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Abstract

This paper considers the problem of subspace clustering under noise. Specifically, we
study the behavior of Sparse Subspace Clustering (SSC) when either adversarial or random
noise is added to the unlabeled input data points, which are assumed to be in a union of
low-dimensional subspaces. We show that a modified version of SSC is provably effective
in correctly identifying the underlying subspaces, even with noisy data. This extends
theoretical guarantee of this algorithm to more practical settings and provides justification
to the success of SSC in a class of real applications.
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1. Introduction

Subspace clustering is a problem motivated by many real applications. It is now widely
known that many high dimensional data including motion trajectories (Costeira and Kanade,
1998), face images (Basri and Jacobs, 2003), network hop counts (Eriksson et al., 2012),
movie ratings (Zhang et al., 2012) and social graphs (Chen et al., 2014) can be modeled
as samples drawn from the union of multiple low-dimensional linear subspaces (illustrated
in Figure 1). Subspace clustering, arguably the most crucial step to understand such data,
refers to the task of clustering the data into their original subspaces and uncovering the
underlying structure of the data. The partitions correspond to different rigid objects for
motion trajectories, different people for face data, subnets for network data, like-minded
users in movie database and latent communities for social graph.

Subspace clustering has drawn significant attention in the last decade and a great num-
ber of algorithms have been proposed, including Expectation-Maximization-like local op-
timization algorithms, e.g., K-plane (Bradley and Mangasarian, 2000) and Q-flat (Tseng,
2000), algebraic methods, e.g., Generalized Principal Component Analysis (GPCA) (Vidal
et al., 2005), matrix factorization methods (Costeira and Kanade, 1998, 1995), spectral
clustering-based methods (Lauer and Schnorr, 2009; Chen and Lerman, 2009), bottom-up
local sampling and affinity-based methods (e.g., Yan and Pollefeys, 2006; Rao et al., 2008),
and the convex optimization-based methods: namely, Low Rank Representation (LRR) (Liu
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Figure 1: Exact (a) and noisy (b) data in union-of-subspace

et al., 2010, 2013) and Sparse Subspace Clustering (SSC) (Elhamifar and Vidal, 2009, 2013).
For a comprehensive survey and comparisons, we refer the readers to the tutorial (Vidal,
2010). Among these algorithms, SSC is known to enjoy superb empirical performance, even
for noisy data. For example, it is the state-of-the-art algorithm for motion segmentation
on Hopkins155 benchmark (Tron and Vidal, 2007; Elhamifar and Vidal, 2009), and has
been shown to be more robust than LRR as the number of clusters increase (Elhamifar and
Vidal, 2013).

The key idea of SSC is to represent each data point by a sparse linear combination of the
remaining data points using `1 minimization. Without introducing the notations (which is
deferred in Section 3), the noiseless and noisy versions of SSC solve respectively

min
ci
‖ci‖1 s.t. xi = X−ici, and min

ci
‖ci‖1 +

λ

2
‖xi −X−ici‖2,

for each data column xi, and the hope is that ci will be supported only on indices of the
data points from the same subspace as xi. While this formulation is for linear subspaces,
affine subspaces can also be dealt with by augmenting data points with an offset variable 1.

Effort has been made to explain the practical success of SSC by analyzing the noiseless
version. Elhamifar and Vidal (2010) show that under certain conditions, disjoint subspaces
(i.e., they are not overlapping) can be exactly recovered. A recent geometric analysis of
SSC (Soltanolkotabi et al., 2012) broadens the scope of the results significantly to the
case when subspaces can be overlapping. However, while these analyses advanced our
understanding of SSC, one common drawback is that data points are assumed to be lying
exactly on the subspaces. This assumption can hardly be satisfied in practice. For example,
motion trajectories data are only approximately of rank-4 due to perspective distortion of
camera, tracking errors and pixel quantization (Costeira and Kanade, 1998); similarly, face
images are not precisely of rank-9 since human faces are at best approximated by a convex
body (Basri and Jacobs, 2003).

In this paper, we address this problem and provide a theoretical analysis of SSC with
noisy or corrupted data. Our main result shows that a modified version of SSC (see Eq.
(3.2)) succeeds when the magnitude of noise does not exceed a threshold determined by
a geometric gap between the inradius and the subspace incoherence (see below for precise
definitions). This complements the result of Soltanolkotabi et al. (2012) that shows the
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same geometric gap determines whether SSC succeeds for the noiseless case. Indeed, when
the noise vanishes, our results reduce to the noiseless case results of Soltanolkotabi et al..

While our analysis is based upon the geometric analysis of Soltanolkotabi et al. (2012),
the analysis is more involved: In SSC, sample points are used as the dictionary for sparse
recovery, and therefore noisy SSC requires analyzing a noisy dictionary. We also remark
that our results on noisy SSC are exact, i.e., as long as the noise magnitude is smaller than
a threshold, the recovered subspace clusters are correct. This is in sharp contrast to the
majority of previous work on structure recovery for noisy data where stability/perturbation
bounds are given—i.e., the obtained solution is approximately correct, and the approxima-
tion gap goes to zero only when the noise diminishes.

Lastly, we remark that an independently developed work (Soltanolkotabi et al., 2014)
analyzed the same algorithm under a statistical model that generates the data. In contrast,
our main results focus on the cases when the data are deterministic. Moreover, when we
specialize our general result to the same statistical model, we show that we can handle a
significantly larger amount of noise under certain regimes.

The paper is organized as follows. In Section 2, we review previous and ongoing works
related to this paper. In Section 3, we formally define the notations, explain our method
and the models of our analysis. Then we present our main theoretical results in Section 4
with examples and remarks to explain the practical implications of each theorem. In Sec-
tion 5 and 6, proofs of the deterministic and randomized results are provided. We then
evaluate our method experimentally in Section 7 with both synthetic data and real-life
data, which confirms the prediction of the theoretical results. Lastly, Section 8 summa-
rizes the paper and discuss some open problems for future research in the task of subspace
clustering.

2. Related works

In this section, we review previous and ongoing theoretical studies on the problem of sub-
space clustering.

2.1 Nominal performance guarantee for noiseless data

Most previous analyses concern about the nominal performance of a particular subspace
clustering algorithm with noiseless data. The focus is to relax the assumptions on the
underlying subspaces and data generation.

A number of methods have been shown working under the independent subspace assump-
tion including the early factorization-based methods (Costeira and Kanade, 1998; Kanatani,
2001), LRR (Liu et al., 2010) and the initial guarantee of SSC (Elhamifar and Vidal, 2009).
Recall that the data points are drawn from a union of subspaces, the independent subspace
assumption requires each subspace to be linearly independent to the span of all other sub-
spaces. Equivalently, this assumption requires the sum of each subspace’s dimension to be
equal to the dimension of the span of all subspaces. For example, in a two dimensional
plane, one can only have 2 independent lines. If there are three lines intersecting at the
origin, even if each pair of the lines are independent, they are not considered independent
as a whole.
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Independent Subspaces dim [S1 ⊗ ...⊗ SL] =
∑L

`=1 dim [S`].
Disjoint Subspaces S` ∩ Sk = 0 for all {(`, k)|` 6= k}.
Overlapping Subspaces S` 6= Sk for all {(`, k)|` 6= k} 1.

Table 1: Comparison of conditions on the underlying subspaces.

Disjoint subspace assumption only requires pairwise linear independence, and hence is
more meaningful in practice. To the best of our knowledge, only GPCA (Vidal et al., 2005)
and SSC (Elhamifar and Vidal, 2010, 2013) have been shown to provably handle the data
under disjoint subspace assumption. GPCA however is not a polynomial time algorithm. Its
computational complexity increases exponentially with respect to the number and dimension
of the subspaces.

Soltanolkotabi et al. (2012) developed a geometric analysis that further extends the
performance guarantee of SSC, and in particular it covers some cases when the underlying
subspaces are overlapping, meaning that two subspaces can even share a basis. The analysis
reveals that the success of SSC relies on the difference of two geometric quantities (inradius
r and incoherence µ) to be greater than 0, which leads to by far the most general and
strongest theoretical guarantee for noiseless SSC. A summary of these assumptions on the
subspaces and their formal definition are given in Table 1.

We remark that our robust analysis extends from Soltanolkotabi et al. (2012) and there-
fore is inherently capable of handling the same range of problems, namely disjoint and
overlapping subspaces. This is formalized later in Section 4.

2.2 Robust performance guarantee

Previous studies of the subspace clustering under noise have been mostly empirical. For
instance, factorization, spectral clustering and local affinity based approaches, which we
mentioned above, are able to produce a (sometimes good) solution even for noisy real data.
Convex optimization based approaches like LRR and SSC can be naturally reformulated as
a robust method by relaxing the hard equality constraints to a penalty term in the objective
function. In fact, the superior results of SSC and LRR on motion segmentation and face
clustering data are produced using the robust extension in Elhamifar and Vidal (2009) and
Liu et al. (2010) instead of the well-studied noiseless version.

As of writing, there have been very few subspace clustering methods that is guaranteed
to work when data are noisy. Besides the conference version of the current paper (Wang
and Xu, 2013), an independent work (Soltanolkotabi et al., 2014) also analyzed SSC under
noise. Subsequently, there has been noisy guarantees for other algorithms, e.g., thresholding
based approach (Heckel and Bölcskei, 2013) and orthogonal matching pursuit (Dyer et al.,
2013). The main difference between our work and Soltanolkotabi et al. (2014) is that our
guarantee works for a more general set of problems when the data and noise may not be

1. “Overlapping subspace model” does not need any additional assumptions on subspaces, as long as the
subspace membership for every data point is properly defined to resolve the identifiability issues. For
instance, if data point x ∈ S`∩Sk, it is reasonable to assume x is from either S` or Sk; and SSC might be
successful in clustering x to either S` or Sk, when their corresponding separation conditions hold. In fact,
the separation conditions in Soltanolkotabi et al. (2012) could hold even if one subspace is completely
contained in another.
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This paper (Wang and Xu,
2013)

Soltanolkotabi
et al. (2014)

Fully deterministic O(r(r − µ)) O(r(r − µ)) N.A.

Deterministic + random noise O((n/d)
1
4 (r−µ)) O(r − µ) N.A.

Semi-random data + random noise O

(
n

1
4√
d

(1− aff√
d
)

)
O
(

1√
d
(1− aff√

d
)
)

O
(

1− aff√
d

)
Fully-random data + random noise O

(
n

1
4√
d

(1−
√
d√
n

)

)
O
(

1√
d
(1−

√
d√
n

)
)

O
(

1−
√
d√
n

)
Table 2: Comparison of the level of noise tolerable for noisy subspace clustering methods.

Note that “aff” is the unnormalized affinity defined in Soltanolkotabi et al. (2012)

.

random, whereas the key arguments in the proof in Soltanolkotabi et al. (2014) rely on
the assumption that data points are uniformly distributed on the unit sphere within each
subspace, which corresponds to the “semi-random model” in our paper. As illustrated in
Elhamifar and Vidal (2013, Figure 9 and 10), the semi-random model is not a good fit for
either the motion segmentation and the face clustering data sets, as in these data sets there
is a fast decay in the singular values of each subspace. The uniform distribution assumption
becomes even harder to justify as the dimension d of each subspace gets larger—a regime
where the analysis in Soltanolkotabi et al. (2014) focuses on.

Moreover, with a minor modification in our analysis that sharpens the bound of the
tuning parameter that ensures the solution is non-trivial, we are able to get a result that
is stronger than Soltanolkotabi et al. (2014) in cases when the dimension of each subspace
d ≤ O(

√
n) 2. This result extends the provably guarantee of SSC to a setting where the

signal to noise ratio (SnR) is allowed to go to 0 as the ambient dimension gets large. In
summary, we compare our results in terms of the level of noise that can be provably tolerated
in Table 2. These comparisons are in the same setting modulo some slight differences in the
noise model and successful criteria. It is worth noting that when d > O(

√
n), Soltanolkotabi

et al. (2014)’s bound is sharper. We will provide more details in the Appendix.

Lastly, we note that the notion of robustness in this paper is confined to the noise/arbitrary
corruptions added to the legitimate data. It is not the robustness against outliers in the data,
unless otherwise specified. Handling outliers is a completely different problem. Solutions
have been proposed for LRR in Liu et al. (2012) by decomposing a `2,1 norm column-wise
sparse components and for SSC in Soltanolkotabi et al. (2012) by objective value thresh-
olding. However these results require non-outlier data points to be free of noise, therefore
are not comparable to the study in this paper.

3. Problem setup

In this section, we specify the notations that will be use throughout the paper and explain
the formal problem setup.

2. Admittedly, Soltanolkotabi et al. (2014) obtained better noise-tolerance than the comparable result in
our conference version (Wang and Xu, 2013).
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3.1 Notations

We denote the uncorrupted data matrix by Y ∈ Rn×N , where each column of Y (normalized
to unit vector 3) belongs to a union of L subspaces

S1 ∪ S2 ∪ ... ∪ SL.

Each subspace S` is of dimension d` and contains N` data samples with N1 +N2 + ...+
NL = N . We observe the noisy data matrix X = Y + Z, where Z is some arbitrary noise
matrix. Let Y (`) ∈ Rn×N` denote the selection of columns in Y that belongs to S`, and
denote the corresponding columns in X and Z by X(`) and Z(`) respectively. Without loss
of generality, let X = [X(1), X(2), ..., X(L)] be ordered. In addition, we use subscript “−i”
to represent a matrix that excludes column i, e.g., X

(`)
−i = [x

(`)
1 , ..., x

(`)
i−1, x

(`)
i+1, ..., x

(`)
N`

]. Calli-
graphic letters such as X ,Y` represent the set containing all columns of the corresponding
matrix (e.g., X and Y (`)).

For any matrix X, P(X) represents the symmetrized convex hull of its columns, i.e.,

P(X) = conv(±X ). Also let P(`)
−i := P(X

(`)
−i ) and Q(`)

−i := P(Y
(`)
−i ) for short. PS and

ProjS denote respectively the projection matrix and projection operator (acting on a set)
to subspace S. Throughout the paper, ‖·‖ represents 2-norm for vectors and operator norm
for matrices; other norms will be explicitly specified (e.g., ‖ · ‖1, ‖ · ‖∞).

3.2 Method and the criterion of success

Original SSC solves the linear program

min
ci
‖ci‖1 s.t. xi = X−ici, (3.1)

for each data point xi. Solutions are arranged into matrix C = [c1, ..., cN ], then spectral
clustering techniques such as Ng et al. (2002) are applied on the affinity matrix W =
|C| + |C|T (| · | represents entrywise absolute value). Note that when Z 6= 0, this method
breaks down: indeed (3.1) may even be infeasible.

To handle noisy X, a natural extension is to relax the equality constraint in (3.1)
and solve the following unconstrained minimization problem instead (Elhamifar and Vidal,
2013):

min
ci
‖ci‖1 +

λ

2
‖xi −X−ici‖2. (3.2)

We will focus on Formulation (3.2) in this paper. Notice that (3.2) coincides with stan-
dard LASSO. Yet, since our task is subspace clustering, the analysis of LASSO (mainly
for the task of support recovery) does not extend to SSC. In particular, existing literature
for LASSO to succeed requires the dictionary X−i to satisfy the Restricted Isometry Prop-
erty (RIP for short; Candès, 2008) or the Null-space property (Donoho et al., 2006), but
neither of them is satisfied in the subspace clustering setup.4

3. We assume the normalization condition for ease of presentation. Our results can be extended to the
case when each column of the noisy data points X = Y + Z is normalized, as well as the case where no
normalizing is performed at all, under simple modifications to the conditions.

4. As a simple illustrative example, suppose X obeys RIP and x be the first column of X, matrix [X,x]
violates RIP for 2-sparse signal (1, 0, ..., 0,−1). On the contrary, the inradius of X and [X,x] will be
exactly the same.
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Figure 2: Illustration of LASSO-Subspace Detection Property/Self-Expressiveness Prop-
erty. Left: SEP holds. Right: SEP is violated even though spectral clustering
is likely to cluster this affinity graph perfectly into 5 blocks.

In the subspace clustering task, there is no single “ground-truth” C to compare the
solution against. Instead, the algorithm succeeds if each sample is expressed as a linear
combination of samples belonging to the same subspace, as the following definition states.

Definition 1 (LASSO Subspace Detection Property) We say the subspaces {S`}k`=1

and noisy sample points X from these subspaces obey LASSO subspace detection property
with parameter λ, if and only if it holds that for all i, the optimal solution ci to (3.2) with
parameter λ satisfies:

(1) ci is not a zero vector, i.e., the solution is non-trivial, (2) Nonzero entries of ci
correspond to only columns of X sampled from the same subspace as xi.

This property ensures that the output matrix C and (naturally) the affinity matrix W are
exactly block diagonal with each subspace cluster represented by a disjoint block. The
property is illustrated in Figure 2. For convenience, we will refer to the second requirement
alone as “Self-Expressiveness Property” (SEP), as defined in Elhamifar and Vidal (2013).

Note that the LASSO Subspace Detection Property is a strong condition. In practice,
spectral clustering does not require the exact block diagonal structure for perfect segmen-
tation (check Figure 8b in our simulation section for details). A caveat is that it is also not
sufficient for perfect segmentation, since it does not guarantee each diagonal block forms a
connected component. This is a known problem for SSC (Nasihatkon and Hartley, 2011),
although we observe that in practice graph connectivity is usually not a big issue. Proving
the high-confidence connectivity (even under probabilistic models) remains an open prob-
lem, except for the almost trivial cases when the subspaces are independent (Liu et al.,
2013; Wang et al., 2013).

3.3 Models of analysis:

Our objective here is to provide sufficient conditions upon which the LASSO subspace de-
tection properties hold in the four models given in Table 2, ranging from fully deterministic
to fully random. Precise definitions of these models will be given in Section 4.
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4. Main results

In this section, we present our theoretical guarantee for LASSO-SSC under the four afore-
mentioned models. We will start by describing subspace clustering for a fixed dataset where
each data point can be perturbed by an arbitrary noise of bounded size. Then we will in-
crementally add stochastic assumptions and state the corresponding results with conditions
that reveal explicit dependence on parameters of the model.

4.1 Deterministic model

We start by defining two concepts adapted from the original proposal of Soltanolkotabi
et al. (2012).

Definition 2 (Projected Dual Direction) Let ν be the optimal solution to the dual op-
timization program5

max
ν
〈x, ν〉 − 1

2λ
νT ν, subject to: ‖XT ν‖∞ ≤ 1;

and S is a low-dimensional subspace. The projected dual direction v is defined as

v(x,X,S, λ) ,
PSν
‖PSν‖

.

Definition 3 (Projected Subspace Incoherence Property) Compactly denote projected

dual direction v
(`)
i = v(x

(`)
i , X

(`)
−i ,S`, λ) and V (`) = [v

(`)
1 , ..., v

(`)
N`

]. We say that vector set X`
is µ-incoherent to other points if

µ ≥ µ(X`) := max
y∈Y\Y`

‖V (`)T y‖∞.

Here, µ measures the incoherence between corrupted subspace samples X` and clean
data points in other subspaces (illustrated in Figure 4). As ‖y‖ = 1 by the normalization
assumption, the range of µ is [0, 1]. In case of random subspaces in high dimension, µ is
close to zero. Moreover, as we will see later, for deterministic subspaces and random data
points, µ is proportional to their expected angular distance (measured by cosine of canonical
angles).

Definition 2 and 3 differ from the dual direction and subspace incoherence property of
Soltanolkotabi et al. (2012) in that we require a projection to a particular subspace to cater
to the analysis of the noise case. Also, since they reduce to the original definitions when
data are noiseless and λ → ∞, these definitions can be considered as a generalization of
their original version.

Definition 4 (inradius) The inradius of a convex body P, denoted by r(P), is defined as
the radius of the largest Euclidean ball inscribed in P.

The inradius of a Q(`)
−i describes the dispersion of the data points. Well-dispersed data lead

to larger inradius and skewed/concentrated distribution of data have small inradius. An
illustration is given in Figure 3.

5. This definition is related to (5.3), the dual problem of (3.2), which we will define in the proof.
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Figure 3: Illustration of inradius and data distribution. The inradius measures how well
data points represent a subspace.

Figure 4: Illustrations of the projected dual direction and subspace incoherence property.
The projected dual direction in Definition 2 is essentially an Euclidean projec-
tion to the polytope, followed by a projection to the subspace and normalization.
There is a dual direction associated with each data point in the subspace. Jointly,{
x
∣∣∣maxi

∣∣〈v(`)i , x〉
∣∣ ≤ µ} defines a polygon in the subspace S`, and subspace in-

coherence µ is given by the smallest such polytope that contains the projections
of all external point y into the this subspace.
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Definition 5 (Deterministic noise model) Consider arbitrary additive noise Z to Y ,
each column zi is bounded by the two quantities below:

δ := max
i
‖zi‖, δ1 := max

i,`
‖PS`zi‖,

As we assume the uncorrupted data point y has unit norm, δ essentially describes the
amount of allowable relative error.

Theorem 6 Under the deterministic noise model, compactly denote

µ` := µ(X`), r` := min
{i:xi∈X`}

r(Q(`)
−i), r := min

`=1,...,L
r`.

If µ` < r` for each ` = 1, ..., L, furthermore

δ ≤ min
`=1,...,L

r(r` − µ`)
2 + 7r`

then LASSO subspace detection property holds for all weighting parameter λ in the range

1

r − 2δ − δ2
< λ < min

`=1,..,L

{
r` − µ` − 2δ1

δ(1 + δ)(2 + r` − δ1)

}
which is guaranteed to be non-empty.

We now offer some discussions of the theorem and the proof will be given in Section 5.

Noiseless case. When δ = 0, i.e., there is no noise, the condition reduces to µ` < r`, which
coincides with the result in Soltanolkotabi et al. (2012). The exact LP formulation (3.1)
is equivalent to λ → ∞. Our result implies that unconstrained LASSO formulation (3.2)
works for any λ > 1

r .

Signal-to-Noise Ratio. Condition δ ≤ r(r−µ)
2+7r can be interpreted as the breaking point

under increasing magnitude of attack. This suggests that SSC by (3.2) is provably robust
to arbitrary noise having signal-to-noise ratio (SnR) greater than Θ

(
1

r(r−µ)
)
. (Notice that

0 < r < 1, and hence 7r + 2 = Θ(1).)

Tuning parameter λ. The range of the parameter λ in the theorem depends on unknown
parameters µ, r and δ, and therefore cannot be used in practice to choose the parameter
in practice. It does however justify that when δ is small, the range of λ that LASSO-SSC
works is large, therefore not hard to tune. In practice, we do not need to know λ in prior.
One approach is to trace the Lasso path (Tibshirani et al., 2013) until we have about k
non-zero entries in the coefficient vector. If we would like to use a single λ for all columns,
a good point to start is to take λ to be in the order of O

(
1

minj maxi 6=j |xTi xj |
)
, this ensures the

solution to be at least non-trivial.

Agnostic subspace clustering. The robustness to deterministic error is important,
since in practice the union-of-subspace structures are usually only good approximations.
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If each subspace has decaying singular values (e.g., motion segmentation, face clustering
(Elhamifar and Vidal, 2013) and hybrid system identification(Vidal et al., 2003)), the de-
terministic guarantee allows for the flexibility in choosing the cut-off points, e.g., take 90%
of the energy as signal and treat the remaining spectrum as noise. If one keeps a smaller
number of singular values ( a smaller subspace dimension), the inradius will likely to be
larger 6, although the noise level also increases. It is possible that the conditions in Theo-
rem 6 are satisfied for some decomposition (e.g., those with a large spectral gap) but not
others. The nice thing is that this is not a tuning parameter, but rather a theoretical prop-
erty that remains agnostic to the users. In fact, the algorithm will be provably effective
as long as the conditions are satisfied for any signal noise decomposition (not restricted to
rank-projection). None of these is possible if distributional assumptions are made to either
the data or the noise.

4.2 Randomized models

We further analyze three randomized models with increasing level of randomness.

• Deterministic+Random Noise. Subspaces and samples in subspace are arbitrary; the
noise obeys the Random Noise model (Definition 7).

• Semi-random+Random Noise. Subspace is deterministic, but samples in each sub-
space are drawn iid uniformly from the intersection of the unit sphere and the sub-
space; the noise obeys the Random Noise model.

• Fully random. Both subspace and samples are drawn uniformly at random from their
respective domains; the noise is iid Gaussian.

In each of these models, we improve the performance guarantee over our conference version
(Wang and Xu, 2013). In the most well-studied semi-random model, we are able to handle
cases where the noise level is much larger than the signal, and hence improves upon the
best known result for SSC Soltanolkotabi et al. (2014). A detailed comparison of the noise
tolerance of these methods is given in Table 2.

Definition 7 (Random noise model) Our random noise model is defined to be any ad-
ditive Z that is (1) column wise iid; (2) spherical symmetric; and (3) ‖zi‖ ≤ δ for all
i = 1, ..., N with probability at least 1− 1/N .

A good example of our random noise model is iid Gaussian noise. Let each entry Zij ∼
N(0, σ2/n). It is known that (see Lemma 18) for some constant C

P

(
δ := max

i
‖zi‖ >

√
1 +

6 logN

n
σ

)
≤ C/N2.

Theorem 8 (Deterministic+Random Noise) Under random noise model, compactly
denote r`, r and µ` as in Theorem 6, furthermore let

ε :=

√
6 logN

n−max` d`
≤
√
C log(N)

n
.

6. A formal relationship between inradius and smallest singular value is described in Wang et al. (2013).
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If µ` < r` for all ` = 1, ..., k,

εδ < min
`=1,...,L

r` − µ`
2
√
d` + 2

, and εδ(1 + δ) < min
`=1,...,L

r(r` − µ`)
4r` + 6

,

then with probability at least 1 − 9/N , LASSO subspace detection property holds for all
weighting parameter λ in the range

1

r − 2εδ − εδ2
< λ < min

`=1,...,L

{
r` − µ` − δε− δ

√
d`ε

εδ(1 + δ)(3 + r` − δ
√
d`ε)

}
(4.1)

which is guaranteed to be non-empty.

Low SnR paradigm. Compared to Theorem 6, Theorem 8 considers a more benign
noise which leads to a stronger result. In particular, without assuming any statistical
model on how data are generated, we show that LASSO-SSC is able to tolerate noise of

level O
(

( n
logN )1/4(r(r` − µ`))1/2

)
or O

(
( n
d logN )1/2(r` − µ`)

)
(whichever is smaller). This

extends SSC’s guarantee with deterministic data to cases where the noise can be significantly
larger than the signal. In fact, the SnR can go to 0 as the ambient dimension gets large.

On the other hand, Theorem 8 shows that LASSO-SSC is able to tolerate a constant
level of noise when the geometric gap r` − µ` is as small as O(

√
d/n). This is arguably

near-optimal (when d is small) as the projection of a constant-level random noise into a
d-dimensional subspace has an expected magnitude of the same order, which could easily
close up the small geometric gap for some non-trivial probability if the noise is much larger.

Margin of error. Since the bound depends critically on (r` − µ`)—the difference of
inradius and incoherence—which is the geometric gap that appears in the noiseless guarantee
of Soltanolkotabi et al. (2012). We will henceforth call this gap the margin of error.

We now analyze this margin of error under different generative models. We start from
the semi-random model, where the distance between two subspaces is measured as follows.

Definition 9 The affinity between two subspaces is defined by:

aff(Sk,S`) =

√
cos2 θ

(1)
k` + ...+ cos2 θ

(min(dk,d`))
k` ,

where θ
(i)
k` is the ith canonical angle between the two subspaces. Let Uk and U` be a set of

orthonormal bases of each subspace, then aff(Sk,S`) = ‖UTk U`‖F .

When data points are randomly sampled from each subspace, the geometric entity µ(X`)
can be expressed using this (more intuitive) subspace affinity, which leads to the following
theorem.

Theorem 10 (Semi-random model+random noise) Under the semi-random model with
random noise, there exists a non-empty range of λ such that LASSO subspace detection prop-
erty holds with probability 1− 9

N−
1
L2

∑
` 6=`′

1
(N`+1)N`′

e−
t
4−6

∑L
`=1(e

γ1(n−d`)+eγ2d`+e−
√
N`d`)

12
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as long as the noise level obeys

δ(1 + δ) ≤max
`,`′

√
n− d

6 logN

√
log κ

40K2

√
dd`

(
1− K1K2aff(S`,S`′)√

d`′

)
,

where K1 := (t log[(N` + 1)N`′ ] + logL), K2 := 4
√

1
log κ`

, κ` := N`/d`,
log κ
d := min`

log κ`
d`

,

and γ1, γ2 are absolute constants.

The proof is essentially substituting the incoherence and inradius parameters in Theorem 8
with meaningful bounds, so Theorem 10 can be regarded as a corollary of Theorem 8.

Overlapping subspaces. Similar to the results in Soltanolkotabi et al. (2012), Theo-
rem 10 demonstrates that LASSO-SSC can handle overlapping subspaces with noisy sam-
ples. By Definition 9, aff(Sk,S`) can be small even if Sk and S` share a basis.

Comparison to Soltanolkotabi et al. (2014). In the high dimensional setting when
n � d, our result is able to handle the low SnR regime when δ = Θ(n1/4/d1/2), while
Soltanolkotabi et al. (2014) needs δ to be bounded by a small constant.

In the case when d is a constant fraction of n, however, our bound is worse by a factor of√
d. Soltanolkotabi et al. (2014) is still able to handle a small constant noise while we needs

δ < O( 1√
d
). The suboptimal bound might be due to the fact that we are simply developing

the theorem for the semi-random model as a corollary of Theorem 8 and haven not fully
exploit the structure of the semi-random model in the proof.

We now turn to the fully random case.

Theorem 11 (Fully random model) Suppose there are L subspaces each with dimen-
sion d, chosen independently and uniformly at random. For each subspace, κd + 1 points
are chosen independently and uniformly from the unit sphere inside each subspace. Each
measurement is corrupted by iid Gaussian noise ∼ N(0, σ2/n). Furthermore, if

d <
c(κ)2 log κ

24 logN
n, and σ(1 + σ) <

c(κ)2 log κ

20

√
n

d
,

then with probability at least 1− 10
N −Ne

−
√
κd, the LASSO subspace detection property holds

for any λ in the range
C1

√
d

c(κ)
√

log κ
< λ <

C2c(κ)
√
n log κ

σ
√
d logN

, (4.2)

which is guaranteed to be non-empty. Here, C1, C2 are absolute constants.

The results under this simple model are very interpretable. It provides intuitive guideline in
how robustness of LASSO-SSC change with respect to the various parameters of the data.

One one hand, it is sensitive to the dimension of each subspace d, since the σ ≤ Θ̃(n
1/4
√
d

).

This dependence on subspace dimension d is not a critical limitation as most interesting
applications indeed have very low subspace-dimension, as summarized in Table 3. On the
other hand, the dependence on the number of subspaces L (in both log κ and logN since
N = L(κd+ 1)) is only logarithmic. This suggests that SSC is robust even when there are
many clusters, and Ld� n.

13
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Application Cluster rank

3D motion segmentation (Costeira and Kanade, 1998) rank = 4

Face clustering (with shadow) (Basri and Jacobs, 2003) rank = 9

Diffuse photometric face (Zhou et al., 2007) rank = 3

Network topology discovery (Eriksson et al., 2012) rank = 2

Hand writing digits (Hastie and Simard, 1998) rank = 12

Social graph clustering (Chen et al., 2014) rank = 1

Table 3: Rank of real subspace clustering problems

(a) Noiseless SSC (b) Noisy LASSO-SSC

Figure 5: Geometric interpretation and comparison of the (a) noiseless SSC and (b) noisy
LASSO-SSC.

4.3 Geometric interpretations

A geometric illustration of the condition in Theorem 6 is given in Figure 5 in comparison
to the geometric separation condition in the noiseless case.

The left pane depicts the separation condition µ` ≤ r` in Theorem 2.5 of Soltanolkotabi
et al. (2012). The blue polygon represents the the intersection of halfspaces defined with
dual directions that are also the tangent to the red inscribing sphere. More precisely, this is{
x ∈ S`

∣∣∣∣〈v`i , x〉∣∣ ≤ r`}. From our illustration of µ in Figure 4, we can easily tell that µ` ≤ r`
if and only if the projection of external data points fall inside this solid blue polygon. We
call this solid blue polygon the successful region.

The right pane illustrates our guarantee of Theorem 6 under bounded deterministic
noise. The successful condition requires that the whole red ball (analogous to uncertainty
set in Robust Optimization (Ben-Tal and Nemirovski, 1998; Bertsimas and Sim, 2004))
around each external data point to fall inside the dashed red polygon, which is smaller than
the blue polygon by a factor related to the noise level and the inradius.

The successful region is affected by the noise because the design matrix is also arbitrarily
perturbed and the dual solution is no longer within each subspace S`. Specifically, as will

14
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become clear in the proof, the key of showing SEP boils down to proving 〈ν(`)i , xj〉 < 1 for

all pairs of (ν
(`)
i , xj) where

ν
(`)
i = arg max

ν
〈ν, x(`)i 〉 −

1

2λ
‖ν‖2 s.t. ‖νTX(`)

−i ‖∞ ≤ 1,

and xj is any point from another subspace. In the noiseless case we can always take ν
(`)
i ∈ S`

and 〈ν(`)i , xj〉 ≤ µ`
r`

. For noisy data and LASSO-SSC, we can no longer do that. In fact, for

any fixed λ, the dual solution will be uniquely determined by a projection of λx
(`)
i on to

the feasible region ‖νTX(`)
−i ‖∞ ≤ 1 (see the first pane of Figure 4). The absolute value of

the inner product 〈ν(`)i , xj〉 will depend on the magnitude of the dual solution, especially its
component perpendicular to the current subspace. Indeed by carefully choosing the error,
we can make PS⊥` ν very correlated with some external data point xj .

To illustrate this further, we plot the shape of this feasible region in 3D (see Figure 6(b)).
From the feasible region alone, it seems that the magnitude of dual variable can potentially
be quite large. Luckily, the quadratic penalty in the objective function allows us to exploit
the optimality of the solution ν and bound the “out-of-subspace” component of ν, which
results in a much smaller region where the solution can potentially be (given in Figure 6(c)).
The region for the “in-subspace” component is also smaller as is shown in Figure 7. A more
detailed argument of this is given in Section 5.3 of the proof.

Admittedly, the geometric interpretation under noise is slightly messier than the noise-
less case, but it is clear that the largest deterministic noise LASSO-SSC can tolerate must
be smaller than geometric gap r` − µ`. Theorem 6 show that a sufficient condition is
δ ≤ O(r(r` − µ`)). It remains unclear whether this gap can be closed without additional
assumptions.

Finally, we note that for the random noise model in Theorem 8, the geometric in-
terpretation is similar, except that the impact of the noise is weakened. Thanks to the
randomness and the corresponding concentration of measure, we may bound the reduction
of the successful region with a much smaller value comparing to the adversarial noise case.

5. Proof of the Deterministic Result

In this section, we provide the proof for Theorem 6.
Instead of analyzing (3.2) directly, we consider an equivalent constrained version by

introducing slack variable ei:

P0 : min
ci,ei

‖ci‖1 +
λ

2
‖ei‖2 s.t. x

(`)
i = X−ici + ei. (5.1)

The constraint can be rewritten as

y
(`)
i + z

(`)
i = (Y−i + Z−i)ci + ei. (5.2)

The dual program of (5.1) is:

D0 : max
ν
〈xi, ν〉 −

1

2λ
νT ν s.t. ‖(X−i)T ν‖∞ ≤ 1. (5.3)
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Figure 6: Illustration of (a) the convex hull of noisy data points, (b) its polar set and
(c) the intersection of polar set and ‖ν2‖ bound. The polar set (b) defines the
feasible region of (5.7). It is clear that ν2 can take very large value in (b) if we
only consider feasibility. By considering optimality, we know the optimal ν must
be inside the region in (c).

Figure 7: The projection of the polar set (the green area) in comparison to the projection
of the polar set with ‖ν2‖ bound (the blue polygon). It is clear that the latter is
much smaller.
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Recall that we want to establish the conditions on noise magnitude δ, structure of the data
(µ and r in the deterministic model and affinity in the semi-random model), and ranges
of valid λ such that by Definition 1, the solution ci is non-trivial and has support indices

inside the column set X
(`)
−i (i.e., satisfies SEP).

The proof is hence organized into three main steps:

(1) Proving SEP by duality. First we establish a set of conditions on the optimal dual vari-
able ofD0 corresponding to all primal solutions satisfying SEP. Then we construct such
a dual variable ν as a certificate of proof. This is presented in Section 5.1, 5.2 and 5.3.

(2) Proving non-trivialness by showing that the optimal value is smaller than the value

of the trivial solution (i.e., c∗ = 0 and e∗ = x
(`)
i ). This step is given in Section 5.4.

(3) Showing the existence of a proper λ. As it will be made clear later, conditions for (1)
include λ < A and (2) requires λ > B for some expression A and B. Then it is natural
to request B < A, so that a valid λ exists. It turns out that this condition boils down
to δ < C for some expression C. This argument is carried over in Section 5.5.

5.1 Optimality Condition

Consider a general convex optimization problem:

min
c,e
‖c‖1 +

λ

2
‖e‖2 s.t. x = Ac+ e. (5.4)

We state Lemma 12, which extends Lemma 7.1 in Soltanolkotabi et al. (2012).

Lemma 12 Consider a vector y ∈ Rd and a matrix A ∈ Rd×N . If there exists a triplet
(c, e, ν) obeying y = Ac+ e and c has support S ⊆ T , furthermore the dual certificate vector
ν satisfies

ATs ν = sgn(cS), ν = λe, ‖ATT∩Scν‖∞ ≤ 1, ‖ATT cν‖∞ < 1,

then any optimal solution (c∗, e∗) to (5.4) obeys c∗T c = 0.

Proof For optimal solution (c∗, e∗), we have:

‖c∗‖1 +
λ

2
‖e∗‖2

=‖c∗S‖1 + ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e∗‖2

≥‖cS‖1 + 〈sgn(cS), c∗S − cS〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e‖2 + 〈λe, e∗ − e〉

=‖cS‖1 + 〈ν,AS(c∗S − cS)〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e‖2 + 〈ν, e∗ − e〉

=‖cS‖1 +
λ

2
‖e‖2 + ‖c∗T∩Sc‖1 − 〈ν,AT∩Sc(c∗T∩Sc)〉+ ‖c∗T c‖1 − 〈ν,AT c(c∗T c)〉. (5.5)

To see λ
2‖e
∗‖2 ≥ λ

2‖e‖
2+〈λe, e∗−e〉, note that the right hand side equals to λ

(
−1

2e
T e+ (e∗)T e

)
,

which takes a maximal value of λ
2‖e
∗‖2 when e = e∗. The last equation holds because both
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(c, e) and (c∗, e∗) are feasible solution, such that 〈ν,A(c∗− c)〉+ 〈ν, e∗− e〉 = 〈ν,Ac∗+ e∗−
(Ac+ e)〉 = 0. Also, note that ‖cS‖1 + λ

2‖e‖
2 = ‖c‖1 + λ

2‖e‖
2.

With the inequality constraints of ν given in the lemma statement, we have

〈ν,AT∩Sc(c∗T∩Sc)〉 =〈ATT∩Scν, (c∗T∩Sc)〉 ≤ ‖ATT∩Scν‖∞‖c∗T∩Sc‖1 ≤ ‖c∗T∩Sc‖1.

Substitute into (5.5), we get:

‖c∗‖1 +
λ

2
‖e∗‖2 ≥ ‖c‖1 +

λ

2
‖e‖2 + (1− ‖ATT cν‖∞)‖c∗T c‖1,

where (1− ‖ATT cν‖∞) is strictly greater than 0.
Using the fact that (c∗, e∗) is an optimal solution, ‖c∗‖1+ λ

2‖e
∗‖2 ≤ ‖c‖1+ λ

2‖e‖
2. There-

fore, ‖c∗T c‖1 = 0 and (c, e) is also an optimal solution. This concludes the proof.

The next step is to apply Lemma 12 with x = x
(`)
i and A = X−i and then construct

a triplet (c, e, ν) such that dual certificate ν satisfying all conditions and c satisfies SEP.
Then we can conclude that all optimal solutions of (5.1) satisfy SEP.

5.2 Construction of Dual Certificate

To construct the dual certificate, we consider the following fictitious optimization problem
(and its dual) that explicitly requires that all feasible solutions satisfy SEP7 (note that one
can not solve such problem in practice without knowing the subspace clusters, and hence
the name “fictitious”).

P1 : min
c
(`)
i ,ei

‖c(`)i ‖1 +
λ

2
‖ei‖2 s.t. y

(`)
i + zi = (Y

(`)
−i + Z

(`)
−i )c

(`)
i + ei; (5.6)

D1 : max
ν
〈x(`)i , ν〉 − 1

2λ
νT ν s.t. ‖(X(`)

−i )
T ν‖∞ ≤ 1. (5.7)

This optimization problem is feasible because y
(`)
i ∈ span(Y

(`)
−i ) = S` so any c

(`)
i obeying

y
(`)
i = Y

(`)
−i c

(`)
i and corresponding ei = zi − Z

(`)
−i c

(`)
i is a pair of feasible solution. Then

by strong duality, the dual program is also feasible, which implies that for every optimal
solution (c, e) of (5.6) with c supported on S, there exist ν satisfying:{

‖((Y (`)
−i )TSc + (Z

(`)
−i )

T
Sc)ν‖∞ ≤ 1, ν = λe,

((Y
(`)
−i )TS + (Z

(`)
−i )

T
S )ν = sgn(cS).

}

This construction of ν satisfies all conditions in Lemma 12 with respect to{
ci = [0, ..., 0, c

(`)
i , 0, ..., 0] with c

(`)
i = c,

ei = e,
(5.8)

except ∥∥[X1, ..., X`−1, X`+1, ..., XL]T ν
∥∥
∞ < 1,

7. To be precise, it is the corresponding ci = [0, ..., 0, (c
(`)
i )T , 0, ..., 0]T that satisfies SEP.
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i.e., we must check for all data point x ∈ X \ X `,

|〈x, ν〉| < 1. (5.9)

Thus, if we show that the solution of (5.7) ν also satisfies (5.9), we can conclude that ν
is a dual certificate required in Lemma 12, which implies that the candidate solution (5.8)
associated with optimal (c, e) of (5.6) is indeed the optimal solution of (5.1) and therefore
SEP holds.

5.3 Dual separation condition

Our strategy to show (5.9) is to provide an upper bound of |〈x, ν〉| then impose the inequality
on the upper bound.

First, we find it appropriate to project ν to the subspace S` and its orthogonal comple-
ment subspace then analyze separately. For convenience, denote ν1 := PS`(ν), ν2 := PS⊥` (ν).

Then

|〈x, ν〉| =|〈y + z, ν〉| ≤ |〈y, ν1〉|+ |〈y, ν2〉|+ |〈z, ν〉|
≤µ(X`)‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|+ ‖z‖‖ν‖| cos(∠(z, ν))|.

(5.10)

To see the last inequality, check that by Definition 3, |〈y, ν1
‖ν1‖〉| ≤ µ(X`).

Since we are considering general (possibly adversarial) noise, we will use the relaxation
| cos(θ)| ≤ 1 for all cosine terms (a better bound under random noise will be given later).
Thus, what left is to bound ‖ν1‖ and ‖ν2‖ (note ‖ν‖ =

√
‖ν1‖2 + ‖ν2‖2 ≤ ‖ν1‖+ ‖ν2‖).

5.3.1 Bounding ‖ν1‖

We first bound ‖ν1‖ by exploiting the feasible region of ν1 in (5.7):{
ν
∣∣∣‖(X(`)

−i )
T ν‖∞ ≤ 1

}
,

which is equivalent to {
ν
∣∣∣xTj ν ≤ 1 for every column xj of X

(`)
−i

}
.

Decompose the condition into

yTj ν1 + (PS`zj)
T ν1 + zTj ν2 ≤ 1.

and relax the expression into

yTj ν1 + (PS`zj)
T ν1 ≤ 1− zTj ν2 ≤ 1 + δ‖ν2‖. (5.11)

The relaxed condition contains the feasible region of ν1 in (5.7). It turns out that the
geometric properties of this relaxed feasible region provides an upper bound of ‖ν1‖.

Definition 13 (polar set) The polar set Ko of set K ∈ Rd is defined as

Ko =
{
y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K

}
.
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By the polytope geometry, we have

‖(Y (`)
−i + PS`(Z

(`)
−i ))

T ν1‖∞ ≤ 1 + δ‖ν2‖ ⇔ ν1 ∈

[
P

(
Y

(`)
−i + PS`(Z

(`)
−i )

1 + δ‖ν2‖

)]o
:= T o. (5.12)

Now we introduce the concept of circumradius.

Definition 14 (circumradius) The circumradius of a convex body P, denoted by R(P),
is defined as the radius of the smallest Euclidean ball containing P.

The magnitude ‖ν1‖ is bounded by R(T o). Moreover, by the the following lemma we may
find the circumradius by analyzing the polar set of T o instead. By the property of polar
operator, polar of a polar set gives the tightest convex envelope of the original set, i.e.,

(Ko)o = conv(K). Since T = conv

(
±Y

(`)
−i +PS` (Z

(`)
−i )

1+δ‖ν2‖

)
is convex in the first place, the polar

set of T o is T .

Lemma 15 (Page 448 in Brandenberg et al. (2004)) For a symmetric convex body
P, i.e. P = −P, inradius of P and circumradius of polar set of P satisfy:

r(P)R(Po) = 1.

Lemma 16 Given X = Y + Z, denote ρ := maxi ‖PSzi‖, furthermore Y ∈ S where S is a
linear subspace, then we have:

r(ProjS(P(X))) ≥ r(P(Y ))− ρ

Proof First note that projection to a subspace is a linear operator. Hence ProjS(P(X)) =
P(PSX). Then by definition, the boundary set of P(PSX) is B := {y | y = PSXc; ‖c‖1 = 1}.
Inradius by definition is the largest ball containing in the convex body, hence r(P(PSX)) =
miny∈B ‖y‖. Now we provide a lower bound of it:

‖y‖ ≥‖Y c‖ − ‖PSZc‖ ≥ r(P(Y ))−
∑

j
‖PSzj‖|cj | ≥ r(P(Y ))− ρ‖c‖1.

This concludes the proof.

A bound of ‖ν1‖ follows directly from Lemma 15 and Lemma 16:

‖ν1‖ ≤(1 + δ‖ν2‖)R(P(Y
(`)
−i + PS`(Z

(`)
−i )))

=
1 + δ‖ν2‖

r(P(Y
(`)
−i + PS`(Z

(`)
−i ))

=
1 + δ‖ν2‖

r(ProjS`(P(X
(`)
−i )))

≤ 1 + δ‖ν2‖
r
(
Q`−i

)
− δ1

. (5.13)

This bound depends on ‖ν2‖, which we analyze below.
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5.3.2 Bounding ‖ν2‖

Since ν is the optimal solution to D1, it obeys the second optimality condition in Lemma 12:

ν = λei = λ(xi −X(`)
−i c).

By projecting ν to S⊥` , we get ν2 = λPS⊥` (xi −X(`)
−i c) = λPS⊥` (zi − Z(`)

−i c). It follows that

‖ν2‖ ≤ λ
(
‖PS⊥` zi‖+ ‖PS⊥` Z

(`)
−i c‖

)
≤ λ

‖PS⊥` zi‖+
∑
j

|cj |‖PS⊥` zj‖


≤ λ(‖c‖1 + 1)δ2 ≤ λ(‖c‖1 + 1)δ. (5.14)

Now we bound ‖c‖1. Since (c, e) is the optimal solution, ‖c‖1 + λ
2‖e‖

2 ≤ ‖c̃‖1 + λ
2‖ẽ‖

2

for any feasible solution (c̃, ẽ). Let c̃ be the solution of

min
c
‖c‖1 s.t. y

(`)
i = Y

(`)
−i c, (5.15)

then by strong duality,

‖c̃‖1 = max
ν

{
〈ν, y(`)i 〉 | ‖[Y

(`)
−i ]T ν‖∞ ≤ 1

}
.

By Lemma 15, the optimal dual solution ν̃ satisfies ‖ν̃‖ ≤ 1
r(Q`−i)

. It follows that

‖c̃‖1 = 〈ν̃, y(`)i 〉 = ‖ν̃‖‖y(`)i ‖ ≤
1

r(Q`−i)
.

On the other hand, ẽ = zi − Z(`)
−i c̃, so ‖ẽ‖2 ≤ (‖zi‖+

∑
j ‖zj‖|c̃j |)2 ≤ (δ + ‖c̃‖1δ)2, thus

‖c‖1 ≤ ‖c̃‖1 +
λ

2
‖ẽ‖2 − λ

2
‖e‖2 ≤ 1

r(Q`−i)
+
λ

2
δ2

[
1 +

1

r(Q`−i)

]2
− 1

2λ
‖ν2‖2.

Note that we used the property λ
2‖e‖

2 = 1
2λ‖ν‖

2 ≥ 1
2λ‖ν2‖

2. Substitute the bound of ‖c1‖1
into (5.14) we get

‖ν2‖ ≤ λ

 1

r(Q`−i)
+
λ

2
δ2

[
1 +

1

r(Q`−i)

]2
+ 1

 δ − δ

2
‖ν2‖2

⇔ ‖ν2‖+
δ

2
‖ν2‖2 ≤ λδ

(
1

r(Q`−i)
+ 1

)
+
δ

2

[
λδ

(
1

r(Q`−i)
+ 1

)]2
.

Since function f(α) = α + δ
2α

2 monotonically increases when α > 0, the above inequality
implies

‖ν2‖ ≤ λδ

(
1

r(Q`−i)
+ 1

)
, (5.16)

which gives the desired bound for ‖ν2‖.
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5.3.3 Conditions for |〈x, ν〉| < 1

Putting together (5.10), (5.13) and (5.16), we have the upper bound of |〈x, ν〉|:

|〈x, ν〉| ≤ (µ(X`) + ‖PS`z‖)‖ν1‖+ (‖y‖+ ‖PS⊥` z‖)‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i

)
− δ1

+

(
(µ(X`) + δ1)δ

r
(
Q`−i

)
− δ1

+ 1 + δ

)
‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i

)
− δ1

+ λδ(1 + δ)

(
1

r(Q`−i)
+ 1

)
+
λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

(
1

r(Q`−i)
+ 1

)
.

For convenience, we further relax the second r(Q`−i) into r(Q`−i)− δ1. The dual separation
condition is thus guaranteed with

µ(X`) + δ1 + λδ(1 + δ) + λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

+ λδ(1 + δ) +
λδ2(µ(X`) + δ1)

r
(
Q`−i

)
(r
(
Q`−i

)
− δ1)

< 1.

Denote ρ := λδ(1 + δ), assume δ < r
(
Q`−i

)
, (µ(X`) + δ1) < 1 and simplify the form with

λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

+
λδ2(µ(X`) + δ1)

r
(
Q`−i

)
(r
(
Q`−i

)
− δ1)

<
ρ

r
(
Q`−i

)
− δ1

,

we get a sufficient condition

µ(X`) + 2ρ+ δ1 < (1− ρ) (r(Q`−i)− δ1). (5.17)

To generalize (5.17) to all data of all subspaces, the following must hold for each ` = 1, ..., k:

µ(X`) + 2ρ+ δ1 < (1− ρ)

(
min

{i:xi∈X(`)}
r(Q(`)

−i)− δ1
)
. (5.18)

This gives a first condition on δ and λ (within ρ), which we call it “dual separation
condition” under noise. Note that this reduces to exactly the geometric condition in
Soltanolkotabi et al. (2012)’s Theorem 2.5 when δ = 0.

5.4 Avoid trivial solutions

Besides SEP, we also need to show the solution is non-trivial. The idea is that when λ is

large enough, the trivial solution c∗ = 0, e∗ = x
(`)
i can never be optimal.

As we trace along the regularization path by increasing λ from 0, one column of the
design matrix X−i will enter the support set. This column will be the one that attains
‖XT
−ixi‖∞, and λ = 1

‖XT
−ixi‖∞

when it happens. Therefore, as long as λ > 1
‖XT
−ixi‖∞

, the

solution will not be trivial.

Note that under the dual separation condition, we only need to consider points in the

same subspace. So ‖XT
−ixi‖∞ =

∥∥∥[X
(`)
−i ]

Txi

∥∥∥
∞

. Let xj ∈ X(`)
−i be the column that attains
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the maximum in
∥∥∥[X

(`)
−i ]

Txi

∥∥∥
∞

and yk ∈ Y
(`)
−i be the column that attains the maximum in∥∥∥[Y

(`)
−i ]T yi

∥∥∥
∞

(if there are more than one maximizers, pick any one), we can write∥∥∥[X
(`)
−i ]

Txi

∥∥∥
∞

= |〈xj , xi〉| ≥ |〈xk, xi〉|

= |〈yk, yi〉+ 〈yk, zi〉+ 〈zk, yi〉+ 〈zk, zi〉|
≥ |〈yk, yi〉| − |〈yk, zi〉+ 〈zk, yi〉+ 〈zk, zi〉|

=
∥∥∥[Y

(`)
−i ]T yi

∥∥∥
∞
− |〈yk, zi〉+ 〈zk, yi〉+ 〈zk, zi〉|

≥ r(Q(`)
−i)− 2δ − δ2. (5.19)

The last inequality follows from the upper bound of noise magnitude and the observation

that the inradius of Q(`)
−i defines a uniform lower bound of

∥∥∥[Y
(`)
−i ]Tw

∥∥∥
∞

for any unit vector

w ∈ S`. Therefore, as long as

λ ≥ 1

r(Q(`)
−i)− 2δ − δ2

, (5.20)

the solution ci for ith column is not trivial. This bound is strictly better than what we
obtain in the conference version (Wang and Xu, 2013) and is the key for improving the rate
for noise tolerance over the previous version. Also, check that

δ <
r(r` − µ`)

2 + 7r`
(5.21)

under bound of δ in the theorem statement, r(Q(`)
−i)− 2δ − δ2 > 0 for any i, `.

A side remark is that the Lasso regularization path is formally described in Tibshirani
et al. (2013) and it is unique whenever the data points are in general position. As a result,
we can potentially calculate the entry point of kth non-zero coefficient for any 0 < k < d,
any xi and X−i. This would however complicate the results unnecessarily, as Lasso path
is not monotone (some coefficient may leave the support set as λ increases). We therefore
stick to the simpler requirement of ci being non-trivial.

5.5 Existence of a proper λ

Basically, (5.18) and (5.20) must be satisfied simultaneously for all ` = 1, ..., L. Essentially
(5.20) gives a condition of λ from below, and (5.18) gives a condition from above. Recall

that the denotations r` := min{i:xi∈X(`)} r(Q
(`)
−i), µ` := µ(X`) and r = min` r`, the condition

on λ is:

max
`

1

r` − 2δ − δ2
< λ < min

`

r` − µ` − 2δ1
δ(1 + δ)(2 + r` − δ1)

.

With the observation that

max
`

1

r` − 2δ − δ2
=

1

min r` − 2δ − δ2
,
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it suffices to require λ to obey for each `:

1

r − 2δ − δ2
< λ <

r` − µ` − 2δ1
δ(1 + δ)(2 + r` − δ1)

. (5.22)

We will now show that under condition (5.21), the range (5.22) is not an empty set.
Again, we relax δ1 to δ in (5.22) and get

1

r − 2δ − δ2
<

r` − µ` − 2δ

δ(1 + δ)(2 + r` − δ)
. (5.23)

Since all denominators are positive, we obtain the standard form of the inequality

Aδ3 +Bδ2 + Cδ +D < 0

with 
A = −3 ≤ 0

B = −3 + 2(r` − µ`) + r` ≤ 0

C = 2 + 4(r` − µ`) + r` + 2r ≤ 2 + 7r`

D = −r(r` − µ`)

Check that (5.21) is sufficient for the above 3rd order inequality to hold. Therefore,

(5.21)⇒ Aδ3 +Bδ2 + Cδ +D < 0⇔ (5.23)⇒ (5.22) is not an empty set.

This completes the proof of Theorem 6.

6. Proof of Results for Randomized Cases

In this section, we provide proofs to the theorems of the three randomized models:

• Deterministic data+random noise;

• Semi-random data+random noise;

• Fully random.

To do this, we need to bound δ1, cos(∠(z, ν)) and cos(∠(y, ν2)) when Z follows the
Random Noise Model, such that a better dual separation condition can be obtained. More-

over, for the Semi-random and the Random data model, we need to bound r(Q(`)
−i) when

data samples from each subspace are drawn uniformly and bound µ(X`) when subspaces
are randomly generated. These require the following lemmas.

Lemma 17 (Upper bound on the area of spherical cap) Let a ∈ Rn be a random
vector sampled from a unit sphere and z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2
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This Lemma is extracted from an equation in page 29 of Soltanolkotabi et al. (2012), which
is in turn adapted from the upper bound on the area of spherical cap in Ball (1997). By
definition of the Random Noise Model, zi is spherical symmetric, which implies that the
direction of zi is distributed uniformly on the n-dimensional unit sphere. Hence Lemma 17
applies whenever an inner product involves z. As an example, we write the following lemma.

Lemma 18 (Properties of Gaussian noise) For Gaussian random matrix Z ∈ Rn×N ,
if each entry Zi,j ∼ N(0, σ√

n
), then each column zi satisfies:

1. Pr(‖zi‖2 > (1 + t)σ2) ≤ e
n
2
(log(t+1)−t)

2. Pr(|〈zi, z〉| > ε‖zi‖‖z‖) ≤ 2e
−nε2

2

where z is any fixed vector, or a random vector that is independent to zi.

Proof The second property follows directly from Lemma 17 as Gaussian vector has a
uniformly random direction.

To show the first property, we observe that the sum of n independent square Gaussian
random variables follows χ2 distribution with degree of freedom n. In other words, we have

‖zi‖2 = |Z1i|2 + ...+ |Zni|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have an approximation of its CDF (Dasgupta and Gupta,
2003), which gives us

Pr(‖zi‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 .

Substitute α = 1 + t, we obtain the concentration statement in the lemma.

By Lemma 18, δ = maxi ‖zi‖ is bounded with high probability. δ1 can be bounded even
more tightly because each S` is low-rank. Likewise, cos(∠(z, ν)) is bounded by a small value
with high probability. Moreover, since ν = λe = λ(xi−X−ic), ν2 = λPS⊥` (zi−Z−ic). Thus

ν2 is indeed a weighted sum of random noise in a (n− d`)-dimensional subspace. Consider
y a fixed vector, cos(∠(y, ν2)) is also bounded with high probability.

Replace these observations into (5.9) and the corresponding bound of ‖ν1‖ and ‖ν2‖, we
obtain the equivalent dual separation condition under the random noise model (equivalent
to (5.17) in the proof of the deterministic case). This is formalized in the following lemma.

Lemma 19 (Dual separation condition under random noise) Let ρ := λδ(1+δ) and

ε :=

√
6 logN

n−max` d`
≤
√
C log(N)

n

for some constant C. Under random noise model, if for each ` = 1, ..., L

µ(X`) + δε+ 3ρε ≤ (1− ρε)(max
i
r(Q(`)

−i)− δ
√
d`ε), (6.1)

then dual separation condition (5.9) holds for all data points with probability at least 1−8/N .
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Proof Recall that we want to find an upper bound of |〈x, ν〉|.

|〈x, ν〉| ≤µ‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|+ ‖z‖‖ν‖| cos(∠(z, ν))| (6.2)

Here we will bound the two cosine terms and δ1 under the random noise model.
As discussed above, directions of z and ν2 are independently and uniformly distributed

on the n-dimension unit sphere. Then by Lemma 17,
Pr

(
cos(∠(z, ν)) >

√
6 logN
n

)
≤ 2

N3 ;

Pr
(

cos(∠(y, ν2)) >
√

6 logN
n−d`

)
≤ 2

N3 ;

Pr

(
cos(∠(z, ν2)) >

√
6 logN
n

)
≤ 2

N3 .

Using the same technique, we derive a bound for δ1. Given an orthonormal basis U of S`,
PS`z = UUT z, then

‖UUT z‖ = ‖UT z‖ =

√ ∑
i=1,...,d`

|UT:,iz|2.

Apply Lemma 17 for each i, then by union bound, we get:

Pr

(
‖PS`z‖ >

√
6d` logN

n
δ

)
≤ 2d`
N3

.

Since δ1 is the worse case bound for all L subspace and all N noise vector, then a union
bound gives:

Pr

(
δ1 >

√
6d` logN

n
δ

)
≤

2
∑

` d`
N2

Moreover, we can find a probabilistic bound for ‖ν1‖ too by a variation of (5.11) for the
random case, which now becomes

yTi ν1 + (PS`zi)
T ν1 ≤ 1− zTi ν2 ≤ 1 + δ2‖ν2‖| cos∠(zi, ν2)|. (6.3)

Substituting the upper bound of the cosines to (6.2) and (6.3), we get respectively

|〈x, ν〉| ≤ µ‖ν1‖+ ‖y‖‖ν2‖

√
6 logN

n− d`
+ ‖z‖‖ν‖

√
6 logN

n
,

and

‖ν1‖ ≤
1 + δ‖ν2‖

√
6 logN
n

r(Q`−i)− δ1
.

This new bound of ‖ν1‖ follows from (6.3), Lemma 15 and 16. For the bound of ‖ν2‖ we
simply use (5.16):

‖ν2‖ ≤ λδ

(
1

r(Q`−i)
+ 1

)
.
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To lighten notations in this proof, denote

r := r(Q`−i), ε :=

√
6 logN

n−max` d`
, µ := µ(X`).

Substitute them in the bound, we get

|〈x, ν〉| ≤ µ+ δε

r − ε
√
d`δ

+
λδ2(µ+ δε)ε

r − ε
√
d`δ

(
1

r
+ 1

)
+ λδε

(
1

r
+ 1

)
+ λδ2ε

(
1

r
+ 1

)
=

µ+ δε

r − ε
√
d`δ

+
λεδ2(µ+δεr ) + λεδ2(µ+ δε)

r − ε
√
d`δ

+
λδ(δ + 1)ε

r
+ λδ(δ + 1)ε

≤
↑
∗

µ+ δε

r − ε
√
d`δ

+
λεδ2

r − ε
√
d`δ

+
λεδ2

r − ε
√
d`δ

+
λε(δ + δ2)

r − ε
√
d`δ

+ λε(δ + δ2)

=
µ+ δε+ λε(δ + 3δ2)

r − ε
√
d`δ

+ λε(δ + δ2) ≤
↑
∗∗

µ+ δε+ 3ρε

r − ε
√
d`δ

+ ρε. (6.4)

In the inequality “∗”, we used (µ + εδ)/r < 1 and µ + εδ < 1; and in the inequality “∗∗”,
we used λδ2 ≤ λε(δ + δ2) and replaced all such expression with ρε that we defined earlier.

Now impose the dual detection constraint on the upper bound, we get:

ρε+
µ+ δε+ 3ρε

r − δ
√
d`ε

< 1.

Reorganized the inequality, we reach the desired condition:

µ+ δε < (1− ρε)(r − δ
√
d`ε)− 3ρε.

There are N2 instances for each of the three events related to the cosine value, apply union

bound we get the failure probability 6
N +

2
∑
` d`

N2 ≤ 8
N . Note

∑
` d` ≤ N because one needs

at least d` data points to span an d` dimensional subspace. This concludes the proof.

Lemma 20 (Avoid trivial solution under random noises) Let ε =
√

6 logN
n and as-

sume min` r` − 2εδ − εδ2 > 0. If we take

λ > (r` − 2εδ − εδ2)−1 (6.5)

for every ` = 1, ..., n, then the solution ci 6= 0 for all i with probability at least 1− 6/N2.

Proof We use the same argument as in Section 5.4, except that we now have a tighter
probabilistic bound for (5.19). For any i, k in the equation, zi and zk are independent to
each other and to yk, yi respectively. Therefore, we can invoke Lemma 17 and obtain

|〈yk, zi〉+ 〈zk, yi〉+ 〈zk, zi〉| ≤ 2εδ + εδ2,

with probability greater than 2/N3. The proof is complete by taking the union bound over
all 3

∑
iN` = 3N instances.
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6.1 Proof of Theorem 8 for Deterministic Data and Random Noise

We now prove Theorem 8. Lemma 19 has already provided the separation condition. The
things left are to find the range of λ and update the condition of δ.

The range of λ: The range of valid λ for the random noise case can be obtained by
substituting δ1 < δ

√
d`ε in (6.5) and rewriting (6.1) with respect to λ. This gives us

1

r − 2εδ − εδ2
< λ <

r` − µ` − δε− δ
√
d`ε

εδ(1 + δ)(3 + r` − δ
√
d`ε)

. (6.6)

We remark that a critical difference from the deterministic noise model is that now there
is a small ε in the denominator of the upper endpoint of the interval. Assume small µ, the
valid range of λ expands to an order of Θ(1/r) ≤ λ ≤ Θ(r/(εmax{δ2, δ})).
The condition of δ: Now we will show that the two conditions

εδ < min
`

r` − µ`
2
√
d` + 2

, and εδ(1 + δ) < min
`

r(r` − µ`)
4r` + 6

,

stated in the Theorem 8 are sufficient for the three inequalities
r` − µ` − δε > 0;

r − 2δε− εδ2 > 0;

1

r − 2εδ − εδ2
<

r` − µ` − δε− δ
√
d`ε

εδ(1 + δ)(3 + r` − δ
√
d`ε)

;

(6.7)

(6.8)

(6.9)

to hold for ` = 1, ..., L. Note that we used (6.7) in (6.4) when we derive the dual separation
condition and (6.8) is assumed in Lemma 20, lastly (6.9) ensures a valid λ to exist in (6.6).
Inequality (6.7) and (6.8) hold trivially given the two conditions, it remains to show (6.9):

δ(1 + δ) <
r(r` − µ`)
ε(4r` + 6)

⇔ εδ(1 + δ)(2r` + 3) <
r(r` − µ`)

2

⇒ εδ(1 + δ)(r` − µ` + r` + 3) <
r(r` − µ`)

2

⇔ εδ(1 + δ)(r` + 3) + 2εδ(1 + δ)
r` − µ`

2
<
r(r` − µ`)

2

⇔ 1

r − 2εδ − 2εδ2
<

r` − µ`
2εδ(1 + δ)(r` + 3)

⇒ 1

r − 2εδ − εδ2
<

r` − µ`
2εδ(1 + δ)(r` + 3− δ

√
d`ε)

(a)⇒ (6.9),

where (a) holds by applying the first condition. This concludes the proof for Theorem 8.

6.2 Proof of Theorem 10 for the Semi-random Model with Random Noise

To prove Theorem 10, we only need to bound the inradius r and the incoherence parameter
µ under the new assumptions, then plug them into Theorem 8.
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Lemma 21 (Inradius bound of random samples) In random sampling setting, when
each subspace is sampled N` = κ`d` data points randomly, we have:

Pr

c(κ`)
√
β log (κ`)

d`
≤ r(Q(`)

−i) for all pairs (`, i)

 ≥ 1−
L∑
`=1

N`e
−dβ`N

1−β
`

This is extracted from Section-7.2.1 of Soltanolkotabi et al. (2012). κ` = (N` − 1)/d` is the
relative number of iid samples. c(κ) is some positive value for all κ > 1 and for a numerical
value κ0, if κ > κ0, we can take c(κ) = 1√

8
. Take β = 0.5, we get the required bound of r

in Theorem 10.

Now, we provide a probabilistic upper bound of the projected subspace incoherence
condition under the semi-random model by adapting Lemma 7.5 of Soltanolkotabi et al.
(2012) into our new setup.

Lemma 22 (Incoherence bound) In deterministic subspaces/random sampling setting,
the subspace incoherence is bounded from above:

Pr
{
µ(X`) ≤ t (log[(N` + 1)N`′ ] + logL)

aff(S`, S`′)√
d`
√
d`′

for all pairs(`, `′) with ` 6= `′
}
≥ 1− 1

L2

∑
`6=`′

1

(N` + 1)N`′
e−

t
4 .

Proof The proof is an extension of a similar proof in Soltanolkotabi et al. (2012). First

we will show that when noise z
(`)
i is spherical symmetric, and clean data points y

(`)
i has

iid uniform random direction, projected dual directions v
(`)
i also follows a uniform random

distribution.

Now we prove the claim. First by definition,

v
(`)
i = v(x

(`)
i , X

(`)
−i ,S`, λ) =

PS`ν
‖PS`ν‖

=
ν1
‖ν1‖

.

Recall that ν is the unique optimal solution of D1 (5.7). Fix λ, D1 depends on two inputs,
so we denote ν(x,X) and consider ν a function. Moreover, ν1 = PSν and ν2 = PS⊥ν. Let
U ∈ n× d be a set of orthonormal basis of d-dimensional subspace S and a rotation matrix
R ∈ Rd×d. Then rotation matrix within subspace is hence URUT . Let

x1 :=PSx = y + z1 ∼ URUT y + URUT z1,

x2 :=PS⊥x = z2.

As y is distributed uniformly on the unit sphere of S, and z is a spherical symmetric
noise (hence z1 and z2 are also spherical symmetric in subspace), for any fixed ‖x1‖, the
distribution is uniform on the sphere, namely the conditional distribution Pr (x1|‖x1‖ = α)
is uniform on the sphere with radius α. It suffices to show that with fixed ‖x1‖, v (the unit
direction of projected dual variable ν1) also follows a uniform distribution on a unit sphere
of the subspace.
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Since inner product 〈x, ν〉 = 〈x1, ν1〉+ 〈x2, ν2〉, we argue that if ν is the optimal solution
of

max
ν
〈x, ν〉 − 1

2λ
νT ν, subject to: ‖XT ν‖∞ ≤ 1,

then the optimal solution of the following optimization

max
ν
〈URUTx1 + x2, ν〉 −

1

2λ
νT ν,

subject to: ‖(URUTX1 +X2)
T ν‖∞ ≤ 1,

is indeed the transformed ν under the same R, i.e.,

ν(R) = ν(URUTx1 + x2, URU
TX1 +X2)

= URUT ν1(x,X) + ν2(x,X) = URUT ν1 + ν2. (6.10)

To verify the argument, check that νT ν = ν(R)T ν(R) and

〈URUTx1 + x2, ν(R)〉 = 〈URUTx1, URUT ν1〉+ 〈x1, ν2〉 = 〈x, ν〉

for all inner products in both objective function and constraints, preserving the optimality.
By projecting (6.10) to subspace, we show that operator v(x,X, S) is linear vis a vis

subspace rotation URUT , i.e.,

v(R) =
PS`ν(R)

‖PS`ν(R)‖
=

URUT ν1
‖URUT ν1‖

= URUT v. (6.11)

On the other hand, we know that

URUTx1 + x2 ∼ x1 + x2, URUTX1 +X2 ∼ X1 +X2,

where A ∼ B means that the random variables A and B follows the same distribution. This
is because when ‖x1‖ is fixed and each columns in X1 has fixed magnitudes, URUTx1 ∼ x1
and URUTX1 ∼ X1. Also, adding additional random variables x2 and X2 changes the
distribution the same way on both sides. Therefore,

v(R) = v(URUTx1 + x2, URU
TX1 +X2,S) ∼ v(x,X,S). (6.12)

Combining (6.11) and (6.12), we conclude that for any rotation R

v
(`)
i (R) ∼ URUT v(`)i .

In other words, the distribution of v
(`)
i is uniform on the unit sphere of S`.

After this key step, the rest is identical to the proof of Lemma 7.5 of Soltanolkotabi
et al. (2012). The idea is to use Lemma 17 (upper bound of area of spherical caps) to
provide a probabilistic bound of the pairwise inner product and Borell’s inequality to show

the concentration around the expected cosine canonical angles, namely, ‖U (k)TU (`)‖F /
√
d`.

The proof is standard so we omit it in this paper.
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6.3 Proof of Theorem 11 for the Fully Random Model with Gaussian Noises

The proof of Theorem 11 essentially applies Theorem 8 with specific inradius bound and
incoherence bound. The bound for inradius is given in Lemma 21 and we use the following
Lemma extracted from Step 2 of Section 7.3 in Soltanolkotabi et al. (2012) to bound the
subspace incoherence.

Lemma 23 (Incoherence bound of random subspaces) In random subspaces setting,
the projected subspace incoherence is bounded from above:

Pr

{
µ(X`) ≤

√
6 logN

n
for all `

}
≥ 1− 2

N
.

Now that we have shown that the projected dual directions are randomly distributed in their
respective subspace, together with the fact that the subspaces themselves are randomly
generated, we conclude that all clean data points y and projected dual direction v from
different subspaces can be considered iid generated from the ambient space. The proof of
Lemma 23 follows by simply applying Lemma 17 and a union bound across all N2 events.

7. Experiments

To demonstrate the practical implications of our robustness guarantees for LASSO-SSC, we
conduct four numerical experiments including three with synthetic generated data and one
with real data. For fast computation, we use ADMM implementation of LASSO solver8

with default numerical parameters. Its complexity is proportional to the problem size and
the convergence guarantee (Boyd et al., 2011). We also implement a simple ADMM solver
for the matrix version SSC

min
C
‖C‖1 +

λ

2
‖X −XC‖2F s.t. diag(C) = 0,

which is consistently faster than the column-by-column LASSO version. This algorithm
is first described in Elhamifar and Vidal (2013). To be self-contained, we provide the
pseudocode and some numerical simulation in the appendix.

7.1 Numerical simulation

Our three numerical simulations test the effects of noise magnitude δ, subspace rank d and
number of subspace L respectively.

7.1.1 Methods

To test our methods for all parameters, we scan through an exponential grid of λ ranging
from

√
n × 10−2 to

√
n × 103. In all experiments, ambient dimension n = 100, relative

sampling κ = 5, subspace and data are drawn uniformly at random from unit sphere

8. Freely available at:
http://www.stanford.edu/˜boyd/papers/admm/
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and then corrupted by Gaussian noise Zij ∼ N(0, σ/
√
n). We measure the success of the

algorithm by the relative violation of Self-Expressiveness Property defined below.

RelViolation (C,M) =

∑
(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

where M is the ground truth mask containing all (i, j) such that xi, xj ∈ X (`) for some `.
Note that RelViolation (C,M) = 0 implies that SEP is satisfied. We also check that there
is no all-zero columns in C, and the solution is considered trivial otherwise.

7.1.2 Results

The simulation results confirm our theoretical findings. In particular, Figure 8a shows that
LASSO subspace detection property is possible for a very large range of λ and the depen-
dence on noise magnitude is roughly 1/σ as predicted in (4.1). Comparing the Figure 8a
and 8b, it is clear that exact subspace detection property is not necessary for perfect classi-
fication. In addition, the sharp contrast of Figure 9a and 9b demonstrates our observations
on the sensitivity of d and L. Observe that in Figure 9a beyond a point, subspace detection
property is not possible for any λ. Whereas in Figure 9b even at the point when dL = 200
(subspaces are highly dependent), subspace detection property still holds for a large range
of λ.

7.2 Face Clustering Experiments

In this section, we evaluate the noise robustness of with LASSO-SSC on Extended YaleB
(Lee et al., 2005), a real life face data set of 38 subjects. For each subject, 64 face images
are taken under different illuminations.

7.2.1 Subspace Modeling of Face Images

According to Basri and Jacobs (2003), face images under different illuminations can be well-
approximated by a 9-dimensional linear subspace. In addition, Zhou et al. (2007) reveals
the underlying 3-dimensional subspace structure by assuming Lambert’s reflectance and
ignoring the shadow pixels. For the physics of this subspace model, we refer the readers to
Basri and Jacobs (2003) and Zhou et al. (2007) for detailed explanations.

Method: We conduct face clustering experiments on Extended YaleB data set with
both 9D and 3D representations of face images and compare them under varying num-
ber of subspaces L and different level of injected noise. Specifically, the 9D subspaces
are generated by projecting the data matrix corresponding to each subject to a 9D sub-
space via PCA and the 3D subspaces are generated by a factorization-based robust matrix
completion method (Wang et al., 2015). Then we scan through a random selection of
[2, 4, 6, 10, 12, 18, 38] subjects and for each experiment we inject additive Gaussian noise
N(0, σ/

√
n) with σ = [0, 0.01, ..., 0.99, 1]9. Each photo is resized to 48× 42 so we have am-

bient dimension n = 2016 and there are 64 sample points for each subspace, hence N = 64L.

9. In order to compare the effect of varying level of noise, we choose to inject artificial noise in this experi-
ment. The performance of LASSO-SSC on real noise/data corruptions is well-documented in the motion
segmentation experiments of Elhamifar and Vidal (2009, 2013)
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(a) Effect of noise level on SEP. (b) Effect of noise level on clustering accuracy.

Figure 8: Effects of noise level on LASSO-SSC performance. Simulated under the fully
random model with n = 100, d = 4, L = 3, κ = 5 against increasing Gaussian
noise N(0, σ/

√
n). For each setting, results are plotted in grayscale across an

exponential grid of tuning parameters λ along the vertical axis. (a) shows the
effect of noise on subspace detection property (Definition 1). In particular, Black
means trivial solution (C = 0); Gray means RelViolation > 0.1, and White
denotes RelViolation = 0. (b) shows the corresponding clustering accuracy on the
same experiment. The rate of accurate classification is represented in grayscale,
where white region means perfect classification.

(a) Effect of cluster rank d. (b) Effect of number of subspaces L.

Black: trivial solution (C = 0); Gray: RelViolation > 0.1; White: RelViolation = 0.

Figure 9: Effects of other model parameters on LASSO-SSC performance. Simulated under
the fully random model with default parameter n = 100, d = 2, L = 3, κ = 5, σ =
0.2. In (a) varies subspace dimension d (b) varies the number of subspaces L.
For each setting, results are plotted in grayscale across an exponential grid of
tuning parameters λ along the vertical axis.
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(a) Rank 3 photometric face. (b) Rank 9 faces (after projection).

Figure 10: RelViolation of the two face clustering experiments.

The parameter λ is not carefully tuned, but simply chosen to be
√
n, which is order-wise

correct for small σ according to (4.1).

7.2.2 Results

As we can see in Figure 10a and 10b, the range where LASSO-Subspace Detection Property
holds is much larger for the rank-3 experiments than the rank-9 experiments. Also, the
recovery is not sensitive to the number of faces we want to cluster. Indeed, LASSO-SSC is
able to succeed for both rank-9 and rank-3 data with a considerable range of noise even for
the full 38 subjects clustering task.

These observations confirm our theoretical and simulation results—on deterministic sub-
space data from a real-life problem—that noise robustness of LASSO-SSC is sensitive to
the subspace dimension d but not the number of subspaces L.

8. Conclusion and Future Directions

We presented a theoretical analysis for noisy subspace segmentation problem that is of great
practical interests. We showed that the popular SSC algorithm exactly (not approximately)
detects the subspaces in the noisy case, which justified its empirical success on real problems.
Our results are the first in showing LASSO-SSC to work under deterministic data and noise.
For stochastic noise, we show that LASSO-SSC works even when noise is much larger than
the signal. In addition, we discovered the orderwise relationship between LASSO-SSC’s
robustness to the level of noise and the subspace dimension, and we found that robustness is
insensitive to the number of subspaces. These results lead to new theoretical understanding
of SSC, and provide guidelines for practitioners and application-level researchers to judge
whether SSC could possibly work well for their respective applications.

Open problems for subspace clustering include the graph connectivity problem (Nasi-
hatkon and Hartley, 2011), missing data problem (a first attempt in Eriksson et al. (2012),
which unfortunately requires an unrealistic number of data), sparse corruptions on data and

34



Noisy Sparse Subspace Clustering

others. One direction closely related to this paper is to introduce a more practical metric
of success. As we illustrated in the paper, subspace detection property is not necessary for
perfect clustering. In fact from a pragmatic point of view, even perfect clustering is not
necessary. Typical applications allow for a small number of misclassifications. It would be
interesting to see whether stronger robustness results can be obtained for a more practical
metric of success.
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Appendix A. Differences to Soltanolkotabi et al. (2014)

As we reviewed above, Soltanolkotabi et al. (2014) analyzed almost the same algorithm
under the semi-random model. Besides the comparisons we made in Section 2 regarding
the model of analysis and allowable noise level, there are a few other minor differences which
we list here.

“Non-trivial” v.s. “Many true discoveries”. In LASSO-Subspace Detection Property,
we only require the resulting regression coefficient to be non-zero, while Soltanolkotabi
et al. (2014, Theorem 3.2) has a result showing the conditions under which the number
of non-zero coefficient is a constant fraction of subspace dimension d. Our results are
weaker but more general (works without the semi-random assumption).

In fact, the conditions are more similar than different. We both pick regression co-
efficient of the same order in the semi-random model. In addition, when d becomes
smaller than log ρ(i)/c0, these two conditions are essentially the same.

Choosing parameter λ. Soltanolkotabi et al. (2014) provides a two-pass mechanism to
adaptively tune the parameter λ for each LASSO-SSC and the results are proven for
this particular λ. On the other hand, our results are stated for any λ in a specified
range. The choice of λ can also be independently tuned for each LASSO-SSC.

In practice, it is advisable to choose λ slightly larger than what is required for it to
be non-trivial. We described two strategies in the discussion underneath Theorem 6.

Proof techniques. The proofs are admittedly similar in many ways (since we solve the
same problem!), but the key technical components in controlling the magnitude of dual
variables ν1 and ν2 are different. Soltanolkotabi et al. (2014, Lemma 8.5) relies on
the semi-random model, and the resulting restricted isometry property (of the block
of data points corresponding to each subspace). In contrast, our bound for ‖ν2‖ does
not require any probabilistic assumptions, therefore more general. It is however looser
than Soltanolkotabi et al. (2014, Lemma 8.5) by a factor of

√
d when we specialized
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in the semi-random model. This is probably what led to our worse dependence on the
subspace dimension d in the bound we described in the discussion of Theorem 10.

In conclusion, we find that our results are complementary to that in Soltanolkotabi et al.
(2014) and provide a novel point of view to the theoretical analysis for subspace clustering
problems.

Appendix B. Numerical algorithm to solve Matrix-LASSO-SSC

In this section we outline the steps of solving the matrix version of LASSO-SSC below. Note
that Elhamifar and Vidal (2013) derived a more general version of Matrix-LASSO-SSC to
account for not only noisy but also sparse corruptions. We include this appendix merely
for the convenience of the readers. Consider

min
C
‖C‖1 +

λ

2
‖X −XC‖2F s.t. diag(C) = 0. (B.1)

While this convex optimization problem can be solved by some off-the-shelf general purpose
solvers such as SeDuMi (Sturm, 1999) or SDPT3 (Toh et al., 1999), such approaches are
usually slow and non-scalable. An ADMM (Boyd et al., 2011) version of the problem is
described here for fast computation. It solves an equivalent optimization program

min
C
‖C‖1 +

λ

2
‖X −XJ‖2F s.t. J = C − diag(C). (B.2)

We add to the Lagrangian with an additional quadratic penalty term for the equality con-
straint and get the augmented Lagrangian

L =‖C‖1 +
λ

2
‖X −XJ‖2F +

µ

2
‖J − C + diag(C)‖2F + tr(ΛT (J − C + diag(C))),

where Λ is the dual variable and µ is a parameter. Optimization is done by alternatingly
optimizing over J , C and Λ until convergence. The update steps are derived by solving
∂L/∂J = 0 and ∂L/∂C = 0. Notice that the objective function is non-differentiable for
C at origin so we use the now standard soft-thresholding operator (Donoho, 1995). For
both variables, the solution is given in closed-forms. For the update of Λ, we simply use
the gradient descent method. For details of the ADMM algorithm and its guarantee, please
refer to Boyd et al. (2011). To accelerate the convergence, it is possible to introduce a
parameter ρ and increase µ by µ = ρµ at every iteration. The full algorithm is summarized
in Algorithm 1.

Note that for the special case when ρ = 1, the inverse of (λY TY + µI) can be pre-
computed, and hence each iteration can be computed in linear time. Empirically, we found
it good to set µ = λ and it takes roughly 50-100 iterations to converge to a sufficiently
good points. We remark that the matrix version of the algorithm is much faster than the
column-by-column ADMM-Lasso and achieves almost the same numerical accuracy; see our
experiments in Figure 11a,11b,12a and 12b.
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(a) Running time comparison. (b) Objective value comparison.

Figure 11: Comparisons of the two optimization procedures with an increasing number of
data. Simulated under fully random model with n = 100, d = 4, L = 3, σ = 0.2, κ
increases from 2 to 40 such that the number of data goes from 24 to 480. From
Figure (a), it appears that the matrix version scales better with increasing
number of data compared to columnwise LASSO. Figure (b) shows that the
objective value obtained at stop points of two algorithms are nearly the same.

(a) Running time comparison. (b) Objective value comparison.

Figure 12: Comparisons of the two optimization procedures with an increasing ambient
dimension. Simulated with κ = 5, d = 4, L = 3, σ = 0.2, ambient dimension
n increases from 50 to 1000. Note that the dependence on dimension is weak
for both algorithm at this small scale due to the fast vectorized computation.
Nevertheless, it is clear from Figure 12a that the matrix version of SSC runs
faster. Figure (b) shows that the objective value obtained at stop points of two
algorithms are nearly the same.
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Algorithm 1 Matrix-LASSO-SSC

Input: Data points as columns in X ∈ Rn×N , tradeoff parameter λ, numerical parame-
ters µ0 and ρ.
Initialize C = 0, J = 0, Λ = 0, k = 0.
while not converged do

1. Update J by
J = (λXTX + µkI)−1(λXTX + µkC − Λ).

2. Update C by
C
′

= SoftThresh 1
µk

(J + Λ/µk) ,

C = C
′ − diag(C

′
).

3. Update Λ by
Λ = Λ + µk(J − C)

4. Update parameter µk+1 = ρµk.
5. Iterate k = k + 1;

end while
Output: Affinity matrix W = |C|+ |C|T
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