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Abstract

Latent factor models are the canonical statistical tool for exploratory analyses of low-
dimensional linear structure for a matrix of p features across n samples. We develop a
structured Bayesian group factor analysis model that extends the factor model to multiple
coupled observation matrices; in the case of two observations, this reduces to a Bayesian
model of canonical correlation analysis. Here, we carefully define a structured Bayesian
prior that encourages both element-wise and column-wise shrinkage and leads to desirable
behavior on high-dimensional data. In particular, our model puts a structured prior on the
joint factor loading matrix, regularizing at three levels, which enables element-wise sparsity
and unsupervised recovery of latent factors corresponding to structured variance across
arbitrary subsets of the observations. In addition, our structured prior allows for both
dense and sparse latent factors so that covariation among either all features or only a subset
of features can be recovered. We use fast parameter-expanded expectation-maximization
for parameter estimation in this model. We validate our method on simulated data with
substantial structure. We show results of our method applied to three high-dimensional
data sets, comparing results against a number of state-of-the-art approaches. These results
illustrate useful properties of our model, including i) recovering sparse signal in the presence
of dense effects; ii) the ability to scale naturally to large numbers of observations; iii) flexible
observation- and factor-specific regularization to recover factors with a wide variety of
sparsity levels and percentage of variance explained; and iv) tractable inference that scales
to modern genomic and text data sizes.
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1. Introduction

Factor analysis models have attracted attention recently due to their ability to perform
exploratory analyses of the latent linear structure in high-dimensional data (West, 2003;
Carvalho et al., 2008; Engelhardt and Stephens, 2010). A latent factor model finds a low-
dimensional representation xi ∈ Rk×1 of high-dimensional data with p features, yi ∈ Rp×1
in i = 1, . . . , n samples. A sample in the low-dimensional space is linearly projected to the
original high-dimensional space through a loadings matrix Λ ∈ Rp×k with Gaussian noise
εi ∈ Rp×1:

yi = Λxi + εi, (1)

for i = 1, . . . , n. It is often assumed that xi follows a Nk(0, Ik) distribution, where Ik is the
identity matrix of dimension k, and εi ∼ Np(0,Σ), where Σ is a p× p diagonal covariance
matrix with σ2j for j = 1, . . . , p on the diagonal. In many applications of factor analysis, the
number of latent factors k is much smaller than the number of features p and the number
of samples n. Integrating over factor xi, this model produces a low-rank estimation of the
feature covariance matrix. In particular, the covariance of yi, Ω ∈ Rp×p, is estimated as

Ω = ΛΛT + Σ =

k∑
h=1

λ·hλ
T
·h + Σ,

where λ·h is the hth column of Λ. This factorization suggests that each factor contributes
to the covariance of the sample through its corresponding loading. Traditional exploratory
data analysis methods including principal component analysis (PCA) (Hotelling, 1933), in-
dependent component analysis (ICA) (Comon, 1994), and canonical correlation analysis
(CCA) (Hotelling, 1936) all have interpretations as latent factor models. Indeed, the field
of latent variable models is extremely broad, and robust unifying frameworks are desir-
able (Cunningham and Ghahramani, 2015).

Considering latent factor models (Equation 1) as capturing a low-rank estimate of the
feature covariance matrix, we can characterize canonical correlation analysis (CCA) as

modeling paired observations y
(1)
i ∈ Rp1×1 and y

(2)
i ∈ Rp2×1 across n samples to identify

a linear latent space for which the correlations between the two observations are maxi-
mized (Hotelling, 1936; Bach and Jordan, 2005). The Bayesian CCA (BCCA) model ex-
tends this covariance representation to two observations: the combined loading matrix
jointly models covariance structure shared across both observations and covariance local to
each observation (Klami et al., 2013). Group factor analysis (GFA) models further extend
this representation to m coupled observations for the same sample, modeling, in its fullest
generality, the covariance associated with every subset of observations (Virtanen et al.,
2012; Klami et al., 2014b). GFA becomes intractable when m is large due to exponential
explosion of covariance matrices to estimate.

In a latent factor model, the loading matrix Λ plays an important role in the subspace
mapping. In applications where there are fewer samples than features—the n � p sce-
nario (West, 2003)—it is essential to include strong regularization on the loading matrix
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because the optimization problem is under-constrained and has many equivalent solutions
that optimize the data likelihood. In the machine learning and statistics literature, priors
or penalties are used to regularize the elements of the loading matrix, occasionally by in-
ducing sparsity. Element-wise sparsity corresponds to feature selection. This has the effect
that a latent factor contributes to variation in only a subset of the observed features, gen-
erating interpretable results (West, 2003; Carvalho et al., 2008; Knowles and Ghahramani,
2011). For example, in gene expression analysis, sparse factor loadings are interpreted as
non-disjoint clusters of co-regulated genes (Pournara and Wernisch, 2007; Lucas et al., 2010;
Gao et al., 2013).

Element-wise sparsity has been imposed in latent factor models through regularization
via `1 type penalties (Zou et al., 2006; Witten et al., 2009; Salzmann et al., 2010). More
recently, Bayesian shrinkage methods using sparsity-inducing priors have been introduced
for latent factor models (Archambeau and Bach, 2009; Carvalho et al., 2008; Virtanen
et al., 2012; Bhattacharya and Dunson, 2011; Klami et al., 2013). The spike-and-slab
prior (Mitchell and Beauchamp, 1988), the classic two-groups Bayesian sparsity-inducing
prior, has been used for sparse Bayesian latent factor models (Carvalho et al., 2008). A
computationally tractable one-group prior, the automatic relevance determination (ARD)
prior (Neal, 1995; Tipping, 2001), has also been used to induce sparsity in latent factor
models (Engelhardt and Stephens, 2010; Pruteanu-Malinici et al., 2011). More sophisti-
cated structured regularization approaches for linear models have been studied in classical
statistics (Zou and Hastie, 2005; Kowalski and Torrésani, 2009; Jenatton et al., 2011; Huang
et al., 2011).

Global structured regularization of the loading matrix, in fact, has been used to ex-
tend latent factor models to multiple observations. The BCCA model (Klami et al.,
2013) assumes a latent factor model for each observation through a shared latent vec-
tor xi ∈ Rk×1. This BCCA model may be written as a latent factor model by vertical
concatenation of observations, loading matrices, and Gaussian residual errors. By inducing
group-wise sparsity—explicit blocks of zeros—in the combined loading matrix, the covari-
ance shared across the two observations and the covariance local to each observation are
estimated (Klami and Kaski, 2008; Klami et al., 2013). Extensions of this approach to

multiple coupled observations y
(1)
i ∈ Rp1×1, . . . ,y(m)

i ∈ Rpm×1 have resulted in group factor
analysis models (GFA) (Archambeau and Bach, 2009; Salzmann et al., 2010; Jia et al.,
2010; Virtanen et al., 2012).

In addition to linear factor models, flexible non-linear latent factor models have been
developed. The Gaussian process latent variable model (GPLVM) (Lawrence, 2005) extends
Equation (1) to non-linear mappings with a Gaussian process prior on latent variables.
Extensions of GPLVM include models that allow multiple observations (Shon et al., 2005;
Ek et al., 2008; Salzmann et al., 2010; Damianou et al., 2012). Although our focus will be
on linear maps, we will keep the non-linear possibility open for model extensions, and we
will include the GPLVM model in our model comparisons.

The primary contribution of this study is that we develop a GFA model using Bayesian
shrinkage with hierarchical structure that encourages both element-wise and column-wise
sparsity; the resulting flexible Bayesian GFA model is called BASS (Bayesian group fac-
tor Analysis with Structured Sparsity). The structured sparsity in our model is achieved
with multi-scale application of a hierarchical sparsity-inducing prior that has a computa-
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tionally tractable representation as a scale mixture of normals, the three parameter beta
prior (T PB) (Armagan et al., 2011; Gao et al., 2013). Our BASS model i) shrinks the
loading matrix globally, removing factors that are not supported in the data; ii) shrinks
loading columns to decouple latent spaces from arbitrary subsets of observations; iii) allows
factor loadings to have either an element-wise sparse or a non-sparse prior, combining in-
terpretability with dimension reduction. In addition, we developed a parameter-expanded
expectation maximization (PX-EM) method based on rotation augmentation to tractably
find maximum a posteriori estimates of the model parameters (Rocková and George, 2015).
PX-EM has the same computational complexity as the standard EM algorithm, but pro-
duces more robust solutions by enabling fast searching over posterior modes.

In Section 2 we review current work in sparse latent factor models and describe our BASS
model. In Sections 3 and 4, we briefly review Bayesian shrinkage priors and introduce the
structured hierarchical prior in BASS. In Section 5, we introduce our PX-EM algorithms
for parameter estimation. In Section 6, we show the behavior of our model for recovering
simulated sparse signals among m observation matrices and compare the results from BASS
with state-of-the-art methods. In Section 7, we present results that illustrate the perfor-
mance of BASS on three high-dimensional data sets. We first show that the estimates of
shared factors from BASS can be used to perform multi-label learning and prediction in the
Mulan Library data and the 20 Newsgroups data. Then we demonstrate that BASS can be
used to find biologically meaningful structure and construct condition-specific co-regulated
gene networks using the sparse factors specific to observations. We conclude by considering
possible extensions to this model in Section 8.

2. Bayesian group factor model

Here, we review current work in sparse latent factor models and describe our Bayesian group
factor Analysis with Structured Sparsity (BASS) model in the context of related work.

2.1 Latent factor models

Factor analysis has been extensively used for dimension reduction and low-dimensional
covariance matrix estimation. For concreteness, we re-write the basic factor analysis model
here as

yi = Λxi + εi,

where yi ∈ Rp×1 is modeled as a linear transformation of a latent vector xi ∈ Rk×1 through
loading matrix Λ ∈ Rp×k (Figure 1A). Here, xi is assumed to follow aNk(0, Ik) distribution,
where Ik is the k-dimensional identity matrix, and εi ∼ Np(0,Σ), where Σ is a p×p diagonal
matrix. With an isotropic noise assumption, Σ = Iσ2, this model has a probabilistic
principal components analysis interpretation (Roweis, 1998; Tipping and Bishop, 1999b).
For factor analysis, and in this work, it is assumed that Σ = diag(σ21, · · · , σ2p) representing
independent idiosyncratic noise (Tipping and Bishop, 1999a).

Integrating over the factors xi, we see that the covariance of yi is estimated with a
low-rank matrix factorization: ΛΛT + Σ. We further let Y = [y1, . . .yn] be the collection
of n samples yi, and similarly let X = [x1, . . . ,xn] and E = [ε1, . . . , εn]. Then the factor
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Figure 1: Graphical representation of different latent factor models. Panel A:
Factor analysis model. Panel B: Bayesian canonical correlation analysis model (BCCA).
Panel C: An extension of BCCA model to multiple observations. Panel D: Our Bayesian
group factor analysis model (BASS).

analysis model for the observation Y is written as

Y = ΛX +E. (2)

2.2 Probabilistic canonical correlation analysis

In the context of two paired observations y
(1)
i ∈ Rp1×1 and y

(2)
i ∈ Rp2×1 on the same n

samples, canonical correlation analysis (CCA) seeks to find linear projections (canonical
directions) such that the sample correlations in the projected space are mutually max-
imized (Hotelling, 1936). The work of interpreting CCA as a probabilistic model can be
traced back to classical descriptions (Bach and Jordan, 2005). With a common latent factor,

xi ∈ Rk×1, y(1)i and y
(2)
i are modeled as

y
(1)
i = Λ(1)xi + e

(1)
i ,

y
(2)
i = Λ(2)xi + e

(2)
i . (3)

In this model, the errors are distributed as e
(1)
i ∼ Np1(0,Ψ(1)) and e

(2)
i ∼ Np2(0,Ψ(2)),

where Ψ(1) and Ψ(2) are positive semi-definite matrices, and not necessarily diagonal, al-
lowing dependencies among the residual errors within an observation. The maximum likeli-
hood estimates of the loading matrices in the classical CCA framework, Λ(1) and Λ(2), are
the first k canonical directions up to orthogonal transformations (Bach and Jordan, 2005).
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2.3 Bayesian CCA with group-wise sparsity

Building on the probabilistic CCA model, a Bayesian CCA (BCCA) model has the following
form (Klami et al., 2013)

y
(1)
i = A(1)x

(0)
i +B(1)x

(1)
i + ε

(1)
i ,

y
(2)
i = A(2)x

(0)
i +B(2)x

(2)
i + ε

(2)
i , (4)

with x
(0)
i ∈ Rk0×1, x(1)

i ∈ Rk1×1 and x
(2)
i ∈ Rk2×1 (Figure 1B). The latent vector x

(0)
i is

shared by both y
(1)
i and y

(2)
i , and captures their common variation through loading matrices

A(1) and A(2). Two additional latent vectors, x
(1)
i and x

(2)
i , are specific to each observation;

they are multiplied by observation-specific loading matricesB(1) andB(2). The two residual

error terms are ε
(1)
i ∼ Np1(0,Σ(1)) and ε

(2)
i ∼ Np2(0,Σ(2)), where Σ(1) and Σ(2) are diagonal

matrices. This model was originally called inter-battery factor analysis (IBFA) (Browne,
1979) and recently has been studied under a full Bayesian inference framework (Klami
et al., 2013). It may be interpreted as the probabilistic CCA model (Equation 3) with an
additional low-rank factorization of the observation-specific error covariance matrices. In
particular, we re-write the residual error term specific to observation w (w = 1, 2) from

the probabilistic CCA model (Equation 3) as e
(w)
i = B(w)x

(w)
i + ε

(w)
i ; then marginally

e
(w)
i ∼ Npw(0,Ψ(w)) where Ψ(w) = B(w)(B(w))T + Σ(w).

Recent work has re-written the BCCA model as a factor analysis model with group-wise
sparsity in the loading matrix (Klami et al., 2013). Let yi ∈ Rp×1 (where p = p1 + p2) be

the vertical concatenation of y
(1)
i and y

(2)
i ; let xi ∈ Rk×1 (where k = k0 + k1 + k2) be the

vertical concatenation of x
(0)
i , x

(1)
i and x

(2)
i ; and let εi ∈ Rp×1 be the vertical concatenation

of the two residual errors. Then, the BCCA model (Equation 4) may be written as a factor
analysis model

yi = Λxi + εi,

with εi ∼ Np(0,Σ), where

Λ =

[
A(1) B(1) 0

A(2) 0 B(2)

]
, Σ =

[
Σ(1) 0

0 Σ(2)

]
.

The structure in the loading matrix Λ has a specific meaning: the non-zero columns (i.e.,

A(1) and A(2)) project the shared latent factors (i.e., the first k0 elements of xi) to y
(1)
i and

y
(2)
i , respectively; these latent factors represent the covariance shared across the observa-

tions. The columns with zero blocks (i.e., [B(1); 0] or [0;B(2)]) relate factors to only one of
the two observations; they model covariance specific to that observation. Under this model,
the block sparse structure of Λ is imposed via observation-wise sparsity on each factor.

2.4 Extensions to multiple observations

Classical and Bayesian extensions of the CCA model to allow multiple observations (m > 2)
have been proposed (McDonald, 1970; Browne, 1980; Archambeau and Bach, 2009; Qu and
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Chen, 2011; Ray et al., 2014). Generally, these approaches partition the latent variables
into those that are shared and those that are observation-specific as follows:

y
(w)
i = A(w)x

(0)
i +B(w)x

(w)
i + ε

(w)
i for w = 1, . . . ,m.

By vertical concatenation of y
(w)
i , x

(w)
i and ε

(w)
i , this model can be viewed as a latent

factor model (Equation 1) with the joint loading matrix Λ having a similar observation-
wise sparsity pattern as the BCCA model

Λ =


A(1) B(1) · · · 0

A(2) 0 · · · 0
...

...
. . .

...

A(m) 0 · · · B(m)

 . (5)

Here, the first column of blocks (A(w)) is a non-zero loading matrix across the features of
all observations; the remaining columns have a block diagonal structure with observation-
specific loading matrices (B(w)) on the diagonal. However, those extensions are limited
by the strict diagonal structure of the loading matrix. Structuring the loading matrix in
this way prevents this model from capturing covariance structure among arbitrary subsets
of observations. On the other hand, there are an exponential number of possible subsets
of observations, making estimation of covariance structure among all observation subsets
intractable for large m.

The structure on Λ in Equation (5) has been relaxed to model covariance among subsets
of the observations (Jia et al., 2010; Virtanen et al., 2012; Klami et al., 2014b). In the

relaxed formulation, each observation y
(w)
i is modeled by its own loading matrix Λ(w) and

a shared latent vector xi (Figure 1D):

y
(w)
i = Λ(w)xi + ε

(w)
i for w = 1, . . . ,m. (6)

By allowing columns in Λ(w) to be zero, the model decouples certain latent factors from
certain observations. The covariance structure of an arbitrary subset of observations is
modeled by factors with non-zero loading columns corresponding to the observations in
that subset. Factors that correspond to non-zero entries for only one observation capture
covariance specific to that observation. Two different approaches have been proposed to
achieve column-wise shrinkage in this framework: Bayesian shrinkage (Virtanen et al., 2012;
Klami et al., 2014b) and explicit penalties (Jia et al., 2010). The group factor analysis (GFA)
model puts an ARD prior (Tipping, 2001) on the loading column for each observation to
allow column-wise shrinkage (Virtanen et al., 2012; Klami et al., 2014b):

λ
(w)
jh ∼ N

(
0,
(
α
(w)
h

)−1)
for j = 1, . . . , pw,

α
(w)
h ∼ Ga(a0, b0),

for observation w = 1, . . . ,m and loading column h = 1, . . . , k. This prior assumes that each

element of observation-specific loading λ
(w)
·h is jointly regularized. This prior encourages the
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parameter α
(w)
h to have large values or values near zero, either pushing elements of λ

(w)
·h

toward zero or imposing minimal shrinkage, and enabling observation-specific, column-wise
sparsity.

Other work puts alternative structured regularizers on Λ(w) (Jia et al., 2010). To induce
observation-specific, column-wise sparsity, GFA used mixed norms: an `1 norm penalizes
each observation-specific column, and either `2 or `∞ norms penalize the elements in an
observation-specific column:

φ(Λ(w)) =

k∑
h=1

||λ(w)
·h ||2 or φ(Λ(w)) =

k∑
h=1

||λ(w)
·h ||∞.

The `1 norm penalty achieves observation-specific column-wise shrinkage. Both of these
mixed-norm penalties create a bi-convex problem in Λ and X.

These two approaches of adaptive structured regularization in GFA models capture
covariance uniquely shared among arbitrary subsets of the observations and avoid mod-
eling shared covariance in non-maximal subsets. But neither the ARD approach nor the
mixed-norm penalties encourages element-wise sparsity within loading columns. Adding
element-wise sparsity is important because it results in interpretable latent factors, where
features with non-zero loadings in a specific factor have an interpretation as a cluster (West,
2003; Carvalho et al., 2008). To induce element-wise sparsity, one can either use Bayesian
shrinkage on each loading (Carvalho et al., 2010) or a mixed norm with `1 type penalties

on each element (i.e.,
∑k

h=1

∑p
j=1 |λ

(w)
jh |).

A more recent GFA model is a step toward both column-wise and element-wise spar-
sity (Khan et al., 2014). In this model, element-wise sparsity is achieved by putting inde-
pendent ARD priors on each loading element, and column-wise sparsity is achieved by a
spike-and-slab prior on the loading columns. However, ARD priors do not allow the model
to adjust shrinkage levels within each factor, and this approach does not include sparse and
dense factors. One contribution of our work is to define a carefully structured Bayesian
shrinkage prior on the loading matrix of a GFA model that encourages both element-wise
and column-wise shrinkage, and that includes both sparse and dense factors.

3. Bayesian structured sparsity

The column-wise sparse structure of Λ in GFA models belongs to a general class of struc-
tured sparsity methods that has drawn attention recently (Zou and Hastie, 2005; Yuan and
Lin, 2006; Jenatton et al., 2011, 2010; Kowalski, 2009; Kowalski and Torrésani, 2009; Zhao
et al., 2009; Huang et al., 2011; Jia et al., 2010). For example, in structured sparse PCA,
the loading matrix is constrained to have specific patterns (Jenatton et al., 2010). Later
work discussed more general structured variable selection methods in a regression frame-
work (Jenatton et al., 2011; Huang et al., 2011). However, there has been little work in
using Bayesian structured sparsity, with some exceptions (Kyung et al., 2010; Engelhardt
and Adams, 2014; Wu et al., 2014). Starting from Bayesian sparse priors, we propose a
structured hierarchical sparse prior that includes three levels of shrinkage, which is concep-
tually similar to tree structured shrinkage (Romberg et al., 2001), or global-local priors in
the regression framework (Polson and Scott, 2011).
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3.1 Bayesian sparsity-inducing priors

Bayesian shrinkage priors have been widely used in latent factor models due to their flexi-
ble and interpretable solutions (West, 2003; Carvalho et al., 2008; Polson and Scott, 2011;
Knowles and Ghahramani, 2011; Bhattacharya and Dunson, 2011). In Bayesian statistics,
a regularizing term, φ(Λ), may be viewed as a marginal prior proportional to exp(−φ(Λ));
the regularized optimum then becomes the maximum a posteriori (MAP) solution (Polson
and Scott, 2011). For example, the well known `2 penalty for coefficients in linear regres-
sion models corresponds to Gaussian priors, also known as ridge regression or Tikhonov
regularization (Hoerl and Kennard, 1970). In contrast, an `1 penalty corresponds to double
exponential or Laplace priors, also known as the Bayesian Lasso (Tibshirani, 1996; Park
and Casella, 2008; Hans, 2009).

When the goal of regularization is to induce sparsity, the prior distribution should be
chosen so that it has substantial probability mass around zero, which draws small effects
toward zero, and heavy tails, which allows large signals to escape from substantial shrink-
age (O’Hagan, 1979; Carvalho et al., 2010; Armagan et al., 2011). The canonical Bayesian
sparsity-inducing prior is the spike-and-slab prior, which is a mixture of a point mass at zero
and a flat distribution across the space of real values, often modeled as a Gaussian with a
large variance term (Mitchell and Beauchamp, 1988; West, 2003). The spike-and-slab prior
has elegant interpretability by estimating the probability that certain loadings are excluded,
modeled by the ‘spike’ distribution, or included, modeled by the ‘slab’ distribution (Car-
valho et al., 2008). This interpretability comes at the cost of having exponentially many
possible configurations of model inclusion parameters in the loading matrix.

Recently, scale mixtures of normal priors have been proposed as a computationally
efficient alternative to the two component spike-and-slab prior (West, 1987; Carvalho et al.,
2010; Polson and Scott, 2011; Armagan et al., 2013, 2011; Bhattacharya et al., 2014). Such
priors generally assume normal distributions with a mixed variance term. The mixing
distribution of the variance allows strong shrinkage near zero but weak regularization away
from zero. For example, an inverse gamma distribution on the variance term results in an
ARD prior (Tipping, 2001), and an exponential distribution on the variance term results
in a Laplace prior (Park and Casella, 2008). The horseshoe prior, with a half Cauchy
distribution on the standard deviation as the mixing density, has become popular due to
its strong shrinkage and heavy tails (Carvalho et al., 2010).

A more general class of beta mixtures of normals is the three parameter beta distribu-
tion (Armagan et al., 2011). Although these continuous shrinkage priors do not directly
model the probability of feature inclusion, it has been shown in the regression framework
that two layers of regularization—global regularization, across all coefficients, and local
regularization, specific to each coefficient (Polson and Scott, 2011))—has behavior that
is similar to the spike-and-slab prior in effectively modeling signal and noise separately,
but with computational tractability (Carvalho et al., 2009). In this study, we extend and
structure the beta mixture of normals prior to three levels of hierarchy to induce desirable
behavior in the context of GFA models.
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Figure 2: Density of the three parameter beta (T PB) distribution with different
values of ν. Five different values of ν = {0.01, 0.1, 1, 10, 100} for the three parameter beta
distribution with a = b = 0.5. The x-axis represents the value of random variable z, and
the y-axis represents the density of random variable z.

3.2 Three parameter beta prior

The three parameter beta (T PB) distribution for a random variable Z ∈ (0, 1) has the
following density (Armagan et al., 2011):

f(z; a, b, ν) =
Γ(a+ b)

Γ(a)Γ(b)
νbzb−1(1− z)a−1{1 + (ν − 1)z}−(a+b), (7)

where a, b, φ > 0. We denote this distribution as T PB(a, b, ν). When 0 < a < 1 and
0 < b < 1, the distribution is bimodal, with modes at 0 and 1 (Figure 2). The variance
parameter ν gives the distribution freedom: with fixed a and b, smaller values of ν put
greater probability on z = 1, while larger values of ν move the probability mass towards
z = 0 (Armagan et al., 2011). With ν = 1, this distribution is identical to a beta distribution
(i.e., Be(b, a)).

Let λ denote the parameter to which we are applying sparsity-inducing regularization.
We assign the following T PB normal scale mixture distribution, T PBN , to λ:

λ|ϕ ∼ N
(

0,
1

ϕ
− 1

)
, with ϕ ∼ T PB(a, b, ν),

where the shrinkage parameter ϕ follows a T PB distribution. With a = b = 1/2 and ν = 1,
this prior becomes the horseshoe prior (Carvalho et al., 2010; Armagan et al., 2011; Gao
et al., 2013). The bimodal property of ϕ induces two distinct shrinkage behaviors: the mode
near one encourages 1

ϕ − 1 towards zero and induces strong shrinkage on λ; the mode near

zero encourages 1
ϕ − 1 large, creating a diffuse prior on λ. Further decreasing the variance

parameter ν supports stronger shrinkage (Armagan et al., 2011; Gao et al., 2013). If we let
θ = 1

ϕ − 1, then this mixture has the following hierarchical representation:

λ ∼ N (0, θ), θ ∼ Ga(a, δ), δ ∼ Ga(b, ν).

10
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Note the difference between the ARD prior and the T PB: the ARD prior induces sparsity
using an inverse gamma prior on θ, whereas the T PB induces sparsity by using a gamma
prior on the θ variable and then regularizing the rate parameter δ using a second gamma
prior. These differences lead to different behavior of ARD and the T PB in theory (Polson
and Scott, 2011) and in practice, as we show below.

3.3 Global-factor-local shrinkage

The flexible representation of the T PB prior makes it an ideal choice for latent factor
models. Our recent work extended the T PB prior to three levels of regularization on a
loading matrix (Gao et al., 2013):

% ∼ T PB(e, f, ν), (Global)

ζh ∼ T PB
(
c, d,

1

%
− 1

)
, (Factor-specific)

ϕjh ∼ T PB
(
a, b,

1

ζh
− 1

)
, (Local)

λjh ∼ N
(

0,
1

ϕjh
− 1

)
. (8)

At each of the three levels, a T PB distribution is used to induce sparsity via its estimated
variance parameter (ν in Equation 7), which in turn is regularized using a T PB distribution.
Specifically, the global shrinkage parameter % applies strong shrinkage across the k columns
of the loading matrix and jointly adjusts the support of column-specific parameter ζh, h ∈
{1, . . . , k} close to either zero or one. This can be interpreted as inducing sufficient shrinkage
across loading columns to recover the number of factors supported by the observed data.
In particular, when ζh is close to one, all elements of column h are close to zero, effectively
removing the hth component. When near zero, the factor-specific regularization parameter
ζh adjusts the shrinkage applied to each element of the hth loading column, estimating
the column-wise shrinkage by borrowing strength across all elements (i.e., features) in that
column. The local shrinkage parameter, ϕjh, creates element-wise sparsity in the loading
matrix through a T PBN . Three levels of shrinkage allow us to model both column-wise
and element-wise shrinkage simultaneously, and give the model nonparametric behavior in
the number of factors via model selection.

Equivalently, this global-factor-local shrinkage prior can be written as (Armagan et al.,
2011; Gao et al., 2013):

Global

{
γ ∼ Ga(f, ν),

η ∼ Ga(e, γ)),

Factor-specific

{
τh ∼ Ga(d, η),

φh ∼ Ga(c, τh),

Local

{
δjh ∼ Ga(b, φh),

θjh ∼ Ga(a, δjh),

λjh ∼ N (0, θjh). (9)
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We further extend our prior to jointly model sparse and dense components by assigning
to the local shrinkage parameter a two-component mixture distribution (Gao et al., 2013):

θjh ∼ πGa(a, δjh) + (1− π)δφh(·), (10)

where δφh(·) is the Dirac delta function centered at φh. The motivation for this two com-
ponent mixture is that, in real applications such as the analysis of gene expression data,
it has been shown that much of the variation in the observation is due to technical (e.g.,
batch, platform) or biological effects (e.g., sex, ethnicity), which impact a large number of
features (Leek et al., 2010). Therefore, loadings corresponding to these effects will often
not be sparse. A two-component mixture (Equation 10) allows the prior on the loading
(Equation 8) to select between element-wise sparsity or column-wise sparsity. Element-wise
sparsity is encouraged via the T PBN prior. Column-wise sparsity jointly regularizes each

element of the column with a shared variance term: λjh ∼ N
(

0, 1
ζh
− 1
)

. Modeling each

element in a column using a shared regularized variance term has two possible behaviors:
i) ζh in Equation (8) is close to 1 and the entire column is shrunk towards zero, effectively
removing this factor; ii) ζh is close to zero, and all elements of the column have a shared
Gaussian distribution, inducing only non-zero elements in that loading. We call included
factors that have only non-zero elements dense factors.

Jointly modeling sparse and dense factors effectively combines low-rank covariance fac-
torization with interpretability (Zou et al., 2006; Parkhomenko et al., 2009). The dense
factors capture the broad effects of observation confounders, model a low-rank approxi-
mation of the covariance matrix, and usually account for a large proportion of variance
explained (Chandrasekaran et al., 2011). The sparse factors, on the other hand, capture
the small groups of interacting features in a (possibly) high-dimensional sparse space, and
usually account for a small proportion of the variance explained.

We introduce indicator variables zh, h = 1, . . . , k, to indicate which mixture component
each θjh is generated from in Equation (10), where zh = 1 means θjh ∼ Ga(a, δjh) and
zh = 0 means θjh ∼ δφh(·). Thus, a component is a sparse factor when zh = 1 and either
a dense factor or eliminated when zh = 0. We let z = [z1, . . . , zk] and put a Bernoulli
distribution with parameter π on zh. We further let π have a flat beta distribution Be(1, 1).
This construct allows us to quantify the posterior probability that each factor h is generated
from each mixture component type via zh.

4. Bayesian group factor analysis with structured sparsity

In this work, we use global-factor-local T PB priors in the GFA model to enable both
element-wise and column-wise shrinkage. Specifically, we put a T PB prior independently on
each loading matrix corresponding to the wth observation, Λ(w). Let Z = [z(1); . . . ; z(m)] ∈
Rm×k. The indicator variable z

(w)
h is associated with the hth factor and specific to observa-

tion w. When z
(w)
h = 1, the hth factor has a sparse loading for observation w; when z

(w)
h = 0,

then either the hth factor has a dense loading column for observation w, or observation w is
not represented in that loading column. A zero loading column for observation w effectively
decouples the factor from that observation, leading to the column-wise sparse behavior in
previous GFA models (Virtanen et al., 2012; Klami et al., 2014b). In our model, factors
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that include no observations in the associated loading column are removed from the model.
We refer to this model as Bayesian group factor Analysis with Structured Sparsity (BASS ).

We summarize BASS as follows. The generative model for m coupled observations y
(w)
i

with w = 1, . . . ,m and i = 1, . . . , n is

y
(w)
i = Λ(w)xi + ε

(w)
i , for w = 1, . . . ,m.

This model is written as a latent factor model by concatenating the m feature vectors into
vector yi

yi = Λxi + εi,

xi ∼ Nk(0, Ik),
εi ∼ Np(0,Σ), (11)

where Σ = diag(σ21, . . . , σ
2
p) and p =

∑m
w=1 pw. We put independent global-factor-local

T PB priors (Equation 9) on Λ(w):

Global

{
γ(w) ∼ Ga(f, ν),

η(w) ∼ Ga(e, γ(w))),

Factor-specific

{
τ
(w)
h ∼ Ga(d, η(w)),

φ
(w)
h ∼ Ga(c, τ

(w)
h ),

Local

{
δ
(w)
jh ∼ Ga(b, φ

(w)
h ),

θ
(w)
jh ∼ Ga(a, δ

(w)
jh ),

λ
(w)
jh ∼ N (0, θ

(w)
jh ).

We allow local shrinkage to follow a two-component mixture

θ
(w)
jh ∼ π

(w)Ga(a, δ
(w)
jh ) + (1− π(w))δ

φ
(w)
h

(·),

where the mixture proportion has a beta distribution

π(w) ∼ Be(1, 1).

We put a conjugate inverse gamma distribution on the residual variance parameters

σ−2j ∼ Ga(aσ, bσ).

In our application of BASS, we set the hyperparameters of the global-factor-local T PB
prior to a = b = c = d = e = f = 0.5, which recapitulates the horseshoe prior at all
three levels of the hierarchy. The hyperparameters for the error variances, aσ and bσ, were
set to 1 and 0.3 respectively to allow a relatively wide support of variances (Bhattacharya
and Dunson, 2011). When there are two coupled observations, the BASS framework is a
Bayesian CCA model (Equation 4) based on its column-wise shrinkage.
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5. Parameter estimation

Given our setup, the full joint distribution of the BASS model factorizes as

p(Y ,X,Λ,Θ,∆,Φ,T ,η,γ,Z,Σ,π)

= p(Y |Λ,X,Σ)p(X)

× p(Λ|Θ)p(Θ|∆,Z,Φ)p(∆|Φ)p(Φ|T )p(T |η)p(η|γ)

× p(Σ)p(Z|π)p(π),

where Θ = {θ(w)jh }, ∆ = {δ(w)jh }, Φ = {φ(w)h }, T = {τ (w)h }, η = {η(w)} and γ = {γ(w)} are
the collections of the global-factor-local T PB prior parameters. The posterior distributions
of model parameters may be either simulated through Markov chain Monte Carlo (MCMC)
methods or approximated using variational Bayes approaches. We derive an MCMC al-
gorithm based on a Gibbs sampler (Appendix A). The MCMC algorithm updates the
joint loading matrix row by row using block updates, enabling relatively fast mixing (Bhat-
tacharya and Dunson, 2011).

In many applications, we are interested in a single point estimate of the parameters
instead of the complete posterior estimate; thus, often an expectation maximization (EM)
algorithm is used to find a maximum a posteriori (MAP) estimate of model parameters using
conjungate gradient optimization (Dempster et al., 1977). In EM, the latent factors X and
the indicator variables Z are treated as missing data and their expectations estimated in
the E-step conditioned on the current values of the parameters; then the model parameters
are optimized in the M-step conditioning on the current expectations of the latent variables.
Let Ξ = {Λ,Θ,∆,Φ,T ,η,γ,π,Σ} be the collection of the parameters optimized in the
M-step. The expected complete log likelihood, denoted Q(·), may be written as

Q(Ξ|Ξ(s)) = EX,Z|Ξ(s),Y [log (p(Ξ,X,Z|Y ))] .

Since X and Z are conditionally independent given Ξ, the expectation may be calculated
using the full conditional distributions of X and Z derived for the MCMC algorithm. The
derivation of the EM algorithm for BASS is then straightforward (Appendix B); note that,
when estimating Λ, the loading columns specific to each observation are estimated jointly.

5.1 Identifiability

The latent factor model (Equation 1) is identifiable up to orthonormal rotations: for any
orthogonal matrix P with P TP = I, letting Λ′ = ΛP T and x′ = Px produces the
same estimate of the data covariance matrix and has an identical likelihood. When using
factor analysis for prediction or covariance estimation, rotational invariance is irrelevant.
However, for all applications that interpret the factors or use individual factors or loadings
for downstream analysis, this rotational invariance cannot be ignored. One traditional
solution is to restrict the loading matrix to be lower triangular (West, 2003; Carvalho et al.,
2008). This solution gives a special role to the first k − 1 features in y, namely, that the
hth feature does not contribute to the k − hth through the kth factor. For this reason, the
lower triangular approach does not generalize easily and requires domain knowledge that
may not be available (Carvalho et al., 2008).
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In the BASS model, we have rotational invariance when we right multiply the joint
loading matrix by P T and left multiply x by P , producing an identical covariance matrix
and likelihood. This rotation invariance is addressed in BASS because the non-sparse ro-
tations of the loading matrix violates the prior structure induced by the observation-wise
and element-wise sparsity.

Scale invariance is a second identifiability problem inherent in latent factor models. In
particular, scale invariance means that a loading can be multiplied by a non-zero constant
and the corresponding factor by the inverse of that constant, and this will result in the
same data likelihood. This problem we and others have addressed satisfactorily by using
posterior probabilities as optimization objectives instead of likelihoods and by including
regularizing priors on the factors that restrict the magnitude of the constant. We make an
effort to not interpret the relative or absolute scale of the factors or loadings including sign
beyond setting a reasonable threshold for zero.

Finally, factor analysis is identifiable up to label switching, or shuffling the h = 1, . . . , k
indices of the loadings and factors, assuming we do not take the lower triangular approach.
Other approaches put distributions on the loading sparsity or proportion of variance ex-
plained in order to address this problem (Bhattacharya and Dunson, 2011). We do not ex-
plicitly order or interpret the order of the factors, so we do not address this non-identifiability
in the model. Label switching is handled here and elsewhere by a post-processing step, such
as ordering factors according to proportion of variance explained. In our simulation studies,
we interpret results with this non-identifiability in mind.

5.2 Sparse rotations via PX-EM

Another general problem with latent factor models, including BASS, is the convergence
to local optima and sensitivity to parameter initializations. Once the model parameters
are initialized, the EM algorithm may be stuck in locally optimal but globally suboptimal
regions with undesirable factor orientations. To address this problem, we take advantage of
the rotational invariance of the factor analysis framework. Parameter expansion (PX) has
been shown to reduce the initialization dependence by introducing auxiliary variables that
rotate the current estimate of the loading matrix to best respect the prior while keeping
the likelihood stable (Liu et al., 1998; Dyk and Meng, 2001).

We extend our model (Equation 11) using parameter expansion R, a positive definite
k × k matrix, as

yi = ΛR−1L xi + εi,

xi ∼ Nk(0,R),

εi ∼ Nk(0,Σ),

whereRL is the lower triangular matrix of the Cholesky decomposition ofR. The covariance
of yi is invariant under this expansion, and, correspondingly, the likelihood is stable. Note
R−1L is not an orthogonal matrix; however, because it is full rank, it can be transformed
into an orthogonal matrix times a rotation matrix via a polar decomposition (Rocková and
George, 2015). We let Λ? = ΛR−1L and assign our BASS T PBN prior to this rotated
loading matrix.
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We let Ξ? = {Λ?,Θ,∆,Φ,T ,η,γ,π,Σ}, and the parameters of our expanded model
are {Ξ? ∪R}. The EM algorithm in this expanded parameter space generates a sequence
of parameter estimates {Ξ?

(1) ∪R(1),Ξ
?
(2) ∪R(2), . . . }, which corresponds to a sequence of

parameter estimates in the original space {Ξ(1),Ξ(2), . . . }, where Λ is recovered via Λ?RL

(Rocková and George, 2015). We initialize R(0) = Ik. The expected complete log likelihood
of this PX BASS model is

Q(Ξ?,R|Ξ(s)) = EX,Z|Ξ(s),Y ,R0
log
(
p(Ξ?,R,X,Z|Y )

)
. (12)

In our parameter-expanded EM (PX-EM) for BASS, the conditional distributions of
X and Z still factorize in the expectation. However, the distribution of xi depends on
expansion parameter R. The full joint distribution (Equation 11) has a single change in
p(X), with Λ? in the place of Λ. In the M-step, the R that maximizes Equation (12) is

R(s) = arg max
R

Q(Ξ?,R|Ξ(s)) = arg max
R

(
const− n

2
log |R| − 1

2
tr
(
R−1SXX

))
,

where SXX =
∑n

i=1〈x·ixT·i 〉. The solution is R(s) = 1
nS

XX . For the E-step, Λ is first
calculated and the expectation is taken in the original space (details in Appendix C).

Note that the proposed PX-EM for the BASS model keeps the likelihood invariant but
does not keep the prior invariant after transformation of Λ. This is different from the earlier
PX-EM algorithm (Liu et al., 1998), as discussed in recent work (Rocková and George, 2015).
Because the resulting posterior is not invariant, we run PX-EM only for a few iterations
and then switch to the EM algorithm. The effect is that the BASS model is substantially
less sensitive to initialization (see simulation results). By introducing expansion parameter
R, the posterior modes in the original space are intersected with equal likelihood curves
indexed by R in expanded space. Those curves facilitate traversal between posterior modes
in the original space and encourage initial parameter estimates with appropriate sparse
structure in the loading matrix (Rocková and George, 2015).

5.3 Computational complexity

The computational complexity of the block Gibbs sampler for the BASS model is demand-
ing. Updating each loading row requires the inversion of a k × k matrix with O(k3) com-
plexity and then calculating means with O(k2n) complexity. The complexity of updating
the full loading matrix repeats this calculation p times. Other updates are of lower order
relative to updating the loading. Our Gibbs sampler has O(k3p + k2pn) complexity per
iteration, which makes MCMC difficult to apply when p is large.

In the BASS EM algorithm, the E-step has complexity O(k3) for a matrix inversion,
complexity O(k2p+ kpn) for calculating the first moment, and complexity O(k2n) for cal-
culating the second moment. Calculations in the M-step are all of a lower order. Thus, the
EM algorithm has complexity O(k3 + k2p+ k2n+ kpn) per iteration.

Our PX-EM algorithm for the BASS model requires an additional Cholesky decomposi-
tion with complexity O(k3) and a matrix multiplication with complexity O(k2p) above the
EM algorithm. The total complexity is therefore the same as the original EM algorithm,
although in practice we note that the constants have a negative impact on the running time.
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6. Simulations and comparisons

We demonstrate the performance of our model on simulated data in three settings: paired
observations, four observations, and ten observations.

6.1 Simulations

We describe the details of the three types of simulations here.

6.1.1 Simulations with paired observations (CCA)

We simulated two data sets with p1 = 100, p2 = 120 in order to compare results from our
method to results from state-of-the-art CCA methods. The number of samples in these
simulations was n = {20, 30, 40, 50}, chosen to be smaller than both p1 and p2 to reflect
the large p, small n regime (West, 2003) that motivated our structured approach. We
first simulated observations with only sparse latent factors (Sim1 ). In particular, we set
k = 6, where two sparse factors are shared by both observations (factors 1 and 2; Table
1), two sparse factors are specific to y(1) (factors 3 and 4; Table 1), and two sparse factors
are specific to y(2) (factors 5 and 6; Table 1). The elements in the sparse loading matrix
were randomly generated from a N (0, 4) Gaussian distribution, and sparsity was induced
by setting 90% of the elements in each loading column to zero at random (Figure 3A). We
zeroed values of the sparse loadings for which the absolute values were less than 0.5. Latent
factors x were generated from N6(0, I6). Residual error was generated by first generating
the p = p1 + p2 diagonals on the residual covariance matrix Σ from a uniform distribution
on (0.5, 1.5), and then generating each column of the error matrix from Np(0,Σ).

We performed a second simulation that included both sparse and dense latent factors
(Sim2 ). In particular, we extended Sim1 to k = 8 latent factors, where one of the shared
sparse factors is now dense, and two dense factors, each specific to one observation, were
added. For all dense factors, each loading was generated according to a N (0, 4) Gaussian
distribution (Table 1; Figure 3B).

Sim1 Sim2
Factors 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Y (1) S S S S - - S D S S D - - -

Y (2) S S - - S S S D - - - S S D

Table 1: Latent factors in Sim1 and Sim2 with two observation matrices. S
represents a sparse vector; D represents a dense vector; - represents no contribution to that
observation from the factor.

6.1.2 Simulations with four observations (GFA)

We performed two simulations (Sim3 and Sim4 ) including four observations with p1 =
70, p2 = 60, p3 = 50 and p4 = 40. The number of samples, as above, was set to n =
{20, 30, 40, 50}. In Sim3, we let k = 6 and only simulated sparse factors: the first three
factors were specific to y(1), y(2) and y(3), respectively, and the last three corresponded to
different subsets of the observations (Table 2). In Sim4 we let k = 8, and, as with Sim2,
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Sim3 Sim4
Factors 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Y (1) S - - S - - S - - - D - - -

Y (2) - S - S S S - S - S - D - -

Y (3) - - S - S S - - S S - - D -

Y (4) - - - - - S - - S - - - - D

Table 2: Latent factors in Sim3 and Sim4 with four observation matrices. S
represents a sparse vector; D represents a dense vector; - represents no contribution to that
observation from the factor.

Sim5 Sim6
Factors 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

Y (1) S - - - - - - - S - - - - - D - - -
Y (2) S - - S - - - - S - - S - - D - - -
Y (3) S - - S S - - - - - - S - - D D - -
Y (4) S S - S S - S - - S - S - - D D - -
Y (5) - S - S S - S - - S - S S - - D D -
Y (6) - S - - - - S S - S - - S - - D D -
Y (7) - - S - - - S S - S S - S - - - D D
Y (8) - - S - - - S S - - S - S - - - D D
Y (9) - - S - - - - S - - S - - - - - - D
Y (10) - - S - - S - - - - S - - S - - - D

Table 3: Latent factors in Sim5 and Sim6 with four observation matrices. S
represents a sparse vector; D represents a dense vector; - represents no contribution to that
observation from the factor.

included both sparse and dense factors (Table 2). Samples from these two simulations were
generated following the same procedure as the simulations with two observations.

6.1.3 Simulations with ten observations (GFA)

To further evaluate BASS on multiple observations, we performed two additional simulations
(Sim5 and Sim6 ) on ten coupled observations with pw = 50 for w = 1, . . . , 10. The number
of samples was set to n = {20, 30, 40, 50}. In Sim5, we let k = 8 and only simulated sparse
factors (Table 3). In Sim6 we let k = 10 and simulated both sparse and dense factors
(Table 3). Samples in these two simulations were generated following the same method as
in the simulations with two observations.

6.2 Methods for comparison

We compared BASS to five available linear models that accept multiple observations: the
Bayesian group factor analysis model with an ARD prior (GFA) (Klami et al., 2013), an
extension of GFA that allows element-wise sparsity with independent ARD priors (sGFA)
(Khan et al., 2014; Suvitaival et al., 2014), a regularized version of CCA (RCCA) (González
et al., 2008), sparse CCA (SCCA) (Witten and Tibshirani, 2009), and Bayesian joint factor
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analysis (JFA) (Ray et al., 2014). We also included the linear version of a flexible non-linear
model, manifold relevance determination (MRD) (Damianou et al., 2012). To evaluate the
sensitivity of BASS to initialization, we compared three different initialization methods:
random initialization (EM), 50 iterations of MCMC (MCMC-EM), and 20 iterations of
PX-EM (PX-EM); each of these were followed with EM until convergence, reached when
both the number of non-zero loadings do not change for t iterations and the log likelihood
changes < 1× 10−5 within t iterations. We performed 20 runs for each version of inference
in BASS: EM, MCMC-EM, and PX-EM. In Sim1 and Sim3, we set the initial number of
factors to k = 10. In Sim2, Sim4, Sim5, and Sim6, we set the initial number of factors to
15.

The GFA model (Klami et al., 2013) uses an ARD prior to encourage column-wise
shrinkage of the loading matrix, but not sparsity within the loadings. The computational
complexity of this GFA model with variational updates is O(k3m + k2p + k2n + kpn) per
iteration, which is nearly identical to BASS but includes an additional factor m, the number
of observations, scaling the k3 term. In our simulations, we ran the GFA model with the
factor number set to the correct value.

The sGFA model (Khan et al., 2014) encourages element-wise sparsity using independent
ARD priors on loading elements. Loading columns are modeled with a spike-and-slab type
mixture to encourage column-wise sparsity. Inference is performed with a Gibbs sampler
without using block updates. Its complexity is O(k3 + k2pn) per iteration, which, when k
is large, will dominate the per-iteration complexity of BASS; furthermore, Gibbs samplers
typically require greater numbers of iterations than EM-based methods. We ran the sGFA
model with the correct number of factors in our six simulations.

We ran the regularized version of classical CCA (RCCA) for comparison in Sim1 and
Sim2 (González et al., 2008). Classical CCA tries to find k canonical projection directions
uh and vh (h = 1, . . . , k) for Y (1) and Y (2) respectively such that i) the correlation between
uThY

(1) and vThY
(2) is maximized for h = 1, . . . , k; and ii) uTh′Y

(1) is orthogonal to uThY
(1)

with h′ 6= h, and similarly for vh and Y (2). Let these two projection matrices be denoted
U = [u1, . . . ,uk] ∈ Rp1×k and V = [v1, . . . ,vk] ∈ Rp2×k. These matrices are the maximum
likelihood estimates of the shared loading matrices in the Bayesian CCA model up to or-
thogonal transformations (Bach and Jordan, 2005). However, classical CCA requires the
observation covariance matrices to be non-singular and thus is not applicable in the current
simulations where n < p1, p2.

Here, we used a regularized version of CCA (RCCA) (González et al., 2008), which
regularizes CCA using an `2-type penalty by adding λ1Ip1 and λ2Ip2 to the two sample
covariance matrices. The effect of this penalty is not to induce sparsity but instead to
allow application to p� n data sets. The two regularization parameters (λ1 and λ2) were
chosen according to leave-one-out cross-validation with the search space defined on a 11×11
grid from 0.0001 to 0.01. The projection directions U and V were estimated using the best
regularization parameters. We let Λ′ = [U ;V ]; this matrix was comparable to the simulated
loading matrix up to orthogonal transformations. We calculated the matrix P such that the
Frobenius norm between Λ′P T and simulated Λ was minimized, with the constraint that
P TP = I. This was done by the constraint-preserving updates of the objective function
(Wen and Yin, 2013). After finding the optimal orthogonal transformation matrix, we
recovered Λ′P T as the estimated loading matrix. We set the number of projections to
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6 and 8 in Sim1 and Sim2, respectively, representing the true number of latent factors.
RCCA does not apply to multiple coupled observations, and therefore it was not included
in further simulations.

The sparse CCA (SCCA) method (Witten and Tibshirani, 2009) maximizes correlation
between two observations after projecting the original space with a sparsity-inducing penalty
onto the latent components, producing sparse matrices U and V . This method is encoded
in the R package PMA (Witten et al., 2013). For Sim1 and Sim2, as with RCCA, we found an
optimal orthogonal transformation matrix P such that the Frobenius norm between ΛSP

T

and simulated Λ was minimized, where ΛS was the vertical concatenation of the recovered
sparse U and V . We chose 6 and 8 sparse projections in Sim1 and Sim2, respectively,
representing the true number of linear factors. Because both RCCA and SCCA are both
deterministic and greedy, the results for k < 6 are all implicitly available by subsetting the
factors in the k = 6 results.

An extension of SCCA allows for multiple observations (Witten and Tibshirani, 2009).
For Sim3 and Sim4, we recovered four sparse projection matrices U (1),U (2),U (3),U (4),
and for Sim5 and Sim6, we recovered ten projection matrices. ΛS was calculated with the
concatenation of those projection matrices. Then the orthogonal transformation matrix P
was calculated similarly by minimizing the Frobenius norm between ΛSP

T and the true
loading matrix Λ. The number of canonical projections was set to 6 in Sim3, 8 in Sim4
and Sim5, and 10 in Sim6, corresponding to the true number of latent factors.

The Bayesian joint factor analysis model (JFA) (Ray et al., 2014) puts an Indian buffet
process (IBP) prior (Griffiths and Ghahramani, 2011) on the factors, inducing element-wise
sparsity, and an ARD prior on the variance of the loadings. The idea of putting an IBP on
a latent factor model, which gives desirable nonparametric behavior in the number of latent
factors and also produces element-wise sparsity in the loading matrix, was described for the
Nonparametric Sparse Factor Analysis (NSFA) model (Knowles and Ghahramani, 2011).
Similarly, in JFA, element-wise sparsity is encouraged both in the factors and in the loadings.
JFA partitions latent factors into a fixed number of observation-specific factors and factors
shared by all observations, and does not include column-wise sparsity. Its complexity is
O(k3 + k2pn) per iteration of the Gibbs sampler. We ran JFA on our simulations with the
number of factors set to the correct values. Because the JFA model uses a sparsity-inducing
prior instead of an independent Gaussian prior on the latent factors, the resulting model
does not have a closed form posterior predictive distribution (Equation 13); therefore, we
excluded the JFA model from prediction results.

The non-linear manifold relevance determination (MRD) model (Damianou et al., 2012)
extends the notable Gaussian process latent variable (GPLVM) model (Lawrence, 2005) to
include multiple observations. A GPLVM puts a Gaussian process prior on the latent
variable space. GPLVM has an interpretation of a dual probabilistic PCA model that
marginalizes loading columns using Gaussian priors. MRD extends GPLVM by putting
multiple weight vectors on the latent variables using a Gaussian process kernel. Each of
the weight vectors corresponds to one observation, therefore they determine a soft partition
of latent variable space. The complexity of MRD is quadratic in the number of samples
n per iteration using a sparse Gaussian process. Posterior inference and prediction using
the MRD model was performed with Matlab package vargplvm (Damianou et al., 2012).
We used the linear kernel with feature selection (i.e., Linard2 kernel), meaning that we
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used the linear version of this model for a fair comparison. We ran the MRD model on our
simulated data with the correct number of factors.

We summarize the parameter choices for all methods here:

sGFA: We used the getDefaultOpts function in the sGFA package to set the default pa-
rameters. In particular, the ARD prior was set to Ga(10−3, 10−3). The prior on the
inclusion probabilities was set to beta(1, 1). Total MCMC iterations were set to 105

with sampling iterations set to 1, 000 and thinning steps set to 5.

GFA: We used the getDefaultOpts() function in the GFA package to set the default pa-
rameters. In particular, the ARD prior for both loading and error variance was set
to Ga(10−14, 10−14). The maximum iteration parameter was set to 105, and the
“L-BFGS” optimization method was used.

RCCA: The regularization parameter was chosen using leave-one-out cross-validation on an
11× 11 grid from 0.0001 to 0.01 using the function estim.regul in the CCA package.

SCCA: We used the PMA package with Lasso penalty (the typex and typez parameters in the
function CCA were set to “standard”). This corresponds to setting the `1 bound of the
projection vector to 0.3

√
pw for w = 1, 2.

JFA: The ARD priors for both the loading and factor scores were set to Ga(10−5, 10−5).
The parameters of the beta process prior were set to α = 0.1 and c = 104. The
MCMC iterations were set to 1, 000 with 200 iterations of burn-in. As is the default
settings, we did not thin the chain.

MRD: We used the svargplvm_init function in the GPLVM package to initialize parameters.
The linar2 kernel was chosen for all observations. Latent variables were initialized
by concatenating the observation matrices first (the ‘concatenated’ option) and then
performing PCA. Other parameters were set by svargplvm_init with default options.

6.3 Metrics for comparison

To compare the results of BASS with the alternative methods, we used the sparse and
dense stability indices (Gao et al., 2013) to quantify the distance between the simulated
loadings and the recovered loadings. The sparse stability index (SSI) measures the similarity
between columns of sparse matrices. SSI is invariant to column scale and label switching,
but it penalizes factor splitting and matrix rotation; larger values of SSI indicate better
recovery. Let C ∈ Rk1×k2 be the absolute correlation matrix of columns of two sparse
loading matrices. Then SSI is calculated by

SSI =
1

2k1

k1∑
h1=1

(
max(ch1,·)−

∑k2
h2=1 I(ch1,h2 > ch1,·)ch1,h2

k2 − 1

)

+
1

2k2

k2∑
h2=1

(
max(c·,h2)−

∑k1
h1=1 I(ch1,h2 > c·,h2)ch1,h2

k1 − 1

)
.
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The dense stability index (DSI) quantifies the difference between dense matrix columns,
and is invariant to orthogonal matrix rotation, factor switching, and scale; DSI values closer
to zero indicate better recovery. Let M1 and M2 be the dense matrices. DSI is calculated
by

DSI =
1

p2
tr(M1M

T
1 −M2M

T
2 ).

We extended the stability indices to allow multiple coupled observations as in our simu-
lations. In Sim1, Sim3, and Sim5, all factors are sparse, and SSIs were calculated between
the true sparse loading matrices and recovered sparse loading matrices. In Sim2, Sim4, and
Sim6, because none of the methods other than BASS explicitly distinguished sparse and
dense factors, we categorized each recovered factor as follows. We first selected a global
sparsity threshold on the elements of the combined loading matrix; here we set that value
to 0.15. Elements below this threshold were set to zero in the loading matrix. Then we
chose the first five loading columns with the fewest non-zero elements as the sparse loadings
in Sim2, first four such loadings as the sparse loadings in Sim4, and first six such loadings
as sparse in Sim6. The remaining loading columns were considered dense loadings and were
not zeroed according to the global sparsity threshold. We found that varying the sparsity
threshold did not affect the separation of sparse and dense loadings significantly across
methods. SSIs were then calculated for the true sparse loading matrix and the recovered
sparse loadings across methods.

To calculate DSIs, we treated the loading matrices Λ(w) for each observation separately,
and calculated the DSI for the recovered dense components of each observation. The DSI
for each method was the sum of the m separate DSIs. Because the loading matrix is
marginalized out in MRD (Lawrence, 2005), we excluded MRD from this comparison.

We further evaluated the prediction performance of BASS and other methods. In the

BASS model (Equation 6), the joint distribution of any one observation y
(w)
i and all other

observations y
(−w)
i can be written as(

y
(w)
i

y
(−w)
i

)
∼ N

[(
0
0

)
,

(
Λ(w)(Λ(w))T + Σ(w) Λ(w)(Λ(−w))T

Λ(−w)(Λ(w))T Λ(−w)(Λ(−w))T + Σ(−w)

)]
,

where Λ(−w) and Σ(−w) are the loading matrix and residual covariance excluding the wth

observation. Therefore, the conditional distribution of y
(w)
i is a multivariate response in a

multivariate linear regression model, where y
(−w)
i are the predictors; the mean term takes

the form

E(y
(w)
i |y

(−w)
i ) = Λ(w)(Λ(−w))T

(
Λ(−w)(Λ(−w))T + Σ(−w))−1y(−w)i

=
k∑

h=1

λ
(w)
·h (λ

(−w)
·h )T

(
Λ(−w)(Λ(−w))T + Σ(−w))−1y(−w)i . (13)

We used this conditional distribution to predict specific observations given others. For
the six simulations, we used the simulated data as training data for training sample sizes
nt = {30, 50}, and, additionally, simulated data sets with training sample sizes nt =
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EM MCMC-EM PX-EM

Sim1 79.17% 99.17% 91.67%
Sim2 61.25% 93.75% 85.62%
Sim3 50.00% 78.57% 73.57%
Sim4 62.78% 86.11% 82.78%
Sim5 17.22% 86.67% 66.67%
Sim6 13.64% 60.45% 62.73%

Table 4: Percentage of latent factors correctly identified across 20 runs with
n = 40. The columns represent the runs of EM, EM initialized with MCMC (MCMC-EM),
and EM initialized with PX-EM.

{10, 100, 200}. Then, we generated ns = 200 samples as test data using the true model
parameters, simulating the corresponding test data factors X ∼ N (0, 1). For each simu-
lation study, we chose at least one observation in the test data as the response and used
the other observations and model parameters estimated from the training data to perform
prediction. Mean squared error (MSE) was used to evaluate the prediction performance.

For Sim1 and Sim2, y
(2)
i was the response; for Sim3 and Sim4, y

(3)
i was the response; and

for Sim5 and Sim6, y
(8)
i , y

(9)
i and y

(10)
i were the responses.

6.4 Results of the simulation comparison

We first evaluated the performance of BASS and the other methods in terms of recovering
the correct number of sparse and dense factors in the six simulations (Figures S3-S8). We
calculated the percentage of correctly identified factors across 20 runs in the simulations
with n = 40 (Table 4). Qualitatively, BASS recovered the closest matches to the simulated
loading matrices across all methods (Figures 3, S1, S2). The correctly estimated loading
matrices by the three different BASS initializations produced similar results; we only plot
matrices from the PX-EM method.

6.4.1 Results on simulations with two observations (CCA)

Comparing results with two observations (Sim1 and Sim2 ), our model produced the best
SSIs and DSIs among all methods across all sample sizes (Figures 4). sGFA’s performance
was limited for these simulations because the ARD prior does not produce sufficient element-
wise sparsity, resulting in low SSIs (Figure 4). As a consequence of not matching sparse
loadings well, sGFA had difficulty recovering dense loadings, especially with small sample
sizes (Figure 4). GFA had difficulty recovering sparse loadings because of column-wise ARD
priors with the same limitation (Figure 3, Figure 4). Its dense loadings were indirectly
affected by the lack of sufficient sparsity for small sample sizes (Figure 4). RCCA also had
difficulty in the two simulations because the recovered loadings were not sufficiently sparse
using the `2-type penalty (Figure 3).

SCCA recovered shared sparse loadings well in Sim1 (Figure 3). However SCCA does
not model local covariance structure, and therefore was unable to recover the sparse loadings
specific to either of the observations in Sim1 (Figure 3A) resulting in poor SSIs (Figure
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Figure 3: Simulation results with two paired observations. We reordered the columns
of the recovered matrices and, where necessary, multiplied columns by −1 for easier visual
comparisons. Horizontal lines separate the two observations. Panel A: Comparison of the
recovered loading matrices using different models on Sim1. Panel B: Comparison of the
recovered loading matrices using different models on Sim2.
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Figure 4: Comparison of stability indices on recovered loading matrices with
two observations. Each stability index is plotted across 20 runs. For SSI, a larger value
indicates better recovery; for DSI, a smaller value indicates better recovery. The boundaries
of the box are the first and third quartiles. The line extends to the highest and lowest
observations that are within 1.5 times the distance of the first and third quartiles beyond
the box boundaries.

4). Adding dense loadings deteriorated the performance of SCCA (Figures 3B, 4). The
JFA model did not recover the true loadings matrix well because of insufficient sparsity in
the loadings and additional sparsity in the factors (Figure 3). The SSIs and DSIs for JFA
reflect this data-model mismatch (Figure 4).

We next evaluated the predictive performance of these methods for two observations. In
Sim1, SCCA achieved the best prediction accuracy in three training sample sizes (Table 5).
We attribute this to SCCA recovering well the shared sparse loadings (Figure 3) because the
prediction accuracy is only a function of the shared loadings. Note (Equation 13) that zero
columns in either Λ(w) or Λ(−w) decouple the contribution of the corresponding factors to

the prediction of y
(w)
i . In Sim2, shared sparse and dense factors contribute to the prediction

performance, and BASS achieved the best prediction accuracy (Table 5).

6.4.2 Results on simulations with four observations (GFA)

For simulations with four observations (Sim3 and Sim4 ), BASS correctly recovered sparse
and dense factors and their active observations (Figure S1). sGFA achieved column-wise
sparsity for two observations; however, sparsity levels within factors were insufficient to
match the simulations. GFA results produced insufficient column-wise sparsity: columns
with zero values were not effectively removed (Figure S1B). Element-wise shrinkage in GFA
was less effective than either BASS or sGFA (Figure S1). The results of SCCA and JFA
did not match the true loading matrices for the same reasons as in Sim1 and Sim2 (Figure
S1). The results using stability indices showed that BASS produced the best SSIs and DSIs
across models and almost all sample sizes (Figure 5). sGFA achieved similar SSI values
in Sim3 with n = 40 compared to BASS EM, but showed worse performance for BASS
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BASS

nt
EM MCMC-EM PX-EM sGFA GFA SCCA RCCA MRD-lin

Err SD Err SD Err SD Err SD Err SD Err Err Err SD

Sim1

10 1.00 0.024 1.03 0.024 1.02 0.028 1.00 <1e-3 0.98 0.002 0.88 1.01 1.08 0.024
30 0.90 0.022 0.88 0.001 0.88 0.003 0.92 0.005 0.93 0.002 0.88 0.97 1.00 0.016
50 0.88 0.011 0.87 0.003 0.88 0.014 0.90 0.004 0.92 0.002 0.88 0.92 0.98 0.028
100 0.88 0.010 0.87 0.001 0.87 0.005 0.89 0.003 0.89 <1e-3 0.87 0.91 0.97 0.016
200 0.88 0.007 0.87 0.004 0.87 0.005 0.88 0.001 0.88 <1e-3 0.87 0.95 1.16 0.202

Sim2

10 0.80 0.161 0.82 0.162 0.68 0.003 0.74 0.043 0.89 0.023 0.86 0.72 1.14 0.002
30 0.72 0.092 0.72 0.097 0.67 0.016 0.67 0.014 0.66 0.006 0.86 0.70 1.15 0.034
50 0.71 0.155 0.70 0.155 0.65 0.105 0.63 0.009 0.67 <1e-3 0.85 0.72 1.17 0.009
100 0.63 0.066 0.61 0.013 0.62 0.013 0.62 0.005 0.61 0.001 0.85 0.75 1.13 0.013
200 0.65 0.099 0.61 0.012 0.63 0.020 0.62 0.007 0.61 0.002 0.85 0.81 1.55 0.591

Table 5: Prediction accuracy with two observations on ns = 200 test samples. Test

samples y
(2)
i are treated as the response, and training samples y

(1)
i are used to estimate

parameters in order to predict the response. Prediction accuracy is measured by mean

squared error (MSE) between simulated y
(1)
i and E(y

(1)
i |y

(2)
i ). Values presented are the

mean MSE (Err) and standard deviation (SD) across 20 runs of each method. If SD is
missing for a method, then that method was deterministic.

BASS

nt
EM MCMC-EM PX-EM sGFA GFA SCCA MRD-lin

Err SD Err SD Err SD Err SD Err SD Err Err SD

Sim3

10 1.03 0.044 1.02 0.019 1.01 0.010 1.00 <1e-3 0.97 0.001 1.00 1.00 <1e-3
30 0.91 0.049 0.87 0.016 0.88 0.007 0.90 0.007 0.93 0.003 1.00 0.99 0.021
50 0.85 0.019 0.85 <1e-3 0.87 0.038 0.87 0.005 0.88 0.002 1.01 1.04 0.095
100 0.85 0.019 0.84 0.002 0.84 0.003 0.86 0.004 0.87 0.001 1.11 0.92 0.014
200 0.84 0.001 0.84 <1e-3 0.84 0.004 0.84 0.001 0.83 0.001 1.13 1.16 0.140

Sim4

10 1.05 0.095 1.03 0.094 1.10 0.138 1.00 <1e-3 1.32 0.029 1.35 1.98 0.067
30 0.97 0.020 0.95 0.015 0.96 0.013 0.97 0.007 1.03 0.003 1.40 1.50 0.090
50 0.94 0.013 0.93 0.005 0.94 0.012 0.95 0.005 1.02 0.017 1.40 1.50 0.084
100 0.93 0.015 0.93 0.007 0.93 0.010 0.94 0.003 0.96 <1e-3 1.51 1.47 0.088
200 0.91 0.029 0.92 0.022 0.89 0.047 0.93 0.001 0.89 0.001 1.77 1.58 0.132

Table 6: Prediction accuracy with four observations on ns = 200 test samples.

Test samples y
(3)
i are treated as the response, and training samples y

(1)
i , y

(2)
i , and y

(4)
i

are used to estimate parameters in order to predict the response. Prediction accuracy is

measured by mean squared error (MSE) between simulated y
(3)
i and E(y

(3)
i |y

(1)
i ,y

(2)
i ,y

(4)
i ).

Values presented are the mean MSE (Err) and standard deviation (SD) across 20 runs
of each method. Standard deviation (SD) is missing for SCCA because the method is
deterministic.

MCMC-EM and PX-EM. The advantage of BASS relative to the other methods is apparent
in these SSI comparisons, which specifically highlight interpretability and robust recovery
of this type of latent structure (Figure 5).

In the context of prediction using four observation matrices, BASS achieved the best

prediction performance with y
(3)
i as the response and the remaining observations as pre-

dictors (Table 6). In particular, the MCMC-initialized EM approach had the best overall
prediction performance across methods for these two simulations.

6.4.3 Results on simulations with ten observations (GFA)

When we increased the number of observations to ten (Sim5 and Sim6 ), BASS still cor-
rectly recovered the sparse and dense factors and their active observations (Figure S2).
sGFA effectively performed column-wise selection although element-wise sparsity remained
inadequate (Figure S2). GFA did not recover sufficient column-wise or element-wise spar-
sity (Figure S2). SCCA and JFA both failed to recover the true loading matrices (Figure
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Figure 5: Comparison of stability indices on recovered loading matrices with
four observations. Each stability index is plotted across 20 runs. For SSI, a larger
value indicates better recovery; for DSI, a smaller value indicates better recovery. The
boundaries of the box are the first and third quartiles. The line extends to the highest and
lowest values that are within 1.5 times the distance of the first and third quartiles beyond
the box boundaries.

BASS

nt
EM MCMC-EM PX-EM sGFA GFA SCCA MRD-lin

Err SD Err SD Err SD Err SD Err SD Err Err SD

Sim5

10 1.01 0.020 1.00 0.011 1.00 0.007 0.99 0.008 1.00 0.002 0.99 1.49 0.001
30 0.88 0.031 0.86 0.018 0.87 0.028 0.89 0.005 0.90 0.002 0.99 1.01 0.035
50 0.86 0.023 0.85 <1e-3 0.86 0.022 0.87 0.003 0.88 0.001 0.99 0.97 0.020
100 0.85 0.007 0.85 <1e-3 0.85 0.002 0.86 0.003 0.87 0.001 1.01 0.92 0.039
200 0.85 0.006 0.84 <1e-3 0.84 <1e-3 0.84 0.001 0.83 0.001 0.96 1.06 0.105

Sim6

10 0.61 0.164 0.57 0.116 0.51 0.031 0.58 0.012 0.75 0.011 0.97 1.00 <1e-3
30 0.49 0.160 0.40 0.093 0.38 0.007 0.43 0.006 0.40 0.005 0.98 0.46 0.006
50 0.44 0.099 0.39 0.011 0.39 0.004 0.41 0.002 0.40 0.001 1.01 0.42 0.009
100 0.39 0.033 0.39 0.004 0.39 0.011 0.39 0.002 0.39 0.001 0.97 0.52 0.249
200 0.38 0.003 0.38 0.001 0.38 0.001 0.39 0.001 0.39 0.001 1.01 0.40 0.020

Table 7: Prediction mean squared error with ten observations on ns = 200 test

samples. Test samples y
(8)
i ,y

(9)
i and y

(10)
i are treated as the response and the rest of

the observations are used as the training data to estimate parameters used to predict the
response. Prediction accuracy is measured by mean squared error (MSE) between simulated
responses and predicted responses. Values presented are the mean MSE (Err) and standard
deviation (SD) across 20 runs of each method. Standard deviation (SD) is missing for SCCA
because the method is deterministic.

S2). For the stability indices, BASS with MCMC-EM and PX-EM produced the best SSIs
in Sim5 across all methods and for almost all sample sizes (Figures 6). Here sGFA achieved
equal or better SSIs than BASS EM, highlighting the sensitivity of BASS EM to initial-
izations. GFA had equivalent or worse SSIs than BASS EM. In this pair of simulations,
the advantages of BASS for flexible and robust column-wise and element-wise shrinkage are
apparent (Figures 6). BASS also achieved the best prediction performance in Sim5 and
Sim6 with ten observations (Table 6).
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Figure 6: Comparison of stability indices on recovered loading matrices with
ten observations. Each stability index is plotted across 20 runs. For SSI, a larger value
indicates better recovery; for DSI, a smaller value indicates better recovery. The boundaries
of the box are the first and third quartiles. The line extends to the highest and lowest value
within 1.5 times the distance of the first and third quartiles beyond the box boundaries.

Across the three BASS methods, MCMC-EM had the most accurate performance across
nearly all simulation settings. However, this performance boost comes with the price of
running a small number of Gibbs sampling iterations with complexity of O(k3p+k2pn) per
iteration. When p is large, even a few iterations are computationally infeasible. PX-EM, on
the other hand, has the same complexity as EM, and showed robust and accurate simulation
results relative to EM. In the following real applications, we used BASS EM initialized with
a small number of iterations of PX-EM.

7. Applying BASS to Mulan Library, genomics data, and text analysis

In this section we considered three real data applications of BASS. In the first application,
we evaluated the prediction performance for multiple correlated response variables in the
Mulan Library (Tsoumakas et al., 2011). In the second application, we applied BASS to
gene expression data from the Cholesterol and Pharmacogenomic (CAP) study. The data
consist of expression measurements for about ten thousands genes in 480 lymphoblastoid
cell lines (LCLs) under two experimental conditions (Mangravite et al., 2013; Brown et al.,
2013). BASS was used to detect sparse covariance structures specific to each experimental
condition. In the third application, we applied BASS to approximately 20, 000 newsgroup
posts to 20 newsgroups (Joachims, 1997) in order to perform multiclass classification.

7.1 Multivariate response prediction: The Mulan Library

The Mulan Library consists of multiple data sets collected for the purpose of evaluating
multi-label predictions (Tsoumakas et al., 2011). This library was used to test the Bayesian
CCA model (GFA in our simulations) for multi-label prediction vectors converted to multi-
ple binary label vectors (one-hot encoding) (Klami et al., 2013). There are two observations
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(m = 2): the matrix of labels were treated as one observation (Y (1)) and the features were
treated as another (Y (2)). Recently Mulan added multiple regression data sets with contin-
uous variables. We chose ten benchmark data sets from the Mulan Library. Four of them
(bibtex, delicious, mediamill, scene) have binary responses and were studied pre-
viously (Klami et al., 2013). Another six data sets (rf1, rf2, scm1d, scm20d, atp1d,

atp7d) have continuous responses (Table 8). For all data sets, we removed features with
identical values for all samples in the training set as uninformative. For the continuous
response data sets, for each value, we subtracted the mean and divided by the standard
deviation of each feature.

We ran BASS, sGFA, GFA, and MRD-lin on the ten data sets, and compared the
results using prediction accuracy. For data sets with binary labels, we quantified prediction
error using the Hamming loss between the predicted labels and true labels. The predicted
labels on the test samples were calculated using the same thresholding rules as in earlier
work (Klami et al., 2013). The value of the threshold was chosen so that the Hamming loss
between the estimated labels and the true labels in the training set was minimized. We
used the R package PresenceAbsence and Matlab function perfcurve to find the thresholds
to produce binary classifications from continuous predictions. In particular, the R package
PresenceAbsence selects the threshold by maximizing the percent correctly classified, which
corresponds to minimizing the Hamming loss. For continuous variables, mean squared error
(MSE) was used to evaluate prediction accuracy. We initialized BASS with 500 factors and
50 PX-EM iterations. The other models were set to the default parameters with the number
of factors set to min(p1, p2, 50) (see Simulations for details). All methods were run 20 times,
and minimum errors were reported (Tables S1-S11).

BASS achieved the best prediction accuracy in five of the ten data sets (Table 8).
For the data sets with a binary response, sGFA produced the best performance compared
with other methods, achieving the smallest MSE in all four data sets. GFA had the most
stable results in terms of SD in the four data sets. For the continuous response, BASS
outperformed the other models in four out of six data sets. GFA again had the most stable
MSE compared with other methods. The good performance of BASS on the data sets with
continuous response variables may be attributed to the structured sparsity on the loading
matrix, achieving the intended gains in generalization error from flexible regularization.
Although the ARD prior used in GFA did not produce consistently sparse loadings, this
model generated the most stable predictive results.

7.2 Gene expression data analysis

We applied our BASS model to gene expression data from the Cholesterol and Pharma-
cogenomic (CAP) study, consisting of expression measurements for 10, 195 genes in 480
lymphoblastoid cell lines (LCLs) after 24-hour exposure to either a control buffer (Y (1)) or
2µM simvastatin acid (Y (2)) (Mangravite et al., 2013; Brown et al., 2013). In this example,
the number of observations (m = 2) represents gene expression levels on the same samples
and genes after the two different exposures. The expression levels were preprocessed to ad-
just for experimental traits (batch effects and cell growth rate) and clinical traits of donors
(age, BMI, smoking status, and sex). We projected the adjusted expression levels to the
quantiles of a standard normal within gene to control for outlier effects and applied BASS
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Data Set p1 p2 nt ns
BASS sGFA GFA MRD-lin

Err SD Err SD Err SD Err SD

bibtex 1836 159 4880 2515 0.014 0.001 0.014 0.001 0.014 <1e-3 0.014 0.001
delicious 983 500 12920 3185 0.016 0.001 0.016 <1e-3 0.017 <1e-3 0.020 <1e-3
mediamill 120 101 30993 12914 0.032 0.001 0.032 0.005 0.034 <1e-3 0.043 <1e-3
scene 294 6 1211 1196 0.131 0.016 0.123 0.029 0.130 0.002 0.138 0.026

rf1 64 8 4108 5017 0.292 0.050 0.390 0.008 0.309 <1e-3 0.370 0.146
rf2 576 8 4108 5017 0.271 0.027 0.478 0.004 0.427 0.001 0.438 0.160
scm1d 280 16 8145 1658 0.211 0.005 0.225 0.028 0.213 <1e-3 0.212 0.163
scm20d 61 16 7463 1503 0.650 0.015 0.538 0.006 0.720 0.002 0.608 0.033
atp1d 370 6 237 100 0.176 0.032 0.208 0.006 0.201 0.001 0.219 0.113
atp7d 370 6 196 100 0.597 0.063 0.537 0.015 0.537 0.003 0.545 0.049

Table 8: Multi-variate response prediction in the Mulan library. p1: the number
of features; p2: the number of responses; nt: the number of training samples; ns: the
number of test samples. The first four data sets have binary responses, and the final six are
continuous responses. For binary responses, error (Err) is evaluated using Hamming loss
between predicted labels and test labels in test samples. For continuous responses, mean
squared error (MSE) is used to quantify error. Values shown are the minimum Hamming
loss or MSE across 20 runs, and the standard deviation (SD).

with the initial number of factors set to k = 2, 000. We performed parameter estimation 100
times on these data with 100 iterations of PX-EM to initialize EM. Across these 100 runs,
the estimated number of recovered factors was approximately 870 (Table S2), with only a
few dense factors (Table S12) likely due to the adjustments made in the preprocessing step.
The total percentage of variance explained (PVE) by the recovered latent structure was
14.73%, leaving 85.27% of the total variance to be captured in the residual error.

We computed the PVE of the sparse factors alone (Figure S9A). The PVE for the
hth factor was calculated as the variance explained by the hth factor divided by the total
variance: tr(λ·hλ

T
·h)/tr(ΛΛT + Σ). Shared sparse factors explained more variance than

observation-specific sparse factors, suggesting that variation in expression levels across genes
was driven by structure shared across the exposures to a greater degree than by exposure-
specific structure. Moreover, 87.5% of the observation-specific sparse factors contained
fewer than 100 genes, and 0.7% had more than 500 genes. The shared sparse factors had,
on average, more genes than the observation-specific factors: 72% shared sparse factors had
fewer than 100 genes, and 4.5% had more than 500 genes. (Figure S9B).

The sparse factors specific to each observation characterized the local sparse covariance
estimates. As we pursue more carefully elsewhere (Gao et al., 2014), we used observation-
specific sparse factors to a construct a gene co-expression network that is uniquely found
in the samples from that exposure while explicitly controlling for shared covariance across
exposures (Zou et al., 2013). The problem of constructing condition specific co-expression
networks has been studied by both machine learning and computational biology communi-
ties (Li, 2002; Ma et al., 2011). BASS provides an alternative approach to solve this problem.

We denote B
(w)
s as the sparse loadings in B(w) (w ∈ {1, 2}) and X

(w)
s as the factors corre-

sponding to sparse loadings for observation w. Then, Ω
(w)
s = B

(w)
s V ar(X

(w)
s )(B

(w)
s )T+Σ(w)

represents the regularized estimate of the covariance matrix specific to each observation after
controlling for the contributions of the dense factors.
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In our model, V ar(X
(w)
s ) = I, and so the covariance matrix becomes Ω

(w)
s = B

(w)
s (B

(w)
s )T+

Σ(w). We inverted this positive definite covariance matrix to get a precision matrix R(w) =

(Ω
(w)
s )−1. The partial correlation between gene j1 and j2, representing the correlation

between the two features conditioned on the remaining features, is then calculated by nor-
malizing each entry in the precision matrix (Edwards, 2000; Schäfer and Strimmer, 2005):

ρ
(w)
j1j2

= −
r
(w)
j1j2√

r
(w)
j1j1

r
(w)
j2j2

.

A partial correlation that is (near) zero for two genes (j1, j2) suggests that they are condi-
tionally independent; non-zero partial correlation implies a direct relationship between two
genes, and a network edge is added between the genes. The resulting undirected network
is an instance of a Gaussian Markov random field, also known as a Gaussian graphical
model (Edwards, 2000; Koller and Friedman, 2009). We note that BASS was the only
method that enables construction of a condition specific network: sGFA could not be ap-
plied to data of this magnitude, GFA did not shrink the column selection sufficiently to
recover sparsity in the condition specific covariance matrix, and SCCA only recovers shared
sparse projections.

We used the following method to combine the results of 100 runs to construct a single
observation-specific gene co-expression network for each observation. For each run, we first
constructed a network by connecting genes with partial correlation greater than a threshold
(0.01). Then we combined the 100 run-specific networks to construct a single network by
removing all network edges that appeared in fewer than 50 (50%) of the networks. The
two observation-specific gene co-expression networks contained 160 genes and 1, 244 edges
(buffer treated, Figure 7A), and 154 genes and 1, 030 edges (statin-treated, Figure 7B),
respectively.

7.3 Twenty newgroups analysis

In this application, we used BASS and related methods for multiclass classification in the
20 Newsgroups data (Joachims, 1997). The documents were processed so that duplicates
and headers were removed, resulting 18, 846 documents. The data were downloaded using
the scikit-learn Python package (Pedregosa et al., 2011). We converted the raw data
into TF-IDF feature vectors and selected 319 words using SVM feature selection from
scikit-learn. One document had a zero vector across the subset of vocabulary words
and was removed. We held out 10 documents at random from each newsgroup as test data
(Table S14).

We applied BASS to the transposed data matrices with the 20 newsgroups as 20 ob-
servations. We set the initial number of factors to k = 1, 000 and ran EM 100 times from
random starting points, each with 100 initial PX-EM iterations. There were on average 820
factors recovered across the runs.

To analyze the newsgroup-specific words, we calculated the Pearson correlation of each
estimated loading and newsgroup indicator vectors consisting of ones for all of the documents
in one newsgroup and zeros for documents in the other groups. Then, for each newsgroup,
the loadings with the ten largest absolute value correlation coefficients were used to find the
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Figure 7: Observation-specific gene co-expression networks from the CAP data.
The two networks represent the co-expressed genes specific to buffer-treated samples (Panel
A) and statin-treated samples (Panel B). The node size is scaled according to the number
of shortest paths from all vertices to all others that pass through that node (betweenness
centrality).

ten words with the largest absolute value factor scores. The results from one run include,
for example, the rec.autos newsgroup with ‘car’, ‘dealer’ and ‘oil,’ as top words, and the
rec.sport.baseball newsgroup with ‘baseball’, ‘braves,’ and ‘runs’ as top words (Table
9).

We further partitioned the newsgroups into six classes according to subject matter to
analyze the top words across newsgroups subgroups (Table 10). As above, we calculated
the Pearson correlation with the binary indicator vectors for documents in newsgroup sub-
groups, and we analyzed the top ten words in the ten factors with largest absolute value
correlation coefficients with these subsets of newsgroups (Table 10). We found, for example,
that the newsgroups talk.religion.misc, alt.atheism and soc.religion.christian

had ‘god’, ‘bible’ and ‘christian’ as top shared words. Examining one of the selected shared
loadings for this newsgroup subgroup (Figure 8A), we noticed that documents outside of
these three newsgroups, for the most part, have negligible loadings. This analysis highlights
the ability of BASS to recover meaningful shared structure among 20 observations.
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alt.atheism comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware

islam atheism graphics polygon windows file ide drive mac powerbook
keith mathew 3d gif thanks go scsi motherboard apple quadra

okcforum atheists tiff images of dos controller thanks quadra iisi
atheism livesey image format cica microsoft vlb ide duo centris
livesey of image pov dos the bios isa centris mac

comp.windows.x misc.forsale rec.autos rec.motorcycles rec.sport.baseball

window mit sale offer car dealer dod bmw baseball hitter
motif lcs sale forsale cars oil bike riding braves ball
server motif for the engine toyota motorcycle bikes runs year
widget xterm sell shipping ford eliot ride dod phillies players

lcs code condition offer cars cars bike bike sox players

rec.sport.hockey sci.crypt sci.electronics sci.med sci.space

hockey bruins encryption crypto circuit radio geb msg it people
nhl pens clipper nsa voltage copy medical doctor space orbit

game detroit chip nsa amp battery diet disease for henry
team season key pgp electronics tv cancer geb digex moon
leafs espn des tapped audio power photography doctor for shuttle

soc.religion.christian talk.politics.guns talk.politics.mideast talk.politics.misc talk.religion.misc

god sin atf fbi israeli israeli cramer government sandvik morality
clh bible firearms stratus jews armenians optilink drugs koresh jesus

church petch guns batf israel armenian kaldis president sandvik religion
christian mary gun stratus arab jake clinton br bible god
heaven church handheld waco armenians jewish cramer tax christian objective

Table 9: Most significant words in the newsgroup-specific factors for 20 newsgroups. For each newsgroup, we include
the top ten words in the newsgroup-specific components.
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Newsgroup classes Top ten shared words Newsgroup classes Top ten shared words

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

windows dos

misc.forsale

sale shipping
thanks mac sell ca

graphics go condition wanted
file scsi offer thanks

window server forsale edu

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

dod baseball

talk.politics.misc

talk.politics.guns

talk.politics.mideast

government it
car ride israeli israel
bike cars jews gun

motorcycle bmw atf guns
game team firearms batf

sci.crypt

sci.electronics

sci.med

sci.space

clipper henry

talk.religion.misc

alt.atheism

soc.religion.christian

god bible
encryption orbit bible heaven

space people christian sandvik
chip circuit clh faith
digex voltage jesus church

Table 10: Top ten words in the factors shared among specific subgroups of news-
groups. In the shared recovered components corresponding to subsets of newsgroups, we
show the ten most significant words in these shared components for six different subsets of
newsgroups.

To assess prediction quality, we used the factors estimated from the training set to
classify documents in the test set into one of 20 newsgroups. To estimate the loadings in
the test set, we left-multiplied the test data matrix by the Moore-Penrose pseudoinverse of
factors estimated from training data. This gave a rough estimate of the loading matrix for
test data. Then test labels were predicted using the ten nearest neighbors in the loading
rows estimated for the training documents. For the 200 test documents, BASS achieved
58.3% accuracy (Hamming loss; Figure 8B). Because some of the newsgroups were closely
related to each other with respect to topic, we partitioned the 20 newsgroups into six topics
according to subject matter. Then, the ten nearest neighbors were used to predict the
topic of the test data. In this experiment, BASS achieved approximately 74.12% accuracy
(Hamming loss; Figure 8C; Table S3).

8. Discussion

There exists a rich set of methods to explore latent structure in paired or multiple obser-
vations jointly (e.g., Parkhomenko et al., 2009; Witten and Tibshirani, 2009; Zhao and Li,
2012, among others). The multiple trajectories of interpretation of these approaches as
linear factor analysis models includes the original inter-battery and multi-battery models
(Browne, 1979, 1980), the probabilistic CCA model (Bach and Jordan, 2005), the sparse
probabilistic projection (Archambeau and Bach, 2009), and, most recently, the Bayesian
CCA model (Klami et al., 2013) and GFA model (Klami et al., 2014b). Only recently has
the idea of column-wise shrinkage, or group-wise sparsity, been applied to develop useful
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Figure 8: Newsgroup prediction on 200 test documents. Panel A: One factor
loading selected as shared by three newsgroups (talk.religion.misc, alt.atheism and
soc.religion.christian). Panel B: 20 Newsgroups predictions on 200 test documents
using ten nearest neighbors from loadings estimated from the training data. Panel C: Doc-
ument subgroup predictions based on six groups of similar newsgroups using ten nearest
neighbors based on loadings estimated from the training data.

models for this problem. The advantage of column-wise shrinkage is to decouple portions
of the latent space from specific observations and adaptively select the number of factors.

While the innovation of column-wise sparsity is primarily due to the ideas developed
in the Bayesian CCA model (Virtanen et al., 2011), additional layers of shrinkage were
required to create both column-wise and element-wise sparsity as is essential in real data
analyses. The most recent attempt to develop such combined effects is the sGFA model
(Khan et al., 2014) using a combination of an element-wise ARD prior with spike-and-
slab prior for column selection. In our work here, we developed the necessary Bayesian
prior and methodology framework to realize these advantages for the analysis of large data
sets. In particular, we developed a structured sparse prior using three hierarchical layers
of the three parameter beta (T PB) distribution. This carefully formulated prior combines
both column-wise and element-wise shrinkage with global shrinkage to adapt the level of
sparsity—both column-wise and element-wise—to the underlying data, creating robustness
to parameter settings that cannot be achieved using a single-layer ARD prior. The resulting
BASS model also allows sparse and dense factor loadings, which proved essential for data
scenarios that have this low-rank and sparse structure and has been pursued in classical
statistics (Chandrasekaran et al., 2009; Candès et al., 2011; Zhou et al., 2011). We showed in
the simulations that this regularization is essential for problems in the p� n data scenario,
which motivated this work. With the assumption of full column rank of dense loadings and
one single observation, our model provides a Bayesian solution to the sparse and low-rank
decomposition problem.
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Column-wise shrinkage in BASS was achieved using the observation-specific global and
column-specific T PB priors. With current parameter settings, it is equivalent to the horse-
shoe prior put on the entire column. The horseshoe prior has been shown to induce better
shrinkage effects compared to the ARD prior, the Laplace prior (Bayesian lasso), and other
similar shrinkage priors while remaining computationally tractable (Carvalho et al., 2010).
In addition, our local shrinkage encourages element-wise sparsity. A two component mixture
allows both dense and sparse factors to be recovered for any subset of observations. These
shared factors have an interpretation as a supervised low-rank projection when one obser-
vation is supervised labels (e.g., the Mulan Library data). To the best of our knowledge,
the BASS model is the first model in either the Bayesian or classical statistical literature
that is able to capture low-rank and sparse decompositions among multiple observations.

We developed three algorithms that estimate the posterior distribution of our model or
MAP parameter values. We found that EM with random initialization would occasionally
get stuck in poor local optima. This motivated the development of a fast and robust PX-
EM algorithm by introducing an auxiliary rotation matrix (Rocková and George, 2015).
Initializing EM with PX-EM enabled EM to escape from poor initializations, illustrated in
simulations. Our PX-EM and EM algorithms have better computational complexity than
two competing approaches, GFA and sGFA, allowing for large-scale data application.

Extending multiple observation linear factor models to non-linear or non-Gaussian mod-
els has been studied recently (Salomatin et al., 2009; Damianou et al., 2012; Klami et al.,
2014a; Klami, 2014). The ideas in this paper of inducing structured sparsity in the loadings
has parallels in both of these settings. For example, we may consider structured Gaussian
process kernels in the non-linear setting, where structure corresponds to known shared and
observation-specific structure. A number of issues remain, including robustness of the re-
covered sparse factors across runs, scaling these methods to current studies in genomics,
neuroscience, or text analysis, allowing for missing data, and developing approaches to
include domain-specific structure across samples or features.
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Appendix A. Markov chain Monte Carlo (MCMC) algorithm for
posterior inference

We first derive the MCMC algorithm with Gibbs sampling steps for BASS. We write the
joint distribution of the full model as

p(Y ,X,Λ,Θ,∆,Φ,T ,η,γ,Z,Σ,π)

= p(Y |Λ,X,Σ)p(X)

× p(Λ|Θ)p(Θ|∆,Z,Φ)p(∆|Φ)p(Φ|T )p(T |η)p(η|γ)

× p(Σ)p(Z|π)p(π),

where Θ = {θ(w)jh }, ∆ = {δ(w)jh }, Φ = {φ(w)h }, T = {τ (w)h }, η = {η(w)} and γ = {γ(w)} are
the collections of global-factor-local T PB prior parameters.

The full conditional distribution for latent factor xi is

xi|− ∼ Nk
(

(ΛTΣ−1Λ + I)−1ΛTΣ−1yi, (Λ
TΣ−1Λ + I)−1

)
, (14)

for i = 1, . . . , n.
For Λ, we derive the full conditional distributions of its p rows, λj· for j = 1, . . . , p,

λTj·|− ∼ Nk
(

(σ−2j XX
T +D−1j )−1σ−2j Xy

T
j·, (σ

−2
j XX

T +D−1j )−1
)
,

where

D−1j = diag

(
(θ

(wj)
j1 )I(z

(wj)

1 =1)(φ
(wj)
1 )I(z

(wj)

1 =0), . . . , (θ
(wj)
jk )I(z

(wj)

k =1)(φ
(wj)
k )I(z

(wj)

k =0)

)
,

and wj represents the observation that the jth row belongs to.

The full conditional distributions of θ
(w)
jh , δ

(w)
jh and φ

(w)
h with z

(w)
h = 1 are

θ
(w)
jh |− ∼ GIG

(
a− 1/2, 2δ

(w)
jh , (λ

(w)
jh )2

)
,

δ
(w)
jh |− ∼ Ga

(
a+ b, φ

(w)
h + θ

(w)
jh

)
,

φ
(w)
h |− ∼ Ga

pwb+ c,

pw∑
j=1

δ
(w)
jh + τ

(w)
h

 ,

where GIG is the generalized inverse Gaussian distribution.

The full conditional distribution of φ
(w)
h with z

(w)
h = 0 is

φ
(w)
h |− ∼ GIG

c− pw/2, 2τ (w)h ,

pw∑
j=1

(λ
(w)
jh )2

 .

The full conditional distributions of the remaining parameters are

τ
(w)
h |− ∼ Ga(c+ d, φ

(w)
h + η(w)),
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η(w)|− ∼ Ga

(
kd+ e, γ(w) +

k∑
h=1

τ
(w)
h

)
,

γ(w)|− ∼ Ga(e+ f, η(w) + ν),

π(w)|− ∼ beta

(
1 +

k∑
h=1

z
(w)
h , 1 + k −

k∑
h=1

z
(w)
h

)
.

The full conditional distribution of z
(w)
h is

Pr(z
(w)
h = 1|−) ∝ π(w)

pw∏
j=1

N (λ
(w)
jh ; 0, θ

(w)
jh )Ga(θ

(w)
jh ; a, δ

(w)
jh )Ga(δ

(w)
jh ; b, φ

(w)
h ),

Pr(z
(w)
h = 0|−) ∝ (1− π(w))

pw∏
j=1

N (λ
(w)
jh ; 0, φ

(w)
h ).

We further integrate out δ
(w)
jh in Pr(z

(w)
h = 1|−):

Pr(z
(w)
h = 1|−) ∝ π(w)

pw∏
j=1

∫
N (λ

(w)
jh ; 0, θ

(w)
jh )Ga(θ

(w)
jh ; a, δ

(w)
jh )Ga(δ

(w)
jh ; b, φ

(w)
h )dδ

(w)
jh

= π(w)
pw∏
j=1

N (λ
(w)
jh ; 0, θ

(w)
jh )

Γ(a+ b)

Γ(a)Γ(b)

(θ
(w)
jh )a−1(θ

(w)
h )b

(θ
(w)
jh + φ

(w)
h )a+b

.

The full conditional distribution of σ−2j for j = 1, . . . , p is

σ−2j |− ∼ Ga
(
n/2 + aσ,

1

2
(yj· − λj·X)(yj· − λj·X)T + bσ

)
.

Appendix B. Variational expectation maximization (EM) algorithm for
MAP estimates

Expectation Step: Given model parameters, the distribution of latent factor X was
written in Appendix A (Equation 14). The expected sufficient statistics of X is

〈x·i〉 = (ΛTΣ−1Λ + I)−1ΛTΣ−1y·i, (15)

〈x·ixT·i 〉 = 〈x·i〉〈x·i〉T + (ΛTΣ−1Λ + I)−1. (16)

The expectation of the indicator variable ρ
(w)
h = 〈z(w)h 〉 is

ρ
(w)
h =

π(w)
∏pw
j=1N (λ

(w)
jh ; 0, θ

(w)
jh )Ga(θ

(w)
jh ; a, δ

(w)
jh )Ga(δ

(w)
jh ; b, φ

(w)
h )

(1− π(w))
∏pw
j=1N (λ

(w)
jh ; 0, φ

(w)
h ) + π(w)

∏pw
j=1N (λ

(w)
jh ; 0, θ

(w)
jh )Ga(θ

(w)
jh ; a, δ

(w)
jh )Ga(δ

(w)
jh ; b, φ

(w)
h )

.

Maximization Step: The log posterior of Λ is written as

log(p(Λ|−)) ∝ tr

(
Σ−1ΛSXY

)
− 1

2
tr

(
ΛTΣ−1ΛSXX

)
− 1

2

k∑
h=1

λT·hDhλ·h,
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where

Dh = diag

(
ρ
(1)
h

θ
(1)
1h

+
1− ρ(1)h
φ
(1)
h

, . . . ,
ρ
(m)
h

θ
(m)
pmh

+
1− ρ(m)

h

φ
(m)
h

)
,

SXY =
n∑
i=1

〈x·i〉yT·i , and SXX =
n∑
i=1

〈x·ixT·i 〉.

We take the derivative with respect to the loading column λ·h to get the MAP estimate.
The derivative of first part in the right hand side is

∂tr(Σ−1ΛSXY )

∂λ·h
= (1hk ⊗ Ip)× vec[Σ−1SY X ] = vec

(
Σ−1SY X1hk

)
= Σ−1SY X1hk ,

where vec is the vectorization of a matrix, 1hk ∈ Rk×1 is a zero vector with a single 1 in the
hth element, and SY X = (SXY )T . For the second part

∂tr(ΛTΣ−1ΛSXX)

∂λ·h
= 2(1hk ⊗ Ip)× vec[Σ−1ΛSXX ] = 2× vec

(
Σ−1ΛSXX1hk

)
= 2Σ−1ΛSXX1hk .

For the third part, the derivative is Dhλ·h. The MAP estimates for λ·h are found by setting
the derivative to zero:

λ̂·h = [SXXhh Ip + ΣDh]−1
(
SY X·h −

∑
h′ 6=h

λ·h′S
XX
h′h

)
,

where SXXij is the (i, j)th element of SXX , and SY X·h is the hth column of SY X . The matrix

inverse is for a diagonal matrix; thus λ̂·h can be calculated efficiently. The MAP estimate
for the other model parameters are found from their full conditional distributions with the
latent variables replaced by their expectations. We list the parameter updates for those
variables here

θ̂
(w)
jh =

2a− 3 +
√

(2a− 3)2 + 8(λ
(w)
jh )2δ

(w)
jh

4δ
(w)
jh

,

δ̂
(w)
jh =

a+ b

θ
(w)
jh + φ

(w)
h

,

φ̂
(w)
h =

p′ − 1 +
√

(p′ − 1)2 + a′b′

a′
,with

p′ = ρ
(w)
h pwb− (1− ρ(w)h )pw/2 + c,

a′ = 2(ρ
(w)
h

pw∑
j=1

δ
(w)
jh + τ

(w)
h ),
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b′ = (1− ρ(w)h )

pw∑
j=1

(λ
(w)
jh )2

τ̂
(w)
h =

c+ d

φ
(w)
h + η(w)

,

η̂(w) =
dk + e

γ(w) +
∑k

h=1 τ
(w)
h

,

γ̂(w) =
e+ f

η(w) + ν
,

π̂(w) =

∑k
h=1 ρ

(w)
h

k
,

σ̂−2j =
n/2 + aσ − 1

1/2(yj· − λj·〈X〉)(yj· − λj·〈X〉)T + bσ
.

Appendix C. Parameter-expanded EM (PX-EM) algorithm for robust
MAP estimates

We introduce a positive semidefinite matrix R in our original model to obtain a parameter-
expanded version:

yi = ΛR−1L xi + εi,

xi ∼ Nk(0,R),

εi ∼ Nk(0,Σ).

Here, RL is the lower triangular part of the Cholesky decomposition of R. Marginally, the
covariance matrix is still Ω = ΛΛT + Σ, as this additional parameter keeps the likelihood
invariant. This additional parameter reduces the coupling effects between the updates of
loading matrix and latent factors (Liu et al., 1998; Dyk and Meng, 2001) and serves to
connect different posterior modes with equal likelihood curves indexed by R (Rocková and
George, 2015).

Let Λ? = ΛR−1L and Ξ? = {Λ?,Θ,∆,Φ,T ,η,γ,π,Σ}. Then the parameters of our
expanded model are {Ξ?∪R}. We assign our structured prior on Λ?. Thus, the updates of
Ξ? are unchanged given the estimates of the first and second moments of X. The estimates
of 〈X〉 and 〈XXT 〉 are calculated using Equations (15 and 16) in Appendix B after mapping
the loading matrix back to the original matrix: Λ = Λ?RL. It remains to estimate R.

Write the expected complete log likelihood in the expanded model as

Q(Ξ?,R|Ξ(s)) = EX,Z|Ξ(s),Y ,R0
log
(
p(Ξ?,R,X,Z|Y )

)
.

The only term involving R is p(X). Therefore, the R that maximizes this function is

R(s) = arg max
R

Q(Ξ?,R|Ξ(s)) = arg max
R

(
const− n

2
log |R| − 1

2
tr
(
R−1SXX

))
.

The solution is R(s) = 1
nS

XX .
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The EM algorithm in this parameter-expanded space generates the sequence {Ξ?
(1) ∪

R(1),Ξ
?
(2) ∪R(2), . . . }. This sequence corresponds to a sequence of parameter estimates in

the original space {Ξ(1),Ξ(2), . . . }, where Λ in the original space is equal to Λ?RL (Rocková
and George, 2015). We initialize R(0) = Ik.
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Juliane Schäfer and Korbinian Strimmer. An empirical Bayes approach to inferring large-
scale gene association networks. Bioinformatics, 21(6):754–764, 2005.

Aaron Shon, Keith Grochow, Aaron Hertzmann, and Rajesh P. Rao. Learning shared latent
structure for image synthesis and robotic imitation. In Advances in Neural Information
Processing Systems 18, pages 1233–1240, 2005.

Tommi Suvitaival, Juuso A. Parkkinen, Seppo Virtanen, and Samuel Kaski. Cross-organism
toxicogenomics with group factor analysis. Systems Biomedicine, 2:e29291, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B, 58(1):267–288, 1996.

Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. The
Journal of Machine Learning Research, 1:211–244, 2001.

Michael E. Tipping and Christopher M. Bishop. Mixtures of probabilistic principal compo-
nent analyzers. Neural Computation, 11(2):443–482, 1999a.

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B, 61(3):611–622, 1999b.

Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis Vlahavas.
Mulan: A Java library for multi-label learning. Journal of Machine Learning Research,
12:2411–2414, 2011.

Seppo Virtanen, Arto Klami, and Samuel Kaski. Bayesian CCA via group sparsity. In
Proceedings of the 28th International Conference on Machine Learning, pages 457–464,
2011.

Seppo Virtanen, Arto Klami, Suleiman A. Khan, and Samuel Kaski. Bayesian group factor
analysis. In Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, volume 22, pages 1269–1277, 2012.

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality con-
straints. Mathematical Programming, 142(1-2):397–434, 2013.

Mike West. On scale mixtures of normal distributions. Biometrika, 74(3):646–648, 1987.

Mike West. Bayesian factor regression models in the ”large p, small n” paradigm. In
Bayesian Statistics 7, eds. J.M. Bernardo et al., pages 723–732. Oxford University Press,
2003.

Daniela Witten, Rob Tibshirani, Sam Gross, and Balasubramanian Narasimhan. PMA: Pe-
nalized Multivariate Analysis, 2013. URL http://CRAN.R-project.org/package=PMA.
R package version 1.0.9.

46



Bayesian group factor analysis with structured sparsity

Daniela M. Witten and Robert J. Tibshirani. Extensions of sparse canonical correlation
analysis with applications to genomic data. Statistical Applications in Genetics and
Molecular Biology, 8(1):1–27, 2009.

Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposi-
tion, with applications to sparse principal components and canonical correlation analysis.
Biostatistics, 10(3):515–534, 2009.

Anqi Wu, Mijung Park, Oluwasanmi O Koyejo, and Jonathan W Pillow. Sparse Bayesian
structure learning with “dependent relevance determination priors. In Advances in Neural
Information Processing Systems, pages 1628–1636, 2014.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2006.

Peng Zhao, Guilherme Rocha, and Bin Yu. The composite absolute penalties family for
grouped and hierarchical variable selection. The Annals of Statistics, 37(6A):3468–3497,
2009.

Shiwen Zhao and Shao Li. A co-module approach for elucidating drug-disease associations
and revealing their molecular basis. Bioinformatics, 28(7):955–961, 2012.

Tianyi Zhou, Dacheng Tao, and Xindong Wu. Manifold elastic net: A unified framework
for sparse dimension reduction. Data Mining and Knowledge Discovery, 22(3):340–371,
2011.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society. Series B, 67(2):301–320, 2005.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics, 15(2):265–286, 2006.

James Y Zou, Daniel J Hsu, David C Parkes, and Ryan P Adams. Contrastive learning
using spectral methods. In Advances in Neural Information Processing Systems, pages
2238–2246, 2013.

47


