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Abstract

Information spreads across social and technological networks, but often the network struc-
tures are hidden from us and we only observe the traces left by the diffusion processes,
called cascades. Can we recover the hidden network structures from these observed cas-
cades? What kind of cascades and how many cascades do we need? Are there some network
structures which are more difficult than others to recover? Can we design efficient inference
algorithms with provable guarantees?

Despite the increasing availability of cascade data and methods for inferring networks
from these data, a thorough theoretical understanding of the above questions remains
largely unexplored in the literature. In this paper, we investigate the network structure
inference problem for a general family of continuous-time diffusion models using an `1-
regularized likelihood maximization framework. We show that, as long as the cascade
sampling process satisfies a natural incoherence condition, our framework can recover the
correct network structure with high probability if we observe O(d3 logN) cascades, where
d is the maximum number of parents of a node and N is the total number of nodes.
Moreover, we develop a simple and efficient soft-thresholding network inference algorithm
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which demonstrate the match between our theoretical prediction and empirical results. In
practice, this new algorithm also outperforms other alternatives in terms of the accuracy
of recovering hidden diffusion networks.

1. Introduction

Diffusion of information, behaviors, diseases, or irrepresentabilitymore generally, contagions
can be naturally modeled as a stochastic process that occur over the edges of an underlying
network (Rogers, 1995). In this scenario, we often observe the temporal traces that the
diffusion generates, called cascades, but the edges of the network that gave rise to the diffu-
sion remain unobservable (Adar and Adamic, 2005). For example, blogs or media sites
often publish a new piece of information without explicitly citing their sources. Marketers
may note when a social media user decides to adopt a new behavior but cannot tell which
neighbor in the social network influenced them to do so. Epidemiologist observe when a
person gets sick but usually cannot tell who infected her. In all these cases, given a set
of cascades and a diffusion model, the network inference problem consists of inferring the
edges (and model parameters) of the unobserved underlying network (Gomez-Rodriguez,
2013).

The network inference problem has attracted significant attention in recent years (Saito
et al., 2009; Gomez-Rodriguez et al., 2010, 2011, 2013b, 2014; Snowsill et al., 2011; Du
et al., 2012a, 2013; Zhou et al., 2013), since it is essential to reconstruct and predict the
paths over which information can spread, and to maximize sales of a product or stop in-
fections. Most previous work has focused on developing network inference algorithms and
evaluating their performance experimentally on different synthetic and real networks, and a
rigorous theoretical analysis of the problem has been missing. However, such analysis is of
outstanding interest since it would enable us to answer many fundamental open questions.
For example, which conditions are sufficient to guarantee that we can recover a network
given a large number of cascades? If these conditions are satisfied, how many cascades are
sufficient to infer the network with high probability? Until recently, there has been only two
pieces of work along this direction (Netrapalli and Sanghavi, 2012; Abrahao et al., 2013),
which leverage less realistic diffusion models. Moreover, none of them is able to identify a
recovery condition relating the interaction between the network structure and the cascade
sampling process, which we make precise in our paper.

1.1 Overview of results

We consider the network inference problem under the continuous-time diffusion model re-
cently introduced by Gomez-Rodriguez et al. (2011), which has been extensively validated in
real diffusion data, and, due to its flexibility, has been extended to support textual informa-
tion (Wang et al., 2012), nonparametric pairwise likelihoods (Du et al., 2012a), topic mod-
eling (Du et al., 2012b), dynamic networks (Gomez-Rodriguez et al., 2013a). We identify
a natural irrepresentability condition for such a model which depends on both the network
structure, the diffusion parameters and the sampling process of the cascades. This condi-
tion captures the intuition that we can recover the network structure if the co-occurrence
of a node and its non-parent nodes is small in the cascades. Furthermore, we show that,
if this condition holds for the population case, we can recover the network structure using
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an `1-regularized maximum likelihood estimator and O(d3 logN) cascades, where N is the
number of nodes in the network and d is the maximum number of parents of a node, with
the probability of success approaching 1 in a rate exponential in the number of cascades.
Importantly, if this condition also holds for the finite sample case, then the guarantee can
be improved to O(d2 logN) cascades. Beyond theoretical results, we also propose a new,
efficient and simple proximal gradient algorithm to solve the `1-regularized maximum like-
lihood estimation. The algorithm is especially well-suited for our problem since it is highly
scalable and naturally finds sparse estimators, as desired, by using soft-thresholding. Us-
ing this algorithm, we perform various experiments illustrating the consequences of our
theoretical results and demonstrating that it typically outperforms other state-of-the-art
algorithms.

1.2 Related work

Netrapalli and Sanghavi (2012) propose a maximum likelihood network inference method
for a variation of the discrete-time independent cascade model (Kempe et al., 2003) and
show that, for general networks satisfying a correlation decay, the estimator recovers the
network structure given O(d2 logN) cascades, and the probability of success is approaching
1 in a rate exponential in the number of cascades. The rate they obtained is on a par with
our results. However, their discrete diffusion model is less realistic in practice, and the
correlation decay condition implies that, on average, each node can only infect one single
node per cascade. Instead, we use a general continuous-time diffusion model (Gomez-
Rodriguez et al., 2011), which has been extensively validated in real diffusion data and
extended in various ways by different authors (Wang et al., 2012; Du et al., 2012a,b).

Abrahao et al. (2013) propose a simple network inference method, First-Edge, for a
slightly different continuous-time independent cascade model (Gomez-Rodriguez et al.,
2010), and show that, for general networks, if the cascade sources are chosen uniformly
at random, the algorithm needs O(Nd logN) cascades to recover the network structure
and the probability of success is approaching 1 in a rate polynomial in the number of cas-
cades. Additionally, they study trees and bounded-degree networks and show that, if the
cascade sources are chosen uniformly at random, the error decreases polynomially as long
as O(logN) and Ω(d9 log2 d logN) cascades are recorded respectively. In our work, we show
that, for general networks satisfying a natural irrepresentability condition, our method out-
performs the First-Edge algorithm and the algorithm for bounded-degree networks in terms
of rate and sample complexity.

Gripon and Rabbat (2013) propose a network inference method for unordered cascades,
in which nodes that are infected together in the same cascade are connected by a path
containing exactly the nodes in the trace, and give necessary and sufficient conditions for
network inference. However, they consider a restrictive scenario in which cascades are all
three nodes long.

2. Continuous-Time Diffusion Model

In this section, we revisit the continuous-time generative model for cascade data introduced
by Gomez-Rodriguez et al. (2011). The model associates each edge j → i with a transmis-
sion function, f(ti|tj ;αji) = f(ti−tj ;αji), a density over time parameterized by αji. This is
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Figure 1: The diffusion network structure (left) is unknown and we only observe cascades,
which are N -dimensional vectors recording the times when nodes get infected by
contagions that spread (right). Cascade 1 is (ta, tb, tc,∞,∞,∞), where ta < tc <
tb, and cascade 2 is (∞, tb,∞, td, te, tf ), where tb < td < te < tf . Each cascade
contains a source node (dark red), drawn from a source distribution P(s), as well
as infected (light red) and uninfected (white) nodes, and it provides information
on black and dark gray edges but does not on light gray edges.

in contrast to previous discrete-time models which associate each edge with a fixed infection
probability (Kempe et al., 2003). Moreover, it also differs from discrete-time models in the
sense that events in a cascade are not generated iteratively in rounds, but event timings are
sampled directly from the transmission functions in the continuous-time model.

2.1 Cascade generative process

Given a directed contact network, G = (V, E) with N nodes, the process begins with an
infected source node, s, initially adopting certain contagion (idea, meme or product) at
time zero, which we draw from a source distribution P(s). The contagion is transmitted
from the source along her out-going edges to her direct neighbors. Each transmission
through an edge entails a random transmission time, τ , drawn from an associated pairwise
transmission likelihood f(τ ;αji). We assume transmission times are independent, possibly
distributed differently across edges, and, in some cases, can be arbitrarily large, τ → ∞.
Then, the infected neighbors transmit the contagion to their respective neighbors, and the
process continues. We assume that an infected node remains infected for the entire diffusion
process. Thus, if a node i is infected by multiple neighbors, only the neighbor that first
infects node i will be the true parent. As a result, although the contact network can be
an arbitrary directed network, each contagion induces a Directed Acyclic Graph (DAG).
Figure 1 illustrates the process and Table 1 gives several examples of well-known parametric
transmission likelihoods (Gomez-Rodriguez et al., 2011, 2013a, 2014).

2.2 Cascade data

Observations from the model are recorded as a set Cn of cascades {t1, . . . , tn}. Each
cascade tc is an N -dimensional vector tc := (tc1, . . . , t

c
N ) recording when nodes are infected,

tck ∈ [0, T c]∪{∞}. Symbol∞ labels nodes that are not infected during observation window
[0, T c] – it does not imply they are never infected. The ‘clock’ is reset to 0 at the start of each
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Model
Transmission functions Log survival Hazard

f(τ ;αji) y(t+ τ |t;αji) = logS(t+ τ |t;αji) H(t+ τ |t;αji)

Exp

{
αj,i · e−αj,iτ

0
if τ ≥ 0
otherwise

−αj,iτ αj,i

Pow

{ αj,i

δ

(
τ
δ

)−1−αj,i

0

if τ ≥ δ
otherwise

−αj,i log
(
τ
δ

) αj,i

τ

Ray

{
αj,iτe

− 1
2
αj,iτ

2

0

if τ ≥ 0
otherwise

−αj,i τ
2

2 αj,iτ

Table 1: Pairwise transmission models

cascade. We assume T c = T for all cascades; the results generalize trivially. Contagions
often propagate simultaneously (Myers and Leskovec, 2012; Prakash et al., 2012) over the
same network but we assume each contagion to propagate independently of each other.
Finally, we also assume that all activated nodes except the first one are activated by network
diffusion, i.e., by previously activated nodes, ignoring external influences (Myers et al.,
2012). Refer to Figure 1 for an example.

2.3 Likelihood of a cascade

Gomez-Rodriguez et al. (2011) showed that the likelihood of a cascade t under the continuous-
time independent cascade model is

f(t; A) =
∏
ti≤T

∏
tm>T

S(T |ti;αim)×
∏

k:tk<ti

S(ti|tk;αki)
∑
j:tj<ti

H(ti|tj ;αji), (1)

where A = {αji} denotes the collection of parameters, S(ti|tj ;αji) = 1−
∫ ti
tj
f(t− tj ;αji) dt

is the survival function and H(ti|tj ;αji) = f(ti− tj ;αji)/S(ti|tj ;αji) is the hazard function.
The survival terms in the first line account for the probability that uninfected nodes survive
to all infected nodes in the cascade up to T and the survival and hazard terms in the second
line account for the likelihood of the infected nodes. The survival and hazard functions
are simple for several well-known parametric transmission likelihoods, as shown in Table 1.
Then, assuming cascades are sampled independently, the likelihood of a set of cascades is the
product of the likelihoods of individual cascades given by Eq. 1. For notational simplicity,
we define y(ti|tk;αki) := logS(ti|tk;αki), and h(t;αi) :=

∑
k:tk≤ti H(ti|tk;αki) if ti ≤ T and

0 otherwise.

3. Network Inference Problem

Consider an instance of the continuous-time diffusion model defined above with a contact
network G∗ = (V∗, E∗) and associated parameters

{
α∗ji

}
. We denote the set of parents of

node i as N−(i) = {j ∈ V∗ : α∗ji > 0} with cardinality di = |N−(i)| and the minimum
positive transmission rate as α∗min,i = minj :α∗ji>0 α

∗
ji. Let Cn be a set of n cascades sampled

from the model, where the source s ∈ V∗ of each cascade is drawn from a source distribution
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Function Infected node (ti < T ) Uninfected node (ti > T )
gi(t;α) log h(t;α) +

∑
j:tj<ti

y(ti|tj ;αj)
∑

j:tj<T
y(T |tj ;αj)

[∇yi(t;α)]k −y′(ti|tk;αk) −y′(T |tk;αk)
[D(t;α)]kk −y′′(ti|tk;αk)− h(t;α)−1H ′′(ti|tk;αk) −y′′(T |tk;αk)

Table 2: Functions. gi(t;α) is node i’s log-likelihood in a cascade t, yi(t;α) is the logarithm
of node i’s survivals in a cascade t, D(t;α) is a diagonal matrix defined in Eq. 5,
H(ti|tk;αk) is the hazard function, and h(t;α) denotes the sum of node i’s hazard
functions in a cascade t.

P(s). Then, the network inference problem consists of finding the directed edges and the
associated parameters using only the temporal information from the set of cascades Cn.

This problem has been cast as a maximum likelihood estimation problem (Gomez-
Rodriguez et al., 2011)

minimizeA − 1
n

∑
c∈Cn log f(tc; A)

subject to αji ≥ 0, i, j = 1, . . . , N, i 6= j,
(2)

where the inferred edges in the network correspond to those pairs of nodes with non-zero
parameters, i.e. α̂ji > 0.

In fact, the problem in Eq. 2 decouples into a set of independent smaller subproblems,
one per node, where we infer the parents of each node and the parameters associated with
these incoming edges. Without loss of generality, for a particular node i, we solve the
problem

minimizeαi `n(αi)
subject to αji ≥ 0, j = 1, . . . , N, i 6= j,

(3)

where the parameters αi := {αji | j = 1, . . . , N, i 6= j} are the relevant variables, and
`n(αi) = − 1

n

∑
c∈Cn gi(t

c;αi) corresponds to the terms in Eq. 2 involving αi. The function
g( · ;αi) is simple for several well-known parametric transmission likelihoods, including those
described in Table 1. For example, for an exponential transmission likelihood,

gi(t;αi) = log

 ∑
j:tj<ti

αji

− ∑
j:tj<ti

αji(ti − tj)

for an infected node and gi(t;αi) = −
∑

j:tj<T
αji(T − tj) for an uninfected node. Refer

to Table 2 for a general definition of g( · ;αi). Moreover, in this subproblem, we only need
to consider a super-neighborhood Vi = Ri ∪ Ui of i, with cardinality pi = |Vi| ≤ N , where
Ri is the set of upstream nodes from which i is reachable, Ui is the set of nodes which
are reachable from at least one node j ∈ Ri. Here, we consider a node i to be reachable
from a node j if and only if there is a directed path from j to i. We can skip all nodes in
V\Vi from our analysis because they will never be infected in a cascade before i, and thus,
the maximum likelihood estimation of the associated transmission rates will always be zero
(and correct).

Below, we show that, as n→∞, the solution, α̂i, of the problem in Eq. 3 is a consistent
estimator of the true parameter α∗i . However, it is not clear whether it is possible to
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recover the true network structure with this approach given a finite amount of cascades
and, if so, how many cascades are needed. We will show that by adding an `1-regularizer
to the objective function and solving instead the following optimization problem

minimizeαi `n(αi) + λn||αi||1
subject to αji ≥ 0, j = 1, . . . , N, i 6= j,

(4)

we can provide finite sample guarantees for recovering the network structure (and parame-
ters). Our analysis also shows that by selecting an appropriate value for the regularization
parameter λn, the solution of Eq. 4 successfully recovers the network structure with prob-
ability approaching 1 exponentially fast in n.

In the remainder of the paper, we will focus on estimating the parent nodes of a particular
node i. For simplicity, we will use α = αi, αj = αji, N− = N−(i), R = Ri, U = Ui, d = di,
pi = p and α∗min = α∗min,i.

4. Consistency

Can we recover the hidden network structures from the observed cascades? The answer
is yes. We will show this by proving that the estimator provided by Eq. 3 is consistent,
meaning that as the number of cascades goes to infinity, we can always recover the true
network structure.

More specifically, Gomez-Rodriguez et al. (2011) showed that the network inference
problem defined in Eq. 3 is convex in α if the survival functions are log-concave and the
hazard functions are concave in α. Under these conditions, the Hessian matrix, Qn =
∇2`n(α), can be expressed as the sum of a nonnegative diagonal matrix Dn and the outer
product of a matrix Xn(α) with itself, i.e.,

Qn = Dn(α) + 1
nX

n(α)[Xn(α)]>. (5)

Here the diagonal matrix Dn(α) = 1
n

∑
cD(tc;α) is a sum over a set of diagonal matrices

D(tc;α), one for each cascade c (see Table 2 for the definition of its entries); and Xn(α)
is the Hazard matrix

Xn(α) =
[
X(t1;α) |X(t2;α) | . . . |X(tn;α)

]
, (6)

with each column X(tc;α) := h(tc;α)−1∇αh(tc;α). Intuitively, the Hessian matrix cap-
tures the co-occurrence information of nodes in cascades. Both D(tc;α) and Xn(α) are
simple for several well-known transmission likelihoods, including those described in Ta-
ble 1. For example, for an exponential transmission likelihood, [D(tc;α)]kk = 0 and

[Xn(α)]j =
(∑

k:tk<ti
αki

)−1
if tj < ti and 0 otherwise. Then, we can prove the following

consistency result:

Theorem 1 If the source probability P(s) is strictly positive for all s ∈ R, then, the maxi-
mum likelihood estimator α̂ given by the solution of Eq. 3 is consistent.

Proof We check the three criteria for consistency: continuity, compactness and identi-
fication of the objective function (Newey and McFadden, 1994). Continuity is obvious.
For compactness, since L → −∞ for both αij → 0 and αij → ∞ for all i, j so we lose
nothing imposing upper and lower bounds thus restricting to a compact subset. For the
identification condition, α 6= α∗ ⇒ `n(α) 6= `n(α∗), we use Lemma 9 and 10 (refer to
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Appendices 12.1 and 12.2), which establish that Xn(α) has full row rank as n → ∞, and
hence Qn is positive definite.

5. Recovery Conditions

In this section, we will find a set of sufficient conditions on the diffusion model and the
cascade sampling process under which we can recover the network structure from finite
samples. These results allow us to address two questions:

• Are there some network structures which are more difficult than others to recover?

• What kind of cascades are needed for the network structure recovery?

The answers to these questions are intertwined. The difficulty of finite-sample recovery
depends crucially on an irrepresentability condition which is a function of both network
structure, parameters of the diffusion model and the cascade sampling process. Intuitively,
the sources of the cascades in a diffusion network have to be chosen in such a way that
nodes without parent-child relation should co-occur less often compared to nodes with such
relation. Many commonly used diffusion models and network structures can be naturally
made to satisfy this condition.

More specifically, we first place two conditions on the Hessian of the population log-
likelihood, Ec [`n(α)] = Ec [log g(tc;α)], where the expectation here is taken over the dis-
tribution P(s) of the source nodes, and the density f(tc|s) of the cascades tc given a source
node s. In this case, we will further denote the Hessian of Ec [log g(tc;α)] evaluated at the
true model parameter α∗ as Q∗. Then, we place two conditions on the Lipschitz continuity
of X(tc;α), and the boundedness of X(tc;α∗) and ∇g(tc;α∗) at the true model parameter
α∗. For simplicity, we will denote the subset of indexes associated to node i’s true parents
as S, and its complement as Sc. Then, we use Q∗SS to denote the sub-matrix of Q∗ indexed
by S and α∗S the set of parameters indexed by S. Note that α∗Sc = 0.

Condition 1 (Dependency condition): There exists constants Cmin > 0 and Cmax >
0 such that Λmin (Q∗SS) ≥ Cmin and Λmax (Q∗SS) ≤ Cmax where Λmin(·) and Λmax(·) return
the leading and the bottom eigenvalue of its argument respectively. This assumption en-
sures that two connected nodes co-occur reasonably frequently in the cascades but are not
deterministically related.

Condition 2 (Irrepresentability condition): There exists a constant ε ∈ (0, 1]
such that |||Q∗ScS (Q∗SS)−1 |||∞ ≤ 1 − ε, where |||A|||∞ = maxj

∑
k |Ajk|. This assumption

captures the intuition that, node i and any of its neighbors should get infected together in
a cascade more often than node i and any of its non-neighbors. A similar irrepresentability
condition has been proposed on model selection consistency of Lasso (Zhao and Yu, 2006).

Condition 3 (Lipschitz Continuity): For any feasible cascade tc, the Hazard vector
X(tc;α) is Lipschitz continuous in the domain {α : αS ≥ α∗min/2},

‖X(tc;β)−X(tc;α)‖2 ≤ k1‖β −α‖2,
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Figure 2: Example networks.

where k1 is some positive constant. As a consequence, the spectral norm of the difference,
n−1/2(Xn(β)−Xn(α)), is also bounded (refer to appendix 12.3), i.e.,

|||n−1/2
(
Xn(β)−Xn(α)

)
|||2 ≤ k1‖β −α‖2. (7)

Furthermore, for any feasible cascade tc, D(α)jj is Lipschitz continuous for all j ∈ V,

|D(tc;β)jj −D(tc;α)jj | ≤ k2‖β −α‖2,
where k2 is some positive constant.

Condition 4 (Boundedness): For any feasible cascade tc, the absolute value of each
entry in the gradient of its log-likelihood and in the Hazard vector, as evaluated at the true
model parameter α∗, is bounded,

‖∇g(tc;α∗)‖∞ ≤ k3, ‖X(tc;α∗)‖∞ ≤ k4,
where k3 and k4 are positive constants. Then the absolute value of each entry in the Hessian
matrix Q∗, is also bounded |||Q∗|||∞ ≤ k5.

Remarks for condition 1 As stated in Theorem 1, as long as the source probability
P(s) is strictly positive for all s ∈ R, the maximum likelihood formulation is strictly convex
and thus there exists Cmin > 0 such that Λmin (Q∗) ≥ Cmin. Moreover, condition 4 implies
that there exists Cmax > 0 such that Λmax (Q∗) ≤ Cmax.

Remarks for condition 2 The irrepresentability condition depends, in a non-trivial
way, on the network structure, diffusion parameters, observation window and source node
distribution. Here, we give some intuition by studying three small canonical examples.

First, consider the chain graph in Fig. 2(a) and assume that we would like to find the
incoming edges to node 3 when T →∞. Then, it is easy to show that the irrepresentability
condition is satisfied if (P0+P1)/(P0+P1+P2) < 1−ε and P0/(P0+P1+P2) < 1−ε, where
Pi denotes the probability of a node i to be the source of a cascade. Thus, for example, if
the source of each cascade is chosen uniformly at random, the inequality is satisfied. Here,
the irrepresentability condition depends on the source node distribution.

Second, consider the directed tree in Fig. 2(b) and assume that we would like to find the
incoming edges to node 0 when T →∞. Then, it can be shown that the irrepresentability
condition is satisfied as long as (1) P1 > 0, (2) (P2 > 0) or (P5 > 0 and P6 > 0), and (3)
P3 > 0. As in the chain, the condition depends on the source node distribution.
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Finally, consider the star graph in Fig. 2(c), with exponential edge transmission func-
tions, and assume that we would like to find the incoming edges to a leave node i when
T < ∞. Then, as long as the root node has a nonzero probability P0 > 0 of being the
source of a cascade, it can be shown that the irrepresentability condition reduces to the

inequalities
(

1− α0j

α0i+α0j

)
e−(α0i+α0j)T +

α0j

α0i+α0j
< 1 − ε(1 + e−α0iT ), j = 1, . . . , p : j 6= i,

which always holds for some ε > 0. If T → ∞, then the condition holds whenever
ε < α0i/(α0i + maxj:j 6=i α0j). Here, the larger the ratio maxj:j 6=i α0j/α0i is, the smaller
the maximum value of ε for which the irrepresentability condition holds. To summarize, as
long as P0 > 0, there is always some ε > 0 for which the condition holds, and such ε value
depends on the time window and the parameters α0j .

Remarks for conditions 3 and 4 Well-known pairwise transmission likelihoods such
as exponential, Rayleigh or Power-law, used in previous work Gomez-Rodriguez et al. (2011),
satisfy conditions 3 and 4.

6. Sample Complexity

How many cascades do we need to recover the network structure? We will answer this
question by providing a sample complexity analysis of the optimization in Eq. 4. Given the
conditions spelled out in Section 5, we can show that the number of cascades needs to grow
polynomially in the number of true parents of a node, and depends only logarithmically on
the size of the network. This is a positive result, since the network size can be very large
(millions or billions), but the number of parents of a node is usually small compared the
network size. More specifically, for each individual node, we have the following result:

Theorem 2 Consider an instance of the continuous-time diffusion model with parameters
α∗ji and associated edges E∗ such that the model satisfies condition 1-4, and let Cn be a
set of n cascades drawn from the model. Suppose that the regularization parameter λn is
selected to satisfy

λn ≥ 8k3
2− ε
ε

√
log p

n
. (8)

Then, there exist positive constants L and K, independent of (n, p, d), such that if

n > Ld3 log p, (9)

then the following properties hold with probability at least 1− 2 exp(−Kλ2nn):

1. For each node i ∈ V, the `1-regularized network inference problem defined in Eq. 4 has
a unique solution, and so uniquely specifies a set of incoming edges of node i.

2. For each node i ∈ V, the estimated set of incoming edges does not include any false
edges and include all true edges.

Furthermore, suppose that the finite sample Hessian matrix Qn satisfies conditions 1 and 2.
Then there exist positive constants L and K, independent of (n, p, d), such that the sample
complexity can be improved to n > Ld2 log p with other statements remain the same.

Remarks. The above sample complexity is proved for each node separately for recove-
ring its parents. Using a union bound, we can provide the sample complexity for recovering
the entire network structure by joining these parent-child relations together. The resulting
sample complexity and the choice of regularization parameters will remain largely the same,

10
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except that the dependency on d will change from d to dmax (the largest number of parents
of a node), and the dependency on p will change from log p to 2 logN (N the number of
nodes in the network).

6.1 Outline of Analysis

The proof of Theorem 2 uses a technique called primal-dual witness method, previously
used in the proof of sparsistency of Lasso (Wainwright, 2009) and high-dimensional Ising
model selection (Ravikumar et al., 2010). To the best of our knowledge, the present work
is the first that uses this technique in the context of diffusion network inference. First, we
show that the optimal solutions to Eq. 4 have shared sparsity pattern, and under a further
condition, the solution is unique (proven in Appendix 12.4):

Lemma 3 Suppose that there exists an optimal primal-dual solution (α̂, µ̂) to Eq. 4 with an
associated subgradient vector ẑ such that ||ẑSc ||∞ < 1. Then, any optimal primal solution
α̃ must have α̃Sc = 0. Moreover, if the Hessian sub-matrix QnSS is strictly positive definite,
then α̂ is the unique optimal solution.

Next, we will construct a primal-dual vector (α̂, µ̂) along with an associated subgradient
vector ẑ. Furthermore, we will show that, under the assumptions on (n, p, d) stated in
Theorem 2, our constructed solution satisfies the KKT optimality conditions to Eq. 4, and
the primal vector has the same sparsity pattern as the true parameter α∗, i.e.,

α̂j > 0, ∀j : α∗j > 0, (10)

α̂j = 0, ∀j : α∗j = 0. (11)

Then, based on Lemma 3, we can deduce that the optimal solution to Eq. 4 correctly
recovers the sparsisty pattern of α∗, and thus the incoming edges to node i.

More specifically, we start by realizing that a primal-dual optimal solution (α̃, µ̃) to
Eq. 4 must satisfy the generalized Karush-Kuhn-Tucker (KKT) conditions Boyd and Van-
denberghe (2004):

0 ∈ ∇`n(α̃) + λnz̃− µ̃, (12)

µ̃jα̃j = 0, (13)

µ̃j ≥ 0, (14)

z̃j = 1, ∀α̃j > 0, (15)

|z̃j | ≤ 1, ∀α̃j = 0, (16)

where `n(α̃) = − 1
n

∑
c∈Cn log g(tc; α̃) and z̃ denotes the subgradient of the `1-norm.

Suppose the true set of parent of node i is S. We construct the primal-dual vector (α̂, µ̂)
and the associated subgradient vector ẑ in the following way

1. We set α̂S as the solution to the partial regularized maximum likelihood problem

α̂S = argmin
(αS ,0),αS≥0

{`n(α) + λn||αS ||1}. (17)

Then, we set µ̂S ≥ 0 as the dual solution associated to the primal solution α̂S .

11
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2. We set α̂Sc = 0, so that condition (11) holds, and µ̂Sc = µ∗
Sc ≥ 0, where µ∗ is the

optimal dual solution to the following problem:

minimizeα Ec [`n(α)]
subject to αj ≥ 0, j = 1, . . . , N, i 6= j.

(18)

Thus, our construction satisfies condition (14).

3. We obtain ẑSc from (12) by substituting in the constructed α̂, µ̂ and ẑS .

Then, we only need to prove that, under the stated scalings of (n, p, d), with high-probability,
the remaining KKT conditions (10), (13), (15) and (16) hold.

For simplicity of exposition, we first assume that the dependency and irrepresentability
conditions hold for the finite sample Hessian matrix Qn. Later we will lift this restriction
and only place these conditions on the population Hessian matrix Q∗. The following lemma
(proven in Appendix 12.5) show that our constructed solution satisfies condition (10):

Lemma 4 Under condition 3, if the regularization parameter is selected to satisfy

√
dλn ≤

C2
min

6(k2 + 2k1
√
Cmax)

,

and ‖∇s`n(α∗)‖∞ ≤ λn
4 , then,

‖α̂S −α∗S‖2 ≤
3
√
dλn

Cmin
≤ α∗min

2
,

as long as α∗min ≥ 6
√
dλn/Cmin.

Based on this lemma, we can then further show that the KKT conditions (13) and (15)
also hold for the constructed solution. This can be trivially deduced from condition (10) and
(11), and our construction steps (a) and (b). Note that it also implies that µ̂S = µ∗S = 0,
and hence µ̂ = µ∗.

Proving condition (16) is more challenging. We first provide more details on how to
construct ẑSc mentioned in step (c). We start by using a Taylor expansion of Eq. 12,

Qn(α̂−α∗) = −∇`n(α∗)− λnẑ + µ̂−Rn, (19)

where Rn is a remainder term with its j-th entry

Rnj =
[
∇2`n(ᾱj)−∇2`n(α∗)

]T
j

(α̂−α∗),

and ᾱj = θjα̂+ (1− θj)α∗ with θj ∈ [0, 1] according to the mean value theorem. Rewriting
Eq. 19 using block matrices(
QnSS QnSSc

QnScS QnScSc

)(
α̂S −α∗S
α̂Sc −α∗Sc

)
= −

(
∇S`n(α∗)
∇Sc`n(α∗)

)
− λn

(
ẑS
ẑSc

)
+

(
µ̂S
µ̂Sc

)
−
(

Rn
S

Rn
Sc

)
(20)

and, after some algebraic manipulation, we have

λẑSc = −∇Sc`n(α∗) + µ̂Sc −Rn
Sc −QnScS(QnSS)−1

(
−∇s`n(α∗)− λẑS + µ̂S −Rn

S

)
. (21)

Next, we upper bound ‖ẑSc‖∞ using the triangle inequality

‖ẑSc‖∞ ≤ λ−1n ‖µ∗Sc −∇Sc`n(α∗)‖∞ + λ−1n ‖Rn
Sc‖∞ + ‖QnScS(QnSS)−1‖∞ ×

[
1 + λ−1n ‖Rn

S‖∞
+λ−1n ‖µ∗S −∇S`n(α∗)‖∞

]
,

12
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and we want to prove that this upper bound is smaller than 1. This can be done with the
help of the following two lemmas (proven in Appendices 12.6 and 12.7):

Lemma 5 Given ε ∈ (0, 1] from the irrepresentability condition, we have,

P

(
2− ε
λn
‖∇`n(α∗)− µ∗‖∞ ≥ 4−1ε

)
≤ 2p exp

(
− nλ2nε

2

32k23 (2− ε)2

)
, (22)

which converges to zero at rate exp(−cλ2nn) as long as λn ≥ 8k3
2−ε
ε

√
log p
n .

Lemma 6 Given ε ∈ (0, 1] from the irrepresentability condition, if conditions 3 and 4 holds,
λn is selected to satisfy

λnd ≤ C2
min

ε

36K(2− ε)
,

where K = k1 + k4k1 + k21 + k1
√
Cmax, and ‖∇s`n(α∗)‖∞ ≤ λn

4 , then, ‖R
n‖∞
λn

≤ ε
4(2−ε) , as

long as α∗min ≥ 6
√
dλn/Cmin.

Now, applying both lemmas and the irrepresentability condition on the finite sample Hessian
matrix Qn, we have

‖ẑSc‖∞ ≤ (1− ε) + λ−1n (2− ε)‖Rn‖∞ + λ−1n (2− ε)‖µ∗ −∇`n(α∗)‖∞
≤ (1− ε) + 0.25ε+ 0.25ε = 1− 0.5ε,

and thus condition (16) holds.
A possible choice of the regularization parameter λn and cascade set size n such that

the conditions of the Lemmas 4-6 are satisfied is λn = 8k3(2 − ε)ε−1
√
n−1 log p and n >

2882k23(2− ε)4C−4minε−4d2 log p+
(
48k3(2− ε)C−1min(α∗min)−1ε−1

)2
d log p.

Last, we lift the dependency and irrepresentability conditions imposed on the finite
sample Hessian matrix Qn. We show that if we only impose these conditions in the corres-
ponding population matrix Q∗, then they will also hold for Qn with high probability (proven
in Appendices 12.8 and 12.9).

Lemma 7 If condition 1 holds for Q∗, then, for any δ > 0,

P (Λmin (QnSS) ≤ Cmin − δ) ≤ 2dB1 exp

(
−A1

δ2n

d2

)
,

P (Λmax (QnSS) ≥ Cmax + δ) ≤ 2dB2 exp

(
−A2

δ2n

d2

)
,

where A1, A2, B1 and B2 are constants independent of (n, p, d).

Lemma 8 If |||Q∗ScS (Q∗SS)−1 |||∞ ≤ 1− ε, then,

P
(
‖QnScS(QnSS)−1‖∞ ≥ 1− ε/2

)
≤ p exp

(
−K n

d3

)
,

where K is a constant independent of (n, p, d).

Note in this case the cascade set size need to increase to n > Ld3 log p, where L is a
sufficiently large positive constant independent of (n, p, d), for the error probabilities on
these last two lemmas to converge to zero.
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Algorithm 1 `1-regularized network inference

Require: Cn, λn,K, L
for all i ∈ V do
k = 0
while k < K do
αk+1
i =

(
αki − L∇αi`

n(αki )− λnL
)
+

k = k + 1
end while
α̂i = αK−1i

end for
return {α̂i}i∈V

7. Efficient soft-thresholding algorithm

Can we design efficient algorithms to solve Eq. (4) for network recovery? Here, we will
design a proximal gradient algorithm which is well suited for solving non-smooth, con-
strained, large-scale or high-dimensional convex optimization problems Parikh and Boyd
(2013). Moreover, they are easy to understand, derive, and implement. We first rewrite
Eq. 4 as an unconstrained optimization problem:

minimizeα `n(α) + g(α),

where the non-smooth convex function g(α) = λn||α||1 if α ≥ 0 and +∞ otherwise. By
rewriting both problems as a sum of a smooth convex function `n(α) and a non-smooth
convex function g(α), the general recipe from Parikh and Boyd (2013) for designing proximal
gradient algorithm can be applied directly.

Algorithm 1 summarizes the resulting algorithm. In each iteration of the algorithm,
we need to compute ∇`n (Table 2) and the proximal operator proxLkg(v), where Lk is a
step size that we can set to a constant value L or find using a simple line search Beck and
Teboulle (2009). Using Moreau’s decomposition, we have

proxLkg(v) = v − Lk proxg∗/Lk(v/Lk), (23)

where

g∗(y) = sup
x

(
(y − λn1)Tx− 1(x ≥ 0)

)
=

{
∞ if ∃i : yi > λn
0 otherwise

is the conjugate function of g. Then,

proxg∗/Lk(v/Lk) = argmin
y
{g∗(y) +

Lk

2
‖y − v/Lk‖22} = (v − λnLk)+

In summary, the proximal operator for our particular function g(·) is a soft-thresholding
operator, (v − λnLk)+, which leads to a sparse optimal solution α̂, as desired.

8. Experiments

In this section, we first illustrate some consequences of Th. 2 by applying our algorithm
to several types of networks, parameters (n, p, d), and regularization parameter λn. Then,
we compare our algorithm to two different state-of-the-art algorithms: NetRate Gomez-
Rodriguez et al. (2011) and First-Edge Abrahao et al. (2013).
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Figure 3: Success probability vs. # of cascades.

Experimental Setup We focus on synthetic networks that mimic the structure of
real-world diffusion networks – in particular, social networks. We consider two models of
directed real-world social networks: the Forest Fire model (Barabási and Albert, 1999) and
the Kronecker Graph model (Leskovec et al., 2010), and use simple pairwise transmission
models such as exponential, power-law or Rayleigh. We use networks with 128 nodes and, for
each edge, we draw its associated transmission rate from a uniform distribution U(0.5, 1.5).
In general, we proceed as follows: we generate a network G∗ and transmission rates A∗,
simulate a set of cascades and, for each cascade, record the node infection times. Then,
given the infection times, we infer a network Ĝ. Finally, when we illustrate the consequences
of Th. 2, we evaluate the accuracy of the inferred neighborhood of a node N̂−(i) using
probability of success P (Ê = E∗), estimated by running our method of 100 independent
cascade sets. When we compare our algorithm to NetRate and First-Edge, we use the F1

score, which is defined as 2PR/(P +R), where precision (P) is the fraction of edges in the
inferred network Ĝ present in the true network G∗, and recall (R) is the fraction of edges of
the true network G∗ present in the inferred network Ĝ.

Parameters (n, p, d) According to Th. 2, the number of cascades that are necessary
to successfully infer the incoming edges of a node will increase polynomially to the node’s
neighborhood size di and logarithmically to the super-neighborhood size pi. Here, we first
infer the incoming links of nodes on the same type of canonical networks as depicted in
Fig. 2. We choose nodes the same in-degree but different super-neighboorhod set sizes pi
and experiment with different scalings β of the number of cascades n = 10βd log p. We
set the regularization parameter λn as a constant factor of

√
log(p)/n as suggested by

Theorem 2 and, for each node, we used cascades which contained at least one node in the
super-neighborhood of the node under study. We used an exponential transmission model
and time window T = 10. As predicted by Theorem 2, very different p values lead to curves
that line up with each other quite well.

Next, we infer the incoming links of nodes of a larger hierarchical Kronecker network.
Again, we choose nodes with the same in-degree (di = 3) but different super-neighboorhod
set sizes pi under different scalings β of the number of cascades n = 10βd log p. We used
an exponential transmission model and T = 5. Fig. 3(a) summarizes the results, where, for
each node, we used cascades which contained at least one node in the super-neighborhood
of the node under study. Similarly as in the case of the canonical networks, very different
p values lead to curves that line up with each other quite well.
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Figure 4: Success probability vs. # of cascades. Different super-neighborhood sizes pi.

Finally, we infer the incoming links of nodes of a hierarchical Kronecker network with
equal super neighborhood size (pi = 70) but different in-degree (di) under different scalings
β of the number of cascades n = 10βd log p and choose the regularization parameter λn
as a constant factor of

√
log(p)/n as suggested by Theorem 2. We used an exponential

transmission model and time window T = 5. Figure 3(b) summarizes the results, where
we observe that, as predicted by Theorem 2, different d values lead to noticeably different
curves.

Regularization parameter λn Our main result indicates that the regularization
parameter λn should be a constant factor of

√
log(p)/n. Fig. 3(c) shows the success

probability of our algorithm against different scalings K of the regularization parameter
λn = K

√
log(p)/n for different types of networks using 150 cascades and T = 5. We find

that for sufficiently large λn, the success probability flattens, as expected from Th. 2. It
flattens at values smaller than one because we used a fixed number of cascades n, which
may not satisfy the conditions of Th. 2.

Comparison with NetRate and First-Edge Fig. 5 compares the accuracy of our
algorithm, NetRate and First-Edge against number of cascades for three hierarchical
Kronecker network and three Forest Fire networks, with power-law (Pow), exponential
(Exp) and rayleigh (Ray) transmission models, and an observation window T = 10. Our
method outperforms both competitive methods, finding especially striking the competitive
advantage with respect to First-Edge, however, this may be explained by comparing the
sample complexity results for both methods: First-Edge needs O(Nd logN) cascades to
achieve a probability of success approaching 1 in a rate polynomial in the number of cascades
while our method needs O(d3 logN) to achieve a probability of success approaching 1 in a
rate exponential in the number of cascades.

9. Discussion

Our results can be extended in multiple directions. First, our novel formulation of the
diffusion network recovery problem as a `1-regularized convex optimization problem estab-
lishes a connection between the literature on information diffusion and a vast literature
on high dimension sparse recovery problem from machine learning and statistics literature.
This connection allows us to borrow analysis frameworks for graphical model structure es-
timation to analyze information diffusion. In terms of diffusion models, we can extend the
current independent cascade model to deal with nonparametric transmission functions (Du
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Figure 5: F1-score vs. # of cascades.

et al., 2012a), transmission function conditioned on additional features (Du et al., 2013),
diffusion models which allows for multiple events (Zhou et al., 2013). All three models will
result in convex loss function; and for the former two models, we can employ grouped lasso
regularization (Yuan and Lin, 2006), while for the latter model, we can employ a nuclear
norm regularization (Recht et al., 2010). These models are more complicated than the
independent cascade model we studied in the paper, but analysis for these models can be
carried out using a general M-estimation analysis framework (Negahban et al., 2009), since
these regularizers are decomposable and one needs to check the restricted strong convex-
ity of the loss function. In terms of the estimation algorithms, we can employ proximal
algorithms (Parikh and Boyd, 2013) or the conditional gradient algorithm (Jaggi, 2013) to
deal with different type of diffusion models and regularizers. When the data is large, one
can consider distributed (Boyd et al., 2011) and online estimation (Nemirovski et al., 2009)
procedures.

Our results also bring out interesting further open problems on diffusion network es-
timations. For instance, the success of the network inference algorithm in Equation (2)
relies on the fulfillment of the above mentioned irrepresentability condition on the Hessian,
Q∗, of the population log-likelihood E[`n], where the expectation here is taken over the
distribution P(s) of the source nodes and the random generative process of the diffusion
model given a source node s. This condition captures the intuition that, node i and any of
its neighbors should get infected together in a cascade more often than node i and any of
its non-neighbors. Unfortunately, the irrepresentability condition depends, in a non-trivial
way, on the network structure, diffusion parameters, and the source distribution P(s), which
are all unknown during the network inference stage. Previous work has typically assumed
the network structure, diffusion parameters, observation window and source distribution to
be fixed, and source locations are sampled passively from the latter. However, in practice,
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the source locations to sample from may be determined actively in a sequential manner,
potentially based on the information gathered from previous source locations. Thus an
interesting open question is:

Suppose there exists an unknown P(s) where the irrepresentability conditions hold
for the diffusion model. Under what conditions, can we design an “active” algorithm
which samples the source location intelligently and achieves the sample complexity in
Theorem 2, or even better sample complexity, e.g., o(d3i logN)?

10. Conclusions

Our work contributes towards establishing a theoretical foundation of the network inference
problem. Specifically, we proposed a `1-regularized maximum likelihood inference method
for a well-known continuous-time diffusion model and an efficient proximal gradient imple-
mentation, and then show that, for general networks satisfying a natural irrepresentability
condition, our method achieves an exponentially decreasing error with respect to the number
of cascades as long as O(d3 logN) cascades are recorded.

Our work also opens many interesting venues for future work. For example, given a fixed
number of cascades, it would be useful to provide confidence intervals on the inferred edges.
Further, a detailed theoretical analysis of the irrepresentability condition on large synthetic
networks that mimic the structure of real-world diffusion networks, such as Kronecker or
Forest-Fire networks, is still missing. Given a network with arbitrary pairwise likelihoods,
it is an open question whether there always exists at least one source distribution and time
window value such that the irrepresentability condition is satisfied, and, and if so, whether
there is an efficient way of finding this distribution. Finally, our work assumes all activations
occur due to network diffusion and are recorded. It would be interesting to allow for missing
observations, as well as activations due to exogenous factors.
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12. Appendix

12.1 Proof of Lemma 9

Lemma 9 Given log-concave survival functions and concave hazard functions in the param-
eter(s) of the pairwise transmission likelihoods, then, a sufficient condition for the Hessian
matrix Qn to be positive definite is that the hazard matrix Xn(α) is non-singular.

Proof Using Eq. 5, the Hessian matrix can be expressed as a sum of two matrices, Dn(α)
and Xn(α)Xn(α)>. The matrix Dn(α) is trivially positive semidefinite by log-concavity of
the survival functions and concavity of the hazard functions. The matrix Xn(α)Xn(α)> is
positive definite matrix since Xn(α) is full rank by assumption. Then, the Hessian matrix
is positive definite since it is a sum a positive semidefinite matrix and a positive definite
matrix.
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12.2 Proof of Lemma 10

Lemma 10 If the source probability P(s) is strictly positive for all s ∈ R, then, for an
arbitrarily large number of cascades n → ∞, there exists an ordering of the nodes and
cascades within the cascade set such that the hazard matrix Xn(α) is non-singular.

Proof In this proof, we find a labeling of the nodes (row indices in Xn(α)) and ordering
of the cascades (column indices in Xn(α)), such that, for an arbitrary large number of
cascades, we can express the matrix Xn(α) as [T B], where T ∈ Rp×p is an upper triangular
with nonzero diagonal elements and B ∈ Rp×n−p. And, therefore, Xn(α) has full rank
(rank p). We proceed first by sorting nodes in R and then continue by sorting nodes in U :

• Nodes in R: For each node u ∈ R, consider the set of cascades Cu in which u was a
source and i got infected. Then, rank each node u according to the earliest position
in which node i got infected across all cascades in Cu in decreasing order, breaking
ties at random. For example, if a node u was, at least once, the source of a cascade in
which node i got infected just after the source, but in contrast, node v was never the
source of a cascade in which node i got infected the second, then node u will have a
lower index than node v. Then, assign row k in the matrix Xn(α) to node in position
k and assign the first d columns to the corresponding cascades in which node i got
infected earlier. In such ordering, Xn(α)mk = 0 for all m < k and Xn(α)kk 6= 0.

• Nodes in U : Similarly as in the first step, and assign them the rows d + 1 to p.
Moreover, we assign the columns d + 1 to p to the corresponding cascades in which
node i got infected earlier. Again, this ordering satisfies that Xn(α)mk = 0 for all
m < k and Xn(α)kk 6= 0. Finally, the remaining columns n − p can be assigned to
the remaining cascades at random.

This ordering leads to the desired structure [T B], and thus it is non-singular.

12.3 Proof of Eq 7.

If the Hazard vector X(tc;α) is Lipschitz continuous in the domain {α : αS ≥
α∗min
2 },

‖X(tc;β)−X(tc;α)‖2 ≤ k1‖β −α‖2,
where k1 is some positive constant. Then, we can bound the spectral norm of the difference,
1√
n

(Xn(β)−Xn(α)), in the domain {α : αS ≥
α∗min
2 } as follows:

|‖ 1√
n

(
Xn(β)−Xn(α)

)
‖|2 = max

‖u‖2=1

1√
n
‖u
(
Xn(β)−Xn(α)

)
‖2

= max
‖u‖2=1

1√
n

√√√√ n∑
c=1

〈u,X(tc;β)−X(tc;α)〉2 ≤ 1√
n

√
k21n‖u‖22‖β −α‖22 ≤ k1‖β −α‖2.
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12.4 Proof of Lemma 3

By Lagrangian duality, the regularized network inference problem defined in Eq. 4 is equiv-
alent to the following constrained optimization problem:

minimizeαi `n(αi)
subject to αji ≥ 0, j = 1, . . . , N, i 6= j,

||αi||1 ≤ C(λn)
(24)

where C(λn) <∞ is a positive constant. In this alternative formulation, λn is the Lagrange
multiplier for the second constraint. Since λn is strictly positive, the constraint is active at
any optimal solution, and thus ||αi||1 is constant across all optimal solutions.

Using that `n(αi) is a differentiable convex function by assumption and {α : αji ≥
0, ||αi||1 ≤ C(λn)} is a convex set, we have that ∇`n(αi) is constant across optimal primal
solutions Mangasarian (1988). Moreover, any optimal primal-dual solution in the original
problem must satisfy the KKT conditions in the alternative formulation defined by Eq. 24,
in particular,

∇`n(αi) = −λnz + µ,

where µ ≥ 0 are the Lagrange multipliers associated to the non negativity constraints and
z denotes the subgradient of the `1-norm.

Consider the solution α̂ such that ||ẑSc ||∞ < 1 and thus ∇αSc `n(α̂i) = −λnẑSc + µ̂Sc .
Now, assume there is an optimal primal solution α̃ such that α̃ji > 0 for some j ∈ Sc,
then, using that the gradient must be constant across optimal solutions, it should hold
that −λnẑj + µ̂j = −λn, where µ̃ji = 0 by complementary slackness, which implies µ̂j =
−λn(1 − ẑj) < 0. Since µ̂j ≥ 0 by assumption, this leads to a contradiction. Then, any
primal solution α̃ must satisfy α̃Sc = 0 for the gradient to be constant across optimal
solutions.

Finally, since αSc = 0 for all optimal solutions, we can consider the restricted optimiza-
tion problem defined in Eq. 17. If the Hessian sub-matrix [∇2L(α̂)]SS is strictly positive
definite, then this restricted optimization problem is strictly convex and the optimal solution
must be unique.

12.5 Proof of Lemma 4

To prove this lemma, we will first construct a function

G(uS) := `n(α∗
S + uS)− `n(α∗

S) + λn(‖α∗
S + uS‖1 − ‖α∗

S‖1).
whose domain is restricted to the convex set U = {uS : α∗S + uS ≥ 0}. By construction,
G(uS) has the following properties

1. It is convex with respect to uS .

2. Its minimum is obtained at ûS := α̂S −α∗S . That is G(ûS) ≤ G(uS), ∀uS 6= ûS .

3. G(ûS) ≤ G(0) = 0.

Based on the properties 1 and 3 above, we deduce that any point in the segment, L :=
{ũS : ũS = tûS + (1− t)0, t ∈ [0, 1]}, connecting ûS and 0 has G(ũS) ≤ 0. That is

G(ũS) = G(tûS + (1− t)0) ≤ tG(ûS) + (1− t)G(0) ≤ 0.
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Next, we will find a sphere centered at 0 with strictly positive radius B, S(B) :=
{uS : ‖uS‖2 = B}, such that function G(uS) > 0 (strictly positive) on S(B). We note
that this sphere S(B) can not intersect with the segment L since the two sets have strictly
different function values. Furthermore, the only possible configuration is that the segment is
contained inside the sphere entirely, leading us to conclude that the end point ûS := α̂S−α∗S
is also within the sphere. That is ‖α̂S −α∗S‖2 ≤ B.

In the following, we will provide details on finding such a suitable B which will be a
function of the regularization parameter λn and the neighborhood size d. More specifically,
we will start by applying a Taylor series expansion and the mean value theorem,

G(uS) = ∇S`n(α∗S)>uS + u>S∇2
SS`

n(α∗S + buS)uS + λn(‖α∗S + uS‖1 − ‖α∗S‖1), (25)

where b ∈ [0, 1]. We will show that G(uS) > 0 by bounding below each term of above
equation separately.

We bound the absolute value of the first term using the assumption on the gradient,
∇S`(·),

|∇S`n(α∗S)>uS | ≤ ‖∇S`‖∞‖uS‖1 ≤ ‖∇S`‖∞
√
d‖uS‖2 ≤ 4−1λnB

√
d. (26)

We bound the absolute value of the last term using the reverse triangle inequality.

λn|‖α∗S + uS‖1 − ‖α∗S‖1| ≤ λn‖uS‖1 ≤ λn
√
d‖uS‖2. (27)

Bounding the remaining middle term is more challenging. We start by rewriting the
Hessian as a sum of two matrices, using Eq. 5,

q = min
uS

u>SDn
SS(α∗S + buS)uS + n−1u>SXn

S(α∗S + buS)Xn
S(α∗S + buS)>uS

= min
uS

u>SDn
SS(α∗S + buS)uS + ‖u>SXn

S(α∗S + buS)‖22.

Now, we introduce two additional quantities,

∆Dn
SS = Dn

SS(α∗S + buS)−Dn
SS(α∗S) and ∆Xn

S = Xn
S(α∗S + buS)−Xn

S(α∗S),

and rewrite q as

q = min
uS

[
u>SDn

SS(α∗S)uS + n−1‖u>SXn
S(α∗S)‖22 + n−1‖u>S∆Xn

S‖22 + u>S∆Dn
SSuS

+ 2n−1〈u>SXn
S(α∗S),u>S∆Xn

S〉
]
.

Next, we use dependency condition,

q ≥ CminB
2 −max

uS

|u>S∆Dn
SSuS︸ ︷︷ ︸

T1

| −max
uS

2|n−1〈u>SXn
S(α∗S),u>S∆Xn

S〉︸ ︷︷ ︸
T2

|,

and proceed to bound T1 and T2 separately. First, we bound T1 using the Lipschitz condi-
tion,

|T1| = |
∑
k∈S

u2k[D
n
k(α∗S + buS)−Dn

k(α∗S)]| ≤
∑
k∈S

u2kk2‖buS‖2 ≤ k2B3.
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Then, we use the dependency condition, the Lipschitz condition and the Cauchy-Schwartz
inequality to bound T2,

T2 ≤
1√
n
‖u>SXn

S(α∗S)‖2
1√
n
‖u>S∆Xn

S‖2 ≤
√
CmaxB

1√
n
‖u>S∆Xn

S‖2

≤
√
CmaxB‖uS‖2

1√
n
|‖∆Xn

S‖|2 ≤
√
CmaxB

2k1‖buS‖2

≤ k1
√
CmaxB

3,

where we note that applying the Lipschitz condition implies assuming B < αmin
2 . Next, we

incorporate the bounds of T1 and T2 to lower bound q,

q ≥ CminB
2 − (k2 + 2k1

√
Cmax)B3. (28)

Now, we set B = Kλn
√
d, where K is a constant that we will set later in the proof, and

select the regularization parameter λn to satisfy

λn
√
d ≤ Cmin

2K(k2 + 2k1
√
Cmax)

. (29)

Then,

G(uS) ≥ −4−1λn
√
dB + 0.5CminB

2 − λn
√
dB ≥ B(0.5CminB − 1.25λn

√
d)

≥ B(0.5CminKλn
√
d− 1.25λn

√
d).

In the last step, we set the constant K = 3C−1min, and we have

G(uS) ≥ 0.25λn
√
d > 0,

as long as

√
dλn ≤

C2
min

6(k2 + 2k1
√
Cmax)

α∗min ≥
6λn
√
d

Cmin
.

Finally, convexity of G(uS) yields

‖α̂S −α∗S‖2 ≤ 3λn
√
d/Cmin ≤

α∗min

2
.

12.6 Proof of Lemma 5

Define zcj = [∇g(tc;α∗)]j and zj = 1
n

∑
c z

c
j . Now, using the KKT conditions and condition

4 (Boundedness), we have that µ∗j = Ec{zcj} and |zcj | ≤ k3, respectively. Thus, Hoeffding’s
inequality yields

P

(
|zj − µ∗j | >

λnε

4(2− ε)

)
≤ 2 exp

(
− nλ2nε

2

32k23 (2− ε)2

)
,

and then,

P

(
‖z − µ∗‖∞ >

λnε

4(2− ε)

)
≤ 2 exp

(
− nλ2nε

2

32k23 (2− ε))2
+ log p

)
.
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12.7 Proof of Lemma 6

We start by factorizing the Hessian matrix, using Eq. 5,

Rnj =
[
∇2`n(ᾱj)−∇2`n(α∗)

]>
j

(α̂−α∗) = ωnj + δnj ,

where,

ωnj =
[
Dn(ᾱj)−Dn(α∗)

]>
j

(α̂−α∗)

δnj =
1

n
V n
j (α̂−α∗)

V n
j = [Xn(ᾱj)]jX

n(ᾱj)
> − [Xn(α∗)]jX

n(α∗)>.

Next, we proceed to bound each term separately. Since [ᾱj ]S = θjα̂S+(1−θj)α∗S where

θj ∈ [0, 1], and ‖α̂S − α∗S‖∞ ≤
α∗min
2 (Lemma 4), it holds that [ᾱj ]S ≥

α∗min
2 . Then, we can

use condition 3 (Lipschitz Continuity) to bound ωnj .

|ωnj | ≤ k1‖ᾱj −α∗‖2‖α̂−α∗‖2 ≤ k1θj‖α̂−α∗‖22 ≤ k1‖α̂−α∗‖22.

However, bounding term δnj is more difficult. Let us start by rewriting δnj as follows.

δnj = (Λ1 + Λ2 + Λ3) (α̂−α∗),

where,

Λ1 = [Xn(α∗)]j(X
n(ᾱj)

> −Xn(α∗)>)

Λ2 = {[Xn(ᾱj)]j − [Xn(α∗)]j}(Xn(ᾱj)
> −Xn(α∗)>)

Λ3 =
(
[Xn(ᾱj)]j − [Xn(α∗)]j

)
Xn(α∗)>.

Next, we bound each term separately. For the first term, we first apply Cauchy inequal-
ity,

|Λ1(α̂−α∗)| ≤ ‖[Xn(α∗)]j‖2 × |‖Xn(ᾱj)
> −Xn(α∗)>‖|2‖α̂−α∗‖2,

and then use condition 3 (Lipschtiz Continuity) and 4 (Boundedness),

|Λ1(α̂−α∗)| ≤ nk4k1‖ᾱj −α∗‖2‖α̂−α∗‖2 ≤ nk4k1‖α̂−α∗‖22.

For the second term, we also start by applying Cauchy inequality,

|Λ2(α̂−α∗)| ≤ ‖[Xn(ᾱj)]j − [Xn(α∗)]j‖2 × |‖Xn(ᾱj)
> −Xn(α∗)>‖|2‖α̂−α∗‖2,

and then use condition 3 (Lipschtiz Continuity),

|Λ2(α̂−α∗)| ≤ nk21‖α̂−α∗‖22.

Last, for third term, once more we start by applying Cauchy inequality,

|Λ3(α̂−α∗)| ≤ ‖[Xn(ᾱj)]j − [Xn(α∗)]j‖2 × |‖Xn(α∗)>‖|2‖α̂−α∗‖2,
and then apply condition 1 (Dependency Condition) and condition 3 (Lipschitz Continuity),

|Λ3(α̂−α∗)| ≤ nk1
√
Cmax‖α̂−α∗‖22

Now, we combine the bounds,

‖Rn‖∞ ≤ K‖α̂−α∗‖22,
where

K = k1 + k4k1 + k21 + k1
√
Cmax.

23



Gomez-Rodriguez, Song, Daneshmand, Daneshmand and Schölkopf

Finally, using Lemma 4 and selecting the regularization parameter λn to satisfy λnd ≤
C2
min

ε
36K(2−ε) yields:

‖Rn‖∞
λn

≤ 3Kλnd

C2
min

≤ ε

4(2− ε)

12.8 Proof of Lemma 7

We will first bound the difference in terms of nuclear norm between the population Fisher
information matrix QSS and the sample mean cascade log-likelihood QnSS . Define zcjk =

[∇2g(tc;α∗) − ∇2`n(α∗)]jk and zjk = 1
n

∑n
c=1 z

c
jk. Then, we can express the difference

between the population Fisher information matrix QSS and the sample mean cascade log-
likelihood QnSS as:

|‖QnSS(α∗)−Q∗SS(α∗)‖|2 ≤ |‖QnSS(α∗)−Q∗SS(α∗)‖|F =

√√√√ d∑
j=1

d∑
k=1

(zik)2.

Since |z(c)jk | ≤ 2k5 by condition 4, we can apply Hoeffding’s inequality to each zjk,

P (|zjk| ≥ β) ≤ 2 exp

(
−β

2n

8k25

)
, (30)

and further,

P (|‖QnSS(α∗)−Q∗SS(α∗)‖|2 ≥ δ) ≤ 2 exp
(
−Kδ2n

d2
+ 2 log d

)
(31)

where β2 = δ2/d2. Now, we bound the maximum eigenvalue of QnSS as follows:

Λmax(QnSS) = max
‖x‖2=1

x>QnSSx = max
‖x‖2=1

{x>Q∗SSx+ x>(QnSS −Q∗SS)x}

≤ y>Q∗SSy + y>(QnSS −Q∗SS)y,

where y is unit-norm maximal eigenvector of Q∗SS . Therefore,

Λmax(QnSS) ≤ Λmax(Q∗SS) + |‖QnSS −Q∗SS‖|2,
and thus,

P
(
Λmax(QnSS) ≥ Cmax + δ

)
≤ exp

(
−Kδ2n

d2
+ 2 log d

)
.

Reasoning in a similar way, we bound the minimum eigenvalue of QnSS :

P
(
Λmin(QnSS) ≤ Cmin − δ

)
≤ exp

(
−Kδ2n

d2
+ 2 log d

)

12.9 Proof of Lemma 8

We start by decomposing QnScS(α∗)(QnScS(α∗))−1 as follows:

QnScS(α∗)(QnScS(α∗))−1 = A1 +A2 +A3 +A4,
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where,

A1 = Q∗ScS [(QnScS)−1 − (Q∗ScS)−1],

A2 = [QnScS −Q∗ScS ][(QnScS)−1 − (Q∗ScS)−1]

A3 = [QnScS −Q∗ScS ](Q∗SS)−1,

A4 = Q∗ScS(Q∗SS)−1,

Q∗ = Q∗(α∗) and Qn = Qn(α∗). Now, we bound each term separately. The fourth term,
A4, is the easiest to bound, using simply the incoherence condition:

|‖A4‖|∞ ≤ 1− ε.
To bound the other terms, we need the following lemma:

Lemma 11 For any δ ≥ 0 and constants K and K ′, the following bounds hold:

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ] ≤ 2 exp

(
−Knδ2

d2
+ log d+ log(p− d)

)
(32)

P [|‖QnSS −Q∗SS‖|∞ ≥ δ] ≤ 2 exp

(
−Knδ2

d2
+ 2 log d

)
(33)

P [|‖(QnSS)−1 − (Q∗SS)−1‖|∞ ≥ δ] ≤ 4 exp

(
−Knδ

d3
−K ′ log d

)
(34)

Proof We start by proving the first confidence interval. By definition of infinity norm of
a matrix, we have:

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ] = P
[

max
j∈Sc

∑
k∈S
|zjk| ≥ δ

]
≤ (p− d)P

[∑
k∈S
|zjk| ≥ δ

]
,

where zjk = [Qn −Q∗]jk and, for the last inequality, we used the union bound and the fact
that |Sc| ≤ p− d. Furthermore,

P
[∑
k∈S
|zjk| ≥ δ

]
≤ P [∃k ∈ S||zjk| ≥ δ/d] ≤ dP [|zjk| ≥ δ/d].

Thus,

P [|‖QnScS −Q∗ScS‖|∞ ≥ δ] ≤ (p− d)dP [|zjk| ≥ δ/d].

At this point, we can obtain the first confidence bound by using Eq. 30 with β = δ/d in
the above equation. The proof of the second confidence bound is very similar and we omit
it for brevity. To prove the last confidence bound, we proceed as follows:

|‖(QnSS)−1 − (Q∗SS)−1‖|∞ = |‖(QnSS)−1[QnSS −Q∗SS ](Q∗SS)−1‖|∞
≤
√
d|‖(QnSS)−1[QnSS −Q∗SS ](Q∗SS)−1‖|2

≤
√
d|‖(QnSS)−1‖|2|‖QnSS −Q∗SS‖|2|‖(Q∗SS)−1‖|2

≤
√
d

Cmin
|‖QnSS −Q∗SS‖|2|‖(QnSS)−1‖|2.

Next, we bound each term of the final expression in the above equation separately. The
first term can be bounded using Eq. 31:

P

[
|‖QnSS −Q∗SS‖|2 ≥

C2
minδ

2
√
d

]
≤ 2 exp

(
−Knδ2

d3
+ 2 log d

)
,
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The second term can be bounded using Lemma 6:

P

[
|‖(QnSS)−1‖|2 ≥

2

Cmin

]
= P

[
Λmin(QnSS) ≤ Cmin

2

]
≤ exp

(
−K n

d2
+B log d

)
.

Then, the third confidence bound follows.

Control of A1. We start by rewriting the term A1 as

A1 = Q∗ScS(Q∗SS)−1[(Q∗SS)− (QnSS)](QnSS)−1,

and further,

|‖A1‖|∞ ≤ |‖Q∗ScS(Q∗SS)−1‖|∞ × |‖(Q∗SS)− (QnSS)‖|∞|‖(QnSS)−1‖|∞.

Next, using the incoherence condition easily yields:

|‖A1‖|∞ ≤ (1− ε)|‖(Q∗SS)− (QnSS)‖|∞ ×
√
d|‖(QnSS)−1‖|2

Now, we apply Lemma 6 with δ = Cmin/2 to have that |‖(QnSS)−1‖|2 ≤ 2
Cmin

with

probability greater than 1 − exp(−Kn/d2 + K ′ log d), and then use Eq. 34 with δ = εCmin

12
√
d

to conclude that

P
[
|‖A1‖|∞ ≥

ε

6

]
≤ 2 exp

(
−K n

d3
+K ′ log d

)
.

Control of A2. We rewrite the term A2 as

|‖A2‖|∞ ≤ |‖QnScS −Q∗ScS‖|∞|‖(QnSS)−1 − (Q∗SS)−1‖|∞,
and then use Eqs. 32 and 33 with δ =

√
ε/6 to conclude that

P
[
|‖A2‖|∞ ≥

ε

6

]
≤ 4 exp

(
−K n

d3
+ log(p− d) +K ′ log p

)
.

Control of A3. We rewrite the term A3 as

|‖A3‖|∞ =
√
d|‖(Q∗SS)−1‖|2|‖QnScS −Q∗ScS‖|∞ ≤

√
d

Cmin
|‖QnScS −Q∗ScS‖|∞.

We then apply Eq. 32 with δ = εCmin

6
√
d

to conclude that

P
[
|‖A3‖|∞ ≥

ε

6

]
≤ exp

(
−K n

d3
+ log(p− d)

)
,

and thus,

P
[
|‖QnScS(QnSS)−1‖|∞ ≥ 1− ε

2

]
= O

(
exp(−K n

d3
+ log p)

)
.

References

B. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace complexity of network
inference. In KDD, 2013.

E. Adar and L. A. Adamic. Tracking Information Epidemics in Blogspace. In Web Intelli-
gence, pages 207–214, 2005.

A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science, 286:
509–512, 1999.

26



Estimating Diffusion Network Structures

A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal recovery.
Convex Optimization in Signal Processing and Communications, 2009.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

N. Du, L. Song, A. Smola, and M. Yuan. Learning Networks of Heterogeneous Influence.
In NIPS, 2012a.

N. Du, L. Song, H. Woo, and H. Zha. Uncover Topic-Sensitive Information Diffusion Net-
works. In AISTATS, 2012b.

Nan Du, Le Song, Hyenkyun Woo, and Hongyuan Zha. Uncover topic-sensitive information
diffusion networks. In Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, pages 229–237, 2013.

M. Gomez-Rodriguez. Ph.D. Thesis. Stanford University & MPI for Intelligent Systems,
2013.

M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring Networks of Diffusion and
Influence. In KDD, 2010.

M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the Temporal Dynamics
of Diffusion Networks. In ICML, 2011.

M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf. Structure and Dynamics of Informa-
tion Pathways in On-line Media. In WSDM, 2013a.

M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf. Modeling Information Propagation
with Survival Theory. In ICML ’13: Proceedings of the 30th International Conference on
Machine Learning, 2013b.

M. Gomez-Rodriguez, J. Leskovec, D. Balduzzi, and B. Schölkopf. Uncovering the Structure
and Temporal Dynamics of Information Propagation. Network Science, 2014.

V. Gripon and M. Rabbat. Reconstructing a graph from path traces. arXiv:1301.6916,
2013.

Martin Jaggi. Revisiting {Frank-Wolfe}: Projection-free sparse convex optimization. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
427–435, 2013.
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