Z. + U(ttmin) -

i=1
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Noting that U (0) is a constant independent of the worker’s answers, the result of Theorem 7 implies
that the expectation of U (Payment) behaves exactly as required for incentive-compatibility.

We will now prove uniqueness of this mechanism. Replacing f(-) by U(Payment(-)) in the
proof of Theorem 9, we get that the function U (Payment) must be of the form

G
U(Payment(z1,...,2q)) = c1 H O, + C2,
i=1

for some constants c¢1 and co, where {a; }Jsz 1, are as defined in Algorithm 2. In other words, the
payment must be of the form

G
Payment(x1,...,zqg) = Ut <01 H O, + c2> .
i=1

One can evaluate that the maximum value of this payment is ¢; 4+ c2. From our pp,.-budget
constraint, we then have c¢; + ¢ca = pimax. Furthermore, When the evaluations z1,...,zg are
such that the (generalized-)no-free-lunch applies, we need Payment = pipi,. It follows that co =
U (ftmin), and consequently ¢; = U (tmax) — U (f4min)> thereby completing the proof.

Bibliography

Nima Anari, Gagan Goel, and Afshin Nikzad. Mechanism design for crowdsourcing: An optimal
1-1/e competitive budget-feasible mechanism for large markets. In Foundations of Computer
Science (FOCS), pages 266-275, 2014.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370,
1988.

Jason Baldridge and Alexis Palmer. How well does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language documentation. In Conference on Empirical
Methods in Natural Language Processing, pages 296-305, 2009.

Michael S Bernstein, Greg Little, Robert C Miller, Bjorn Hartmann, Mark S Ackerman, David R
Karger, David Crowell, and Katrina Panovich. Soylent: a word processor with a crowd inside. In
ACM symposium on User interface software and technology (UIST), pages 313-322, 2010.

John Bohannon. Social science for pennies. Science, 334(6054):307-307, 2011.

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1-3, 1950.

Peter Biihlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction and model
fitting. Statistical Science, pages 477-505, 2007.

Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary class probability estimation
and classification: Structure and applications. Working draft, November, 2005.

Yang Cai, Constantinos Daskalakis, and Christos H Papadimitriou. Optimum statistical estimation
with strategic data sources. In Conference on Learning Theory (COLT), 2015.

48



DOUBLE OR NOTHING

Izquierdo JM Cano, Yannis A Dimitriadis, Sdnchez E Gémez, and Coronado J Lopez. Learning
from noisy information in fasart and fasback neuro-fuzzy systems. Neural networks: the official
Jjournal of the International Neural Network Society, 14(4-5):407-425, 2001.

Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hruschka Jr, and Tom M Mitchell.
Coupled semi-supervised learning for information extraction. In ACM international conference
on Web search and data mining, pages 101-110, 2010.

Jenny J Chen, Natala J] Menezes, Adam D Bradley, and TA North. Opportunities for crowdsourcing
research on Amazon mechanical turk. Interfaces, 5(3), 2011.

Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking aggregation
in a crowdsourced setting. In ACM international conference on Web search and data mining,

pages 193-202, 2013.

Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the top-K
ranking problem. arXiv preprint arXiv:1605.03933, 2016.

Fang Chu, Yizhou Wang, and Carlo Zaniolo. An adaptive learning approach for noisy data streams.
In IEEE International Conference on Data Mining (ICDM), pages 351-354, 2004.

Vincent Conitzer. Prediction markets, mechanism design, and cooperative game theory. In Uncer-
tainty in Artificial Intelligence (UAI), pages 101-108, 2009.

Anirban Dasgupta and Arpita Ghosh. Crowdsourced judgement elicitation with endogenous profi-
ciency. In International conference on World Wide Web (WWW), pages 319-330, 2013.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates
using the EM algorithm. Applied statistics, pages 20-28, 1979.

Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning. In
ACM-SIAM symposium on Discrete algorithms (SODA), pages 884—893, 2008.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248-255, 2009.

Double or Nothing. http://wikipedia.org/wiki/Double_or_nothing, 2014. Last
accessed: July 31, 2014.

Fang Fang, Maxwell Stinchcombe, and Andrew Whinston. Putting your money where your mouth
is: A betting platform for better prediction. Review of Network Economics, 6(2), 2007.

Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin. CrowdDB:
answering queries with crowdsourcing. In ACM SIGMOD International Conference on Manage-
ment of Data, pages 61-72, 2011.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359-378, 2007.

49


http://wikipedia.org/wiki/Double_or_nothing

SHAH AND ZHOU

Steve Hanneke and Liu Yang. Negative results for active learning with convex losses. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pages 321-325, 2010.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82-97, 2012.

Chien-Ju Ho, Shahin Jabbari, and Jennifer W Vaughan. Adaptive task assignment for crowdsourced
classification. In International Conference on Machine Learning (ICML), pages 534-542, 2013.

Panagiotis G Ipeirotis, Foster Provost, Victor S Sheng, and Jing Wang. Repeated labeling using
multiple noisy labelers. Data Mining and Knowledge Discovery, 28(2):402-441, 2014.

Srikanth Jagabathula, Lakshminarayanan Subramanian, and Ashwin Venkataraman. Reputation-
based worker filtering in crowdsourcing. In Advances in Neural Information Processing Systems
(NIPS), pages 2492-2500, 2014.

W Paul Jones and Scott A Loe. Optimal number of questionnaire response categories more may not
be better. SAGE Open, 3(2):2158244013489691, 2013.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing
systems. In Advances in neural information processing systems (NIPS), 2011.

Gabriella Kazai, Jaap Kamps, Marijn Koolen, and Natasa Milic-Frayling. Crowdsourcing for book
search evaluation: impact of HIT design on comparative system ranking. In ACM SIGIR confer-
ence on Research and development in Information Retrieval, pages 205-214, 2011.

Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzy-
wda, Helena Zabranska, Iva Pichova, James Thompson, Zoran Popovi¢, Mariusz Jaskolski, and
David Baker. Crystal structure of a monomeric retroviral protease solved by protein folding game
players. Nature structural & molecular biology, 18(10):1175-1177, 2011.

Ashish Khetan and Sewoong Oh. Reliable crowdsourcing under the generalized dawid-skene model.
arXiv preprint arXiv:1602.03481, 2016.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-fei Li. L.: Novel dataset for
fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization,
CVPR, 2011.

Nicolas Lambert and Yoav Shoham. Eliciting truthful answers to multiple-choice questions. In
ACM conference on Electronic commerce, pages 109-118, 2009.

ASID Lang and Joshua Rio-Ross. Using Amazon Mechanical Turk to transcribe historical hand-
written documents. The Code4Lib Journal, 2011.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A sparse texture representation using local
affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1265—
1278, 2005.

50



DOUBLE OR NOTHING

John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. Ensuring quality in crowdsourced
search relevance evaluation: The effects of training question distribution. In SIGIR 2010 work-
shop on crowdsourcing for search evaluation, pages 21-26, 2010.

Eric WM Lee, Chee Peng Lim, Richard KK Yuen, and SM Lo. A hybrid neural network model
for noisy data regression. IEEE Transactions on Systems, Man, and Cybernetics, 34(2):951-960,
2004.

Qiang Liu, Jian Peng, and Alexander T Ihler. Variational inference for crowdsourcing. In Advances
in Neural Information Processing Systems (NIPS), pages 701-709, 2012.

Philip M Long and Rocco A Servedio. Random classification noise defeats all convex potential
boosters. Machine Learning, 78(3):287-304, 2010.

Naresh Manwani and PS Sastry. Noise tolerance under risk minimization. /EEE Transactions on
Cybernetics, 43(3):1146-1151, 2013.

David Mease, Abraham J Wyner, and Andreas Buja. Boosted classification trees and class proba-
bility/quantile estimation. The Journal of Machine Learning Research, 8:409—439, 2007.

George A Miller. The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting informative feedback: The peer-
prediction method. Management Science, 51(9):1359-1373, 2005.

DraZen Prelec. A Bayesian truth serum for subjective data. Science, 306(5695):462-466, 2004.

Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca
Bogoni, and Linda Moy. Learning from crowds. The Journal of Machine Learning Research
(JMLR), 11:1297-1322, 2010.

Leonard J Savage. Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association, 66(336):783-801, 1971.

Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from pairwise compar-
isons. arXiv preprint arXiv:1512.08949, 2015.

Nihar B Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran,
and Martin J Wainwright. Estimation from pairwise comparisons: Sharp minimax bounds with
topology dependence. In Journal of Machine Learning Research (JMLR), 2016a.

Nihar B Shah, Sivaraman Balakrishnan, Adityanand Guntuboyina, and Martin J Wainright. Stochas-
tically transitive models for pairwise comparisons: Statistical and computational issues. Interna-
tional Conference on Machine Learning (ICML), 2016b.

Nihar B Shah, Sivaraman Balakrishnan, and Martin J Wainwright. A permutation-based model for
crowd labeling: Optimal estimation and robustness. arXiv preprint arXiv:1606.09632, 2016c.

Richard M Shiffrin and Robert M Nosofsky. Seven plus or minus two: A commentary on capacity
limitations. Psychological Review, 101(2):357-61, 1994.

51



SHAH AND ZHOU

Aditya Vempaty, Lav R Varshney, and Pramod K Varshney. Reliable crowdsourcing for multi-class
labeling using coding theory. IEEE Journal of Selected Topics in Signal Processing, 8(4):667—
679, 2014.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum. re-
CAPTCHA: Human-based character recognition via web security measures. Science, 321(5895):
1465-1468, 2008.

Jeroen Vuurens, Arjen P de Vries, and Carsten Eickhoff. How much spam can you take? An analysis
of crowdsourcing results to increase accuracy. In ACM SIGIR Workshop on Crowdsourcing for
Information Retrieval, pages 21-26, 2011.

Paul Wais, Shivaram Lingamneni, Duncan Cook, Jason Fennell, Benjamin Goldenberg, Daniel
Lubarov, David Marin, and Hari Simons. Towards building a high-quality workforce with Me-
chanical Turk. NIPS workshop on computational social science and the wisdom of crowds, 2010.

Fabian L Wauthier and Michael Jordan. Bayesian bias mitigation for crowdsourcing. In Advances
in Neural Information Processing Systems (NIPS), 2011.

Justin Wolfers and Eric Zitzewitz. Prediction markets. Technical report, National Bureau of Eco-
nomic Research, 2004.

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. Task matching in crowdsourcing. In /EEE
International Conference on Cyber, Physical and Social Computing, pages 409-412, 2011.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods meet EM: A
provably optimal algorithm for crowdsourcing. In Advances in Neural Information Processing
Systems (NIPS), 2014.

Dengyong Zhou, John Platt, Sumit Basu, and Yi Mao. Learning from the wisdom of crowds by
minimax entropy. In Advances in Neural Information Processing Systems (NIPS), pages 2204—
2212, 2012.

Dengyong Zhou, Qiang Liu, John C Platt, Christopher Meek, and Nihar B Shah. Regularized
minimax conditional entropy for crowdsourcing. arXiv preprint arXiv:1503.07240, 2015.

Yuan Zhou, Xi Chen, and Jian Li. Optimal PAC multiple arm identification with applications to
crowdsourcing. In International Conference on Machine Learning (ICML), pages 217-225,2014.

52



	Introduction
	Summary of Contributions
	Related Literature
	Organization
	Setting and Notation
	Skip-based Setting
	Setting
	Payment Mechanism
	Uniqueness of this Mechanism
	Optimality against Spamming Behavior

	Confidence-based Setting
	Payment Mechanism
	Uniqueness of this Mechanism

	A Stronger No-free-lunch Axiom: Impossibility Results
	Simulations and Experiments
	Synthetic Simulations
	Experiments on Amazon Mechanical Turk
	Goal
	Experimental setup
	Results: Raw data
	Results: Aggregated data


	Discussion and Conclusions
	Modeling Assumptions
	Open problems
	Conclusions

	Proofs
	Proof of Lemma 4: The Workhorse Lemma
	Proof of Theorem 7: Working of Algorithm 2
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

	Proof of Theorem 9: Uniqueness of Algorithm 2
	Proof of Lemma 17: Necessary condition for any incentive-compatible mechanism
	Necessity of Tl> Sl for the Problem to be Well Defined
	A Stronger No-free-lunch Axiom: Impossibility Results
	Proof of Proposition 10
	Proof of Proposition 11
	Proof of Proposition 12
	Proof of Proposition 13

	Details of Experiments
	Recognizing the Golden Gate Bridge
	Transcribing Vehicles' License Plate Numbers from Photographs
	Classifying Breeds of Dogs
	Identifying Heads of Countries
	Identifying Flags
	Distinguishing Textures
	Transcribing Text from an Image: Film Certificate
	Transcribing Text from an Image: Script of a Play
	Transcribing Text from Audio Clips

	General Utility Functions





