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Abstract

Capturing predictor-dependent correlations amongst the elements of a multivariate re-
sponse vector is fundamental to numerous applied domains, including neuroscience, epi-
demiology, and finance. Although there is a rich literature on methods for allowing the
variance in a univariate regression model to vary with predictors, relatively little has been
done in the multivariate case. As a motivating example, we consider the Google Flu Trends
data set, which provides indirect measurements of influenza incidence at a large set of lo-
cations over time (our predictor). To accurately characterize temporally evolving influenza
incidence across regions, it is important to develop statistical methods for a time-varying
covariance matrix. Importantly, the locations provide a redundant set of measurements
and do not yield a sparse nor static spatial dependence structure. We propose to reduce
dimensionality and induce a flexible Bayesian nonparametric covariance regression model
by relating these location-specific trajectories to a lower-dimensional subspace through a
latent factor model with predictor-dependent factor loadings. These loadings are in terms
of a collection of basis functions that vary nonparametrically over the predictor space. Such
low-rank approximations are in contrast to sparse precision assumptions, and are appro-
priate in a wide range of applications. Our formulation aims to address three challenges:
scaling to large p domains, coping with missing values, and allowing an irregular grid of
observations. The model is shown to be highly flexible, while leading to a computationally
feasible implementation via Gibbs sampling. The ability to scale to large p domains and
cope with missing values is fundamental in analyzing the Google Flu Trends data.

Keywords: covariance regression, dictionary learning, Gaussian process, latent factor
model, nonparametric Bayes, time series

1. Introduction

Spurred by the increasing prevalence of high-dimensional data sets and the computational
capacity to analyze them, capturing heteroscedasticity in multivariate processes has become
a growing focus in many applied domains. For example, within the field of financial time
series modeling, capturing the time-varying volatility and co-volatility of a collection of risky
assets is key in devising a portfolio management scheme. Likewise, the spatial statistics
community is often faced with multivariate measurements (e.g., temperature, precipitation,
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etc.) recorded at a large collection of locations, necessitating methodology to model the
strong spatial (and spatio-temporal) variations in correlations. Within neuroscience, there
is interest in analyzing the time-varying coactivation patterns in brain activity, referred to
as functional connectivity.

As a motivating example, we focus on the problem of modeling the changing correlations
in flu activity amongst a large collection of regions in the United States as a function of
time. The Google Flu Trends data set (available at http://www.google.org/flutrends/)
provides estimates of flu activity in 183 regions on a weekly basis. The regions consist
of the U.S. national level, 50 states, 10 regions, and 122 cities. A common strategy for
modeling such data are Markov random fields (cf. Mugglin et al., 2002) (and relatedly, the
kriging exploratory flu analysis of Sakai et al. (2004).) However, in addition to assuming
(temporal) homoscedasticity, a limitation of such approaches is the typical reliance on a
locally defined neighborhood structure that does not directly capture potential long-range
dependencies (e.g., between New York and California.) Indeed, influenza spread can occur
rapidly between non-contiguous regions (e.g., by air travel (Brownstein et al., 2006).) From
exploratory data analysis, we find that the flu data does not yield a sparse graphical model
structure. Instead, the redundancy between time series (e.g., Los Angeles and California)
is naturally modeled via low-rank approximations that embed the observed trajectories
in a low-dimensional subspace. Beyond its dimensionality, another challenge posed by
this data set is the extent of missing data. For example, 25% of regions do not report
data in the first year. The existing influenza modeling approaches described above rely
on imputing such missing values, which we aim to avoid. The data attributes presented
by the Google Flu Trends data set—redundancy in high dimensions, changing correlations,
missing observations—are common to many applications.

In general terms, let y = (y1,...,yp) € RP denote a multivariate response and x =
(1,...,24) € X C RY an arbitrary multivariate predictor (e.g., time, space, etc.). In
the flu analysis, p is the number of regions and ¢ = 1 with @ representing a scalar time
index. A typical focus is on capturing the conditional mean E(y|x) = wp(x), assuming a
homoscedastic model with conditional covariance cov(y|z) = X. Recall that this covariance
matrix captures key correlations between the elements of the response vector (e.g., flu
activity in the various regions). In our exploratory analysis of the flu data in Appendix
G, the residuals from a smoothing spline fit indicate that a model of i.i.d. errors across
time is inappropriate for this data. In such cases, an assumption of homoscedasticity can
have significant ramifications on inferences (e.g., predictive accuracy) as we demonstrate in
Sections 4 and 5.2.2. It is possible to decrease residual correlation through a more intricate
mean model, but the complexities of doing so motivate us to instead turn to modeling the
conditional covariance. In particular, our focus is on developing Bayesian methods that
allow not only E(y|x) = pu(x) but also cov(y|z) = ¥(x) to change flexibly with « € X.

Classical strategies for estimating () rely on standard regression methods applied
to the elements of the log or Cholesky decomposition of ¥(zx) or ¥(z)~! (Chiu et al.,
1996; Pourahmadi, 1999; Leng et al., 2010; Zhang and Leng, 2012). This involves fitting
p(p + 1)/2 separate regression models, and hence these methods are ill-suited to high-
dimensional applications due to the curse of dimensionality. Hoff and Niu (2012) instead
proposed modeling Y:(x) as a quadratic function of & plus a baseline positive definite matrix.
The mapping from predictors to covariance assumes a parametric form, thus limiting the
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model’s expressivity. A nonparametric Nadaraya-Watson kernel estimator was proposed by
Yin et al. (2010). Their approach is only appropriate for random x (i.e., not time series) and
the kernel is required to be symmetric with a single bandwidth for all elements of ¥(x). The
result is a kernel estimator that may not be locally adaptive. For time series, heteroscedastic
modeling has a long history (Chib et al., 2009), with the main approaches being multivariate
generalized autoregressive conditional heteroscedasticity (GARCH) (Engle, 2002) (limited to
applications with p < 5), multivariate stochastic volatility models (Harvey et al., 1994), and
Wishart processes (Philipov and Glickman, 2006a,b; Gouriéroux et al., 2009). Central to
the cited volatility models are assumptions of (i) Markov dynamics, limiting the ability
to capture long-range dependencies, (ii) observation times that are equally spaced with no
missing values, (iii) challenges in model fitting, and (iv) limited theory to justify flexibility.

We instead propose a Bayesian nonparametric approach to simultaneously modeling
p(x) and X(x). Using low-rank approximations as a parsimonious modeling technique
when p is not small, we consider latent factor models with predictor-dependent factor load-
ings. In particular, we characterize the loadings as a sparse combination of unknown basis
functions, with Gaussian processes providing a convenient prior for basis elements varying
nonparametrically over X'. The induced covariance is then a regularized quadratic function
of these basis elements. The proposed approach is provably flexible and admits a latent
variable representation with simple conjugate posterior updates, which facilitates tractable
posterior computation in moderate to high dimensions. In addition to being able to state
theoretical properties of our proposed prior—such as large support integral to a Bayesian
nonparametric approach—the proposed methodology has numerous practical advantages
over previous covariance regression frameworks:

1. Scaling to high dimensions in the presence of limited data (via structured latent factor

models)

2. Handling irregular grid of observations (via continuous functions as basis elements)

3. Tractable computations (via simple conjugate posterior updates)

4. Coping with ignorable missing data (no data imputation required)

5. Robustness to outlying observations (via sharing information in the latent basis).
Importantly, our framework enables analytic marginalization of missing data from the com-
plete data likelihood, and without introducing extra dependencies amongst the remaining
variables. The benefits of this analytic marginalization are two-fold: (1) we do not spend
computational resources imputing the missing values, and (2) compared to the otherwise
dramatically increased Markov chain Monte Carlo (MCMC) state space that includes the
missing values, we can improve convergence and mixing rates through marginalization (Liu
et al., 1994). Combined with the model’s flexible sharing of information via the latent basis
functions, we are able to handle data sets with substantial missing data, such as in the flu
application of Section 5. Finally, the Google Flu Trends estimates are based on user search
queries, and as such are susceptible to the types of malicious attacks that Google regularly
guards against in other domains. Our model is well-geared for handling some forms of these
situations: the inherent redundancy and borrowing of information across locations provides
robustness to limited amounts of inaccurate estimates. Note that these inaccurate estimates
may not be malicious in nature, but instead represent outliers arising from unusual spurs
in search activity and poorly calibrated models (Cook et al., 2011). As long as these errors
do not form systematic or stochastic trends or explosive processes (Fuller, 2009), our model
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appears to be robust, as we demonstrate in Section 5.2.3. This is in contrast to approaches
that look at rates in individual locations (e.g., Dukié et al. (2012)).

An earlier version of this work appeared in a technical report (Fox and Dunson, 2011);
the current version provides significant additions including revised proofs, an extended
model presentation, new experiments on the Google Flu Trends data, and an extensive
model assessment. The recent work of Durante et al. (2014) builds on our framework and
has shown great promise, but with a focus on time series applications and without handling
missing data or scaling to large p domains.

The paper is organized as follows. In Section 2, we describe our proposed Bayesian
nonparametric covariance regression model and analyze the theoretical properties of the
model. Section 3 details the Gibbs sampling steps involved in our posterior computations.
Finally, a number of simulation studies are examined in Section 4, with an application to
the Google Flu Trends data set presented in Section 5.

2. Covariance Regression Priors

In this section, we consider the specific form for our Bayesian nonparametric covariance
regression. Section 2.1 examines our assumed covariance structuring whereas Section 2.2
details our prior specification for the various model components.

2.1 Model Specification

We focus on a multivariate Gaussian nonparametric mean-covariance regression model
Y :H(wz)+€za €; NNP(Oaz(wZ))7 i = 17"'777‘7 (1)

with ; € X, X a compact subset of 19, and the €;s independent. We focus on x non-
random. In the flu application, ¢ = 1 with {z1,...,2,} a set of week indices and y,; = log 7,
the vector of log Google-estimated ILI rates in the 183 regions (p = 183) at time z;. To
cope with large p, we take model (1) to be induced through the factor model

Yy, = Mxi)n; + €, m; ~ Ne(p(xi), k), € ~ Ny(0,%0) (2)
where A(zx) is a p x k factor loadings matriz specific to predictor value , 0, = (i1, - -, Mik)’
are latent factors associated with observation y;, and Xy = diag(o7, ..., 03).

A latent factor model harnesses a lower-dimensional description of the observations,
assuming k < p. ¥ (x) captures the evolution of the latent factors whereas A(x) dictates
a low-rank evolution to the conditional covariance of the response vector. In particular,
marginalizing out 77;, the mean and covariance regression models are expressed as

p(@) = A(x)p(x), E(z) = A@)A(z) + Zo. 3)

To make this concrete, in our flu application, n; captures a small latent set of flu responses
(not necessarily standard ILI rates) at week 7, 1)(x) the evolution of these latent responses,
and A(z;) a low-rank description of the spatial correlations at week i. The motivation for
modeling the mean as in (3) arises from a desire to have a parsimonious model in large
p domains. This is in contrast to, for example, a model y; = A(x;)n,; + p(x;) + €; where
1; ~ Ni(0, 1) and p(z;) is a p-dimensional mean regression.
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Before specifying our priors for each of the components in (2), we first place our formu-
lation within the context of dynamic latent factor models.

2.1.1 RELATIONSHIP TO DYNAMIC LATENT FACTOR MODELS

A standard latent factor model characterizes independent observations y; via independent
latent factors m;:

y; =An;+ €, m;~ Np(0,1), € ~ Np(0,%0). (4)

Marginalizing the latent factors n; yields y; ~ Np(0,X) with ¥ = AA’ 4+ Xy. The ideas
of latent factor analysis have also been applied to the time-series domain by assuming a
latent factor process. Such dynamic latent factor models have a rich history. Typically,
the dynamics of the latent factors are assumed to follow a simple Markov evolution with a
time-invariant parameterization (West, 2003; Lopes et al., 2008):

n; =I'm;_y +vi, v~ Ni(0, Ix) (5)
Yy, = An; + €, € ~ Np(0,%p),
where I' € ¥ is the dynamic matrix for the latent factor evolution. Assuming a stationary
process on 1;, then y; ~ N,(0,%) with ¥ = AX, A" 4+ Xy. Here, 3, denotes the marginal
covariance of m;. If we restrict our attention to cases in which x; is a discrete time index, as
in our flu application, then our proposed model of (2) can be related to the class of dynamic
latent factor models as follows. The latent factor evolution is governed by % rather than
a standard linear autoregression: n; = ¥(z;) + v;, v; ~ Ng(0,I;). In Section 2.2, we
specify 19 via Gaussian processes, providing a nonparametric evolution in continuous time.
Importantly, the factor loadings matrix A(x) also evolves in time: y, = A(z;)n; + €; with
conditional covariance 3(z) = A(z)A(x) + Xo. Again, this analogy relies on assuming x
represents time. The formulation of (2) is proposed for general predictors € X.

2.2 Prior specification

To capture the evolution of ¥ (x) and A(x), we use Gaussian processes as a set of basis
functions. We first briefly review Gaussian processes and then describe how this basis is
used in our model.

2.2.1 GAUSSIAN PROCESSES

A Gaussian process provides a distribution over real-valued functions f : X — R, with the
property that the function evaluated at any finite collection of points is jointly Gaussian.
The Gaussian process, denoted GP(m, ¢), is uniquely defined by its mean function m and

covariance kernel c. In particular, f ~ GP(m,c) if and only if for all n and @1, ..., x,,
p(f(wl)a""f(mn))NNn(uaK)’ (6)
with p = [m(x1),...,m(x,)] and K the n x n Gram matriz with entries K;; = c(x;, x;).

The properties (e.g., continuity, smoothness, periodicity, etc.) of functions drawn from a
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given Gaussian process are determined by the covariance kernel. One example leading to
smooth functions is the squared exponential, or Gaussian, kernel:

c(z,a') = dexp(—r|lz — 2'|]3), (7)

where d is a scale hyperparameter and k the bandwidth, which determines the extent of the
correlation in f over X'. See Rasmussen and Williams (2006) for further details.

2.2.2 LATENT FACTOR MEAN PROCESS

Letting ¥ (x) = {¢1(x),...,¥r(x)}, we specify independent Gaussian process priors for
each ¢y, as a convenient and flexible choice. In particular, ¥y, ~ GP(0, ¢y) with ¢y (x, ') =
exp(—fiy||x — '||3) a squared exponential covariance kernel. We assume unit variance for
reasons of identifiability seen in (3) through the multiplication of the latent factors with
A(x).

2.2.3 IDIOSYNCRATIC NOISE

We choose independent inverse gamma priors for the diagonal elements of Yy by letting
O'j_2 ~ Ga(as,bs). The off-diagonal elements are deterministically set to zero.

2.2.4 FACTOR MATRIX PROCESS

Specifying a prior for A(x) is more challenging, as naive approaches, such as independent
Gaussian process priors for each element of the p x k matrix, may have poor performance
in large p application domains even for small k. Likewise, the computational demands for
considering p x k Gaussian processes can be prohibitive depending on the choice of p, k,n
(see Section 3). Instead, we take the factor loadings to be a weighted combination of a
much smaller set of basis elements &,

A(x) = 0¢(x), ©ec Rl ¢(x)={u(x),l=1,...,L,h=1,... k}, (8)

where © is a matrix of coefficients that maps the L x k array of basis functions &(x)
to the predictor-dependent loadings matrix A(x). Typically, k¥ < p and L < p. Again, k
defines the factor dimension (i.e., assumed subspace that captures the statistical variability)
whereas L controls the size of the basis for any fixed choice of k. We once again choose
independent Gaussian process priors &, ~ GP(0,¢), with c(z, ') = exp(—«|jz — z'||3) a
squared exponential covariance kernel. The choice of unit variance Gaussian processes again
arises for reasons of identifiability, but now with the multiplication with ©.

To allow for an adaptive choice of the basis size, we in theory let L — oo and employ
the shrinkage prior of Bhattacharya and Dunson (2011) for ©,

l
‘9jl ~ N(Oa ¢j_l17-l_1)’ ¢jl ~ Ga(7/27 ’7/2)7 T = H 6h7 (9)
h=1

with ¢;; a local precision specific in element 7,1, and 7; a column-specific multiplier, which
is assigned a multiplicative gamma process prior to favor increasing shrinkage of elements in
later columns by letting d; ~ Ga(ay, 1) and 6 ~ Ga(ag, 1), h > 2, with ag > 1. If a column

2506



BAYESIAN NONPARAMETRIC COVARIANCE REGRESSION

of © is shrunk towards zero, the corresponding row of the basis {(x) has insignificant effect
in defining {p(x), X(x)}. Our chosen prior specification increasingly shrinks columns with
column index, effectively truncating ©. That is, despite an arbitrarily large L, the effective
dimension of the basis is much smaller, providing our desired dimensionality reduction. In
practice, of course, a finite truncation L is chosen. See Appendix E for a discussion on other
possible decompositions of A(x) and prior specifications.

At any point € X, the different & (x)s are independently Gaussian distributed, and
hence &(x)&(x)" is Wishart distributed. Conditioned on ©, O&(x)¢(x)'®" is also Wishart
distributed and, as @ varies, follows the matrix-variate Wishart process of Gelfand et al.
(2004) with Wilson and Ghahramani (2011) recently considering a related specification.
However, these alternative specifications do not have the dimensionality reduction struc-
ture, which is key to the performance of our approach in moderate to high dimensions.
Furthermore, they do not provide the theoretical statements of large support we show in
Section 2.4 nor a framework for coping with missing data. Marginalizing over the prior for
O, one obtains a type of adaptively scaled mixture of Wishart processes that has funda-
mentally different behavior than the Wishart. Our prior is also somewhat related to the
spatial dynamic factor model of Lopes et al. (2008), though their focus is on space-time
dependence in univariate observations. Finally, following our early technical report version
of this paper (Fox and Dunson, 2011), Fosdick and Hoff (2014) examine factor-structured
separable covariance models for general M-array data. Considering a 2-array of space and
time, the model assumes a spatial structure AsA, 4+ X s and temporal structure A¢A} + X ;.
That is, the model is low rank in both space and time. In contrast, our covariance decom-
position at any predictor & assumes the factor structure A(x)A(x)" + A for the response
vector (e.g., indexed by spatial location); however, the dependence between predictors x
and x’ (e.g., across time) is described via a stochastic process.

2.2.5 IDENTIFIABILITY

The factorizations for p(x) and X(x) are not unique but instead we obtain a many-to-one
specification. It is not necessary to enforce identifiability constraints, as our focus is on
inducing a prior for pu(x) and X(x) that favors an effectively low-dimensional representa-
tion without constraining the possible changes in the mean and covariance with predictors
beyond minimal regularity conditions.

2.3 Parsimony of Covariance Decomposition

Through the chosen covariance decomposition X(x) = O&(x){(x) O’ + Xy specified in (3)
and (8), we have transformed the problem of modeling p(p + 1)/2 predictor dependent
elements to one of modeling p x (L + 1) non-predictor dependent elements (comprising ©
and X) plus L x k predictor dependent elements (comprising £(+)). A substantial reduction
in parameterization occurs when k£ < p and L < p. Such an assumption is appropriate in
modeling a large class of covariance regressions Y.(x) that arise when analyzing real data.
For arbitrary © and £(-), this parameterization still scales poorly to large data sets.
It is only through the implied regularization effect of our chosen prior specification that
a parsimonious model arises (even for L large, as previously discussed). Specifically, the
continuity of the latent Gaussian process basis elements &y, combined with the shrinkage
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properties of the prior on © forms a flexible, adaptive hierarchical structure that borrows
information and can collapse on an effectively lower dimensional structure.

Another important aspect of the covariance decomposition is the implied transfer of
knowledge property that allows us to cope with substantial missing or corrupted data. Let
Ty, correspond to a point in the predictor space at which the jth response component yy,;
is missing or corrupted. In our model, the estimates of ¥;.(y,) = 0;.£(xm)E(Tm) O + ;.
are improved by the fact that (i) the rows ©;. are informed by all available observations y;;
at predictor locations x; # @,, and (ii) the latent basis functions £(x,,) are informed by
the available response components y,,k, k # j, at the predictor location «,, and at nearby
locations via the continuity of the basis functions. By employing a small collection of latent
basis elements with non-predictor-dependent weights, our model better copes with limited
data and is more robust to corrupted values than one in which the elements of ¥(x) are
modeled independently.

2.4 Properties

Our proposed Bayesian nonparametric covariance regression framework of Section 2 yields
various important theoretical properties, such as large prior support and stationarity, which
we examine here.

2.4.1 LARGE SUPPORT

We induce a prior {¥(x),x € X'} ~ IIy through priors Il¢, Ilg and IIy, for £, © and X,
respectively. In this section, we explore the properties of the induced prior IIy,. Most fun-
damentally, we establish that this prior has large support in Theorem 2. Large support
implies that the prior can generate a covariance regression function > : X — 73; arbitrarily
close to any continuous function X* : X — P;r , with 73p+ the space of p X p positive semidef-
inite matrices. Such a support property is the defining feature of a Bayesian nonparametric
approach and cannot simply be assumed. Often, seemingly flexible models can have quite
restricted support due to hidden constraints in the model and not to real prior knowledge
that certain values are implausible. The proofs associated with the theoretical statements
made in this section can be found in Appendix A.

We start by introducing a notion of k-decomposability of a covariance regression function
Y(x).
Definition 1 X : X — P, is said to be k-decomposable if X(x) = A(x)A(x)" + Xg for
A(zx) € RP*k g € X5y, and for all x € X,
In Appendix A, we show that such a decomposition always exists for & sufficiently large.
Now assume our model X(x) = ©&(x){(x)'©" + 3o with priors II¢ and IIy, as specified in
Section 2.2. For Ilg, we aim to make our statement of prior support as general as possible
and thus simply assume that Ilg satisfies the following two conditions. The proof that
Assumptions 2.1 and 2.2 are satisfied by our shrinkage prior (9) is provided in Appendix A.

Assumption 2.1 Ilg is such that >, E(|0;¢|) < 0o, ensuring that the prior for © shrinks
the elements towards zero fast enough as £ — oo.

Assumption 2.2 Ilg is such that Ilg (rank(©) = p) > 0. That is, there is positive prior
probability of © being full rank.
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Our main result on prior support now follows.

Theorem 2 Let Ily, denote the induced prior on {¥(x),x € X} based on Il ® Ilg ®
IIs,, with llg satisfying Assumptions 2.1 and 2.2. Assume X is compact. Then, for all
continuous functions ¥* : X — sz that are k*-decomposable and for all € > 0 and k > k*,

IIy, <sug [|2(x) — X (x)||2 < 6) > 0.

re

Informally, Theorem 2 states that there is positive prior probability of random covariance
regressions Y () that stay within an Lo e-ball of any specified continuous ¥*(x) everywhere
over the predictor space X. Intuitively, the support on continuous covariance functions
Y¥*(x) arises from the continuity of the Gaussian process basis functions. However, since we
are mixing over infinitely many such basis functions, we need the mixing weights specified by
O to tend towards zero, and to do so “fast enough”—this is where Assumption 2.1 becomes
important. We also rely on the large support of Iy at any point g € X. Combining the
large support of the Wishart distribution for O&(xo)&(x¢)'©’ (© fixed) with that of the
gamma distribution on the inverse elements of 3 provides the desired large support of the
induced prior IIy at each predictor location x.

Remark 3 Our theory holds for L — oo (an arbitrarily large set of latent basis functions);
however, our large support result only relies on choosing L = p. Assuming 3% is k*-
decomposable with k* < p such that we can select k < p, this still represents a reduction in
parameterization relative to a full model necessitating p X p basis functions. The reliance on
L = p is to be able to capture any k*-decomposable X*. We can further introduce a concept
of L-decomposability where ¥ (z) = A(x)A(x) + Sy with A(x) = O&(x) for © € RP*L
and for all x € X, which represents a second factor assumption. Assuming L < p is likely
reasonable for large p. Then for a (k*, L*)-decomposable ¥*, and choosing k > k* and
L > L* (rather than relying on L = p), the theory of large support follows straightforwardly.

Even when selecting L. = p, due to our shrinkage prior for © of Section 2.2.4, we find
in practice that many columns tend to be shrunk to zero a posteriori such that choosing a
truncation L < p suffices. See Sections 4 and 5.2.4.

2.4.2 MOMENTS AND STATIONARITY

To better understand the relationship between our hyperparameter settings and resulting
covariance regressions, it is useful to analyze the moments of {X(x),x € X'} ~ IIy. Lemma
4 provides the prior mean and Lemma 5 the covariance between elements of ¥(x) and X(x’).
As the distance between x and x’ increases, the correlation decreases at a rate depending
on the Gaussian process covariance kernel c(x, z’).

Lemma 4 Let u, denote the mean of 0']2-, j=1,...,p. Then,
E[X(x)] = diag (k Zqﬁfﬁ[l + oy, qub;;T[l + ,ug> )
¢ l
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That is, the expected covariance at « is diagonal with expected variance elements depending
on our latent dimension k.

Lemma 5 Let 02 denote the variance of U]z, 7=1,....p. Then,

cov(Xij(x), Xij(a')) =
ke(m,x') (55, 6577 2 + (0 03 n >2)+02 i =,
ke(, )(Ze Bt 030 Ty S+ b T e DTy ) i # 7

For 3;(x) and Xy (x) with i # u or j # v, cov(E;j(x), Lyy(2')) = 0.

(10)

Here, we see how our Gaussian process covariance function ¢(a, ') controls the dependence
over X in an interpretable, linear fashion.

From Lemma 5, the autocorrelation ACF(x) = corr(¥;;(0),%;;(x)) is simply specified
by ¢(0,z). When we choose a Gaussian process kernel c(z, ') = exp(—k||z — z'[|3), we
have

ACF (z) = exp(—s||z|[3). (11)

Thus, the length-scale parameter x directly determines the shape of the autocorrelation
function. This property aids in the selection of x via a data-driven mechanism (i.e., a quasi-
empirical Bayes approach), as outlined in Appendix C. One can also consider selecting
using methods akin to those proposed by Higdon et al. (2008); Paulo (2005).

Finally, Lemma 6 shows that the stochastic process 3 has stationarity properties, an
often desirable property of a covariance process specification since X itself captures het-
eroscedasticity in the observation process.

Lemma 6 The process {3(x),x € X'} ~ Ily is first-order stationary in that for all x, ' €
X, Iy (X(x)) = Ux(X(x')). Furthermore, assuming a stationary covariance function c(x, '),
the process is wide sense stationary: cov(Li;(x), Xy, (x')) solely depends upon ||z — ’||.

3. Posterior Computation via Gibbs Sampling

Based on a fixed truncation level L and a latent factor dimension k, we propose a Gibbs
sampler for posterior computation. For the model of Section 2, the full joint probability is

given by pops - Pparams * Phypers where

n k L p
Pobs = H p(yi ’ 97‘57 n;, EO H P\Nik ’ ka Phypers = H H ¢]£
i=1 7 ) k=1 ) =1 j=1 (12)
k L p L
Pparams = H p(iﬂk) Hp(gék) H P(UJZ') Hp(ejé ‘ ¢j€u TE)
k=1 =1 j=1 =1

The resulting sampler is outlined in Steps 1-5 below. Step 1 is derived in Appendix B. In
this section, we equivalently represent the latent factor process of (2) as n; = ¥ (x;) + v,
with v; ~ Nk(O,Ik).
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Step 1. Update each basis function &g, from the conditional posterior given {y;}, O,
{mi}, Xo. We can rewrite the observation model for the jth component of the ith response

as Yij = Z,’ib:l Nim Z£:1 0j0€om(x;) + €;5. Conditioning on £ = {&.5, 7 # £, s # m},

Eom(x1) Mm Y_5—1 05007 211
’ {yi}v{ni}7®a£_£ma20 ~ Nj, E§ ?EE )
&Tn(mn) TInm Z?:l 9]‘@0;2gnj

where ;; = y;; —Z(m#(&m) 6;r&rs(x;) and, taking K to be the Gaussian process covariance
matrix with K;; = c(x;, z;),

P
25—1 = K~ ! +diag | n3,, Z GJQ[UJ-_Q, T Z Hﬂo
j=1
Step 2. Sample each latent factor mean function v;. Letting Q; = 0&(x;), we have
y; = () + Qv + €. Marginalizing out v, y; = Q¢(x;) + w; with w; ~ N(0,%; =

QL +%). Assuming ¢y ~ GP(0, ¢), the posterior of ¢, follows analogously to that of &,
resulting in

i) e
| {yi}v{ni}aw_l7@7£a20 ~ Ny Ezﬁ : aZd) )
zﬁl(mn) Q, Z 1~7l

where §7! =y, — > () SQirty (24), Qg is the lth column vector of §;, and
S0 = K+ diag (Q’ui;lgu, . Q;di,;lﬂnl) .

Step 3. Sample v;. Defining ¢, = y, — Q;¢(x;) such that g, = Qv; + €;, we draw v;
given y;, ¥ (x;), 0,&(x;), 2o from the conditional posterior,

_ —1 1~ _ -1
Nj ({I +&(m) 0’5, O (=)} E(x) OS5, {1+ €(x) O'S5 1 O (w3) } ) :
Step 4. Sample O'j2<. Letting 6;. denote the jth row vector of ©, we draw
U]'_Z [ {y:}, {n:}, 0,6~ Ga (ag 500+ 5 Z yij — 05.8(xi)m;) ) :
Step 5. Sample ¢;.. The conditional posterior on the row vectors of © is

05 1 {yi}. {ni}, & ¢, 7 ~ Ng (ieﬁ'ajz(yljv o Yng) ie) :

where i) = {£(z1)ny, - ... &(zn)n, ) and ;1 = 0;277’77 + diag(¢j171, - - -, GL7L)-
Step 6. Finally, for the hyperparameters in the shrinkage prior for ©, we have

’Y+T192
o1 | 051,71 ~ Ga (2, 2ﬂ>
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_ I P
_ pL 1 -1
51‘@77'( 1)NG‘a, a1+2,1—’—2lz;7-l( )Z;gf)‘]ge?l
= ]:

— L P
A p(L—h+1) 1 (=h) 2
(5h|(“),7'( )NGa a2+2,1+2;7'l ;(]5]10]1 s

where 77" = Hf&:l,t;ﬁh Oy for h=1,...,p.

Each of the above steps is straightforward to implement involving sampling from stan-
dard distributions. We have observed good rates of convergence and mixing in our con-
sidered applications (see Section 5). As with other models involving Gaussian processes,
computational bottlenecks can arise as n increases due to O(n?) matrix computation. Stan-
dard computational approaches can be used for dealing with this problem, as discussed in
Section 6. We find inferences to be somewhat robust to the Gaussian process covariance
parameter x due the quadratic mixing over the basis functions. In the applications de-
scribed below, we estimate x from the data as an empirical Bayes approach, with details in
Appendix C.

4. Simulation Example

We assess the performance of the proposed approach in terms of both covariance estimation
and predictive performance. In Case 1 we simulated from the proposed model, while in Case
2 we simulated from a parametric model. In Case 1, we let X = {1,...,100}, p = 10, L = 5,
k=4,a1 =a3=10,7=3,a, =1, b, = 0.1 and ky, = k = 10 in the Gaussian process after
scaling X to (0,1] with an additional nugget of 1e=°I,, added to K. Figure 1 displays the
resulting values of the elements of pu(x) and ¥(z). For inference, we use truncation levels
k = L = 10, which we found to be sufficiently large from the fact that the last few columns
of the posterior samples of © were consistently shrunk close to 0. We set a; = as = 2,
~v = 3, and placed a Ga(1,0.1) prior on the precision parameters 0;2. The length-scale
parameter x was set from the data according to the heuristic described in Appendix C,
and was determined to be 10 (after rounding). Details on initialization are available in
Appendix D. We simulated 10,000 Gibbs iterations, discarded the first 5,000 and saved
every 10th iteration.

The residuals between the true and posterior mean over all components are displayed
in Figure 2(a) and (b). Figure 2(c) compares the posterior samples of the elements 0]2 of
the residual covariance g to the true values. In Figure 3 we display a select set of plots of
the true and posterior mean of components of p(z) and X(z), along with the 95% highest
posterior density intervals computed pointwise. From Figures 2 and 3, we see that we
are clearly able to capture heteroscedasticity in combination with a nonparametric mean
regression. The true values of the mean and covariance components are all contained within
the 95% highest posterior density intervals, with these intervals typically narrow.

For the same simulated data set, we assessed predictive performance compared to ho-
moscedastic models y ~ N,(p(x),X), with p;(z) either arising as independent GP(0, ¢)
draws or through a latent factor regression model with p(x) = O&(x)1p(x) just as in the
heteroscedastic formulation; in both cases, > was assigned an inverse-Wishart prior. By
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Figure 1: Plot of each component of the (a) true mean vector p(x) and (b) true covariance
matrix 3(x) over X = {1,...,100}.
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Figure 2: Differences between each component of the true and posterior mean of (a) the
mean p(x), and (b) covariance X(z). The y-axis scale matches that of Figure 1.
(c) Box plot of posterior samples of 10g(aj2-) for j =1,...,p compared to the true
value (green).

comparing to this latter homoscedastic model, we can directly analyze the benefits of our
heteroscedastic model since both share exactly the same mean regression formulation. To
generate a hold out sample, we removed 48 of the 1,000 observations by deleting observa-
tions y;; with probability p;, where p; was chosen to vary with x; to slightly favor removal
in regions with more concentrated conditional response distributions.

We first calculated the average Kullback-Leibler divergence between the estimated and
true predictive distribution of the missing elements y;; given the observed elements of ;.
The average values were 0.341, 0.291 and 0.122 for the homoscedastic mean regression, ho-
moscedastic latent factor mean regression and heteroscedastic latent factor mean regression,
respectively. In this scenario, the missing observations y;; are imputed as an additional step
in the MCMC computations.! The results clearly indicate that our Bayesian nonparamet-
ric covariance regression model provides more accurate predictive distributions. We also
observed improvements in estimating the mean p(x) for the heteroscedastic approach.

1. Note that it is not necessary to impute the missing ¥;; within our proposed Bayesian covariance regression
model because of the conditional independencies at each Gibbs step. In Section 5, we simply sample based
only on actual observations. Here, however, we impute in order to directly compare our performance to
the homoscedastic models.
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Figure 3: Plots of truth (red) and posterior mean (green) for select components of the
mean [u,(x) (left), variances Y,,(x) (middle), and covariances Y,,(z) (right).
The point-wise 95% highest posterior density intervals are shown in blue. The
top row represents the component with the lowest L2 error between the truth
and posterior mean. Likewise, the middle row represents median L2 error and
the bottom row the worst L2 error. The size of the box indicates the relative
magnitudes of each component.

In Case 2, we generated 30 replicates from a 30-dimensional parametric heteroscedastic
model with y ~ N,(0,%(z)) and X = {1,...,500}. To generate ¥(x), we chose a set of 5
evenly spaced knots zj and generated S(zy) ~ N(0,3), with Xy = Z;’il sjs; and s;j ~
N((—=29,-27,...,27,29)', I3y). The covariance is constructed as X(z) = aS(z)S(z) + Zo,
xz=1,...,500, where S(z) is a spline fit to the S(x;) and X is a diagonal matrix with a
N(0,1) truncated to be positive on its diagonal elements. The constant « is chosen to scale

the maximum value of aS(z)S(z)’ to 1.

Our hyperparameters and initialization scheme are as in Case 1, but we use truncation
levels k = L = 5 based on an initial analysis with k = L = 17. A posterior mean estimate
of 3(z) is displayed in Figure 4(c). Compare to the true 3(z) shown in Figure 4(a).
Figure 4(b) shows the mean and 95% highest posterior density intervals of the log Frobenius
norm log ||S(™™) (z) — ¥(z)||2 over Gibbs iterations 7 and replicates m = 1,...,30. The
average (un-logged) norm error over X is around 3, which is equivalent to each element of
the inferred X(™™)(z) deviating from the true X(z) by 0.1. Since the covariance elements
are approximately in the range of [—1, 1] and the variances in [0, 3], these values indicate
good estimation performance. We compare to a Wishart matrix discounting approach of
Prado and West (2010), which is commonly used in stochastic volatility modeling. Details
on our implementation are included in Appendix F. From Figures 4(b) and (d), Wishart
discounting has substantially worse performance, with estimation error particularly large
at high xs due to accumulation of errors in forward filtering.
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Figure 4: (a) Plot of each component of the true ¥(x) over X = {1,...,500}; (c) cor-
responding posterior means for our proposed approach; and (d) results for a
Wishart discounting method, with (c¢)—(d) based on a single simulation replicate.
(b) Mean and 95% highest posterior density intervals of the log Frobenius norm,
log ||2("™) (z) — ¥(z)||2, for the proposed approach (blue and green) and Wishart
discounting (red and black). Results are aggregated over 100 posterior samples
and replicates m =1,...,30.

5. Analysis of Spatio-temporal Trends in Flu

We now turn to our analysis of the Google Flu Trends data, described in detail in Section 5.1.
Our focus is on applying our Bayesian nonparametric covariance regression model to capture
the heteroscedasticity noted in the exploratory analysis of Appendix G. We also examine
how our modeling approach is robust to (i) inaccuracies in the mean model, (ii) missing
data, and (iii) outlying estimates.

Surveillance of influenza has been of growing interest following a series of pandemic
scares (e.g., SARS and avian flu) and the 2009 HIN1 (“swine flu”) pandemic. Although
influenza pandemics have a long history, a convergence of factors—such as the rapid rate
by which geographically distant cases of influenza can spread worldwide—have increased
the current public interest in influenza surveillance. A number of papers have recently
analyzed the temporal (Martinez-Beneito et al., 2008) and spatio-temporal dynamics of
influenza transmission (Stark et al., 2012; Duki¢ et al., 2012; Hooten et al., 2010; Sakai
et al., 2004; Viboud et al., 2004; Mugglin et al., 2002). These approaches focus on data
from a modest number of locations, and make restrictive assumptions about the spatial
dependence structure, which itself may evolve temporally. Our focus is on addressing these
limitations.
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For example, Dukié et al. (2012) also examine portions of the Google Flu Trends data,
but with the goal of on-line tracking of influenza rates on either a national, state, or regional
level. Specifically, they employ a state-space model with particle learning. Our goal differs
considerably. We aim to jointly analyze the full 183-dimensional data, as opposed to univari-
ate modeling. Through such joint modeling, we can uncover important spatial dependencies
lost when analyzing components of the data individually. Such spatial information can be
key in predicting influenza rates based on partial observations from select regions or in retro-
spectively imputing missing data. Additionally, the inherent redundancy and borrowing of
information across locations provided by our model should lead to robustness to inaccuracies
of flu estimates caused by malicious attacks to the Google infrastructure or unaccounted for
sudden spikes in web searches (see Section 5.2.3). Hooten et al. (2010) consider the temporal
dynamics of the state-level Google estimates, building on a susceptible-infected-recovered
(SIR) model to capture the complexities of intra- and inter-state dynamics of flu disper-
sal. Such a model aims to captures the intricate mechanistic structure of flu transmission,
whereas our goals are focused primarily on fit using metrics such as predictive performance,
with an eye towards scalability and robustness. Our exploratory data analysis of Appendix
G shows that even with a very flexible and well-fit mean model, temporally changing spatial
structure persist in the residuals motivating a heteroscedastic approach. In Section 4, we
demonstrated that actually modeling such heteroscedasticity can improve predictive perfor-
mance. Here, we show that the model of Section 2 can effectively capture such time-varying
correlations in region-specific Google-estimated ILI rates, even when considering 183 regions
jointly and in the presence of significant missing data.

5.1 Influenza Monitoring and Google Flu Trends

The surveillance of rates of influenza-like illness (ILI) within the United States is coordinated
by the Centers for Disease Control and Prevention (CDC), which consolidates data from a
large network of diagnostic laboratories, hospitals, clinics, individual healthcare providers,
and state health departments. The CDC produces weekly reports (http://www.cdc.gov/
flu/weekly/) for 10 geographic regions and a U.S. aggregate rate. A plot of the number
of isolates tested positive by the WHO and NREVSS from September 28, 2003 to October
24, 2010 is shown in Figure 5 (left). From these data and the CDC weekly flu reports,
we defined a set of six events (Events A-F) corresponding to the 2003-2004, 2004-2005,
2005-2006, 2006-2007, 2007-2008, and 2009-2010 flu seasons, respectively. See the specific
dates listed in Figure 5 (right). The 2003-2004 flu season began earlier than normal, and
coincided with a flu vaccination shortage in many states. Additionally, the CDC found that
the vaccination was “not effective or had very low effectiveness” (CDC, 2004). Finally, the
2009-2010 flu season coincides with the emergence of the 2009 HIN1 (“swine flu”) subtype
in the U.S..

To aid in a more rapid response to influenza activity, researchers at Google devised a
model in collaboration with the CDC based on Google user search queries that is meant to be
predictive of CDC ILI rates, measured as cases per 100,000 physician visits (Ginsberg et al.,
2008). The Google Flu Trends methodology was devised based on a two-stage procedure:
(i) a massive variable selection procedure was used to select a subset of search queries, and
(ii) using these queries as the explanatory variable, region-independent univariate linear
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Figure 5: Left: Number of isolates of Influenza A and B tested positive by the WHO and
NREVSS over the period of September 29, 2003 to May 23, 2010, with Influenza
A broken down into various subtypes. The green line indicates the time periods
determined to be flu events. Right: Corresponding date ranges for flu events A-F.

models were fit to the weekly CDC ILI rates from 2003-2007. The fitted models are then
used for making estimates in any region based on the ILI-related query rates from that
region. A key advantage of the Google data is that the ILI rate predictions are available 1
to 2 weeks before the CDC weekly reports are published. Additionally, a user’s IP address
is typically connected with a specific geographic area and can thus provide information at
a finer scale than the 10-regional and U.S. aggregate reporting provided by the CDC.

There has, however, been significant recent debate about the accuracy of the Google
Flu Trend estimates (Butler, 2013; Lazer et al., 2014; Harris, 2014). For this paper, we
take a backseat in this discussion and simply use this data set to demonstrate the po-
tential impact of our methods in this domain. Revised Google-estimated ILI rates could
likewise be used in our framework, as could other recent sources of rapid ILI estimates,
e.g., using Twitter data (Lamb et al., 2013; Achrekar et al., 2012) or platforms that in-
corporate user-contributed reported cases (e.g., https://flunearyou.org). Regardless, as
we demonstrate in Section 5.2.3, our formulation provides some robustness to inaccurate
estimates.

5.1.1 DATA DESCRIPTION AND KEY FEATURES

We analyze the Google Flu Trends data—produced on a weekly basis—f{rom September 28,
2003 through October 24, 2010, totaling 370 weeks. These data provide ILI estimates in
183 regions, consisting of the U.S. national level, 50 states, 10 U.S. Department of Health
& Human Services surveillance regions, and 122 cities. For our modeling, we take our
observation vectors y; = (vi1,...,¥ip) to be the log of the Google-estimated ILI rates in
the p = 183 regions at week i. We denote the untransformed rates by r; = (ri1,...,7p).
Our predictor x; is simply a discrete time index indicating the current week (z; = i, i =
1,...,370).

Since the Google model fits regions independently, it is not the case that city counts add
to regional counts which add to state counts, and so on. That is, the dimensions of y; are not
deterministic functions of each other. There is, however, inherent redundancy (e.g., between
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the estimated ILI rates for California and Los Angeles) that is naturally accommodated by
a latent factor approach. Another important note is that there is substantial missing data
with entire blocks of observations unavailable (as opposed to certain weeks sporadically
being omitted). At the beginning of the examined time frame only 114 of the 183 regions
were reporting. By the end of Year 1, there were 130 regions. These numbers increased to
173, 178, 180, and 183 by the end of Years 2, 3, 4, and 5, respectively.

5.2 Analysis via Bayesian Nonparametric Covariance Regression

We apply our Bayesian nonparametric covariance regression model as follows: logr; ~
N(p(x;),X(z;)). Recall that r; simply stacks all region-specific measurements r;; into
a 183-dimensional vector for each week x;. The spatial conditional correlation structure
at week x; is then captured by the covariance X(x;) = ©O&(x;)&(x;)'®" 4+ Xy and the
mean by p(z;) = O&(z;)(x;). Temporal changes are implicitly modeled through the
proposed mean-covariance regression framework that allows for continuous variations in
{p(z;), X(x;)} via our Gaussian-process-based formulation. As such, we can also examine
{p(z), X(x)} for unobserved time points z € X occurring between the weekly measurements.

We emphasize that our model does not explicitly encode any spatial structure between
the regions (comprising the dimensions of the response vector y;), which is in contrast to
many spatial and spatio-temporal models that build in a notion of neighborhood struc-
ture. This is motivated both by the fact that, as we see in the correlation maps of the
exploratory data analysis in Appendix G, the definition of “neighborhood” is not necessar-
ily straightforward to encode using Euclidean distance since geographically distant regions
might have significant correlation?. Likewise, this structure need not remain fixed across
time. Finally, the full set of 183 regions—comprised of cities, states, regions, and the
U.S. national level—represents a type of multiresolution spatial description of flu activ-
ity. Although multiresolution-based spatial structures could be imposed based on known
relationships, the inherent redundancy of these observations in this task is very well accom-
modated by a latent factor model. As we have shown, such a structure is very simple to
work with computationally and enables our ability to straightforwardly cope with missing
data without imputing these values. We could consider a model that combines latent factor
and neighborhood based approaches, leading to low-rank plus sparse precision forms for the
covariance. This is a topic that has received considerable recent attention (Chandrasekaran
et al., 2012). We leave this as a direction of future research.

Details on our model and MCMC setup are provided in Section 5.2.4.

5.2.1 QUALITATIVE ASSESSMENT

We begin by producing correlation map snapshots similar to those of the exploratory data
analysis in Appendix G, but here with an ability to examine instantaneous correlations
that utilize (i) all 183 regions jointly and (ii) the entire time course. In contrast, the
analysis of Appendix G reduces dimensionality to state-level, aggregates data amongst flu
versus non-flu events to cope with data scarcity, and discards data prior to Event B due to
significant missing values. The results presented in Figures 6 and 7 clearly demonstrate that

2. Perhaps this effect arises from air travel (Brownstein et al., 2006), which was found to be a statistically
significant driver in the state-level model of Hooten et al. (2010).
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Figure 6: (a) Plot of posterior means of the nonparametric mean function p;(x) for each of
the 183 Google Flu Trends regions. The thick yellow line indicates the empirical
mean of the log Google-estimated ILI rates, log r;;, across regions j. (b) For New
York, the 25th, 50th, and 75th quantiles of correlation with the 182 other regions
based on the posterior mean estimate of ¥(x). The black line is a scaled version
of the log Google-estimated United States ILI rate. The shaded gray regions
indicate the time periods determined to be flu events (see Figure 5).

we are able to capture temporal changes in the spatial correlations of the Google Flu Trends
data, even in the presence of substantial missing information. In Figure 6(b), we plot the
posterior mean of the 183 components of u(z), showing trends that follow the empirical
mean Google-estimated ILI rate. Although this mean model provides a slightly worse fit
than the smoothing splines, our quantitative assessment of Section 5.2.2 demonstrates that
modeling heteroscedasticity allows for a well-calibrated joint model. That is, we are robust
to our simple choice for the mean regression function. (We note that more complicated mean
models could be used within this framework, but this analysis demonstrates the flexibility of
joint mean-covariance modeling.) For New York, in Figure 6(c) we plot the 25th, 50th, and
75th quantiles of correlation with the 182 other states and regions based on the posterior
mean estimate of ¥(z). From this plot, we immediately notice the time-varying correlations.

The specific time-varying geographic structure of the inferred correlations is displayed
in Figure 7. Qualitatively, we see changes in the residual structure not just between flu
and non-flu periods as in Appendix G, but also between flu events. In the more mild 2005-
2006 season, we see much more local correlation structure than the more severe 2007-2008
season (which still maintains stronger regional than distant correlations.) The November
2009 HIN1 event displays overall regional correlation structure and values similar to the
2007-2008 season, but with key geographic areas that are less correlated. The 2006-2007
season is rather typical, with correlation maps very similar to those of the exploratory
data analysis in Figure 12. Note that some geographically distant states, such as New York
and California, are often highly correlated. Interestingly, the strong local spatial correlation
structure for South Dakota in February 2006 has been inferred before any data are available
for that state. Actually, no data are available for South Dakota from September 2003 to
November 2006. Despite this missing data, the inferred correlation structures over these
years are fairly consistent with those of neighboring states and change in manners similar to
the flu-to-non-flu changes inferred after data for South Dakota are available. (See the movies
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Figure 7: For the states in Figure 12 and each of four key dates (February 2006 of Event
C, February 2007 of Event D, February 2008 of Event E, and November 2009 of
Event F), correlation maps based on the posterior mean estimate of ¥ (x) using
samples [5000 : 10 : 10000] from 10 chains. The color scale is exactly the same
as in Figure 12. The plots indicate spatial structure captured by ¥(z), and that
these spatial dependencies change over time. Note that no geographic information
was included in our model.

provided in the Online Appendix.) This is enabled by the transfer of knowledge property
described in Section 2.3. In particular, the row of © corresponding to South Dakota is
informed by all of South Dakota’s available data while the latent GP basis elements &y, are
informed by all of the other regions’ data, in addition to assumed continuity of &y which
shares information across time.

Comparing the maps of Figure 7 to those of the sample-based estimates in Figure 12, we
see much of the same correlation structure, which at a high level validates our findings. Since
the sample-based estimates aggregate data over Events B-F (containing those displayed in
Figure 7), they tend to represent a time-average of the event-specific correlation structure
we uncovered. Note that due to the dimensionality of the data set, the sample-based
estimates are based solely on state-level measurements and thus are unable to harness the
richness (and crucial redundancy) provided by the other regional reporting agencies. The
high-dimensionality and missing data structure of this data set also limit our ability to
compare to alternative methods such as those cited in Section 1—mnone yield results directly
comparable to the full analysis we have provided here. Instead, they are either limited
to examination of the small subset of data for which all observations are present and/or
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Figure 8: Top: Based on the nonparametric Nadaraya-Watson kernel estimator
of Yin et al. (2010) using three different bandwidth settings ((k/2)~ %% =
0.07,0.02,0.0008), plots of the nonparametric mean estimate fi;(z) for each of
the 183 regions, as in Figure 6(b). The estimate is based on averaging samples
[500 : 10 : 1000] from a stochastic EM chain that iterated between imputing
missing values and computing the kernel estimate. Note that in the rightmost
panel, the y-axis is truncated and the estimates in Event A actually extend to
above 12. Bottom: Associated plots of correlations between California and all
other states during February 2006 based on the nonparametric Nadaraya-Watson
kernel estimator of the covariance function f](x) The color scale is exactly the
same as in Figures 12 and 7.

a lower-dimensional selection (or projection) of observations. For example, the common
GARCH models cannot handle missing data and are limited to typically no more than 5
dimensions. On the other hand, our proposed algorithm can readily utilize all information
available to model the heteroscedasticity present here.

In an attempt to make a comparison, we propose a stochastic EM algorithm (Diebolt and
Ip, 1995) for handling missing data within the framework of the nonparametric Nadaraya-
Watson kernel estimator of Yin et al. (2010). Details are provided in Appendix H. The
results based on a Gaussian kernel, as employed in Yin et al. (2010), are summarized in
Figure 8. We examine three settings for the kernel bandwidth parameter: one (0.0008)
based on the cross validation technique proposed in Yin et al. (2010) using the last portion
of the time series without any missing values, one (0.02) tuned to match the smoothness of
the mean function estimated from the Bayesian nonparametric method proposed herein (see
Figure 6(b)), and one large setting (0.07) that leads to substantial sharing of information,
but over-smooths the mean. The leave-one-out cross validation method leads to a very
small bandwidth because of the specific temporal structure of the data (intuitively, the
best estimate of a missing flu rate is achieved by averaging the nearest neighbors in time).
However, this setting leads to poor predictive performance in the presence of consecutive
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missing values. In Figure 8(a), we see the unreasonably large mean values estimated at the
beginning of the time series when there is substantial missing data. The smoothness of the
mean function using a bandwidth of 0.02 captures the global changes in flu activity, leaving
the covariance to explain the residual correlations in the observations, better matching
our goals. However, the covariance, as visualized through the California correlation map
of February 2006 (Figure 8(middle)), lacks key geographic structure such as the strong
correlation between California and New York. This correlation is present during other flu
events, and is unlikely to be truly missing from this event. Instead, the failure to capture
this and other correlations is likely due to the increased uncertainty from the substantial
early missing data and lack of global sharing of information. Using a much larger bandwidth
of 0.07 necessarily leads to more sharing of information, and results in the presence of these
correlations. The resulting over-smooth mean function, however, does not capture global
flu variations. On the other hand, our Bayesian nonparametric method is able to maintain
a local description of the data while sharing information across the entire time series, thus
ameliorating sensitivity to missing data.

5.2.2 MODEL CALIBRATION

The plots of Section 5.2.1 qualitatively demonstrate that we are able to capture time-varying
changes in the spatial conditional correlation structure of the (log) Google-estimated ILI
rates. Despite not encoding spatial structure in our latent-factor-based model, we note that
some local geographic structure has emerged, while still allowing for long-range correlations
and temporal changes in this structure. We now turn to a quantitative assessment of the
fit and robustness of our model. To this end, we examine posterior predictive intervals of
randomly heldout data. More specifically, from the available observations (omitting the
significant number of truly missing observations), we randomly held out 10% of the values
uniformly across time and regions. We then simulated from our Gibbs sampler treating
these values as missing data and analytically marginalizing them from the complete data
likelihood, just as we do for the truly missing values. Based on each of our MCMC samples,
we form p(z) and X(x) for each x = 1,...,370 and compute the predictive distribution for
the heldout data given any available state-level observations at week z (i.e., we condition
on a subset of observed regions, ignoring non-state-level measurements). Averaging over
MCMC samples, we then form 95% posterior predictive intervals and associated coverage
rates for each . We run this experiment of randomly holding out 10% of the observed data
twice.

As a comparison, we consider an artificially generated homoscedastic model where we
simply form 3 = Zf’g Y (x;) for each of our MCMC samples. In this case, both models
have exactly the same mean regression, p(x). Likewise, the underlying p(x) and ¥(x) (and
thus f]) were all informed using the same low-dimensional embedding of the observations,
harnessing the previously described benefits of such a latent factor approach. The only
difference is whether we consider the week-specific covariance, ¥(z), or instead its mean, f],
in forming our predictive intervals for week z. Considering the two experiments separately,
we find that 94.4% and 94.6% of the heldout observations were covered by our 95% poste-
rior predictive intervals, respectively. This result indicates that our joint mean-covariance
regression model is well-calibrated and robust to the rather simple mean model. In compar-
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Figure 9: Comparison of posterior predictive intervals using our heteroscedastic model ver-
sus a homoscedastic model. Top: Scatter plots of week-specific coverage rates
and interval lengths, aggregated over two experiments. Bottom: Differences in
coverage rates and interval lengths by week, separating the experiments via an
offset for clarity.

ison, the artificially generated homoscedastic model had coverage rates of 93.7% and 93.8%),
respectively. Importantly, the better calibrated coverage rates of our heteroscedastic model
came from shorter predictive intervals with average lengths of 1.2272 and 1.2268 compared
to 1.2469 and 1.2475 for the homoscedastic model.

Figure 9 explores the differences between these posterior predictive intervals on a week-
by-week basis. In Figure 9 (top) we see that a majority of the week-specific intervals have
higher coverage rates and shorter interval lengths (i.e., most coverage rate comparisons are
on or above the x — y line whereas most interval length comparisons are below this line of
equal performance). Time courses of the rates and interval lengths are shown separately for
the two experiments in Figure 9 (bottom), where the temporal patterns in these differences
become clear. There are stretches of weeks with identical coverage rates, leading to the
similarity in overall rates for the two methods, though with the heteroscedastic approach
using shorter intervals. The difference of going from overall rates of roughly 93.7% to 94.5%
is attributed to certain bursts of time where capturing heteroscedasticity is really key. These
time points can sometimes be attributed to the heteroscedastic approach providing wider
intervals.
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Figure 10: Comparison of posterior mean estimates of pu(x) and X(z) using the full data
versus using the data with the outlying weeks of April 26, 2009 and May 3, 2009
removed. Denote the resulting estimates by {fu(x), %(x)} and {f°% (z), £0% (z)},
respectively. The two outlying weeks are highlighted by the gray shaded region.
The blue lines indicate 0.05 and 0.95 pointwise-quantiles of the components (left)
fij(z) — g (z) and (right) Sii(x) — f]zoj“t(:c) The red line is the median. The
green and cyan lines are the corresponding 0.05, 0.5, and 0.95 quantiles of the full
data jij(z) and ;;(z) shown for scale. We omit the first year with significant
missing data to hone in on the smaller scale variability in subsequent years.
No quantiles (blue/green lines) overlapped in this first year for the covariance
elements, and trends were of the same scale for the mean elements.

5.2.3 SENSITIVITY TO OUTLIERS

As discussed in Section 5.1, there has been some debate about the accuracy of the Google
Flu Trends estimates. In Cook et al. (2011), the two weeks of April 26, 2009 and May 3, 2009
were highlighted as having inflated Google estimates based on the significant media attention
spurred by the HIN1 virus. In theory, our mean-covariance regression model has two
defenses against such outliers. The first is due to the implicit shrinkage and regularization
achieved through our use of a small set of latent basis functions. The second is the fact
that an outlier at time z only has limited impact on inferences at time points z’ that are
“far” from x. This is formalized by in Lemma 5, where we see that the covariance between
¥ii(z) and Xy, (2") decays with (x — 2/)? (for univariate x and our squared exponential
kernel ¢(z, z')).

To empirically examine the impact of these outliers on our inferences, we removed all of
the data from the weeks of April 26, 2009 and May 3, 2009 and simulated from our Gibbs
sampler treating these data as missing. In Figure 10, we examine the differences between
the posterior mean estimates of p(z) and ¥(x) using the full data and this data set with the
outlying weeks removed. We see that the most significant differences in our estimates are
localized in time around these removed outlying weeks, as we would expect. Likewise, the
sheer magnitude of these differences (which of course are larger for the harder-to-estimate
covariance process) are quite small relative to the scale of the parameters in our model.
These results demonstrate a robustness to outliers and allude to a robustness to certain
types of malicious attacks.
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5.2.4 MCMC DETAILS, SENSITIVITY ANALYSIS, AND CONVERGENCE DIAGNOSTICS

We simulated 5 chains each for 10,000 MCMC iterations, discarded the first 5,000 for burn-
in, and thinned the chains by examining every 10 samples. Each chain was initialized with
parameters sampled from the prior. The hyperparameters were set as in the simulation
study, except with larger truncation levels L = 10 and k& = 20 and with the Gaussian
process length-scale hyperparameter set to xy, = & = 100 to account for the time scale
(weeks) and the rate at which ILI incidences change. By examining posterior samples of
O, we found that the chosen truncation level was sufficiently large. To assess convergence,
we performed the modified Gelman-Rubin diagnostic of Brooks and Gelman (1998) on
the MCMC samples of the variance terms 3;;(z;). We also performed hyperparameter
sensitivity, letting xy = k = 200 to induce less temporal correlation and using a larger
truncation level of L = k = 20 with less stringent shrinkage hyperparameters a; = ay =
2 (instead of a; = as = 10). The results were essentially identical to those presented.
Note that after taking the log transformation, the data were preprocessed by removing the
empirical mean of each region and scaling the entire data set by one over the largest variance
of any of the 183 time series.

5.2.5 COMPUTATIONAL COMPLEXITY

Each of our chains of 10,000 Gibbs iterations based on a naive implementation in MATLAB
(R2010Db) took approximately 12 hours on a machine with four Intel Xeon X5550 Quad-
Core 2.67GHz processors and 48 GB of RAM. For a sense of scaling of computations, the
p = 10, n = 100 simulation study of Section 4 took 10 minutes for 10,000 Gibbs iterations
while the p = 30, n = 500 scenario of took 3 hours for 10,000 Gibbs iterations. In terms of
memory and storage, our method only requires maintaining samples of a p X L matrix O,
the p elements of ¥y, and an L x k X ¢ X n matrix for the basis functions £(z). (Compare
to maintaining the p X p X ¢ x n dimensional matrix for the Nadaraya-Watson estimates of
Y (x) in the stochastic EM algorithm to which we compared.)

6. Discussion

In this paper, we have presented a Bayesian nonparametric approach to covariance regression
which allows an unknown p x p dimensional covariance matrix () to vary flexibly over
x € X, where X is some arbitrary (potentially multivariate) predictor space. As a concrete
example, we considered multivariate heteroscedastic modeling of the Google Flu Trends data
set, where p represents the 183 regions and = a weekly index. Key to this analysis is our
model’s ability to (i) scale to the full 183 regions (large p) and (ii) cope with the significant
missing data without relying on imputing these values. Inherent to both of these capabilities
is our predictor-dependent latent factor model that enables efficient sharing of information
in a low-dimensional subspace. The factor loadings are based on a quadratic mixing over
a collection of basis elements, assumed herein to be Gaussian process random functions,
defined over X. The Gaussian processes define a continuous evolution over X (e.g., time
in the flu analysis), allowing us cope with an irregular grid of observations. Our proposed
methodology also yields computationally tractable algorithms for posterior inference via
fully conjugate Gibbs updates—this is crucial in our being able to analyze high-dimensional
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multivariate data sets. In our Google Flu Trends analysis, we demonstrated the scalability,
calibration, and robustness of our formulation.

There are many possible extensions of the proposed covariance regression framework.
The most immediate are those that fall into the categories of (i) avoiding the multivariate
Gaussian assumption, and (ii) scaling to data sets with larger numbers of observations.

In terms of (i), a natural possibility is to embed the proposed model within a richer
hierarchical framework. For example, a promising approach is to use a Gaussian copula
while allowing the marginal distributions to be unknown as in Hoff (2007). One can also
use more flexible distributions for the latent variables and residuals, such as mixtures of
Gaussians. Additionally, it would be trivial to extend our framework to accommodate mul-
tivariate categorical responses, or joint categorical and continuous responses, by employing
the latent variable probit model of Albert and Chib (1993).

In terms of (ii), our sampler relies on L x k draws from an n-dimensional Gaussian
(i.e., posterior draws of our Gaussian process random basis functions). For very large n,
this becomes infeasible in practice since computations are, in general, O(n3). Standard
tools for scaling up Gaussian process computation to large data sets, such as covariance
tapering (Kaufman et al., 2008; Du et al., 2009) and the predictive process (Banerjee et al.,
2008), can be applied directly in our context. Additionally, one might consider using the
integrated nested Laplace approximations of Rue et al. (2009) for computations. One could
also consider replacing the chosen basis elements with a basis expansion, wavelets, or simply
autoregressive (i.e., band-limited) Gaussian processes. Including flat basis elements allows
the model to collapse on homoscedasticity, enabling testing for heteroscedasticity.

It is also interesting to consider extensions that harness a known, predictor-independent
structured covariance. One approach is to assume a low rank plus sparse model (instead
of our low rank plus diagonal) in which the residuals have a sparse conditional dependence
structure. For example, in the Google flu application the residuals could be modeled via a
Markov random field to capture static local spatial dependencies while the low-rank portion
captures time variation about this nominal structure. One could similarly extend to un-
known sparse structures. Such formulations might allow for fewer latent factor dimensions.

There are also a number of interesting theoretical directions related to showing posterior
consistency and rates of convergence including in cases in which the dimension p increases
with sample size n.
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Appendix A: Proofs of Theorems and Lemmas

In Lemma 7, we show that our proposed factorization of ¥(x) in (3) and (8) is sufficiently
flexible to characterize any {¥(z),x € X'} for sufficiently large k. Let X denote the space
of all possible L x k arrays of X — & functions, &y, all p x p diagonal matrices with non-
negative entries, and Xg all p x L real-valued matrices such that ©©’ has finite elements.
Recall that our modeling specification considers L — oc.

Lemma 7 Given ¥ : X — P;r, for sufficiently large k there exists {£(-),0,%0} € Xe ®
Xo @ Xy, such that (z) = O&(z){(x)' O + Xy, for all z € X.
Proof Assume without loss of generality that Xo = Opxp and take k > p. Consider

chol(X(x)) Opxk—p
01><p 01><k7p

O = [Ip 0p><1 0p><1 .. -}7 5(513) - 01><p lek—p

Then, ¥(z) = O&(2)¢(x)' O for all x € X. [ |

Proof [Proof of Theorem 2| Since X is compact, for every ¢y > 0 there exists an open
covering of €p-balls Be,(r9) = {z : ||z — xol|l2 < €0} with a finite subcover such that
Uzoer, Beo(w0) D X, where |Xp| = n. Then,

Iy, (sup |1X(z) — X" (2)|]2 < e) =1y [ max sup |[|X(z)—X"(@)|l2<¢€]. (14)
reX zo€Xp x€Bej (o)

Define Z(xzg) = SUD,e B,  (x0) ||2(x) — X*(x)||2. Since

Iy, <mg/>Y< Z(zp) < e) >0 <= Iy (Z(x9) <€) >0, Vxo € Ap, (15)
zo ’
we only need to look at each eg-ball independently, which we do as follows.

IIs; ( sup ||2(z) — X (z)]]2 < e)

TE€Be( (o)

> Hz( sup  [|X%(z0) — X% (z)[|2 + sup  [[E(z0) — E(2)]]2
2E€Bc (x0) TE€Bej (7o)

112 (o) — =*(z0)J2 < e)

ZHE< sup HZ*(JCO)—E*(x)|2<e/3>

2€Be; (20)

1y, < egulz )||E(:U0) —X(2)|]2 < 6/3) s, (||S(z0) — Z*(x0)||2 < €/3)  (16)
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where the first inequality comes from repeated uses of the triangle inequality, and the second
inequality follows from the fact that each of these terms is an independent event. We
evaluate each of these terms in turn. The first follows directly from the assumed continuity
of ¥*(-). The second will follow from a statement of (almost sure) continuity of X(-) that
arises from the (almost sure) continuity of the &y (-) ~ GP(0,¢) and the shrinkage prior on
O (i-e., Og — 0 almost surely as ¢ — oo, and does so “fast enough”.) Finally, the third will
follow from the support of the conditionally Wishart prior on X(x) at every fixed xg € X.
Based on the continuity of ¥*(-), for all €/3 > 0 there exists an €y ; > 0 such that

157 (20) = X% (2)[[2 < ¢/3, V& —zol[2 < €0 (17)

Therefore, 1Ty, (suprBeo,l(%) [|[3*(x0) — X (2)|]2 < 6/3) =1.

Based on Theorem 8, each element of A(-) = ©&(-) is almost surely continuous on X
assuming k finite. Letting g;i(x) = [A(2)]jk,

K
A@)A@) )5 = gim(z)gjm(z), Vo€ X. (18)
m=1

Eq. (18) represents a finite sum over pairwise products of almost surely continuous functions,
and thus results in a matrix A(xz)A(x)" with elements that are almost surely continuous on
X. Therefore, X(z) = Alx)A(x) + Xy = O(2)E(x)'©" 4+ X is almost surely continuous on
X. We can then conclude that for all €¢/3 > 0 there exists an €p2 > 0 such that

Iy, ( sup  ||E(z0) — X(2)|]2 < 6/3) =1 (19)
xEBEOQ(JZo)

To examine the third term, we first note that

IIs; ([|E(wo) — X (z0)l2 < €¢/3)
= I, (|/0¢(w0)&(20)'6' + To = ©"¢"(w0)¢"(20)' O = Till2 < ¢/3) . (20)
where {{*(zg), ©*, 3§} is any element of X ®@Xe®Xy,, such that 3*(xg) = ©*£*(20)E* (xo)’(a*/-i-
X4 with @*5*@0)5*(,@0)’@*/ having rank £*. Such a factorization exists by the assumption

of ¥* being k*-decomposable. If k* = p, Lemma 7 states that such a decomposition exists
for any X*. We can then bound this prior probability by

I ([[2(z0) = X" (20)l|2 < €/3)
> Ts: (|/0¢(w0)¢(w0)'©' — ©°¢" (w0)¢" (20)'©”||2 < ¢/6)
I, (%0 — Xpll2 < €/6)
> Iy (|06 (x0)&(x0)'®f — O%€"(20)¢" (20)' O |2 < ¢/6)
I, (X0 — Eolloe < €/(6v/P)) (21)
where the first inequality follows from the triangle inequality, and the second from the

fact that for all A € RP*P, |[Allz2 < /D||A||co, With the sup-norm defined as |[A||c =
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maxj<i<p Y b_q |aij|. Since Z¢ = diag(o?,. .. ,012,) with o? S Ga(ag,by), the support of

the gamma prior implies that

s, ([1Z0 = Zollee < €/(6v/p)) = Ils, <max joF — 07%| < 6/(6ﬁ)> > 0. (22)

1<i<p

Recalling that [£(z0)]e = Eor(z0) with (o) i N(0,1) and taking © a real matrix with
rank(©) = p,

O&(20)E(0)'0" | © ~ W(k, 00"). (23)
By Assumption 2.2, there is positive probability under Ilg on the set of © such that

rank(©) = p. Since ©*¢*(20)*(29)'©* is an arbitrary symmetric positive semidefinite
matrix in R®P*P with rank k& > k*, and based on the support of the Wishart distribution,

s, (110€(20)¢(20)'®' — ©°€*(20)¢" (20) O |2 < ¢/6) > 0. (24)

We thus conclude that ITy, (||2(xg) — X*(x0)||2 < €/3) > 0.

For every ¥*(-) and € > 0, let ¢g = min(eq1,€0,2) With €p1 and ep2 defined as above.
Then, combining the positivity results of each of the three terms in Eq. (16) completes the
proof. |

Theorem 8 Assuming X compact, for every finite k and L — oo (or L finite), A(-) = ©&(-)
18 almost surely continuous on X.

Proof [Proof of Theorem 8] We can represent each element of A(-) as follows:

b1 b2 ... O] [&u() &2() oo &(Y)
A = ngl;o 9?1 9?2 92:L 521:(') 522:(') 5%:(')
Opr Op2 . Opr] [Er1() Er2() - Eoe()]] 4

= Z O0er(-)- (25)
=1

If &g () is continuous for all ¢,k and s, (z) = >y, 0je&m () uniformly converges almost
surely to some g;i(x), then gj;(x) is almost surely continuous. That is, if for all € > 0 there
exists an N such that for all n > N

Pr (sup o) — sa(o)] <€) =1 (26)

then s, () converges uniformly almost surely to g;,(x) and we can conclude that g;i(x) is
continuous based on the definition of s,(x). To show almost sure uniform convergence, it
is sufficient to show that there exists an M,, with > > | M, almost surely convergent and

sup |9jn£nk(m)| < Mn- (27)
reX
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Let cpr = supgey |&nk(x)]. Then,
sup [0jn&nk ()| < [0jnlcnk- (28)
zeEX

Since &, (+) S GP(0,c¢) and X is compact, ¢, < 0o and E[c,] = ¢ with ¢ finite. Defining

M, = ‘ejn‘cnkv

(0. 0]
Beoc|Y M, = Fo
n=1

Ec|®

Z |OjnlCnr | © > an\E]
n=1
Z 10511, (29)

where the last equality follows from Fubini’s theorem. Based on Assumption 2.1, we con-
clude that E[Y 7, M,] < oo which implies that > °, M, converges almost surely. [ |

Lemma 9 Assuming the prior specification of expression (9) with az > 2 and v > 2, the
rows of © are absolutely summable in expectation: Y, E(|0j]) < oo, satisfying Assump-
tion 2.1.

Proof [Proof of Lemma 9| Recall that 6, ~ N (0, qi)]-}lT[l) with ¢j0 ~ Ga(y/2,7v/2) and

Te = Hi:l Sy for 61 ~ Ga(ay, 1), 6, ~ Ga(az,1). Using the fact that if 2 ~ N(0,0?) then
E[|lz|] = 0y/2/m and if y ~ Ga(a,b) then 1/y ~ Inv-Ga(a, 1/b) with E[1/y] =1/(b-(a—1)),
we derive that

> Eollojell = > Eor[Bolo. 105l | 650 7]] = \/f > Borlty' ]
(=1 (=1 (=1
_ g ) . 1 _ 4 \/5 0o 14 i
\/;; Byl 1B, ] o pop A z;Ea b;[l 5h]
1 4 25/ 1\
:a1_17(7—2)\/;; <a2—1> ' )

When ap > 2 and v > 2, we conclude that ), E[|0;,]] < oc. [ |

Proof [Proof of Lemma 4] Recall that ¥(z) = O¢(x)¢(2)'©'+%¢ with £y = diag(of,...,07).
The elements of the respective matrices are independently distributed as 6;, ~ N (0, ¢, 417'[1),
&(-) ~ GP(0,¢), and 0; % ~ Gamma(ay, by). Let u, and o2 represent the mean and vari-
ance of the implied inverse gamma prior on a?, respectively. In all of the following, we first
condition on © and then use iterated expectations to find the marginal moments.

The expected covariance matrix at any predictor location x is simply derived as
E[S(z)] = E[E[S(2) | O]] = E[E[0¢(2)¢(2)'0" | O]] + polp = kE[OO] + o1,
= diag ]{32¢1€1TZ_1 + gy - kZ(ﬁ ! _1 + fho)-
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Here, we have used the fact that conditioned on ©, O&(z)¢(x)'©" is Wishart distributed
with mean £©0’ and

E[00];; =Y Y Elbubir] =>  E[03]6; = Zvar 1) = Zd)wl 104
L v ¢
|

Proof [Proof of Lemma 5] One can use the conditionally Wishart distribution of ©(z)&(z)'®’
to derive cov(X;;(z), Xuys(x)). Specifically, let S = ©&(x){(x)'®’. Then S = 22:1 2(m) 5 ()
with z(™ | © ~ N(0,00’) independently for each n. Then, using standard Gaussian second
and fourth moment results,

cov(Zi; (), Duw(2) | ©) = cov(Sij, Suv | ©) + 028 juw
= > B | 6] = Bl | Q1B | €]+ a2diu,
n
= k((00),(06), + (00"),(00")u) + 026 juv-
Here, 6;juy = 1if i = j = v = v and is 0 otherwise. Taking the expectation with respect
to © yields cov(X;;(z), Xyy(z)). However, instead of looking at one slice of the predictor
space, we are interested in how the correlation between elements of the covariance matrix

changes with predictors. Thus, we work directly with the latent Gaussian processes to
derive cov(2;j(z), Xuv(2')). Let

gzn Z eszﬁn (31)

implying that g;,(z) is independent of all g;,(z’) for any m # n and all 2’ € X. Since
each &y, (+) is distributed according to a zero mean Gaussian process, gi,(z) is zero mean.
Using this definition, we condition on © (which is dropped in the derivations for notational
simplicity) and write

COV(Zij (CC) Z cov gzn g]n( )7 Gun (55/), Gun (:U,)) + U?yéijuv

= Z Elgin(x)gjn(2)gun (@), gon ()]

- E [Qm(ﬂ?)gjn(ﬂﬁ)]E [9un (), gon ()] + 026 juv
We replace each gi,(x) by the form in Eq. (31), summing over different dummy indices for
each. Using the fact that &, (z) is independent of &y, (2) for any £ # ¢ and that each

&om(x) is zero mean, all cross terms in the resulting products cancel if a &y, (z) arising from
one ggn(x) does not share an index ¢ with at least one other &, (z) arising from another
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gpn(x). Thus,

k
cov(Dij(2), Buw(@') | ©) = DD 04000000 EIES, (2)65, (2')]

n=1 ¢
+ Z eiZGuEE[SZn §Zn Z 9]@’ ol! gﬂ’ )gf’n (le)}
00
+ ZezgeﬂE (@) Ourbop E[EG, ()]

O£l

- Z ezfejﬁE gén Z Huf’ vl! 52/ )] + Jg(siju'u

The Gaussian process moments are given by

Bl (x)] =1
Bl&en(2)&n(2")] = EIEEn (@) | En(a"))€n(a")] = ez, 2 Bl&,(2))] = c(x,2')
El&f,(2)€2, (")) = E[EIEE, (2) | &m(2)EE ()]
= ( 2 var(Eon(2) | €n()) 17 ()]

E{(E[&en (@) | en(2)])* +
(1-

= *(w,2) El&h, ()] + (1 — (=, 2))) Bl&, ()] = 2¢* (2, 2") + 1,

|
Q

from which we derive that

cov(Zij(x), Xuu(2') | ©)

k:{(Qc (z, l‘ +1) Zewejgeugevg—l-c x, x ZGWMZO]@/ wt!
¢ =

+ Z 0%63@ Z Ouer Oper — Z 0%6]2 Z Ower vé’} +o 6’5qu

o£0

= kCQ {Z eléejéeuﬁevf + Z ;000 Z 03@’ M’} + 0 51]11,1)

14 v

An iterated expectation with respect to © yields the following results. When i # u
or j # w, the independence between 6, (or ;) and the set of other 0, implies that
cov(Xij(x), Eyp(2’)) = 0. When ¢ = u and j = v, but i # j,

cov(Eij(z), Sij(2)) = ke?( {ZEG +ZEO ZE 6% }
{Z oy ¢]121 2 "‘Z@el lzﬁb E}TZTI}'
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Finally, when ¢ = j = u = v,

cov(Tii(), Bis(a')) = ke (x,2') § 2> E[05] + > _ E[63] > E[6%] p + 07
l

¢ 0l

- c2xa: GZQWTZ —l—ZcZ)ZeTngd)wngl —l—ag

040

{5Z¢ze2 2+ (Z@_elTe_I)Q}JFUg-
7

Proof [Proof of Lemma 6] The first-order stationarity follows immediately from the station-
arity of the Gaussian process dictionary elements &g and recalling that 3(z) = ©&(x)&(z) O+
Y. Assuming a Gaussian process kernel ¢(z, z’) that solely depends upon the distance be-
tween x and 2/, Lemma 5 implies that the defined process is wide sense stationary. |

Appendix B: Derivation of Gibbs Sampler

In this Appendix, we derive the conditional distribution for sampling the Gaussian process
dictionary elements. Combining Eq. (1) and Eq. (8), we have that

Eulx)  &a(ms) ... &un(w) k

. . , Y me1 §1m (i) Nim
yi=0© lef%) 5225%) 52;3?:1:@) n; +€ =0 : + € (32)

Era(wi) Era(xi) oo Enr(xi) > m=1 §Lm (T)NLm

implying that
Lk
Yij = Z Z 00nimEem (T:) + €35 (33)
/=1 m=1

Conditioning on &(-) ™™, we rewrite Eq. (32) as

010 Z(’r,s)#(é,m) elrnisgrs (xz)
Y =Nim | ¢ | Eom(i) + &, & ~N | pom () £ : Yo |- (34)
epg Z(r,s)#(ﬁ,m) 9107”67"5 (‘TZ)
Let 6, = [915 Gpg]/. Then,
n n1m9~€ 0 cee 0 éﬁm(xl) €1
0 0, ... 0 m (T €
| 77277.1 ¢ | ‘ 3 ( 2) e (35)
Yn 0 0 oo Tambe| |Eom(@n) én
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Defining Ay, = diag(mimb.e, - .., Mumb.¢), our Gaussian process prior on the dictionary ele-
ments &, () implies the following conditional posterior

f@m(xl) 2—1 gl_
Eom (2) S s
. ’ {yi},@an,f(‘),zo NN EAZm : 72
: ~1 ~
gém(xn) EO Yn.
M Y1 0je0; 251
ab z sl e

Tlnm Z?:l ijo'j_anj
where §; = y; — pem (i) and, taking K to be the matrix of correlations K;;j = c(z4,z;)
defined by the Gaussian process parameter k,

ry—1
E_l — K—l + Azm AZm
—1
%o

= K~ ! + diag nlmZGﬂU ...,nanGJZU . (37)

Appendix C: Hyperparameter Sampling and Empirical Bayes

One can also consider sampling the Gaussian process length-scale hyperparameter x. Due
to the linear-Gaussianity of the proposed covariance regression model, we can analytically
marginalize the latent Gaussian process random functions in considering the posterior of
k. Taking p(x) = 0 for simplicity, our posterior is based on marginalizing the Gaussian

processes random vectors £, = [{on(21) ... Eum(zn)]’. Noting that
[y’l yh oo ?/7,1]/ = Z [diag(n.m) ® 0.¢] Qm + [6’1 eh ... e’n],, (38)
Im

and letting K, denote the Gaussian process covariance matrix based on a length-scale k,

i - ) 1 KO,m 20 ~

an Z [diag(n-m) ® 9-8] Kff [diag(n~m) ® 9%]/ + In @ Z0 . (39)

Lm

We can then Gibbs sample x based on a fixed grid and prior p(x) on this grid. Note,
however, that computation of the likelihood specified in Eq. (39) requires evaluation of an
np-dimensional Gaussian for each value x specified in the grid. For large p scenarios, or
when there are many observations y;, this may be computationally infeasible. In such cases,
a naive alternative is to iterate between sampling £ given K, and K, given £&. However, this
can lead to extremely slow mixing. Alternatively, one can consider employing the recent
Gaussian process hyperparameter slice sampler of Adams and Murray (2011).
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In general, because of the quadratic mixing over Gaussian process dictionary elements,
our model is relatively robust to the choice of the length-scale parameter and the compu-
tational burden imposed by sampling s is typically unwarranted. Instead, one can pre-
select a value for k using a data-driven heuristic, which leads to a quasi-empirical Bayes
approach. Lemma 5 implies that the autocorrelation ACF(x) = corr(X;;(0), X;(x)) is
simply specified by ¢(0,z). As given by Eq. (11), when we choose a Gaussian process ker-
nel c(z,7") = exp(—kl|lz — 2'||3), we have ACF(x) = exp(—«||x||3). Thus, we see that
the length-scale parameter k directly determines the shape of the autocorrelation function.
If one can devise a procedure for estimating the autocorrelation function from the data,
one can set k accordingly. We propose the following, most easily implemented for scalar
predictor spaces X', but also feasible (in theory) for multivariate X.

1. For a set of evenly spaced knots x; € X, compute the sample covariance ﬁ)(a:k) from a
local bin of data. If the bin contains fewer than p observations, add a small diagonal
component to ensure positive definiteness.

2. Compute the Cholesky decomposition C(z,) = chol(3(xy)).

3. Fit a spline through the elements of the computed C(z). Denote the spline fit of the
Cholesky by C(z) for each z € X

4. Fori =1,...,n, compute a point-by-point estimate of ¥(z;) from the splines: (z;) =
C(z;)C(z5)".

5. Compute the autocorrelation function of each element 3;;(z) of this kernel-estimated
().

6. According to —log(ACF(z)) = xl|z|[3, choose & to best fit the most correlated ¥;;()
(since less correlated components can be captured via weightings of dictionary ele-
ments with stronger correlation.)

Appendix D: Initialization of Gibbs Sampler

Experimentally we found that our sampler was fairly insensitive to initialization (after a
short burn-in period) and one can just initialize each of O, &, ¥y, n;, and the shrinkage
parameters ¢;, and d, from their respective priors. However, in certain scenarios, the
following more intricate initialization can improve mixing rates. The predictor-independent
parameters © and ¥y are sampled from their respective priors (first sampling the shrinkage
parameters ¢;¢ and 0y, from their priors). The variables 7; and £ (x;) are set via a data-driven
initialization scheme in which an estimate of ¥(x;) for i = 1,...,n is formed using Steps
1-4 outlined above. Then, ©&(x;) is taken to be a k*-dimensional low-rank approximation
to the Cholesky of the estimates of ¥(z;). The latent factors 7; are sampled from their
posterior using this data-driven estimate of ©&(z;). Similarly, the £(x;) are initially taken
to be spline fits of the pseudo-inverse of the low-rank Cholesky at the knot locations and
the sampled ©. We then iterate a couple of times between sampling: (i) & given {y;}, ©,
Yo, and the data-driven estimates of 7, &; (i) © given {y;}, X0, 1, and the sampled &; (iii)
Yo given {y;}, ©, n, and &; and (iv) determining a new data-driven approximation to £
based on the newly sampled ©.
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Appendix E: Other Prior Specifications

Intuitively, the chosen prior on © flexibly shrinks the columns of this matrix towards zero
as the column index increases, implying that the effect of dictionary elements &y (x) on the
induced covariance matrix ¥(x) decreases with row index ¢. Harnessing this idea, one can
extend the framework to allow for variable-smoothness dictionary elements by introducing
row-dependent bandwidth parameters k. For example, one could encourage increasingly
bumpy dictionary elements &g (-) for large ¢ in order to capture multiple resolutions of
smoothness in the covariance regression. The prior on © would then encourage the smoother
dictionary elements to be more prominent in forming ¥ (z), with the bumpier elements be-
ing more heavily regularized. One could, of course, also consider other dictionary element
specifications such as based on basis expansions or with a finite autoregressive (band-limited
covariance) structure. Such specifications could ameliorate some of the computational bur-
den associated with Gaussian processes, but might induce different prior support for the
covariance regression.

Likewise, just as we employed a shrinkage prior on © to be more robust to the choice
of L, one could similarly cope with k by considering an augmented formulation in which

A(z) = O¢(2)T, (40)

where I' = diag(y1,...,7) is a diagonal matrix of parameters that shrink the columns of
&(x) towards zero. One can take these shrinkage parameters to be distributed as

% ~NOw ), wi=][[% G ~Ga(as,1), (i~ Galas,1) h=2,....k (41
h=1

For a4 > 1, such a model shrinks the v; values towards zero for large indices ¢ just as in
the shrinkage prior on ©. Computations in this augmented model are a straightforward
extension of the developed Gibbs sampler.

Appendix F: Simulation Studies

For the simulation studies of Case 2, the Wishart matrix discounting method to which we
compared is given as follows, with details in Section 10.4.2 of Prado and West (2010). Let
b, = Zt_l. The Wishart matrix discounting model assumes Et_l | Y11, B ~ W(Bhi—1, (BD;—1)71),
with Dy = 8D;_1 + yy; and hy = Bhy—1 + 1, such that E[Et_1 | y14-1] = E[Et__l1 | y14-1] =
ht_lDt__ll, but with certainty discounted by a factor determined by 5. The update with
observation y; is conjugate, maintaining a Wishart posterior on >, 1 A limitation of this
construction is that it constrains h; > p—1 (or h; integral) implying that 8 > (p—2)/(p—1).
We set hg = 40 and 5 = 1 — 1/hg such that h; = 40 for all ¢ and ran the forward filter-
ing backward sampling (FFBS) algorithm outlined in Prado and West (2010), generating
100 independent samples. Increasing h; can mitigate the large errors for high zs seen in
Figure 4(b) and (d), but shrinks the model towards homoscedasticity. In general, the for-
mulation is sensitive to the choice of ht, and in high-dimensional problems this degree of
freedom is forced to take large (or integral) values.
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Figure 11: (a) Plot of smoothing spline fits f](x) for each of the 183 Google Flu Trends
regions. The thick yellow line indicates the empirical mean of the log Google-
estimated ILI rates, logy;;, across regions j. (b) Residuals logr;; — f](xz) The
shaded gray regions indicate the flu events of Figure 5.

Appendix G: Exploratory Data Analysis

To examine the spatial correlation structure of the Google-estimated ILI rates and how
these correlations vary across time, we performed the following exploratory data analysis.
First, we consider a log transform of our rate data and a model

logrij:fj(mi)—i—eij, 1=1,...,370, j=1,...,183, (42)

with f;(-) taken to be a region-specific smoothing spline. These spline fits are shown along
with the residuals ¢;; in Figure 11. We then examine the spatial correlations of these
residuals in Figure 12. We omit data prior to Event B because of the extent of missing
values. Due to the dimensionality of the data (183 dimensions) and limited number of
observations (157 event and 127 non-event observations), we simply consider state-level
observations plus District of Columbia (resulting in 51 dimensions) and then aggregate the
data over Events B-F to create a “flu event” maximum likelihood (ML) estimate, 3. We

likewise examine an aggregation of data between events to form a “non-event” estimate
inonflu

From Figure 12, we see that the correlations between regions is much lower during non-
event periods than event periods. For event periods, there is clear spatial correlation, defined
both locally and with long-range dependencies. Note that because of the dimensionality and
limited data, these exploratory methods cannot handle the full set of regions nor examine
smoothly varying correlations. Instead, the plots simply provide insight into the geographic
structure of the correlations and the fact that this structure is clearly different within and
outside of flu event periods. As such, an i.i.d. model for €; is inappropriate, motivating our
heteroscedastic model of Section 2. In Section 5, we analyze how our proposed covariance
regression model enables analysis of the changing extent and intensity of the correlations as
a function of time. The method allows us to harness all of the available data, both across
regions and time.
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Figure 12: For each of four geographically distinct states (New York, California, Georgia,
and South Dakota), plots of correlations between the state and all other states
based on the sample covariance estimate from state-level data. The estimates
are for data aggregated over non-event periods following event B (left) and event
periods B-F (right). The data are taken to be the residuals of smoothing spline
estimates fit independently for each region using log ILI rates. Event A was
omitted due to an insufficient number of states reporting. Note that South
Dakota is missing 58 of the 157 event B-F observations.

Appendix H: Details on Nadaraya-Watson Approach

Our proposed stochastic EM algorithm for the nonparametric Nadaraya-Watson kernel es-
timator iterates between (i) sampling missing values from the predictive distribution as-
sociated with the current kernel estimates of the mean and covariance functions and the
available data, and (ii) computing the kernel-estimate of the mean and covariance functions
using the available data and imputed missing values. We initialize by pooling all available
data to form a static mean and covariance estimate from which the missing values are ini-
tially sampled. Due to the high-dimensionality compared to the limited bandwidth, we add
a diagonal element 1e1, to the estimate ﬁ](ac) to ensure positive definiteness.
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