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Abstract

With the development of data acquisition equipment, more and more modalities become
available for gesture recognition. However, there still exist two critical issues for multi-
modal gesture recognition: how to select discriminative features for recognition and how
to fuse features from different modalities. In this paper, we propose a novel Bayesian
Co-Boosting framework for multi-modal gesture recognition. Inspired by boosting learning
and co-training method, our proposed framework combines multiple collaboratively trained
weak classifiers to construct the final strong classifier for the recognition task. During each
iteration round, we randomly sample a number of feature subsets and estimate weak classi-
fier’s parameters for each subset. The optimal weak classifier and its corresponding feature
subset are retained for strong classifier construction. Furthermore, we define an upper
bound of training error and derive the update rule of instance’s weight, which guarantees
the error upper bound to be minimized through iterations. For demonstration, we present
an implementation of our framework using hidden Markov models as weak classifiers. We
perform extensive experiments using the ChaLearn MMGR and ChAirGest data sets, in
which our approach achieves 97.63% and 96.53% accuracy respectively on each publicly
available data set.

Keywords: gesture recognition, Bayesian co-boosting, hidden Markov model, multi-
modal fusion, feature selection

1. Introduction

As one of the most natural and intuitive ways for human computer interaction, gesture
recognition has been attracting more and more attention from academe and industry. With
automatic gesture recognition techniques, one can use his/her hands to freely interact with
computers. It has been widely applied to sign language recognition (Zafrulla et al., 2011;
Oz and Leu, 2011), robot control (Raheja et al., 2010), games (Roccetti et al., 2011),
etc. In the early days, accelerometer-based approaches were especially popular for gesture
recognition, due to their simpleness and accuracy in data acquirement (Mantyla et al.,
2000; Chambers et al., 2002; Pylva̋na̋inen, 2005; Liu et al., 2009). As an extension to
the accelerometer, the inertial measurement unit (IMU) can be adopted to collect more
information, such as linear acceleration and angular acceleration. There are also several
IMU-based gesture recognition methods proposed recently (Zhang et al., 2013; Yin and
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Davis, 2013). Nevertheless, the requirement of wearing accelerometers or IMUs limits the
applicability of the above approaches. Vision-based approaches, which do not need to wear
any extra devices, offer an appealing approach to gesture recognition. However, vision-
based approaches are vulnerable to illumination, self-occlusion, and variation of gesture.
Moreover, visual feature representation is still an open problem.

As an alternative, depth-aware camera (e.g., Microsoft R© Kinect
TM

) can capture RGB
image, depth image, and audio, which makes gesture recognition less sensitive to illumina-
tion changes, self-occlusion, and can offer strong information for background removal, object
detection, and localization in 3D space. With the prevalence of depth-aware camera, the
study of gesture recognition is extremely stimulated and multi-modal based approaches are
becoming a hot topic. Recently, there are many research works to utilize multiple modal-
ities acquired by depth-aware camera for gesture recognition (Wu et al., 2012; Lui, 2012a;
Malgireddy et al., 2012; Bayer and Silbermann, 2013; Nandakumar et al., 2013; Chen and
Koskela, 2013). Since 2011, ChaLearn has organized a series of competitions based on the

multi-modal gesture data captured by Kinect
TM

. The tasks include one-shot-learning of
gestures (Guyon et al., 2012) and continuous gesture spotting and recognition (Escalera
et al., 2013). Many of participants achieved satisfactory performances on gesture recogni-
tion. However, for multi-modal based approaches, there still exist two critical issues for
gesture recognition: how to select discriminative features for recognition, and how to fuse
features from different modalities.

In the context of dynamic gesture recognition, an instance is represented by a time series
sequence. Most of existing feature extraction methods for time series are mainly based on the
self-defined criterion functions to evaluate each feature dimension’s contribution (Kashyap,
1978; Mörchen, 2003; Yoon et al., 2005). For face detection, Viola and Jones (2001, 2004)
constructed a strong classifier by selecting a small number of important features using
AdaBoost. Foo et al. (2004) and Zhang et al. (2005) employed boosting learning for the
single-modal gesture recognition task. However, boosting learning could be prone to be
overfitting in practice when training data is rather small. As a late fusion strategy, co-
training alternately uses the most confident unlabeled data instance(s) in one modality
to assist the model training of another modality, to overcome the problem of insufficient
training samples (Blum and Mitchell, 1998). Furthermore, Yu et al. (2008, 2011) proposed
a Bayesian undirected graphical model interpretation for co-training methods in the context
of semi-supervised multi-view learning. These two publications clarified several fundamental
assumptions underlying these models and can automatically estimate how much trust should
be given to each view so as to accommodate noisy views.

Inspired by boosting and Bayesian co-training methods, we present a novel Bayesian
Co-Boosting training framework to realize effectively the multi-modal fusion for gesture
recognition task.1 In our framework, weak classifiers are trained with weighted data in-
stances through multiple iterations. In each iteration round, several feature subsets are
randomly generated and weak classifiers are trained on different feature groups. Only the
weak classifier, which achieves the minimal training error, together with the correspond-
ing feature subset is retained. Instance’s weight is updated according to the classification
result given by the weak classifiers of two modalities, so that the difficult instances will

1. Our preliminary work of multi-modal fusion on ChaLearn MMGR challenge 2013 achieved the 1st prize
on gesture recognition (Wu et al., 2013).
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gain more focus in the subsequent iterations. The strong classifier is constructed with all
retained weak classifiers, and the classification decision is determined by the voting result
of all weak classifiers. The weak classifier’s voting weight is related to its prediction error
on the training set.

The main contributions of this paper are concluded as follows:

1. The proposed framework is illuminated in a Bayesian perspective, and its error upper
bound is minimized through iterations, which is guaranteed in theory.

2. Feature selection and multi-modal fusion are naturally embedded into the training
process of weak classifiers in each Co-Boosting iteration round and bring significant
improvement to the recognition performance.

3. A novel parameter estimation method is presented to address the training problem of
hidden Markov model on the weighted data set.

This paper is organized as follows. In Section 2, commonly used approaches for gesture
recognition is reviewed. We describe our proposed approach and related theoretical deriva-
tion in Section 3. Section 4 presents the experimental result of our method, comparing with
several state-of-the-art methods. Finally, we conclude our work in Section 5.

2. Related Work

Gesture recognition has been an important research topic in human computer interaction
and computer vision field. There already exist a few published surveys in this area, such as
Gavrila (1999), Mitra and Acharya (2007), Weinland et al. (2011), and Suarez and Murphy
(2012). As concluded in these literatures, classifiers commonly used in gesture recognition
include k-nearest neighbours (Malassiotis et al., 2002), hidden Markov model (Eickeler et al.,
1998), finite state machine (Yeasin and Chaudhuri, 2000), neural network (Yang and Ahuja,
2001), and support vector machine (Biswas and Basu, 2011).

Gesture recognition based on accelerometers has been investigated by many researchers
(Mantyla et al., 2000; Chambers et al., 2002; Pylva̋na̋inen, 2005; Liu et al., 2009). As an
extension to the accelerometer sensors, the applications of inertial measurement unit (IMU)
have also been explored recently. Ruffieux et al. (2013) collected a benchmark data set with

Kinect
TM

and XSens IMU sensors for the development and evaluation of multi-modal gesture
spotting and recognition algorithms. With this data set, Yin and Davis (2013) presented a
hand tracking method based on gesture salience, and concatenated hidden Markov models
were applied to perform gesture spotting and recognition.

Considering the inconvenience of wearing accelerometers or IMUs while performing ges-
tures, it is more natural to develop vision-based gesture recognition systems. Single or
stereo camera is mostly widely used in research, but Kinect

TM
sensor has been attracting

increasing interest, due to its ability to capture both color and depth images simultane-
ously. ChaLearn has organized several competitions focused on the Kinect

TM
-based gesture

recognition ever since 2011 (Guyon et al., 2012; Escalera et al., 2013).

Approaches based on hidden Markov model (HMM) are widely adopted in vision-based
gesture recognition. Elmezain et al. (2008) applied HMM to recognize isolated and con-
tinuous gestures in real-time. Spatio-temporal trajectories were converted to orientation
dynamic features and then quantized to one of the codewords. The quantized observation
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sequence was then used to inference the hidden gesture label. Gaus et al. (2013) compared
the recognition performance given by both fixed state HMM and variable state HMM. In
Nandakumar et al. (2013), gesture instances in the continuous data stream were segmented
using both audio and hand joint information. Three modalities were used for classification:
HMM classifier for MFCC feature extracted from audio signal, and SVM (support vector
machine) classifier for both RGB (STIP feature) and skeleton (covariance descriptor).2 Wu
et al. (2013) performed automatic gesture detection based on the endpoint detection result
in the audio data stream. HMM classifiers were then applied to both audio and skeleton
features, and a late fusion strategy was employed to make the final classification decision.

In order to enhance the recognition performance of HMM-based approaches, ensem-
ble learning, especially AdaBoost, has been embedded into the training process of hidden
Markov models in a few researches. Adaptive boosting (Freund and Schapire, 1995; F.
and E.S., 1997) is a training framework to generate multiple weak classifiers with different
training instances’ weight distribution, and construct a strong classifier with these weak
classifiers to achieve a better classification performance. Foo et al. (2004) proposed a novel
AdaBoost-HMM classifier to boost the recognition of visual speech elements. Weak classi-
fiers were trained using biased Baum-Welch algorithm under the AdaBoost framework to
cover different groups of training instances. Their decisions on the unlabeled instance were
combined following a novel probability synthesis rule to obtain the final decision. In Zhang
et al. (2005), a similar approach was applied in the application of sign language recognition.
However, both researches neglected the potential noisy dimensions in the feature space,
which could cause the deterioration of recognition performance.

Besides HMM-based approaches, there are also many other methods proposed in the
context of vision-based gesture recognition. In Lui et al. (2010) and Lui (2012b), action
videos were factorized using higher order singular value decomposition (HOSVD) and the
classification was performed based on the geodesic distance on the product manifold. Boyali
and Kavakli (2012) proposed a variant version of sparse representation based classification
(innovated by Wright et al., 2009; Wagner et al., 2009) for gesture recognition. For a more
complete overview of commonly used approaches in gesture recognition, we recommend the
survey papers mentioned at the beginning of this section.

3. Bayesian Co-Boosting with Hidden Markov Model

For multi-modal gesture recognition task, fusion of features from different modalities is
one of the most vital problems. Many existing approaches use a simple weighted-based
fusion strategy (Bayer and Silbermann, 2013; Nandakumar et al., 2013). However, this
weight coefficient usually needs to be empirically tuned, which is rather difficult if not
impossible on large-scale data set. As we mentioned before, Bayesian co-training (Yu et al.,
2008, 2011) can automatically determine each view’s confidence score, which inspired us to
adopt a similar approach to fuse multiple modalities. Boosting learning can perform feature

2. MFCC: Mel-Frequency Cepstral Coefficients (Zheng et al., 2001), a common used audio feature for
speech recognition. The feature extraction process is as follows: a) the signal segment is turned into
frequency domain using Discrete Fourier Transform; b) the short-term power spectrum is warped into
the Mel-frequency; c) the warped power spectrum is convolved with the triangular band-pass filter; d)
the MFCC feature is the Discrete Cosine Transform result of the convolved power spectrum.
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selection through training multiple weak classifiers, and can be used in gesture recognition
to select optimal feature dimensions for the classification problem.

In this section, we introduce a novel Bayesian Co-Boosting training framework for com-
bining multiple hidden Markov model classifiers for multi-modal gesture recognition. Based
on the proposed Bayesian Co-Boosting framework, different modalities are naturally com-
bined together and can provide complementary information for each other. We also analyze
the minimization of the error upper bound so as to derive the update rule of instance’s
weight in Co-Boosting process.

3.1 Model Learning

In the task of multi-modal gesture recognition, two or more modalities (in this paper, we
constraint the amount of modalities to be two) are simultaneously available for describing
gesture instances. Based on the raw data of each modality, a time series sequence of feature
vectors can be extracted according to certain feature extraction procedures. This time series
sequence data is then used as the input to the pre-trained classifier for model training and
evaluation.

The most straightforward approach to this problem is to separately train a classifier for
each modality, and then combine their classification results in a late fusion style. However,
this approach will bring the following issues. First, feature vectors may contain noisy
data dimensions, which will lead to deterioration of classification performance. Second, one
classifier for one modality may not be sufficient to achieve a satisfying classification accuracy
level. Third, the fusion weights of different classifiers, which have significant impact on the
final classification result, are difficult to be tuned manually.

In this paper, we propose an approach to solve all these problems together. Under
the Co-Boosting framework, multiple weak classifiers of each modality are trained through
a number of iterations. The final strong classifier is a linear combination of these weak
classifiers, and each classifier’s weight is determined by its prediction error on the training
data set. Figure 1 depicts the work flow of our proposed method, and Algorithm 1 describes
the detailed procedures in the model training process.

The aim of our proposed Bayesian Co-Boosting framework is to generate a strong clas-
sifier for the multi-modal gesture recognition task. As we can see in Figure 1, the resulting
strong classifier H (xi) is the combination of multiple weak classifiers trained on V different
modalities through T iterations. In each iteration round, Mv candidate weak classifiers
are trained on the v-th modality using different feature dimension subsets, and the best
candidate among them is selected as the optimal weak classifier h∗t,v (xi). The optimal weak
classifier is the one which achieves the minimal training error among all candidate weak
classifiers for modality v. Then we use all these selected weak classifiers (one weak classifier
per modality) obtained at this iteration round to update each training instance’s weight.

In the rest of this section, we firstly introduce the training process of a single weak
classifier with weighted instances. Secondly, we derive the update rule of the instance’s
weight to minimize the training error’s upper bound from a Bayesian perspective. The
construction of the strong classifier H (xi) is described at the end of this section.
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Figure 1: Work flow of Bayesian Co-Boosting training framework.
xi: training instance; wi,t: training instance xi’s weight at the t-th iteration;
ht,v (xi): weak classifier learnt from modality v at the t-th iteration; H (xi): final
strong classifier.

Algorithm 1 Bayesian Co-Boosting Training Framework.3

Input: training instances {xi}
Output: strong classifier H (xi)

1: initialize data weight distribution {wi}
2: for t = 1, . . . , T do
3: for v = 1, . . . , V do
4: for m = 1, . . . ,Mv do
5: randomly generate feature subset F̃t,v,m ⊂ Fv, |F̃t,v,m| = λv · |Fv|
6: generate training data set {(x̃i, wi)} with feature dimensions in F̃t,v,m

7: train candidate weak classifier ht,v,m (xi) (refer to Algorithm 2)
8: calculate classifier’s training error εt,v,m
9: end for

10: select optimal candidate weak classifier h∗t,v (xi) and feature subset F̃ ∗t,v
11: calculate weak classifier’s voting weight α∗t,v
12: end for
13: update instances’ weights {wi} (refer to Algorithm 3)
14: end for
15: construct strong classifier H (xi)

3. T : the number of Co-Boosting iteration rounds; V : the number of modalities; Mv: the number of
candidate weak classifiers for modality v; Fv: all available feature dimensions for modality v; λv: the
feature dimension selection ratio for modality v.
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3.1.1 Weak Classifier Training

As we concluded in Section 2, hidden Markov model is one of the most commonly used
classifiers in gesture recognition. Therefore, in this paper, we implement the Bayesian Co-
Boosting training framework with HMM-based weak classifiers embedded. However, other
weak classifiers can also be easily adopted in our framework.

Hidden Markov model is a statistical model based on Markov process, in which the
generation of an observation sequence is modeled as the result of a series of unobserved
state transitions (Rabiner, 1989). In order to deal with continuous observation vectors, a
multi-variate Gaussian distribution is adopted to determine the observation probability of
each observation-state pair. To simplify the subsequent analysis, we define the following
symbols:

xi,1:Ti : observation sequence of length Ti, composed of feature vectors xi,t.

zi,1:Ti : state transition sequence; zi,t ∈ {1, . . . ,K}, K is the number of states.

D: the training data set consists of N observation sequences xi,1:Ti .

πk: initial state probability, πk = P (zi,1 = k).

Aj,k: state transition probability, Aj,k = P (zi,t+1 = k|zi,t = j).

µk,Σk: mean vector and covariance matrix, P (xi,t|zi,t = k) = N (xi,t|µk,Σk).

For multiple-class classification problem in gesture recognition, a hidden Markov model
is trained for each gesture class, with its parameters denoted as θc. The resulting classifier
is denoted as

ŷi = arg max
c
P (xi|θc) ,

where xi = xi,1:Ti is the unlabeled gesture instance. P (xi|θc) measures the probability for
model θc generating observation sequence xi and can be rewritten as

P (xi|θc) =
∑
zi

P (xi, zi|θc) ,

where the full data probability P (xi, zi|θc) is given by

P (xi, zi|θc) = P (zi|θc)P (xi|zi, θc)

= πzi,1

T−1∏
t=1

Azi,t,zi,t+1

T∏
t=1

N
(
xi,t|µzi,t ,Σzi,t

)
.

For the parameter estimation problem of HMM, commonly used Baum-Welch algorithm
(a variation of EM algorithm) can only deal with unweighted training instances. In boosting
learning, however, instances are assigned with different weights, which are adjusted at the
end of each iteration round to guide the subsequent weak classifiers focus on more difficult
instances. Hence, we need to extend the standard Baum-Welch algorithm (Murphy, 2012)
to accommodate the weighted instances’ training problem in our approach. Our proposed
parameter estimation method is also based on the EM algorithm.
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Given the weighted training data set {(xi, wi)}, parameter estimation problem is to find
the optimal parameters that maximize the log likelihood of the observed data, which is
defined as

` (θ) =
N∑
i=1

wi logP (xi|θ) =
N∑
i=1

wi log

[∑
zi

P (xi, zi|θ)

]
.

But this is difficult to optimize, since the log cannot be pushed inside the sum. To get
around this problem, we define the complete data log likelihood as

`c (θ) =
N∑
i=1

wi logP (xi, z
∗
i |θ) ,

where z∗i is the optimal state transition sequence, and is inferred with Viterbi algorithm.

Therefore, the expected complete data log likelihood for data set D is given by

Q (θ, θold) = E [`c (θ) |D, θold] , (1)

and the optimal parameters are estimated by maximizing this.

On the basis of the definition of P (xi, zi|θc), Equation (1) can be rewritten as

Q (θ, θold) = E

[
N∑
i=1

wi logP (xi, z
∗
i |θ)

]

=
N∑
i=1

wiE

[
log
∏
zi

P (xi, zi|θ)I(z
∗
i =zi)

]

=
N∑
i=1

wi

∑
zi

E [I (z∗i = zi)] logP (xi, zi|θ)

=
N∑
i=1

K∑
k=1

wiP
(
z∗i,1 = k|xi, θt−1

)
log πk

+
N∑
i=1

K∑
j=1

K∑
k=1

Ti−1∑
t=1

wiP
(
z∗i,t = j, z∗i,t+1 = k|xi, θt−1

)
logAj,k

+

N∑
i=1

K∑
k=1

Ti∑
t=1

wiP
(
z∗i,t = k|xi, θt−1

)
logP (xi,t|zi,t = k) .

In the E step of EM algorithm, we firstly compute two groups of probabilities with
forward-backward algorithm, as describe in Murphy (2012)

γi,t (k) = P (zi,t = k|xi, θt−1)
ξi,t (j, k) = P (zi,t = j, zi,t+1 = k|xi, θt−1) ,

(2)

where γi,t (k) indicates the probability of the hidden state at time t being state k, and
ξi,t (j, k) represents the probability of the hidden state being state j at time t and state k
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at time (t+ 1). Based on these probabilities, we compute the following expectation items

E
[
N1

k

]
=

N∑
i=1

wiγi,1 (k)

E [Nj,k] =
N∑
i=1

Ti−1∑
t=1

wiξi,t (j, k)

E [Nk] =
N∑
i=1

Ti∑
t=1

wiγi,t (k)

E [x̄k] =
N∑
i=1

Ti∑
t=1

wiγi,t (k)xi,t

E
[
x̄kx̄

T
k

]
=

N∑
i=1

Ti∑
t=1

wiγi,t (k)xi,tx
T
i,t.

(3)

In the M step, parameters are updated so that Q (θ, θold) is maximized. Here, we only
present the final update rule for each parameter, due to the limitation of space

π̂k =
E
[
N1

k

]∑K
k′=1E

[
N1

k′
]

Âj,k =
E [Nj,k]∑K

k′=1E
[
Nj,k′

]
µ̂k =

E [x̄k]

E [Nk]

Σ̂k =
E
[
x̄kx̄

T
k

]
E [Nk]

− µ̂kµ̂Tk .

(4)

The training procedure of weak classifier is demonstrated in Algorithm 2.

3.1.2 Instance’s Weight Updating

In this sub-section, we define the training error for instances in each class, together with its
upper bound to simplify the error minimization formulation. Based on this formulation, we
derive the update rule for instance’s weight in our proposed framework.

In the t-th iteration round of Bayesian Co-Boosting training process, the training error
for class c is denoted by Et,c, and the corresponding error upper bound is denoted by Bt,c.

We define the random variable zi ∈ {1, . . . , C} to represent the hidden label for obser-
vation xi. The binary prediction value for each candidate class of the strong classifier is
determined by

Ht,c (xi) = sgn
(
Pt,c,i > P̄t,c,i

)
=

{
+1, Pt,c,i > P̄t,c,i

−1, Pt,c,i ≤ P̄t,c,i
,

where

Pt,c,i = P (zi = c|h1,1 (xi) , h1,2 (xi) , . . . , ht,1 (xi) , ht,2 (xi))

P̄t,c,i = P (zi 6= c|h1,1 (xi) , h1,2 (xi) , . . . , ht,1 (xi) , ht,2 (xi)) ,

3021



Wu and Cheng

Algorithm 2 Weak Classifier Training

Input: weighted training instances {(xi, wi)}
Output: weak classifier h (xi)

1: for c = 1, . . . , C do
2: initialize model parameters θc
3: for t = 1, . . . , T do
4: initialize expectation items
5: for i = 1, . . . , N do
6: compute γi,t (k) , ξi,t (j, k) according to Equation (2)
7: update expectation items according to Equation (3)
8: end for
9: compute θc =

{
π̂k, Âj,k, µ̂k, Σ̂k

}
according to Equation (4)

10: end for
11: end for
12: construct weak classifier h (xi) = arg maxc P (xi|θc)

and h∗,∗ (xi) ∈ {1, . . . , C} represents the predicted class label of weak classifier.

The training error Et,c is defined as the sum of 0−1 loss of classifier’s binary predictions
for the c-th class, which is

Et,c =
∑
i:yi=c

1 (Ht,c (xi) 6= 1) +
∑
i:yi 6=c

1 (Ht,c (xi) = 1) , (5)

where function 1 (·) equals to 1 when the inner expression is true; otherwise, its value is 0.

The error upper bound Bt,c is given by

Bt,c =

N∑
i=1

(
P̄t,c,i

Pt,c,i

)sgn(yi=c)

=
∑
i:yi=c

P̄t,c,i

Pt,c,i
+
∑
i:yi 6=c

Pt,c,i

P̄t,c,i
. (6)

Theorem 1 Et,c ≤ Bt,c always holds with definitions in Equation (5) and (6).

Proof For each training instance xi, we consider its training error Et,c,i and the corre-
sponding upper bound Bt,c,i. It surely falls into one of the following conditions:

(1) Ht,c (xi) = 1, yi = c:
Based on the definition of Ht,c (xi), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i.

(2) Ht,c (xi) = 1, yi 6= c:
Based on the definition of Ht,c (xi), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i.

(3) Ht,c (xi) 6= 1, yi = c:
Based on the definition of Ht,c (xi), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i.
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(4) Ht,c (xi) 6= 1, yi 6= c:
Based on the definition of Ht,c (xi), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i.

Therefore, Et,c,i ≤ Bt,c,i holds for every instance xi; hence, Et,c ≤ Bt,c is proved.

In the Co-Boosting training process, the weight of each training instance should reflect
the difficulty for current weak classifiers to correctly classify it. Hence, instance’s weight
can be determined by

wi =
P̄t,yi,i

Pt,yi,i
. (7)

Now we derive the update rule of training instance’s weight so as to minimize the error
upper bound Bt,c through iterations, from a Bayesian perspective.

Based on the definition of Pt,c,i, we have

Pt,c,i = P (zi = c|h1,1, h1,2, . . . , ht,1, ht,2)

=
P (zi = c, h1,1, h1,2, . . . , ht,1, ht,2)

P (h1,1, h1,2, . . . , ht,1, ht,2)

=
P (zi = c, h1,1, h1,2, . . . , ht−1,1, ht−1,2)

P (h1,1, h1,2, . . . , ht−1,1, ht−1,2)

P (ht,1|zi = c)P (ht,2|zi = c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)

= Pt−1,c,i ·
P (ht,1|zi = c)P (ht,2|zi = c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)
,

in which h∗,∗ = h∗,∗ (xi) is the predicted class label given by the weak classifier.
Similarly, we can derive the update equation for P̄t,c,i

P̄t,c,i = P̄t−1,c,i ·
P (ht,1|zi 6= c)P (ht,2|zi 6= c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)
.

Therefore, the ratio between P̄t,c,i and Pt,c,i can be rewritten as

P̄t,c,i

Pt,c,i
=
P̄t−1,c,i · P (ht,1|zi 6= c)P (ht,2|zi 6= c)

Pt−1,c,i · P (ht,1|zi = c)P (ht,2|zi = c)
. (8)

In order to simplify the following theoretical derivation, we define these symbols

Pc,1 = P (ht,1 = c|zi = c) , Pc,2 = P (ht,1 = c|zi 6= c)

Pc,3 = P (ht,1 6= c|zi = c) , Pc,4 = P (ht,1 6= c|zi 6= c)

Qc,1 = P (ht,2 = c|zi = c) , Qc,2 = P (ht,2 = c|zi 6= c)

Qc,3 = P (ht,2 6= c|zi = c) , Qc,4 = P (ht,2 6= c|zi 6= c) .

(9)

For each instance xi, considering whether its ground-truth label yi and predicted label
ht,1, ht,2 is equal to c or not, we can assign it into one of the following subsets

D1 = {xi|ht,1 = c, ht,2 = c, yi = c} , D2 = {xi|ht,1 = c, ht,2 = c, yi 6= c}
D3 = {xi|ht,1 = c, ht,2 6= c, yi = c} , D4 = {xi|ht,1 = c, ht,2 6= c, yi 6= c}
D5 = {xi|ht,1 6= c, ht,2 = c, yi = c} , D6 = {xi|ht,1 6= c, ht,2 = c, yi 6= c}
D7 = {xi|ht,1 6= c, ht,2 6= c, yi = c} , D8 = {xi|ht,1 6= c, ht,2 6= c, yi 6= c} .

(10)
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On the basis of the above data partitioning, Bt,c can be expanded as

Bt,c =
∑
i:yi=c

P̄t,c,i

Pt,c,i
+
∑
i:yi 6=c

Pt,c,i

P̄t,c,i

=
∑

i:xi∈D1

P̄t−1,c,iPc,2Qc,2

Pt−1,c,iPc,1Qc,1
+

∑
i:xi∈D2

Pt−1,c,iPc,1Qc,1

P̄t−1,c,iPc,2Qc,2

+
∑

i:xi∈D3

P̄t−1,c,iPc,2Qc,4

Pt−1,c,iPc,1Qc,3
+

∑
i:xi∈D4

Pt−1,c,iPc,1Qc,3

P̄t−1,c,iPc,2Qc,4

+
∑

i:xi∈D5

P̄t−1,c,iPc,4Qc,2

Pt−1,c,iPc,3Qc,1
+

∑
i:xi∈D6

Pt−1,c,iPc,3Qc,1

P̄t−1,c,iPc,4Qc,2

+
∑

i:xi∈D7

P̄t−1,c,iPc,4Qc,4

Pt−1,c,iPc,3Qc,3
+

∑
i:xi∈D8

Pt−1,c,iPc,3Qc,3

P̄t−1,c,iPc,4Qc,4
.

To simplify the expression, we define

α1 =
Pc,1

Pc,2
, α2 =

Pc,3

Pc,4
, α3 =

Qc,1

Qc,2
, α4 =

Qc,3

Qc,4
, (11)

S1 =
∑

i:xi∈D1

P̄t−1,c,i
Pt−1,c,i

, S2 =
∑

i:xi∈D2

Pt−1,c,i
P̄t−1,c,i

, S3 =
∑

i:xi∈D3

P̄t−1,c,i
Pt−1,c,i

, S4 =
∑

i:xi∈D4

Pt−1,c,i
P̄t−1,c,i

S5 =
∑

i:xi∈D5

P̄t−1,c,i
Pt−1,c,i

, S6 =
∑

i:xi∈D6

Pt−1,c,i
P̄t−1,c,i

, S7 =
∑

i:xi∈D7

P̄t−1,c,i
Pt−1,c,i

, S8 =
∑

i:xi∈D8

Pt−1,c,i
P̄t−1,c,i

.

(12)

where αk, k = 1, . . . 4 are unknown variables and Sk, k = 1, . . . , 8 can be computed with
weak classifier’s prediction. Then we rewrite Bt,c as

Bt,c =
S1
α1α3

+ S2 · α1α3 +
S3
α1α4

+ S4 · α1α4

+
S5
α2α3

+ S6 · α2α3 +
S7
α2α4

+ S8 · α2α4.

The partial derivatives of Bt,c for the unknown variables α1:4 are

∂Bt,c

∂α1
= − S1

α2
1α3

+ S2 · α3 −
S3
α2
1α4

+ S4 · α4

∂Bt,c

∂α2
= − S5

α2
2α3

+ S6 · α3 −
S7
α2
2α4

+ S8 · α4

∂Bt,c

∂α3
= − S1

α1α2
3

+ S2 · α1 −
S5
α2α2

3

+ S6 · α2

∂Bt,c

∂α4
= − S3

α1α2
4

+ S4 · α1 −
S7
α2α2

4

+ S8 · α2.

(13)
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The optimal values of αk should ensure that all partial derivatives in Equation (13) are
equal to 0. Therefore, we obtain the following equations

α1 =

√
S1/α3 + S3/α4

S2 · α3 + S4 · α4
, α2 =

√
S5/α3 + S7/α4

S6 · α3 + S8 · α4

α3 =

√
S1/α1 + S5/α2

S2 · α1 + S6 · α2
, α4 =

√
S3/α1 + S7/α2

S4 · α1 + S8 · α2
,

(14)

and αk can be solved within a few iterations (less than 10 rounds for most conditions,
according to our experimental results).

Based on the definitions in Equation (9), it is obvious that

Pc,1 + Pc,3 = 1, Pc,2 + Pc,4 = 1

Qc,1 +Qc,3 = 1, Qc,2 +Qc,4 = 1,
(15)

and these eight variables can be solved after all αk are obtained.

Based on the above analysis for training error minimization, the detailed algorithm for
multiple weak classifiers training is concluded in Algorithm 3.

Algorithm 3 Instance’s Weight Updating

Input: training instances {xi}
Input: instances’ weight {wi,t−1}
Input: weak classifiers ht,1 (xi) , ht,2 (xi)
Output: updated instances’ weight {wi,t}

1: for c = 1, . . . , C do
2: assign instances into Dk according to Equation (10)
3: compute Sk according to Equation (12)
4: compute αk according to Equation (14)
5: compute Pc,k, Qc,k according to Equation (11) and (15)
6: for instance xi in the c-th class do
7: compute Pt,c,i, P̄t,c,i according to Equation (8)
8: compute wi,t according to Equation (7)
9: end for

10: end for

3.2 Class Label Inference

In our multi-modal gesture recognition system, the predicted class label of unclassified
instance is determined by the voting result of all weak classifiers.

For the optimal weak classifier h∗t,v (xi) with training error ε∗t,v, the classifier weight is
defined as

α∗t,v = log
1− ε∗t,v
ε∗t,v

,
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where the training error is calculated by

ε∗t,v =
C∑
c=1

∑
i:yi=c

wi · 1
{
h∗t,v (xi) 6= c

}
.

The final prediction of instance’s class label is determined by

H (xi) = arg max
c

T∑
t=1

2∑
v=1

α∗t,v1{h∗t,v (xi) = c}.

4. Experimental Results

In this section, experiments are carried out on two multi-modal gesture recognition data
sets, to prove the effectiveness of our proposed Bayesian Co-Boosting training framework.
On the basis of comparative results of different training algorithms, the main contributing
elements to our improvement on classification accuracy are also analyzed.

4.1 Baseline Methods Description

The training framework we propose in this paper is a general model, and some state-of-the-
art methods can be considered as the special cases of our framework. The key parameters
controlling the complexity of training process are T (number of iterations), V (number of
modalities), and Mv (number of feature subset candidates). Various approaches can be
obtained with different combinations of these three parameters.

If we set T = 1, then model is trained without boosting learning. Many approaches
using a single HMM to model instances from one gesture class can be categorized into this
case.

If we set V = 1, then the classifier is actually trained with only one feature modality.
During iterations, feature selection procedure remains unchanged, but the update rule of
instance’s weight no longer applies. In this case, an instance’s weight can be updated in a
similar way as described in Viola and Jones (2004).

If we set Mv = 1 for each modality, the feature selection procedure is removed from
training process. In this case, there is no need to generate feature subset, since it may cause
unnecessary information loss. All feature dimensions are used during training.

Now we define 7 baseline approaches listed as follows, each of which is a special case of
our framework. Through this comparison, we can discover which part of the framework is
really contributing to the improvement in classification accuracy.

(1) M1: training a classifier with the 1st modality:
Parameters setup: T = 1, V = 1,M1 = 1.
Classifier: H (xi) = arg maxc P (xi|θ1,c).
xi is the unlabeled instance, and θ1,c are the parameters of hidden Markov model for
instances in the c-th class, trained on the 1st modality.

(2) M2: training a classifier with the 2nd modality:
Parameters setup: T = 1, V = 1,M2 = 1.
Classifier: H (xi) = arg maxc P (xi|θ2,c).
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xi is the unlabeled instance, and θ2,c are the parameters of hidden Markov model for
instances in the c-th class, trained on the 2nd modality.

(3) M1+M2: training classifiers with the 1st and 2nd modality:
Parameters setup: T = 1, V = 2,M1 = M2 = 1.
Classifier: H (xi) = arg maxc [αP (xi|θ1,c) + (1− α)P (xi|θ2,c)].
xi is the unlabeled instance, and θ1,c and θ2,c are respectively the parameters of hidden
Markov model for instances in the c-th class, trained on the 1st and 2nd modality.

(4) Boost.M1: training boosted classifiers with the 1st modality:
Parameters setup: T > 1, V = 1,M1 = 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,11{ht,1 (xi) = c}.

ht,1 (xi) = arg maxc P (xi|θt,1,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,1 is the corresponding classifier’s weight.

(5) Boost.M2: training boosted classifiers with the 2nd modality:
Parameters setup: T > 1, V = 1,M2 = 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,21{ht,2 (xi) = c}.

ht,2 (xi) = arg maxc P (xi|θt,2,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,2 is the corresponding classifier’s weight.

(6) Boost.Sel.M1: training boosted classifiers with selected features of the 1st modality:
Parameters setup: T > 1, V = 1,M1 > 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,11{ht,1 (xi) = c}.

ht,1 (xi) = arg maxc P (xi|θt,1,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,1 is the corresponding classifier’s weight. Unlike “Boost.M1”, feature selection
is performed in the training process of weak classifier ht,1 (xi).

(7) Boost.Sel.M2: training boosted classifiers with selected features of the 2nd modality:
Parameters setup: T > 1, V = 1,M2 > 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,21{ht,2 (xi) = c}.

ht,2 (xi) = arg maxc P (xi|θt,2,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,2 is the corresponding classifier’s weight. Unlike “Boost.M2”, feature selection
is performed in the training process of weak classifier ht,2 (xi).

For convenience, we denote our proposed approach as “BayCoBoost”. Its corresponding
parameter setup is T > 1, V = 2,M1 > 1,M2 > 1.

“M1” and “M2” are two naive methods for single-modal gesture recognition, and many
HMM-based recognizers can be categorized into one of these. “M1+M2” is the late fusion
result of “M1” and “M2”. Considering the weight coefficient α, we evaluate 11 candidate
values from 0 to 1 with equal step length on the training set using cross validation, and
select the optimal α which reaches the minimal error. The approach used in Wu et al.
(2013) can be regarded as a variation of the “M1+M2” method.

In “Boost.M1” and “Boost.M2”, boosting learning is applied to enhance the recognition
performance. Multiple HMM-based weak classifiers are trained through iterations. Foo
et al. (2004); Zhang et al. (2005) respectively used this type of approach for the recognition
of visual speech element and sign language. “Boost.Sel.M1” and “Boost.Sel.M2” are similar
to them, but feature selection is embedded into the training process of each weak classifier.
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Finally, our proposed method “BayCoBoost” integrates both modalities under the Bayesian
Co-Boosting framework.

4.2 Experiment 1: ChaLearn MMGR data set

In 2013, ChaLearn organized a challenge on multi-modal gesture recognition with motion
data captured by the Kinect

TM
sensor. This challenge provides a benchmark data set on the

topic of multi-modal gesture recognition. Detailed information about this data set can be
found in Escalera et al. (2013).

This data set contains 20 gesture categories, each of which is an Italian cultural or
anthropological sign. Gestures in the data set are performed with one or two hands by 27
users, along with the corresponding word/phase spoken out. Data modalities provided in
this data set include color image, depth image, skeletal model, user mask, and audio data.

The data set has been divided into three subsets already, namely Development, Vali-
dation, and Evaluation. In our experiment, Development and Validation subsets are used
respectively for model training and testing. Based on the labeled data, we can segment
out 7, 205 gesture instances from Development subset and 3, 280 instances from Validation.
These two numbers are slightly smaller than the amount (7, 754 and 3, 362) announced
in Escalera et al. (2013), since we filter out those gesture instances which contain invalid

skeleton data (when Kinect
TM

fails to track the skeleton and outputs all-zero skeleton data).

Among all feature modalities offered in this data set, we choose audio and skeleton
feature to perform our proposed Bayesian Co-Boosting training process. We extract 39-
dimension MFCC feature (Martin et al., 2001) from audio data stream and denote it as the
first feature modality. The second modality is the 138-dimension skeleton feature extracted
from 3D coordinates of 20 tracked joint points. The detailed extraction process of skeleton
feature is described in the appendix.

In this experiment, parameters in Algorithm 1 are chosen as follows: T = 20, V =
2,M1 = 5, and M2 = 10. For MFCC feature, the size of feature subset is set to be 50%
of all feature dimensions. The skeleton feature subset consists of 15% dimensions from the
original feature space. Therefore, the number of feature dimensions used to train weak
classifiers is respectively 20 for audio and 21 for skeleton. The number of iterations to
estimate parameters of hidden Markov models for weak classifiers is set to 20. All these
parameters are selected roughly using a grid search based on the cross validation result on
the training subset.

We report the recognition accuracy of each gesture category in Figure 2. Also, several
statistics are computed to provide a quantitative comparison between different methods’
average recognition performance across all categories, which are reported in Table 1. The
recognition accuracy is defined as the ratio of the number of correctly classified gestures
against the number of all existing gestures in each class.

4.3 Experiment 2: ChAirGest data set

In Ruffieux et al. (2013), a multi-modal data set was collected to provide a benchmark for the
development and evaluation of gesture recognition methods. This data set is captured with
a Kinect

TM
sensor and four Xsens inertial motion units. Three data streams are provided by

the Kinect
TM

sensor: color image, depth image, and 3D positions of upper-body joint points.
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Figure 2: Recognition accuracy of each gesture category on ChaLearn MMGR data sets.

Method Mean Std Conf [Mean-Conf, Mean+Conf]

M1 0.9326 0.0584 0.0273 [0.9052, 0.9599]

M2 0.6749 0.2223 0.1040 [0.5709, 0.7790]

M1+M2 0.9666 0.0345 0.0162 [0.9504, 0.9827]

Boost.M1 0.9364 0.0366 0.0171 [0.9192, 0.9535]

Boost.M2 0.6705 0.2276 0.1065 [0.5640, 0.7770]

Boost.Sel.M1 0.9432 0.0334 0.0156 [0.9275, 0.9588]

Boost.Sel.M2 0.6793 0.2219 0.1038 [0.5754, 0.7831]

BayCoBoost 0.9763 0.0173 0.0081 [0.9682, 0.9844]

Table 1: Recognition accuracy on ChaLearn MMGR data sets.

Each Xsens IMU sensor can provide linear acceleration, angular acceleration, magnetometer,
Euler orientation, orientation quaternion, and barometer data with a frequency of 50Hz.

This data set contains a vocabulary of 10 one-hand gestures commonly used in close
human-computer interaction. Gestures are performed by 10 subjects, and each gesture is
repeated 12 times, including 2 lighting conditions and 3 resting postures. The total number
of gesture instances is 1200.

Similar to the previous experiment, two feature modalities are chosen to perform our
Bayesian Co-Boosting training process. The first feature modality is based on the data
captured by Xsens sensors. We use the raw data collected by four Xsens sensors as feature
vector, which is of 68-dimension. Skeleton data captured by the Kinect

TM
is used as the sec-

ond modality, and a 120-dimension feature vector is extracted per frame (see the appendix
for details). The number of skeleton feature dimensions is smaller than the previous one,
because the position of two joint points (hip-center and spine) cannot be tracked since all
users were performing gestures while sitting.

The parameters in this experiment are almost identical with previous experiment. In
Algorithm 1, parameters are: T = 20, V = 2, and M1 = M2 = 10. The feature selection
ratio of Xsens and skeleton are respectively 20% and 15%. Under this setup, the feature
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dimension of Xsens data for weak classifier training is 14, and this number is 18 for skeleton
feature. The number of iterations for weak classifier training is also set to 20. Similar to
the previous experiment, these parameters are also determined by cross-validation.

Since no division of training and testing subset is specified in this data set, we perform
leave-one-out cross validation. In each round, gesture instances of one subject are used for
model evaluation, and other instances are used to train the model. We compute the average
recognition accuracy for each gesture class and report them in Figure 3 and Table 2.
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Figure 3: Recognition accuracy of each gesture category on ChAirGest data sets.

Method Mean Std Conf [Mean-Conf, Mean+Conf]

M1 0.8782 0.0598 0.0427 [0.8355, 0.9210]

M2 0.6884 0.1283 0.0918 [0.5966, 0.7801]

M1+M2 0.8940 0.0685 0.0490 [0.8450, 0.9430]

Boost.M1 0.8728 0.0623 0.0445 [0.8283, 0.9174]

Boost.M2 0.7003 0.1501 0.1074 [0.5929, 0.8077]

Boost.Sel.M1 0.9522 0.0564 0.0403 [0.9119, 0.9925]

Boost.Sel.M2 0.7958 0.1242 0.0889 [0.7070, 0.8847]

BayCoBoost 0.9653 0.0420 0.0300 [0.9353, 0.9953]

Table 2: Recognition accuracy on ChAirGest data sets.

4.4 Result Analysis

From the above experimental results, it is obvious that our proposed Bayesian Co-Boosting
training algorithm achieves the best recognition accuracy in both data sets. Our approach’s
recognition accuracy ranks first in 14 out of 20 classes on ChaLearn MMGR data set and 9
out of 10 classes on ChAirGest data set. The average recognition accuracy of our method
is also superior to any other baseline methods, as shown in Table 1 and Table 2. This
improvement of our method mainly benefits from two aspects: multi-modal fusion under
Bayesian Co-Boosting framework, and boosting learning with feature selection.
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The improvement brought by multi-modal fusion is inevitable, since different modalities
surely can provide complementary information for each other. “M1+M2” implements late
fusion using a weight coefficient α, which requires more training time to determine its
optimal value through cross-validation. On the other hand, in our approach, each classifier’s
weight is determined during boosting process, which avoids extra parameter tuning and is
more reasonable and explainable based on the above theoretical analysis.

Comparing the result of “M1”, “M2”, “Boost.M1”, and “Boost.M2”, we can see that
boosting learning could not necessarily improve the recognition accuracy. This may due to
the overfitting caused by the small amount of available training instances. The overfitting
problem of boosting methods has been discussed in several literatures (Zhang and Yu,
2005; Reyzin and Schapire, 2006; Vezhnevets and Barinova, 2007; Yao and Doretto, 2010).
Considering the high feature dimension of instances, the weak classifier may be too complex
to be well trained on such few instances.

Based on the above observation, we tackle the overfitting problem from two aspects.
Firstly, feature selection is used to reduce the number of feature dimensions while preserv-
ing enough discriminative information, which alleviates overfitting brought by the small
size sample problem. Secondly, Bayesian Co-Boosting is employed to combine two weak
classifiers together with collaborative training strategy, and each modality can provide com-
plementary information for the other modality. Therefore, the amount of available training
information for classifiers is actually increased to avoid overfitting problem to some extent.

As demonstrated in Table 1 and Table 2, “Boost.Sel.M1” and “Boost.Sel.M2” outper-
form their corresponding training methods without feature selection. On this basis, after
applying Co-Boosting method to fuse two modalities, our proposed “BayCoBoost” achieves
superior recognition accuracy than all baseline methods.

As for the computation complexity, we compare the average classification time for each
method. It takes around 0.31s/0.11s for our proposed “BayCoBoost” method to label an
instance in ChaLearn MMGR and ChAirGest data set, respectively. Although non-boosting
methods can operate at higher speed (for “M1+M2”, the time is about 0.037s/0.013s), we
think it is worthy to spend more time since our method’s performance is superior to these
methods, especially for the second data set. Another remarkable comparison is that by
using feature selection strategy, “Boost.Sel.M1” and “Boost.Sel.M2” not only run twice
as fast as “Boost.M1” and “Boost.M2”, due to the lower classifier’s complexity, but also
outperform them in the classification performance. This also proves that the effectiveness
of the feature selection strategy in our “BayCoBoost” method.

5. Conclusion

In this paper, a novel Bayesian Co-Boosting training framework for multi-modal gesture
recognition is proposed. The merits of our work are three-fold: first, the collaborative
training between multiple modalities provides complementary information for each modal-
ity; second, the boosting learning combines weak classifiers to construct a strong classifier
of higher accuracy; third, the Bayesian perspective theoretically ensures that the training
error of our method is minimized through iterations. Feature selection and multi-modal fu-
sion are naturally embedded into the training process, which bring significant improvement
to the recognition accuracy. Experimental results on two multi-modal gesture recognition
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data sets prove the effectiveness of our proposed approach. Moreover, our proposed frame-
work can be easily extended to other related tasks in multi-modal scenarios, such as object
detection and tracking.
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Appendix A. Skeleton Feature Extraction

The Kinect
TM

sensor is able to provide 3D position information for 20 joint points of human
body. We denote the original 3D coordinates of these joints as (xi, yi, zi) , i = 1, . . . , 20.

In order to extract the skeleton feature which is invariant to user’s position, orientation,
and body size, we perform the following transformations:

1. Select one joint point as the origin of the normalized coordinate system.
Translate all joint points to move the selected point to the origin.

2. Select three joint points to construct the reference plane.
Rotate the reference plane so that it is orthogonal to the z-axis.

3. Calculate the distance sum of 19 directly connected joint pairs.
Normalize all coordinates so that the sum is equal to 1.

After above transformations, we can obtain the normalized 3D coordinates (x∗i , y
∗
i , z
∗
i ),

which are invariant to the user’s position, orientation, and body size.
Since most gestures are performed with upper body, and the lower body’s movement

may interfere the recognition of gestures, we only select joint points in the upper body for
feature extraction. The final feature vector consists of four parts:

1. Absolute 3D position of joint points.
2. Relative 3D position of joint points, defined on directly connected joint pairs.
3. First order difference in time of part 1 in the feature vector.
4. First order difference in time of part 2 in the feature vector.
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