
Journal of Machine Learning Research 15 (2014) 1849-1901 Submitted 3/13; Revised 3/14; Published 5/14

Expectation Propagation for Neural Networks with
Sparsity-Promoting Priors

Pasi Jylänki∗ pasi.jylanki@aalto.fi
Department of Biomedical Engineering and Computational Science
Aalto University School of Science
P.O. Box 12200, FI-00076 Aalto, Finland

Aapo Nummenmaa nummenma@nmr.mgh.harvard.edu
Athinoula A. Martinos Center for Biomedical Imaging
Massachusetts General Hospital, Harvard Medical School
Boston, MA 02129, USA

Aki Vehtari aki.vehtari@aalto.fi

Department of Biomedical Engineering and Computational Science

Aalto University School of Science

P.O. Box 12200, FI-00076 Aalto, Finland

Editor: Manfred Opper

Abstract

We propose a novel approach for nonlinear regression using a two-layer neural network
(NN) model structure with sparsity-favoring hierarchical priors on the network weights.
We present an expectation propagation (EP) approach for approximate integration over
the posterior distribution of the weights, the hierarchical scale parameters of the priors,
and the residual scale. Using a factorized posterior approximation we derive a computation-
ally efficient algorithm, whose complexity scales similarly to an ensemble of independent
sparse linear models. The approach enables flexible definition of weight priors with different
sparseness properties such as independent Laplace priors with a common scale parameter or
Gaussian automatic relevance determination (ARD) priors with different relevance param-
eters for all inputs. The approach can be extended beyond standard activation functions
and NN model structures to form flexible nonlinear predictors from multiple sparse linear
models. The effects of the hierarchical priors and the predictive performance of the algo-
rithm are assessed using both simulated and real-world data. Comparisons are made to two
alternative models with ARD priors: a Gaussian process with a NN covariance function
and marginal maximum a posteriori estimates of the relevance parameters, and a NN with
Markov chain Monte Carlo integration over all the unknown model parameters.

Keywords: expectation propagation, neural network, multilayer perceptron, linear model,
sparse prior, automatic relevance determination

1. Introduction

Gaussian priors may not be the best possible choice for the input layer weights of a feed-
forward neural network (NN) because allowing, a priori, a large weight wj for a potentially
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irrelevant feature xj may deteriorate the predictive performance. This behavior is analo-
gous to a linear model because the input layer weights associated with each hidden unit of
a multilayer perceptron (MLP) network can be interpreted as separate linear models whose
outputs are combined nonlinearly in the next layer. Integrating over the posterior uncer-
tainty of the unknown input weights mitigates the potentially harmful effects of irrelevant
features but it may not be sufficient if the number of input features, or the total number
of unknown variables, grows large compared with the number of observations. In such
cases, an alternative strategy is required to suppress the effect of the irrelevant features. In
this article we focus on a two-layer MLP model structure but aim to form a more general
framework that can be used to combine linear models with sparsity-promoting priors using
general activation functions and interaction terms between the hidden units.

A popular approach has been to apply hierarchical automatic relevance determination
(ARD) priors (Mackay, 1995; Neal, 1996), where individual Gaussian priors are assigned
for each weight, wj ∼ N (0, αlj ), with separate variance hyperparameters αlj controlling
the relevance of the group of weights related to each feature. Mackay (1995) described an
ARD approach for NNs, where point estimates for the relevance parameters αlj along with
other model hyperparameters, such as the noise level, are determined using a marginal likeli-
hood estimate obtained by approximate integration over the weights with Laplace’s method.
Neal (1996) proposed an alternative Markov chain Monte Carlo (MCMC) approach, where
approximate integration is performed over the posterior uncertainty of all the model pa-
rameters including wj and αlj . In connection with linear models, various computationally
efficient algorithms have been proposed for determining marginal likelihood based point
estimates for the relevance parameters (Tipping, 2001; Qi et al., 2004; Wipf and Nagarajan,
2008). The point-estimate based methods, however, may suffer from overfitting because
the maximum a posteriori (MAP) estimate of αlj may be close to zero also for relevant
features as demonstrated by Qi et al. (2004). The same applies also for infinite neural
networks implemented using Gaussian process (GP) priors when separate hyperparameters
controlling the nonlinearity of each input are optimized (Williams, 1998; Rasmussen and
Williams, 2006).

Recently, appealing surrogates for ARD priors have been presented for linear models.
These approaches are based on sparsity favoring priors, such as the Laplace prior (Seeger,
2008) and the spike and slab prior (Hernández-Lobato et al., 2008, 2010). The methods
utilize the expectation propagation (EP) (Minka, 2001b) algorithm to efficiently integrate
over the analytically intractable posterior distributions. Importantly, these sparse priors
do not suffer from similar overfitting as many ARD approaches because point estimates of
feature specific parameters such as αlj are not used, but instead, approximate integration is
done over the posterior uncertainty resulting from a sparse prior on the weights. Expecta-
tion propagation provides a useful alternative to MCMC for carrying out the approximate
integration because it has been found computationally efficient and very accurate in many
practical applications (Nickisch and Rasmussen, 2008; Hernández-Lobato et al., 2010).

In nonlinear regression, sparsity favoring Laplace priors have been considered for NNs,
for instance, by Williams (1995), where the inference is performed using the Laplace ap-
proximation. However, a problem with the Laplace approximation is that the curvature
of the log-posterior density at the posterior mode may not be well defined for all types of
prior distributions, such as, the Laplace distribution whose derivatives are not continuous
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at the origin (Williams, 1995; Seeger, 2008). Implementing a successful algorithm requires
some additional approximations as described by Williams (1995), whereas with EP the im-
plementation is straightforward since it relies only on expectations of the prior terms with
respect to a Gaussian measure.

Another possibly undesired characteristic of the Laplace approximation is that it ap-
proximates the posterior mean of the unknowns with their MAP estimate and their posterior
covariance with the negative Hessian of the posterior distribution at the mode. This local
estimate may not represent well the overall uncertainty on the unknown variables and it may
lead to worse predictive performance for example when the posterior distribution is skewed
(Nickisch and Rasmussen, 2008) or multimodal (Jylänki et al., 2011). Furthermore, when
there are many unknowns compared to the effective number of observations, which is typical
in practical NN applications, the MAP solution may differ significantly from the posterior
mean. For example, with linear models the Laplace prior leads to strictly sparse estimates
with many zero weight values only when the MAP estimator of the weights is used. The
posterior mean estimate, on the other hand, can result in many clearly nonzero values for
the same weights whose MAP estimates are zero (Seeger, 2008). In such case the Laplace
approximation underestimates the uncertainty of the feature relevances, that is, the joint
mode is sharply peaked at zero but the bulk of the probability mass is distributed widely at
nonzero weight values. Recently, it has also been shown that in connection with linear mod-
els the ARD solution is exactly equivalent to a MAP estimate of the coefficients obtained
using a particular class of non-factorized coefficient prior distributions which includes mod-
els that have desirable advantages over MAP weight estimates (Wipf and Nagarajan, 2008;
Wipf et al., 2011). This connection suggests that the Laplace approximation of the input
weights with a sparse prior may possess more similar characteristics with the point-estimate
based ARD solution compared to the posterior mean solution.

Our aim is to introduce the benefits of the sparse linear models (Seeger, 2008; Hernández-
Lobato et al., 2008) into nonlinear regression by combining the sparse priors with a two-layer
NN in a computationally efficient EP framework. We propose a logical extension of the linear
regression models by adopting the algorithms presented for sparse linear models to MLPs
with a linear input layer. For this purpose, the main challenge is constructing a reliable
Gaussian EP approximation for the analytically intractable likelihood resulting from the
NN observation model. In addition to the already discussed Laplace’s method (see, e.g.,
Mackay, 1995; Williams, 1995), Gaussian approximations for NN models have been formed
using variational Bayesian (VB) methods (Hinton and van Camp, 1993; Barber and Bishop,
1998; Honkela and Valpola, 2005), the extended Kalman filter (EKF) (Freitas, 1999), and
the unscented Kalman filter (UKF) (Wan and van der Merwe, 2000). Alternative mean
field approaches possessing similar characteristic with EP have been proposed by Opper and
Winther (1996) and Winther (2001). Comparisons between Laplace approximation, VB, and
MCMC have been made by Heskes et al. (2002) and Bakker et al. (2004). Recently, Graves
(2011) proposed stochastic VB method applicable for multi-layered network architectures
with various regularizing priors.

We extend the ideas from the UKF approach by utilizing similar decoupling approx-
imations for the weights as proposed by Puskorius and Feldkamp (1991) for EKF-based
inference and derive a computationally efficient algorithm that does not require numerical
sigma point approximations for multi-dimensional integrals. We propose a posterior ap-
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proximation that assumes the weights associated with the output-layer and each hidden
unit independent. The complexity of the EP updates in the resulting algorithm scale lin-
early with respect to the number of hidden units and they require only one-dimensional
numerical quadratures. The complexity of the posterior computations scale similarly to an
ensemble of independent sparse linear models (one for each hidden unit) with one additional
linear predictor associated with the output layer. It follows that all existing methodology
on sparse linear models (e.g., methods that facilitate computations with large number of
inputs) can be applied separately on the sparse linear model corresponding to each hidden
unit. Furthermore, the complexity of the algorithm scales linearly with respect to the num-
ber of observations, which is beneficial for large data sets. The proposed approach can also
be extended beyond standard activation functions and NN model structures, for example,
by including a linear hidden unit or predefined interactions between the linear input-layer
models.

In addition to generalizing the standard EP framework for sparse linear models we intro-
duce an efficient EP approach for inference on the unknown hyperparameters, such as the
noise level and the scale parameters of the weight priors. This framework enables flexible
definition of different hierarchical priors, such as one common scale parameter for all input
weights, or a separate scale parameter for all weights associated with one input variable
(i.e., an integrated ARD prior). For example, assigning independent Laplace priors on the
input weights with a common unknown scale parameter does not produce very sparse ap-
proximate posterior mean solutions, but, if required, more sparse solutions can be obtained
by adjusting the common hyperprior of the scale parameters with the ARD specification.
We show that by making independent approximations for the hyperparameters, the infer-
ence on them can be done simultaneously within the EP algorithm for the network weights,
without the need for separate optimization steps which is common for many EP approaches
for sparse linear models and GPs (Rasmussen and Williams, 2006; Seeger, 2008), as well
as combined EKF and expectation maximization (EM) algorithms for NNs (Freitas, 1999).
Additional benefits are achieved by introducing left-truncated priors on the output weights
which prevent possible convergence problems in the EP algorithm resulting from inherent
unidentifiability in the MLP network specification.

The main contributions of the paper can be summarized as:

• An efficiently scaling EP approximation for the non-Gaussian likelihood resulting from
the MLP-model that requires numerical approximations only for one-dimensional in-
tegrals. We derive closed-form solutions for the parameters of the site term approxi-
mations, which can be interpreted as pseudo-observations of a linear model associated
with each hidden unit (Sections 3.1–3.4 and Appendices A–E).

• An EP approach for integrating over the posterior uncertainty of the input weights
and their hierarchical scale parameters assigned on predefined weight groups (Section
3.2.2). The approach could be applied also for sparse linear models to construct
factorized approximations for predefined weight groups with shared hyperparameters.

• Approximate integration over the posterior uncertainty of the observation noise simul-
taneously within the EP algorithm for inference on the weights of a MLP-network (see
Appendix D). Using factorizing approximations, the approach could be extended also
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for approximate inference on other hyperparameters associated with the likelihood
terms and could be applied, for example, in recursive filtering.

Key properties of the proposed model are first demonstrated with three artificial case
studies in which comparisons are made with a neural network with infinitely many hidden
units implemented as a GP regression model with a NN covariance function and an ARD
prior (Williams, 1998; Rasmussen and Williams, 2006). Finally, the predictive performance
of the proposed approach is assessed using four real-world data sets and comparisons are
made with two alternative models with ARD priors: a GP with a NN covariance function
where point estimates of the relevance hyperparameters are determined by optimizing their
marginal posterior distribution, and a NN where approximate inference on all unknowns is
done using MCMC (Neal, 1996).

2. The Model

We focus on two layer NNs where the unknown function value fi = f(xi) related to a
d-dimensional input vector xi is modeled as

f(xi) =
K∑
k=1

vkg(wT
k xi) + v0, (1)

where g(x) is a nonlinear activation function, K the number of hidden units, and v0 the
output bias. Vector wk = [wk,1, wk,2, ..., wk,d]

T contains the input layer weights related
to hidden unit k and vk is the corresponding output layer weight. Input biases can be
introduced by adding a constant term to the input vectors xk. In the sequel, all weights
are denoted by vector z = [wT,vT]T, where w = [wT

1 , ...,w
T
K ]T, and v = [v1, ..., vK , v0]

T.

In this work, we use the following activation function:

g(x) =
1√
K

erf

(
x√
2

)
=

2√
K

(Φ(x)− 0.5) , (2)

where Φ(x) =
∫ x
−∞N (t|0, 1)dt, and the scaling by 1/

√
K ensures that the prior variance of

f(xi) does not increase with K assuming fixed Gaussian priors on vk and wkj . We focus on
regression problems with Gaussian observation model p(yi|fi, σ2) = N (yi|fi, σ2), where σ2 is
the noise variance. However, the proposed approach could be extended for other activation
functions and observations models, for example, the probit model for binary classification.

2.1 Prior Definitions

To reduce the effects of irrelevant features, sparsity-promoting priors p(wj |φlj ) with hierar-

chical scale parameters φlj ∈ φ = {φl}Ll=1 are placed on the input layer weights. Each input
weight wj corresponding to the j:th element of w is assigned to one of L predefined groups
indicated by the index variable lj ∈ {1, ..., L}, and φl is a joint hyperparameter controlling
the prior variance of all the input weights belonging to group l, that is, Var(wj |φ) = exp(φl)
for all j ∈ {1, ...,Kd|lj = l}. We consider two types of input weight priors conditioned on
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φ; Laplace priors and Gaussian priors defined as

Laplace: p(wj |φlj ) =
1√
2λlj

exp

(
−
√

2

λlj
|wj |

)
Gaussian: p(wj |φlj ) = N (wj |0, λ2lj ), (3)

where λ2lj = exp(φlj ) = Var(wj |φlj ). The grouping of the weights can be chosen freely
and also other weight prior distributions can be used in place of the Laplace or Gaussian
distributions in (3). The approximate inference on the variance parameters λ2l > 0 is
carried out using the log-transformed scale parameters φl = log(λ2l ) ∈ R to facilitate an EP
algorithm based on Gaussian approximating families as described in Section 3. By defining a
suitable prior on the unknown group scales φl, useful hierarchical priors can be implemented
on the input layer. Possible definitions include one common scale parameter for all inputs
(L = 1), and a separate scale parameter for all the weights related to each feature, which
implements an ARD prior (L = d). The traditional ARD setting is obtained by using a
Gaussian distributions for p(wj |φlj ) as defined in (3) and choosing simply lj = 1, ..., d for

all j = K(k− 1) + lj . We assign Gaussian hyperpriors to the scale parameters φ = {φl}Ll=1:

p(φl) = N (µφ,0, σ
2
φ,0), (4)

where a common mean µφ,0 and a variance σ2φ,0 have been defined for all groups l = 1, ..., L.

Definition (4) corresponds to a log-normal prior for the associated prior variance λ2l =
exp(φl) of the weights in group l.

Because of the symmetry g(x) = −g(−x) of the activation function, changing the signs
of output weight vk and the corresponding input weights wk results in the same prediction
f(x). This unidentifiability may cause converge problems in the EP algorithm: if the
approximate posterior probability mass of output weight vk concentrates too close to zero,
expected values of vk and wk may start fluctuating between small positive and negative
values. Therefore the output weights are constrained to positive values by assigning left-
truncated heavy-tailed priors to them:

p(vk) = 2tν(vk|0, σ2v,0), (5)

where vk ≥ 0, k = 1, ...,K, and tν(vk|0, σ2v,0) denotes a Student-t distribution with degrees

of freedom ν, mean zero, and scale parameter σ2v,0. The prior scale is fixed to σ2v,0 = 1 and
the degrees of freedom to ν = 4, which by experiments was found to produce sufficiently
large posterior variations of f(x) when the activation function is scaled according to (2) and
the observations are normalized to zero mean and unit variance. The heavy-tailed prior (5)
enables very large output weights if required, for example, when some hidden unit is forming
almost a linear predictor (see, e.g, Section 4.2). A zero-mean Gaussian prior is assigned
to the output bias: p(v0) = N (0, σ2v0,0), where the scale parameter is fixed to σ2v0,0 = 1
because it was also found to be a sufficient simplification with the same data normalization
conditions. The noise level σ2 is assumed unknown and therefore a log-normal prior is
assigned to it corresponding to a normal prior on θ = log(σ2):

p(θ) = N (µθ,0, σ
2
θ,0) (6)

with prior mean µθ,0 and variance σ2θ,0.
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Figure 1: A directed graph representing the joint distribution of all the model parameters
written in equation (7) resulting from the observation model and prior definitions
summarized in Section 2. The observed variables indexed with i = 1, ..., n are
denoted with boxes, the unobserved random variables are denoted with circles,
and the fixed prior parameters are denoted with dots. For each input xi, i =
1, ..., n, two intermediate random variables are visualized: The linear hidden unit
activations defined as hi,k = wT

k xi and the latent function value given by fi =∑K
k=1 vkg(hi,k) + v0.

2.2 The Posterior Distribution

Given the previous prior definitions and a set of n observations D = {X,y}, where y =
[y1, ..., yn]T and X = [x1, ...,xn]T, the joint posterior distribution of w, v, φ, and θ is given
by

p(w,v, θ,φ|D,γ) = Z−1
n∏
i=1

p(yi|fi, θ)
Kd∏
j=1

p(wj |φlj )
K∏
k=0

p(vk|γ)

L∏
l=1

p(φl|γ)p(θ|γ), (7)

where fi =
∑K

k=1 vkg(wTxi) + v0, γ = {σ2v,0, σ2v0,0, µφ,0, σ
2
φ,0, µθ,0, σ

2
θ,0} contains all the fixed

hyperparameters and Z is the marginal likelihood of the observations conditioned on γ:

Z = p(y|X,γ) =

∫
p(y|w,v,X, θ)p(w|φ)p(v|γ)p(φ|γ)p(θ|γ)dwdvdφdθ. (8)

Figure 1 shows a directed graph representing the joint distribution (7) where we have also
included intermediate random variables hi,k = wT

k xi and fi =
∑K

k=1 vkg(hi,k) + v0 related
to each data point to clarify the upcoming description of the approximate inference scheme.
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2.3 General Properties of the Model

The values of the hyperparameters λl = exp(φl/2) and σ2v,0 affect the smoothness properties
of the model in different ways. In the following discussion we first assume that there is
only one input scale parameter λ1 (L = 1) for clarity. Choosing a smaller value for λ1
penalizes more strongly for larger input weights and produces smoother functions with
respect to changes in the input features. More precisely, in the two-layer NN model (1) the
magnitudes of the input weights (or equivalently the ARD scale parameters) are related
to the nonlinearity of the latent function f(x) with respect to the corresponding inputs
x. Strong nonlinearities require large input weights whereas almost a linear function is
obtained with a very large output weight and very small input weights for a certain hidden
unit (see Section 4.2 for illustration).

Because the values of the activation function g(x) are constrained to the interval [−1, 1],
hyperparameter σ2v,0 controls the overall magnitude of the latent function f(x). Larger

values of σ2v,0 increase the magnitude of the steps the hidden unit activation vkg(wT
k x) can

take in the direction of weight vector wk in the feature space. Choosing a smaller value
for σ2v,0 can improve the predictive performance by constraining the overall flexibility of the
model but too small value can prevent the model from explaining all the variance in the
target variable y. In this work, we keep σ2v,0 fixed to a sufficiently large value and infer λl
from data promoting simultaneously smoother solutions with the prior on φl = log(λ2l ). If
only one common scale parameter φ1 is used, the sparsity-inducing properties of the prior
depend on the shape of the joint distribution p(w|λ1) =

∏
j p(wj |λ1) resulting from the

choice of the prior terms (3). By decreasing µφ,0, we can favor smaller input weight values
overall, and with σ2φ,0, we can adjust the thickness of the tails of p(w|λ1). On the other
hand, if individual scale parameters are assigned for all inputs according to the ARD setting,
a family of sparsity-promoting priors is obtained by adjusting µφ,0 and σ2φ,0. If µφ,0 is set

to a small value, say 0.01, and σ2φ,0 is increased, sparser solutions are favored by allocating
increasing amounts of prior probability on the axes of the input weight space. A sparse
prior could be introduced also on the output weights vk to suppress redundant hidden units
but this was not found necessary in the experiments because the proposed EP updates have
a fixed point at E(vk) = 0 and E(wk) = 0 for each k = 1, ...,K and during the iterations
unused hidden units are gradually driven towards zero (see Section 3.5.3 and Appendix E).

3. Approximate Inference

In this section, we describe how approximate Bayesian inference on the unknown model
parameters w, v, θ, and φ = [φ1, ..., φL]T can be done efficiently using EP. First, in Section
3.1, we describe how the posterior approximation can be formed using local factorized site
approximations and then, in Section 3.2, we summarize a general EP algorithm suitable for
determining their parameters. In Section 3.3, we discuss suitable parametric forms for the
local site approximations and properties of the resulting approximate posterior distributions.
We discuss the various computational blocks required in the EP algorithm first in Section
3.4 and give detailed descriptions of the methods in Appendices A– I. Finally, we give an
algorithm description with references to the different building blocks in Section 3.5.
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3.1 The Posterior Approximation

To form an analytically tractable approximation for the posterior distribution (7), all the
non-tractable likelihood and prior terms are approximated with unnormalized Gaussian
site functions, which provide a suitable approximating family for random vectors defined
in the real vector space. The Gaussian distribution is a commonly used approximate fam-
ily for the weights of linear models and neural networks (see, e.g, Seeger, 2008; Freitas,
1999) but in our case it is also a suitable family for the hyperparameters φl = log(λ2l ) and
θ = log(σ2), because of the logarithmic transformations and Gaussian prior definitions (4)
and (6). Alternatively one could consider other exponential family distributions such as
the inverse-gamma for the variance parameters λ2l and σ2 directly. We approximate the
posterior distribution (7) as

p(z, θ,φ|D) = Z−1
n∏
i=1

p(yi|fi, θ)
Kd∏
j=1

p(wj |φlj )
K∏
k=0

p(vk)

L∏
l=1

p(φl)p(θ) (9)

≈Z−1EP

n∏
i=1

Z̃y,it̃z,i(z)t̃θ,i(θ)

Kd∏
j=1

Z̃w,j t̃w,j(wj)t̃φ,j(φlj )

K∏
k=1

Z̃v,k t̃v,k(vk)p(v0)

L∏
l=1

p(φl)p(θ),

where z = [wT,vT]T and ZEP is the EP approximation of the marginal likelihood Z =
p(y|X,γ) defined in (8) (for details, see Appendix I). We have excluded the fixed hyper-
parameters γ = {σ2v,0, σ2v0,0, µφ,0, σ

2
φ,0, µθ,0, σ

2
θ,0} from the notation in equation (9) and will

do that also in the following sections, because they are assumed to be fixed during the EP
iterations.

3.1.1 The Likelihood Term Approximations

The likelihood terms that depend on the weights z = [wT,vT]T through fi according to (1)
are approximated with a product of two unnormalized Gaussian site functions:

p(yi|fi, θ) ≈ Z̃y,it̃z,i(z)t̃θ,i(θ), (10)

where Z̃y,i is a scalar scaling parameter. Because the approximate posterior correlations
between the components of z are defined by the likelihood site approximations t̃z,i(z), their
parametric structure is crucial for computationally efficient EP updates especially when
K and d are large. Section 3.3 discusses alternative structures for t̃z,i(z) and proposes
factorized Gaussian site approximations of the form

t̃z,i(z) = t̃v,i(v)

K∏
k=1

t̃wk,i(wk) (11)

that result in independent approximations for v, w1,..., wK and computationally more
efficient EP updates compared to fully-coupled site approximations. The second likelihood
site approximation dependent on the scalar θ = log σ2 is parameterized as

t̃θ,i(θ) = exp

(
−1

2
σ̃−2θ,i θ

2 + µ̃θ,iσ̃
−2
θ,i θ

)
∝ N (θ|µ̃θ,i, σ̃2θ,i), (12)
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where the site parameters µ̃θ,i and σ̃2θ,i control the location and the scale of the site approx-
imation, respectively. Combined with the known Gaussian prior term p(θ) this results in
a Gaussian posterior approximation for θ that corresponds to a log-normal approximation
for σ2.

3.1.2 The Prior Term Approximations

The prior terms of the output weights vk, for k = 1, ...,K, are approximated with

p(vk) ≈ Z̃v,k t̃v,k(vk) ∝ N (vk|µ̃v,k, σ̃2v,k), (13)

where Z̃v,k is a scalar scaling parameter, t̃v,k(vk) has a similar exponential form as (12), and
the site parameters µ̃v,k and σ̃2v,k control the location and scale of the site approximation,
respectively. If the prior scales φl are assumed unknown, the prior terms of the input weights
{wj |j = 1, ...,Kd}, are approximated with

p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) ∝ N (wj |µ̃w,j , σ̃2w,j)N (φlj |µ̃φ,j , σ̃
2
φ,j), (14)

where a factorized site approximation with location parameters µ̃w,j and µ̃φ,j , and scale
parameters σ̃2w,j and σ̃2φ,j , is assigned to weight wj and the associated scale parameter φlj ,

respectively. A similar exponential form to equation (12) is assumed for both t̃w,j(wj) and
t̃φ,j(φlj ). This factorizing site approximation results in independent posterior approxima-
tions for w and each component of φ.

3.1.3 Forming the Joint Posterior Approximation

Multiplying the site approximations together according to (9) and normalizing the resulting
expression gives the following factorized posterior approximation:

p(z, θ,φ|D, γ) ≈ q(z)q(θ)

L∏
l=1

q(φl), (15)

where

q(z) = N (z|µ,Σ) ∝
n∏
i=1

t̃z,i(z)

Kd∏
j=1

t̃w,j(wj)

K∏
k=1

t̃v,k(vk)p(v0)

q(φl) = N (φl|µ2φl , σ
2
φl

) ∝
Kd∏

j=1,lj=l

t̃φ,j(φl)p(φl) l = 1, ..., L

q(θ) = N (θ|µ2θ, σ2θ) ∝
n∏
i=1

t̃θ,i(θ)p(θ). (16)

Multiplying the likelihood site approximations t̃θ,i(θ) defined in (12) together according to
(16) results in a Gaussian approximation q(θ) = N (µθ, σ

2
θ), where the mean and variance

are given by

σ2θ =

(
n∑
i=1

σ̃−2θ,i + σ−2θ,0

)−1
and µθ = σ2θ,0

(
n∑
i=1

σ̃−2θ,i µ̃θ,i + σ−2θ,0µθ,0

)
. (17)
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Similarly, combining the prior site approximations t̃φ,j(φlj ) from (14) results in a Gaussian
approximation q(φl) = N (µφl , σ

2
φl

) with the mean and variance given by

σ2φl =

 Kd∑
j=1,lj=l

σ̃−2φ,j + σ−2φl,0

−1 and µφl = σ2φ,0

 Kd∑
j=1,lj=l

σ̃−2φ,jµ̃φ,j + σ−2φ,0µφ,0

 . (18)

Note that in (18) only the approximations of the prior terms p(wj |φlj ) linked to scale
parameter φl via lj = l affect the summations.

Adopting the factorized site approximation (11) results in a posterior approximation
where the weights related to the different hidden units and the output layer decouple:

q(z) = q(v)
K∏
k=1

q(wk), (19)

where

q(wk) = N (µwk ,Σwk) ∝
n∏
i=1

t̃wk,i(wk)

m+d∏
j=m+1

t̃w,j(wj) k = 1, ...,K, and m = K(k − 1)

q(v) = N (µv,Σv) ∝
n∏
i=1

t̃v,i(v)
K∏
k=1

t̃v,k(vk)p(v0). (20)

The exact parametric forms of the Gaussian posterior approximations q(z), q(v), and q(wk)
are presented in Section 3.3.

3.2 Expectation Propagation

The parameters of the local site approximations that define the approximate posterior
distribution (15) are determined using the EP algorithm (Minka, 2001b). In the following,
we give general descriptions of the EP updates separately for the likelihood terms and the
weight prior terms.

3.2.1 EP Updates for the Likelihood Terms

Here we consider the procedure for updating the likelihood sites t̃z,i and t̃θ,i defined in equa-
tions (10)–(12) and assume that the prior site approximations (13) and (14) are kept fixed.
Because the likelihood terms p(yi|fi, θ) do not depend on φ and the posterior approximation
can be factorized as q(z, θ,φ) = q(z)q(θ)q(φ), we need to consider only the approximations
for z and θ. Furthermore, independent approximations for wk and v are obtained by using
(11) and (19) in place of t̃z,i and q(z), respectively.

At each iteration, first a proportion η of the i:th site term is removed from the posterior
approximation to obtain a cavity distribution:

q−i(z, θ) = q−i(z)q−i(θ) ∝ q(z)q(θ)
(
Z̃y,it̃z,i(z)t̃θ,i(θ)

)−η
, (21)

where η ∈ (0, 1] is a fraction parameter that can be adjusted to implement fractional (or
power) EP updates (Minka, 2004, 2005) (regular EP updates are obtained by setting η = 1).
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Then, the removed fraction of the i:th site approximation is replaced with a corresponding
fraction of the exact likelihood term to form a tilted distribution

p̂i(z, θ) = Ẑ−1i q−i(z, θ)p(yi|z, θ,xi)η, (22)

where Ẑi =
∫
q−i(z, θ)p(yi|z, θ,xi)ηdzdθ is a normalization factor. The tilted distribution

(22) can be regarded as a more refined approximation to the true posterior distribution
assuming that all the other local approximations that form the cavity distribution are
sufficiently accurate. Next, the algorithm attempts to match the approximate posterior
distribution q(z, θ) with p̂i(z, θ) by finding first a member of the chosen approximate family,
q̂i(z, θ) = q̂i(z)q̂i(θ), that satisfies

q̂i(z, θ) = arg minqi KL
(
p̂i(z, θ)||qi(z, θ)

)
,

where KL denotes the Kullback-Leibler divergence. When q(z, θ) is chosen to be a Gaus-
sian distribution this is equivalent to setting the approximate mean vectors and covariance
matrices that determine q̂i(z) and q̂i(θ) equal to the marginal mean vectors and covariance
matrices of z and θ with respect to p̂i. Then, the parameters of the i:th site terms are
updated so that the new posterior approximation q(z, θ)new that would result from the site
update is consistent with q̂i(z, θ):

q(z, θ)new = Ẑ−1i q−i(z, θ)
(
Z̃new
y,i t̃z,i(z)newt̃θ,i(θ)

new
)η

= q̂i(z, θ). (23)

Finally, the posterior approximation q(z, θ) is updated according to the changes in the site
parameters. These steps are repeated for all sites in some suitable order until convergence,
that is, when all the n tilted distributions (22) are consistent with the approximation q(z, θ).
From now on, we refer to the previously described EP update scheme as sequential EP. If
the update of the posterior approximation q(z, θ) in the last step is done only after new
parameter values have been determined for all sites (in this case the n likelihood term
approximations), we refer to parallel EP (see, e.g., Gerven et al., 2009).

The actual numerical values of the normalization parameters Z̃y,i (or Z̃v,k and Z̃w,j
with the prior term updates in Section 3.2.2) are not required during the iterations of
the EP algorithm because with exponential approximating families it suffices to update
only the natural parameters of q(z, θ) so that the expected sufficient statistics of q(z, θ)
are matched with p̂i(z, θ). However, the effect of the normalization parameters must be
taken into account if one wishes to form an EP approximation for the marginal likelihood
Z = p(y|X,γ) (see Appendix I). This estimate could be utilized to compare models or to
alternatively determine type-II MAP estimates for the hyperparameters γ or parameters θ
and {φl}Ll=1 in case they are not inferred within the EP framework.

Setting the fraction parameter to η = 1 corresponds to regular EP updates whereas
choosing a smaller value produces a slightly different approximation that puts less emphasis
on preserving all the nonzero probability mass of the tilted distributions (Minka, 2005).
Consequently, choosing a smaller value of η < 1 tries to represent possible multimodalities in
(22) but ignores modes far away from the main probability mass, which results in a tendency
to underestimate variances. Taking the limit η → 0 corresponds to minimizing the reverse
KL divergence q̂i(z, θ) = arg minqi KL

(
qi(z, θ)||p̂i(z, θ)

)
resulting in a local approximation

that tries to represent only one mode of the tilted distribution. In practice, decreasing η can
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improve the overall numerical stability of the algorithm and alleviate convergence problems
resulting from possible multimodalities in case the unimodal approximation is not a good fit
for the true posterior distribution (Minka, 2001b, 2005; Seeger, 2008; Jylänki et al., 2011).

In case the likelihood term approximations are updated with η = 1, the cavity dis-
tribution (21) can be interpreted as an approximation to the leave-one-out (LOO) poste-
rior distribution where the contribution of the i:th likelihood term p(yi|fi, θ) is removed
from q(z, θ). Furthermore, the normalization factor of the tilted distribution (22) can be
thought of as an approximation to the LOO predictive density of the excluded data point yi:
p(yi|D−i,xi) ≈ Ẑi =

∫
q−i(z, θ)p(yi|z, θ,xi)dzdθ. In Section 3.5 we use these normalization

factors as a one measure of the model fit.

There is no theoretical convergence guarantee for the standard EP algorithm but damp-
ing the site parameter updates can help to achieve convergence in harder problems (Minka
and Lafferty, 2002; Heskes and Zoeter, 2002).1 With exponential approximate families
damping can be understood as leaving part of the old site approximation in the posterior
approximation according to q(z)new = q(z)t̃z,i(z)−δ(t̃z,i(z)new)δ, where δ ∈ (0, 1] is a damp-
ing factor. This corresponds to updating the site parameters (in their natural exponential
forms) to a convex combination of their old values and the new values resulting from (23)
(see, e.g, equation (60) in Appendix E). The convergence problems are usually seen as os-
cillations over iterations in the site parameter values and they may occur, for example, if
there are inaccuracies in the tilted moment evaluations, or if the approximate distribution
is not a suitable proxy for the true posterior because of multimodalities. With damping,
smaller steps are taken in the site parameter updates, which can reduce the oscillations and
alleviate numerical problems caused by ill-conditioned approximate posterior (or cavity)
covariance matrices.

3.2.2 EP Updates for the Weight Prior Terms

Assuming that the likelihood term approximations (10) are fixed, the EP algorithm for
determining the parameters of the prior term approximations (13) and (14) can be imple-
mented in the same way as with sparse linear models (see, e.g., Seeger, 2008; Hernández-
Lobato et al., 2008; Gerven et al., 2010; Hernández-Lobato et al., 2013).

To derive EP updates for the prior term approximations of the output weights v assum-
ing the factorized approximation (19), we need to consider only the prior site approximations
p(vk) ≈ Z̃v,k t̃v,k(vk) from (13) and the approximate posterior q(v) = N (v|µv,Σv) defined
in equation (20). All approximate posterior information from the observations D = {y,X}
and the priors on the input weights w are conveyed by the likelihood term approximations
{t̃v,i(v)}ni=1 that are determined during the EP iterations for the likelihood sites which
is why a standard EP implementation (see, e.g., Seeger, 2008) can be readily applied to
determine tv,k(vk) by using

∏n
i=1 t̃v,i(v) as an approximate Gaussian likelihood. The EP

updates can be derived by following the same general scheme that was described in 3.2.1.
Because the prior terms p(vk) depend only on one random variable vk, deriving the param-
eters of the cavity distributions q−k(vk) ∝ q(vk)t̃v,k(vk|µ̃v,k, σ̃2v,k)−η and updates for the site

1. Alternative provably convergent double-loop algorithms exist but usually they require more computa-
tional effort in the form of additional inner-loop iterations (Minka, 2001b; Heskes and Zoeter, 2002;
Opper and Winther, 2005; Seeger and Nickisch, 2011).
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parameters µ̃v,k and σ̃2v,k require only manipulating univariate Gaussians. The moments of
the tilted distribution p̂k(vk) ∝ q−k(vk)p(vk)η can be computed either analytically or using
one-dimensional numerical quadratures depending on the functional form of the exact prior
term p(vk). Appendix F presents an algorithm description that can used to implement these
steps in practice.

To derive EP updates for the site approximations of the hierarchical prior terms p(wj |φlj )
assuming the factorized approximation (19), we need to consider the approximate posterior
distributions q(wk) = N (wk|µwk ,Σwk) from (20) for k = 1, ...,K together with the corre-
sponding prior site approximations p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) from (14) for indices
j = (k−1)+1, ..., (k−1)+d. Separate EP algorithms can be run for each of the hidden units
if they are not coupled through shared scale parameters φl. Since all approximate posterior
information from the observations D is conveyed by the likelihood term approximations
{t̃wk,i(wk)}ni=1 that are determined during the EP updates for the likelihood sites, the EP
updates to determine Z̃w,j , t̃w,j(wj), and t̃φ,j(φlj ) can now be derived using

∏n
i=1 t̃wk,i(wk)

as an approximate Gaussian likelihood for wk, and {p(φl)}Ll=1 as fixed priors for φl in the
posterior approximations q(wk) and q(φl) defined in (16) and (20). EP algorithms for sparse
linear models that operate on site terms depending on a nonlinear combination of multiple
random variables have been described earlier, e.g., by Hernández-Lobato et al. (2008) and
Gerven et al. (2009).

Because the j:th exact prior term (3) depends on both the weight wj and the correspond-
ing log-transformed scale parameter φlj , the j:th cavity distribution is formed by removing a
fraction η of both site approximations t̃w,j(wj) and t̃φ,j(φlj ) from the approximate posterior:

q−j(wj , φlj ) = q−j(wj)q−j(φlj ) ∝ q(wj)q(φlj )
(
Z̃w,j t̃w,j(wj)t̃φ,j(φlj )

)−η
, (24)

where q(wj) is the j:th marginal density extracted from the corresponding approximation
q(wk) and q(φlj ) is defined by (16) and (18). The j:th tilted distribution is formed by
replacing the removed site terms with a fraction η of the exact prior term p(wj |φlj ):

p̂j(wj , φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )p(wj |φlj )
η ≡ q̂(wj , φlj ), (25)

where q̂(wj , φlj ) is a Gaussian approximation formed by determining the mean and co-
variance of p̂j(wj , φlj ). The site parameters are updated so that the resulting posterior
approximation is consistent with the marginal means and variances of q̂(wj , φlj ):

q̂j(wj)q̂j(φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )
(
Z̃new
w,j t̃w,j(wj)

newt̃φ,j(φlj )
new
)η
. (26)

Because of the factorized approximation, the cavity computations (24) and the site updates
(26) require only scalar operations. An algorithm description implementing the update
steps (24)–(26) is presented in Appendix F.

Determining the moments of (25) can be done efficiently using one-dimensional quadra-
tures if the means and variances of wj with respect to the conditional distribution p̂j(wj |φlj )
can be determined analytically. This can be readily done when p(wj |φlj ) is a Laplace dis-
tribution or a finite mixture of Gaussians. The marginal tilted distribution for φlj is given
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by

p̂(φlj ) = Ẑ−1w,j

∫
q−j(wj)q−j(φlj )p(wj |φlj )

ηdwj = Ẑ−1w,jZ(φlj , η)q−j(φlj )

≈ N (φlj |µ̂φ,j , σ̂
2
φ,j), (27)

where it is assumed that Z(φlj , η) =
∫
q−j(wj)p(wj |φlj )ηdwj can be calculated analytically.

The normalization term Ẑw,j =
∫
Z(φlj , η)q−j(φlj )dφlj , the marginal mean µ̂φ,j , and the

variance σ̂2φ,j can be determined using numerical quadratures.
The marginal tilted mean and variance of wj can be determined by integrating numeri-

cally the conditional expectations of wj and w2
j over p̂j(φlj ):

E(wj) = Ẑ−1w,j

∫
wj p̂j(wj |φlj )Z(φlj , η)q−j(φlj )dwjdφlj =

∫
E(wj |φlj , η)p̂j(φlj )dφlj

Var(wj) =

∫
E(w2

j |φlj , η)p̂j(φlj )dφlj − E(wj)
2, (28)

where p̂j(wj |φlj ) = Z(φlj , η)−1q−j(wj)p(wj |φlj )η, and it is assumed that the conditional
expectations E(wj |φlj , η) and E(w2

j |φlj , η) can be calculated analytically. The fraction pa-
rameter can also be handled conveniently because the exponentiation with η results in a
distribution of the same family multiplied by a tractable function of η and φlj when the prior
distribution p(wj |φlj ) belongs to the exponential family. Computing the marginal moments
using equations (27) and (28) requires a total of five one-dimensional quadrature integra-
tions but in practice this can be done efficiently by utilizing the same function evaluations
of p̂j(φlj ) and taking into account the prior specific forms of E(wj |φlj , η) and E(w2

j |φlj , η).

3.3 Structure of the Weight Approximation

In this section we consider different possibilities for approximating the likelihood terms
p(yi|fi, θ) which depend on the noise parameter θ = log σ2 and the weight vectors w and v
through the latent function value fi as

fi = vTg(x̃T
i w) = vTg(hi), (29)

where x̃i = IK ⊗xi is a Kd×K auxiliary matrix formed as a Kronecker product. It can be
used to write all the linear input layer activations hi related to xi as hi = h(xi) = x̃T

i w. The
vector valued function g(hi) applies the nonlinear transformation (2) on each component of
hi according to g(hi) = [g(hi,1), g(hi,2), ..., g(hi,K), 1]T, where the last element corresponds
to the output bias v0.

3.3.1 Fully-Coupled Approximation for the Network Weights

If we approximate the posterior distribution of all the weights z = [wT,vT]T with a multi-
variate Gaussian approximation q(z) from (16) that is independent of all the other unknowns
including φ and θ, the resulting EP algorithm requires fast evaluation of the means and
covariances of tilted distributions of the form

p̂i(z) ∝ p(yi|vTg(hi), θ)
ηq−i(z), (30)
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which is equivalent to (22) except that θ is assumed fixed for clarity. Approximating
the tilted moments with unknown θ is described in Appendix D. Assuming Gaussian site
approximations t̃z,i(z) and using (21) results in a Gaussian cavity distribution q−i(z) =
N (z|µ−i,Σ−i), where µ−i is a dz×1 mean vector and Σ−i a dz×dz covariance matrix with
dz = Kd+K + 1.

Because the non-Gaussian likelihood term depends on w only through the linear trans-
formation hi = x̃T

i w, it can be shown (e.g., by differentiating (30) twice with respect to
µ−i) that the normalization term, mean and covariance of p̂i(z) can be exactly determined
by using the corresponding moments of the transformed lower dimensional random vector
ui = BT

i z = [wTx̃i,v
T]T = [hT

i ,v
T]T, where the transformation matrix Bi can be written

as

Bi =

[
x̃i 0
0 IK+1

]
. (31)

This results in significant computational savings because the size of Bi is dz × du, where
the dimensions of ui and z are du = 2K + 1 and dz = Kd+ K + 1 respectively. It follows
that the EP algorithm can be implemented by propagating the moments of ui using, for
example, the general algorithm described by Cseke and Heskes (2011, appendix C). The
same principle has been utilized to form computationally efficient algorithms also for linear
binary classification (Minka, 2001a; Qi et al., 2004) and multi-class classification (Riihimäki
et al., 2013).

Because of the previously described property, the first likelihood site approximation
t̃z,i(z) in (10) depends on z only through the linear transformation BT

i z (Cseke and Heskes,
2011):

t̃z,i(z) = exp

(
−1

2
zTBiT̃iB

T
i z + zTBib̃i

)
, (32)

where b̃i is a du × 1 vector of location parameters, and T̃i a du × du site precision matrix.
Multiplying the site approximations (32) together according to (16) results in a Gaussian
approximation q(z) = N (µ,Σ), where the mean vector and covariance matrix are given by

Σ =

(
n∑
i=1

BiT̃iB
T
i + Σ−10

)−1
and µ = Σ

(
n∑
i=1

Bib̃i + Σ−10 µ0

)
. (33)

In (33) the parameters of the prior term approximations t̃w,j(wj) ∝ N (µ̃w,j , σ̃
2
w,j) and

t̃v,k(vk) ∝ N (µ̃v,k, σ̃
2
v,k) and the prior p(v0) = N (0, σ2v0,0) are collected together in Σ0 =

diag([σ̃2w,1, ..., σ̃
2
w,Kd, σ̃

2
v,1, ..., σ̃

2
v,K , σ

2
v0,0

]) and µ0 = [µ̃w,1, ..., µ̃w,Kd, µ̃v,1, ..., µ̃v,K , 0]T. The
fully-coupled approximation defined by (32) and (33) can capture correlations between all
components of z because the off-diagonal elements of T̃i will typically become non-zero
during the EP updates. Because the base computational scaling of these updates is O(d3u)
and determining the tilted moments requires multi-dimensional numerical integrations, the
fully-coupled approximation is feasible only with a small number of hidden units or with
additional low rank approximations for the site precision parameters T̃i. These issues
together with computationally more efficient approximations are considered in the next
section.
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3.3.2 Factorized Approximation for the Network Weights

A drawback with the fully-coupled approximation (33) is that computing the covariance

matrix Σ scales as O
(

min
(
Kd+K+1,

∑
i rank(T̃i)

)3)
, which may not be feasible with large

values of d or K. In addition, an EP update for each likelihood site would require multiple
rank(T̃i) matrix inversion (or decomposition) to compute the mean and covariance of the
cavity distribution (21) and the new site parameters using (23). Determining the mean and
covariance of ui = Biz = [hT

i ,v
T]T is also computationally challenging when z is distributed

according to (30). If the observation model is Gaussian and θ is fixed, this requires at
least K-dimensional numerical quadratures (or other alternative approximations) that may
quickly become infeasible as K increases. By adopting suitable independence assumptions
between v and the input weights wk associated with the different hidden units, the mean
and covariance of ui can be approximated using only 1-dimensional numerical quadratures
as will be described in Section 3.4.

The structure of the correlations in the approximation (33) can be studied by dividing
T̃i into four blocks as follows:

T̃i =

[
T̃hihi T̃hiv

T̃vhi T̃i,vv

]
, (34)

where T̃hihi is a K×K matrix, T̃hiv = T̃T
vhi

a K×K+1 matrix, and T̃i,vv a K+1×K+1

matrix. The element [T̃hihi ]k,k′ contributes to the approximate posterior covariance between
wk and wk′ , and the k:th row of sub-matrix T̃hiv contributes to the approximate covariance
between wk and v. To form an alternative computationally more efficient approximation
we propose a simpler structure for T̃i. First, we approximate T̃hihi with a diagonal matrix,
that is, T̃hihi = diag(τ̃i), where only the k:th component of the vector τ̃i contributes to
the posterior covariance of wk. Secondly, we set T̃hiv = T̃T

vhi
= 0, and approximate T̃i,vv

with an outer-product of the form T̃i,vv = α̃iα̃
T
i . With this precision structure the site

approximation (32) can be factorized into terms depending only on the output weights v
or the input weights wk associated with the different hidden units k = 1, ...,K:

t̃z,i(z) = exp

(
−1

2
(α̃T

i v)2 + vTβ̃i

)
︸ ︷︷ ︸

=t̃v,i(v|α̃i,β̃i)

K∏
k=1

exp

(
−1

2
τ̃i,k(x

T
i wk)

2 + ν̃i,kw
T
k xi

)
︸ ︷︷ ︸

=t̃wk,i(wk|τ̃i,k,ν̃i,k)

, (35)

where the scalar site location parameters ν̃i,k now correspond to the first K elements of b̃i in
equation (32), that is, ν̃i = [ν̃i,1, ...ν̃i,K ]T = [b̃i,1, ..., b̃i,K ]T, and analogously, the site loca-
tion vector β̃i corresponds to the last K+1 entries of b̃i, that is, β̃i = [b̃i,K+1, ..., b̃i,2K+1]

T.
Equation (35) defines the parametric structure of the factorized likelihood site approxima-
tion already introduced in (11).

Combining the site approximations (35) according to (20) results in an independent
posterior approximation q(v) = N (µv,Σv) for the output weights and independent approx-
imations q(wk) = N (µwk ,Σwk) for the input weights associated with the different hidden
units k = 1, ...,K. The approximate mean and covariance of wk are given by

Σwk =
(
XTT̃wkX + Σ−1wk,0

)−1
and µwk = Σwk

(
XTν̃wk + Σ−1wk,0

µwk,0

)
, (36)
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where the diagonal matrix T̃wk = diag(τ̃wk) and the vector ν̃wk collect all the site pa-
rameters related to hidden unit k: τ̃wk = [τ̃1,k, ..., τ̃n,k]

T and ν̃wk = [ν̃1,k, ..., ν̃n,k]
T. The

parameters of the prior term approximations t̃w,j(wj) ∝ N (µ̃w,j , σ̃
2
w,j) related to hidden

unit k are collected in the diagonal matrix Σwk,0 = diag(σ̃2w,m+1, ..., σ̃
2
w,m+d) and vector

µwk,0 = [µ̃w,m+1, ..., µ̃w,m+d]
T, where m = K(k − 1). The approximate mean and covari-

ance of the output weights v are given by

Σv =

(
n∑
i=1

α̃iα̃
T
i + Σ−1v,0

)−1
and µv = Σv

(
n∑
i=1

β̃i + Σ−1v µv,0

)
, (37)

where the parameters of the prior term approximations t̃v,k(vk) ∝ N (µ̃v,k, σ̃
2
v,k) are collected

in the diagonal matrix Σv,0 = diag(σ̃2v,1, ..., σ̃
2
v,K) and vector µv,0 = [µ̃v,1, ..., µ̃v,K ]T.

For each hidden unit k, approximation (36) can be interpreted as an independent linear
model with Gaussian likelihood terms N (ỹi,k|xT

i wk, τ̃
−1
i,k ), where the pseudo-observations

are given by ỹi,k = τ̃−1i,k ν̃i,k. The approximation for the output weights (37) has no explicit
dependence on the input vectors xi but later we will show that the independence assumption
results in a similar dependence on expected values of the hidden unit activations gi = g(hi)
taken with respect to the cavity distributions q−i(w) and q−i(v) (see Appendix E).

One sequential EP update for each of the n likelihood sites requires either one rank(T̃i)
covariance matrix update for the fully-correlated approximation (33), or K+1 rank-one co-
variance matrix updates for each of the factorized approximations (36) and (37). In parallel
EP these updates are replaced with a single re-computation of the posterior representation
after each sweep over all the n sites. In practice, one parallel iteration step over all the sites
can be much faster compared to a sequential EP iteration, especially if d or K are large,
but parallel EP may require larger number of iterations for overall convergence.

3.4 Implementing the EP Algorithm

In this section, we describe the computational implementation of the EP algorithm result-
ing from the choice of the approximating family described in Section 3.3. Because the
non-Gaussian likelihood term in the tilted distribution (22) depends on z = [wT,vT]T only
through the linear transformation ui = [hT

i ,v
T]T = BT

i z, the EP algorithm can be im-
plemented by iteratively determining and matching the moments of the lower-dimensional
random vector ui instead of z (Cseke and Heskes, 2011, appendix C). The computations
can be further facilitated by using the factorized approximation (19): Because the hidden
activations hi,k = xT

i wk related to the different hidden units k = 1, ...,K are independent
of each other and v, it is only required to propagate the marginal means and covariances of
hi,k and v to determine the new site parameters. This enables more efficient formulas for
determining the cavity distributions (21), the tilted distributions (22), and site parameter
updates from (23). Details of the computations required for updating the likelihood site
approximations are presented in Appendices A–E. The main properties of the procedure
can be summarized as follows:

• Appendix A presents the formulas for computing the parameters of the cavity dis-
tributions (21). The factorized approximation (19) leads to efficient computations,
because the cavity distribution can be factored as q−i(z) = q−i( v)

∏K
k=1 q−i(wk).
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The parameters of q−i(hi,k) resulting from the transformation hi,k = xT
i wk can be

computed using only scalar manipulations of the mean and covariance of q(hi,k) =
N (xT

i µwk ,x
T
i Σwkxi). Because of the outer-product structure of t̃v,i(v) in equation

(35), also the parameters of q−i(v) can be computed using rank-one matrix updates.

• Appendix B describes how the marginal mean and covariance of v with respect to
the tilted distribution (22) can be approximated efficiently using a similar Gaussian
approximation as is used in the UKF filter (Wan and van der Merwe, 2000). Because
of the factorized approximation (19) only one-dimensional quadratures are required
to compute the means and variances of g(hi,k) with respect to q−i(hi,k) and no mul-
tivariate quadrature or sigma-point approximations are needed.

• Appendix C presents a new way to approximate the marginal distribution of p̂i(hi,k)
resulting from (22). In preliminary simulations we found that an approach based
on the unscented transform and the approximate linear filtering paradigm used in
Appendix B did not capture well the information from the left-out observation yi.
This behavior was more problematic when there was a large discrepancy between
the information provided by the likelihood term through the marginal tilted distri-
bution p̂i(yi|hi,k) =

∫
p(yi|fi, θ)ηq−i(v)q−i(hi,−k)dvdhi,−k and the cavity distribution

q−i(hi,k), where hi,−k includes all components of hi except hi,k.
2

The improved numerical approximation of p̂i(hi,k) is obtained by approximating the
cavity distribution q−i(fi|hi,k), that is, the distribution of the latent function value

fi =
∑K

k=1 g(hi,k)+v0 resulting from q−i(hi,−k,v|hi,k) = q−i(v)
∏
k′ 6=k q−i(hi,−k), with

a Gaussian distribution and carrying out the integration over fi analytically. Accord-
ing to the central limit theorem we expect this approximation to become more accurate
as K increases. A similar approach has been used by Ribeiro and Opper (2011) to form
factorized EP approximations for the input weights with a linear single-layer model
structure. They used the central limit argument to form Laplace approximations for
the marginal tilted distributions resulting from univariate Gaussian approximations
for the input weights. We utilize the same idea to approximate the tilted moments
of the transformed variables hi,k = wT

k xi using numerical quadratures and an input
weight approximation that can be factorized between the different hidden units.

• Appendix D generalizes the tilted moment estimations of Appendices B and C for
approximate integration over the posterior uncertainty of θ = log σ2. Computation-
ally convenient marginal mean and covariance estimates for v, {hi,k}Kk=1, and θ can
be obtained by utilizing the independent posterior approximation for θ and the same
Gaussian approximation for q−i(fi) as in Appendix C. Compared to the tilted mo-
ments approximations of v and hi with fixed θ, the approach requires five additional
univariate quadratures for each likelihood term, which can be facilitated by utilizing
the same function evaluations.

2. The UKF approach was found to perform better with smaller values of η because then a fraction of
the site approximation from the previous iteration is left in the cavity, which can reduce the possible
multimodality of p̂i(hi,k).
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• Appendix E presents expressions for the new site parameters obtained by applying
the results of Appendices A–D in the moment matching condition (23). Because of
the factorization assumption in (19) and the UKF-style approximation in the tilted
moment estimations (Appendix B), the parameters of the likelihood term approxima-
tions related to v (see (35)) can be written as α̃i = mgi σ̃

−1
v,i and β̃i = mgi σ̃

−2
v,i ỹv,i,

where [mgi ]k =
∫
g(hi,k)q−i(hi,k)dhi,k and ỹv,i can be interpreted as Gaussian pseudo-

observations with noise variances σ̃2v,i (compare with equation (55) and (56)). Thus,
by comparing the parameter expressions with (37), the output-layer approximation
q(v) can be interpreted as a linear model where the cavity expectations of the hidden
unit outputs g(hi,k) = g(wT

k xi) are used as input features. The EP updates for the
site parameters τ̃i,k and ν̃i,k related to the input weight approximations q(wk) require
only scalar operations similarly to other standard EP implementations (Minka, 2001a;
Rasmussen and Williams, 2006).

Appendix F summarizes an EP algorithm that can be used to implement the EP up-
dates for the prior site approximations described in Section 3.2.2. Appendix G presents
some practical tips to improve the numerical stability of the EP updates proposed in Ap-
pendices A–F. Appendix H describes how the predictive distribution p(y∗|x∗) related to
a new input vector x∗ can be approximated efficiently using q(v), {q(wk)}Kk=1, and q(θ).
Note that the prior scale approximations {q(φl)}Ll=1 are not needed in the predictions be-
cause information from the hierarchical input weight priors is approximately absorbed in
{q(wk)}Kk=1 during the EP iterations. Appendix I shows how the EP marginal likelihood
approximation, logZEP ≈ log p(y|X,γ), conditioned on fixed hyperparameters γ, can be
computed in a numerically efficient and stable manner. The marginal likelihood estimate
can be used to monitor convergence of the EP iterations, to determine marginal MAP
estimates of the fixed hyperparameters, and to compare different model structures.

3.5 General Algorithm Description and Practical Considerations

Algorithm 1 collects together all the computational components described in Section 3.4 and
Appendices A–F into a single EP algorithm. In this section we will discuss the initializa-
tion, the order of updates between the different term approximations, and the convergence
properties of the algorithm.

3.5.1 Scheduling Between the Likelihood and Prior term updates

In algorithm 1, we have combined the EP updates for the site approximations of the like-
lihood terms p(yi|vTg(x̃T

i w), θ) (lines 2-7) and the prior terms p(wj |φlj ) (line 1) and p(vk)
(line 8) by running them in turn. Because all information from the observations y is con-
veyed by the likelihood term approximations, it is sensible to iterate first the parameters τ̃i
and ν̃i of {t̃wk,i(wk)}Kk=1 together with the parameters α̃i and β̃i of t̃v,i(v) to obtain a good
data fit while keeping the prior term approximations of p(wj |φlj ) and p(vk) fixed so that all
the output weights remain effectively positive and all the input weights have equal prior dis-
tributions. Otherwise, depending on the scales of the priors, many hidden units and input
weights could be effectively pruned out of the model by the prior sites {t̃v,k(vk|µ̃v,k, σ̃2v,k)}Kk=1

and {t̃w,j(wj |µ̃w,j , σ̃2w,j), t̃φ,j(φlj |µ̃φ,j , σ̃2φ,j)}Kdj=1: For example, the location parameters µ̃w,j
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Algorithm 1: An EP algorithm for a two-layer MLP-network with non-Gaussian hierar-
chical priors on the weights.

Initialize q(v|µv,Σv), {q(wk|µwk ,Σwk)}Kk=1, q(θ|µθ, σ2θ), and {q(φl|µφl , σ2φl)}
L
l=1 using site

approximations
{
t̃w,i(w|τ̃i, ν̃i), t̃v,i(v|α̃i, β̃i), t̃θ,i(θ|µ̃θ,i, σ̃2θ,i)

}n
i=1

,
{
t̃v,k(vk|µ̃v,k, σ̃2v,k

}K
k=1

,

and
{
t̃w,j(wj |µ̃w,j , σ̃2w,j), t̃φ,j(φlj |µ̃φ,j , σ̃2φ,j

}Kd
j=1

(equations (17), (18), (36), and (37)).

repeat

if sufficient convergence in {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃
2
θ,i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1 then

1 Run the EP algorithm from Appendix F to update the parameters {µ̃w,j , σ̃2w,j ,
µ̃φ,j , σ̃

2
φ,j}Kdj=1 of the prior site approximations t̃w,j(wj) and t̃φ,j(φlj ) from (14).

end
Loop over the likelihood terms to update t̃v,i(v), {t̃wk,i(wk)}Kk=1, and t̃θ,i(θ):
for i← 1 to n do

2 Compute the means and covariances of the cavity distributions: {q−i(hi,k)}Kk=1

and q−i(v) using equations (39) and (40).
If θ unknown, compute the cavity distribution q−i(θ) using (41).

3 Compute the means and covariances of the tilted distributions q̂i(v) = N (µ̂i, Σ̂i)

and q̂i(hi,j) = N (m̂i, V̂i) for k = 1, ...,K:
If θ known, use (45) and (49).
Otherwise, use (51), (52), and (54), and compute q̂i(θ) = N (µ̂θ,i, σ̂

2
θ,i) from (50).

4 Update the site parameters τ̃i, ν̃i, α̃i, β̃i using (57), (59), and (60).
If θ unknown, update µ̃θ,i, σ̃

2
θ,i using (61).

if sequential updates then
5 Rank-1 updates for {q(wk)}Kk=1 according to the changes in {τ̃i,k, ν̃i,k}Kk=1.

If θ unknown, update q(θ) according to the changes in {µ̃θ,i, σ̃2θ,i}.
end

end
if parallel updates then

6 Recompute the approximations {q(wk)}Kk=1 using {τ̃i, ν̃i}ni=1 and {µ̃w,j , σ̃2w,j}Kdj=1.

If θ unknown, recompute q(θ) using
{
µ̃θ,i, σ̃

2
θ,i)
}n
i=1

and {µθ,0, σ2θ,0}.
end

7 Recompute (parallel update) q(v) using {α̃i, β̃i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1.

if sufficient data fit then
8 Run the EP algorithm from Appendix F to update the parameters {µ̃v,k, σ̃2v,k}Kk=1

of the prior site approximations t̃v,k(vk) from (13) and recompute
q(v) = N (µv,Σv).

end

until convergence or maximum number of iterations exceeded

would push the approximate marginal distribution q(wj) towards zero and the scale param-
eter σ̃2w,j would adjust the approximate variance of wj to the level reflecting the fixed scale

prior definition p(φlj ) = N (µφ,0, σ
2
φ,0) in case enough information was not conveyed from
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the observations due to poorly fitted likelihood site approximations. To enable convenient
implementation of various learning strategies, different damping factors were assigned to
the different types of likelihood term approximations t̃v,i(v), t̃wk,i(wk), and t̃θ,i(θ). For
example, only one of the approximations, say q(v), can by updated simply by setting the
damping factors related to t̃wk,i(wk) and t̃θ,i(θ) to zero. Similarly individual damping fac-
tors were assigned to the prior term approximations t̃v,k(vk) and {t̃w,j(wj), t̃φ,j(φlj )}. A
more detailed discussion about damping and scheduling of the likelihood and prior site
updates will be given in Sections 3.5.5 and 3.5.6.

3.5.2 Monitoring Convergence and Model Quality

During the iterations, the data fit can be assessed by monitoring the convergence of the ap-
proximate LOO predictive density logZLOO =

∑
i log p(yi|y−i,X) ≈

∑
i log Ẑi that should

increase steadily in the beginning of the learning process as the model adapts to the obser-
vations y. In contrast, the approximate marginal likelihood logZEP ≈ log p(y|X) depends
more on the model complexity and usually fluctuates more during the learning process
because many different model structures can produce similar predictions. Convergence
of the EP algorithm and quality of the approximation can be assessed by checking the
consistency between the tilted distributions and the posterior approximation. For the like-
lihood site updates, we monitor the differences of the means and covariances of p̂i(v),
p̂i(hi,k), and p̂i(θ) from the corresponding marginal approximations q(v) = N (µv,Σv),
q(hi,k) = N (xT

i µwk ,x
T
i Σwkxi), and q(θ) = N (µθ, σ

2
θ) for all sites i = 1, ..., n and hidden

units k = 1, ...,K. Similarly for the prior site updates, we monitor the differences of p̂j(wj),
p̂j(φlj ), and p̂k(vk) from the corresponding marginal approximations for all j = 1, ...,Kd
and k = 1, ...,K, respectively. Note that the site parameter updates in (60), (61), and (65)
become zero when these consistency conditions are satisfied.

3.5.3 Initial Parameter Values and Early Iterations

We initialized the algorithm with 10-20 iterations over the likelihood sites with θ fixed to a
sufficiently small value, such as σ2 = exp(θ) = 0.32, to obtain a good data fit before learning
θ from the data. The parameters of the input weight priors were initialized to µ̃w,j = 0
and σ̃2w,j = 0.5, where we have assumed that the target variables y and the columns of
X containing the input variables are normalized to zero mean and unit variance. Larger
initial variances σ̃2w,j = 22 can be used for the input bias terms j = d, 2d, ...,Kd so that
the network is able to distribute the hidden units more flexibly to different locations of
the input space. The prior means of the output weights µ̃v,k were initialized with linear
spacing in some appropriate interval, for example [1, 2], and the prior variances were set to
sufficiently small values such as σ̃2v,k = 0.22 so that the elements of the approximate mean
vector µv remain positive during the initial iterations.

We initialized the likelihood site parameters {τ̃i, ν̃i, α̃i, β̃i}ni=1 to zero, which means
that in the beginning all hidden units produce zero expected outputs mgi = 0 resulting in
zero messages to the output weight approximation t̃v,i(v|α̃i, β̃i) in equations (55) and (56).
However, because of the initialization of µ̃v,k and σ̃2v,k, the initial approximate means of
the output weights [µv]k = µ̃v,k will be positive and nonidentical. It follows that different
nonzero messages will be sent to the input weights according to (60) because the tilted
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moments m̂i,k and V̂i,k of hi,k as given by (49) will differ from the corresponding marginal
approximations mi,k = xT

i µwk and Vi,k = xT
i Σwkxi. If in the beginning all the hidden

units were updated simultaneously with the same priors for the output weights, they would
get very similar approximate posteriors. In this case all the computational units would
do more or less the same thing but sufficiently many iterations would eventually result in
different values for all the input weight approximations q(wk). This learning process can
be accelerated by the previously described linearly spaced prior means µ̃v,j or by updating
only one hidden unit in the beginning and increasing the number of updated units one by
one after every few iterations. The rationale behind the latter incremental scheme is that
the first unit will usually explain the dominant linear relationships between x and y and
the remaining units will fit to more local nonlinearities.

An alternative approach that can speed up the learning is to initialize the prior location
parameters µ̃w,j related to the input bias terms (j = d, 2d, ...,Kd) to random values, which
can be interpreted as placing the hidden unit activations randomly in different locations
of the input space. Also the prior location parameters µ̃w,j of the input weights (j =
k + 1, ..., k + d − 1 for k = 1, ...,K) could be initialized to random or some preselected
values, which can be interpreted as starting the learning process from an initial feature
embedding. The prior scale parameters σ̃2w,j can be adjusted to control how strongly these
prior constraints are enforced. After some iterations for the likelihood sites, the prior
parameters can be relaxed and learned from data as described in the next section.

3.5.4 Relaxing the Initial Weight Prior and Noise Approximations

The positive Gaussian output weight priors defined at the initialization of µ̃v,k and σ̃2v,k can
be relaxed after the initial iterations by running the EP algorithm on the approximations
t̃v,k(vk) of the truncated prior terms (5) (line 8 in Algorithm 1). The EP updates for the
truncated prior terms ensure that the mass of the approximate density q(v) will remain
on the positive values for each component of v. For this same reason we do only parallel
updates on q(v) on line 7 of Algorithm 1, because otherwise we would have to run the EP
updates for the output weight priors (line 8) after each sequential update of q(v). This
parallel update scheme is discussed further in 3.5.5.

The EP updates for the observation noise θ (lines 2-5 in Algorithm 1) can be started
after the initial iterations with fixed θ and weight priors. We initialized the site parameters
{µ̃θ,i, σ̃2θ,i}ni=1 to zero, and at the first iteration for θ we also kept parameters τ̃i, ν̃i, α̃i, and

β̃i fixed so that the initial fluctuations of µ̃θ,i and σ̃2θ,i do not affect the approximations q(v)
and q(wk).

After sufficient convergence is obtained in the EP iterations for the parameters of the
likelihood sites {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃

2
θ,i}ni=1 and the parameters of the output weight prior

sites {µ̃v,k, σ̃2v,k}Kk=1, EP updates can be started for the parameters {µ̃w,j , σ̃2w,j , µ̃φ,j , σ̃2φ,j}Kdj=1

of the prior term approximations t̃w,j(wj) and t̃φ,j(φlj ) (line 1 in Algorithm 1). This en-
sures that input weights and hidden units are not pruned out of the model before enough
information is propagated from the observations to the likelihood term approximations.
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3.5.5 Scheduling and Convergence of the Likelihood Term Iterations

If all the prior term approximations together with {t̃w,i(w|τ̃i, ν̃i)}ni=1 are kept fixed, that is,
q(wk) are not updated, the EP algorithm for the site approximations t̃v,i(v|α̃i, β̃i) related
to q(v) converges typically in 5-10 iterations. In addition, if only the site approximations
t̃wk,i(wk|τ̃i,k, ν̃i,k) related to only one hidden unit k are updated, the algorithm will typically
converge in less than 10 iterations. The fast convergence is expected in both settings because
in both cases the iterations can be interpreted as a standard EP algorithm on a linear
model with known input variables. However, updating only one hidden unit at a time will
induce moment inconsistencies between the approximations and the corresponding tilted
distributions of the other K−1 hidden unit activations hi,k and the output weights v. This
means that such update scheme would require many separate EP runs for each hidden unit
and v to achieve overall convergence, and in practice it was found more efficient to update
all of them together simultaneously with a sufficient level of damping.

The updates on α̃i and β̃i were damped more strongly by δ ∈ 0.2 so that subsequent
changes in q(v) would not inflict unnecessary fluctuations in the parameters of q(wk), which
are more difficult to determine and converge more slowly compared with q(v). In other
words, we wanted to change the output weight approximations more slowly so that there is
enough time for the messages to propagate between the different hidden units. For the same
reason, on the line 7 of Algorithm 1, parallel updates are done on q(v) whereas the user can
choose between sequential and parallel updates for q(wk) (lines 5 and 6). With sequential
posterior updates for q(wk), damping the updates of τ̃i and ν̃i with δ ∈ [0.5, 0.8] was found
sufficient whereas with parallel updates much more damping (δ < 0.5) was usually required.
If the number of input features is very large, it can be more efficient to use parallel updates
for q(wk) with a larger amount of damping in a similar framework as described by Gerven
et al. (2009). In this large scale parallel learning scheme it may also be useful to update
only one hidden unit or a subset of them at a time.

3.5.6 Scheduling and Convergence of the Prior Term Iterations

The EP updates for the site approximations of the prior terms p(vk) and p(wj |φlj ) are
computationally less expensive and converge faster compared with the likelihood term ap-
proximations. With fixed values of {τ̃i, ν̃i, α̃i, β̃i}ni=1, typically only 5-10 iterations were
required for convergence of the updates on the prior term approximations t̃v,k(vk) in line
8 of Algorithm 1, because q(v) was allowed to change relatively slowly by damping the
updates on α̃i and β̃i in line 4. Because the relative time required for these computations is
negligible compared with the likelihood term updates in lines 2-7, we ran the EP algorithm
for t̃v,k(vk) to convergence after each parallel update of q(v) on line 7 to make sure that the
components of v are distributed at positive values at all times.

With fixed likelihood term approximations, typically 10-40 iterations were required for
convergence of the EP updates on the site approximations of p(wj |φlj ) in line 1 of Algorithm
1. More iterations are required compared to the EP algorithm on p(vk), because information
needs to be propagated in multiple passes between the different hidden unit approximations
q(wk) via the hierarchical scale parameter approximations q(φl). After sufficient conver-
gence is achieved for the likelihood term updates with the initial Gaussian priors defined
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using µ̃w,j and σ̃2w,j , at least two sensible update schemes can be considered for updating
the site approximations of the input weight priors:

1. The EP algorithm in line 1 is run only once until convergence and then the other
parameters {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃

2
θ,i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1 are iterated to convergence

with fixed {µ̃w,j , σ̃2w,j}Kdj=1.

2. The EP algorithm in line 1 is run once until convergence and after that only one inner
iteration is done on {µ̃w,j , σ̃2w,j , µ̃φ,j , σ̃2φ,j}Kdj=1 in line 1.

In the first scheme a fixed sparsity-favoring Gaussian prior is constructed using the current
likelihood term approximations whereas in the second scheme the prior is iterated further
within the EP algorithm for the likelihood terms. The second scheme usually converges
more slowly and requires more damping. In our experiments, damping the updates by
δ ∈ [0.5, 0.7] and choosing a fraction parameter η ∈ [0.7, 0.9] resulted in numerically stable
updates and convergence for the EP algorithms on the prior term approximations.

3.5.7 Fractional EP Updates

Adjusting the fraction parameter η when the likelihood term approximations are updated
according to equations (21) – (23) can have a significant effect on the behavior of the
algorithm and the quality of the resulting approximation. The tilted distribution p̂i(hi,k)
approximated using (49) or (54) can become multimodal if the prediction resulting from the
cavity distributions q−i(v) and q−i(hi) does not fit well the left out observation yi. More
precisely, there can exist one mode corresponding to the cavity q−i(hi,k) and one to the
values of hi,k that result in good fit for the observation yi. If η is close to one and the
discrepancy between yi and the cavity prediction is large, the resulting multimodal tilted
distribution is approximated with a wide Gaussian distribution q̂i(hi,k) = N (hi,k|m̂i,k, V̂i,k)
to represent the uncertainty of both modes. If there are no other data points supporting
the deviating information provided by yi, the approximation needs to widen the predictive
distribution at xi considerably requiring large changes to τ̃i and ν̃i based on only one site
term.

These kind of large local updates corresponding to sites with large discrepancies are
inherently more challenging in terms of finding stable fixed points of the message passing
algorithm and require therefore more damping. Furthermore, the approximation may not
fit well the training data if there are isolated data points that cannot be considered as
outliers. If smaller value of η is chosen, for example η ∈ [0.4, 0.7], a fraction 1 − η of the
site approximations {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1 from the previous iteration is left in the cavity
distribution and the discrepancy between the cavity prediction and yi is usually smaller.
Consequently, the model fits more strongly to the training data, the EP updates are nu-
merically more robust, and usually less damping is required. However, in the experiments
we found that with smaller values of η the model can also overfit, because more and more
past information is accumulated in p̂i(hi,k) during subsequent iterations. Therefore we set
η = 0.95 and applied more damping for the likelihood term updates as described already in
Section 3.5.5. The tilted distributions related to the EP updates for the prior terms approx-
imations are not likely to become multimodal unless d or K are not very large compared to
n, which is the typical setting in highly underdetermined linear models, or extremely sparse
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prior settings are chosen. In our experiments the prior term approximations were not found
to be sensitive to the choice of the fraction parameter which is why we used smaller values
η = [0.7, 0.9] to improve numerical stability as described in Section 3.5.6.

4. Experiments

First, three case studies with simulated data were carried out to illustrate the properties
of the proposed EP-based neural network approach with sparse priors (NN-EP). Case 1
compares the effects of integration over the uncertainty resulting from a sparsity-favoring
prior with a point-estimate based ARD solution. Case 2 illustrates the benefits of sparse
ARD priors on regularizing the proposed NN-EP solution in the presence of irrelevant
features and various input effects with different degree of nonlinearity. Case 3 compares
the parametric NN-EP solution to an infinite Gaussian process network using observations
from a discontinuous latent function. In cases 1 and 3, comparisons are made with an
infinite network (GP-ARD) implemented using a Gaussian process with a neural network
covariance function and ARD-priors with separate variance parameters for all input weights
(Williams, 1998; Rasmussen and Williams, 2006). The neural-network covariance function
for the GP-prior can be derived by letting the number of hidden units approach infinity in
a 2-layer MLP network that has cumulative Gaussian activation functions and fixed zero-
mean Gaussian priors with separate variance (ARD) parameters on the input-layer weights
related to each input variable (Williams, 1998). Point estimates for the ARD parameters,
the variance parameter of the output weights, and the noise variance were determined
by optimizing the marginal likelihood with uniform priors on the log-scale. Finally, the
predictive accuracy of NN-EP is assessed with four real-world data sets and comparisons
are made with a neural network GP with a single variance parameter for all input features
(GP), a GP with ARD priors (GP-ARD), and a neural network with hierarchical ARD
priors (NN-MC) inferred using MCMC as described by Neal (1996).

4.1 Case 1: Overfitting of the ARD

The first case illustrates the overfitting of ARD with a similar example as presented by Qi
et al. (2004). Figure 2 shows a two-dimensional regression problem with two relevant inputs
x1 and x2. The data points are obtained from three clusters, {f(x) = 1|x1 > 0.5, x2 > 0.5},
{f(x) = 0|0.5 > x1 > −0.5, 0.5 > x2 > −0.5}, and {f(x) = 0.8|x1 < −0.5, x2 < −0.5}. The
noisy observations were generated according to y = f(x) + ε, where ε ∼ N (0, 0.12). The
observations can be explained by using a combination of two step functions with only either
one of the input features but a more robust model can be obtained by using both of them.

Subfigure (a) shows the predictive mean of the latent function f(x) obtained with the
optimized GP-ARD solution. Input x2 is effectively pruned out and almost a step function
is obtained with respect to input x1. Subfigure (b) shows the NN-EP solution with K = 10
hidden units and Laplace priors with one common unknown scale parameter φ1 on the input
weights w. The prior for φ1 was defined as φ1 ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.1) and

σ2φ,0 = 1.52. The noise variance σ2 was inferred using the same prior definition for both

models: θ = log(σ2) ∼ N (µθ,0, σ
2
θ,0), where µθ,0 = 2 log(0.05) and σ2θ,0 = 1.52. NN-EP

produces a much smoother step function that uses both of the input features. Despite of
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Figure 2: Case 1: An example of the overfitting of the point-estimate based ARD on a
simulated data set with two relevant input features. (a) A GP model with a neural
network covariance function and point-estimates for the ARD parameters. (b)
An EP approximation for a neural network with 10 hidden units and independent
Laplace priors with one common unknown scale parameter φ on the input weights.
(c) and (d) The 95 % approximate marginal posterior probability intervals for the
input weights and the output weights of the EP-based neural network.

the sparsity favoring Laplace prior, the NN-EP solution preserves the uncertainty on the
input variable relevances. This shows that the approximate integration over the weight
prior can help to avoid pruning out potentially relevant inputs.

Subfigure (c) shows the 95% approximate marginal posterior probability intervals de-
rived from the Gaussian approximations q(wk) with the same ordering of the weights as
in vector zT = [wT

1 , ...,w
T
K ] (every third weight corresponds to the input bias term). The

vertical dotted lines separate the input weights associated with the different hidden units.
Subfigure (d) shows the same marginal posterior intervals for the output weights computed
using q(v). Only hidden units 5 and 6 have clearly nonzero output weights and input
weights corresponding to the input variables x1 and x2 (see the first two weight distribu-
tions in triplets 5 and 6 in panel (c)). For the other hidden units, the input weights related
to x1 and x2 are distributed around zero and they have negligible effect on the predictions.
In panel (c), the third input weight distribution corresponding to the bias term in each
triplet are distributed in nonzero values for many unused hidden units but these bias effects
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affect only the mean level of the predictions. These nonzero bias weight values may be
caused by the observations not being normalized to zero mean. The weights corresponding
to hidden unit 1 differ from the other unused units, because a linear action function was as-
signed to it for illustration purposes. If required, a truly sparse model could be obtained by
removing the unused hidden units and running additional EP iterations until convergence.

4.2 Case 2: The Effect of Sparse Priors in a Regression Problem Consisting of
Additive Input Effects with Different Degree of Nonlinearity

The second case study illustrates the effects of sparse priors using a similar regression
example as considered by Lampinen and Vehtari (2001). In our experiments we found
two main effects from applying sparsity-promoting priors with adaptive scale parameters
φ = [φ1, ..., φL] on the input-layer. Firstly, the sparse priors can help to suppress the
effects of irrelevant features and protect from overfitting effects in input variable relevance
determination as illustrated in Case 1 (Section 4.1). Secondly, sparsity-promoting priors
with adaptive prior scale parameters φ can mitigate the effects of unsuitable initial Gaussian
prior definitions on the input layer (too large or too small initial prior variances σ̃2w,j , see
Section 3.5 for discussion on the initialization). More precisely, the sparse priors with
adaptive scale parameters can help to obtain better data fit and more accurate predictions
by shrinking the uncertainty on the weights related to irrelevant features towards zero and
by allowing the relevant input weights to gain larger values which are needed in modeling
strongly nonlinear (or step) functions. Placing very large initial prior variances σ̃2w,j on all
weights enables the model to fit strong nonlinearities but the initial learning phase is more
challenging and prone to end up in poor local minima. In this section, we demonstrate
that switching to Gaussian ARD priors with adaptive scale parameter φ1, ..., φd after a
converged EP solution is obtained with fixed Gaussian priors can reduce the effects of
irrelevant features, decrease the posterior uncertainties on the predictions on f(x), and
enable the model to fit more accurately latent nonlinear effects.

A data set with 200 observations and ten input variables with different additive effects
on the target variable was simulated. The black lines in Figure 3 show the additive effects
as a function of each input variable xi,j . The targets yi were calculated by summing the
additive effects together and adding Gaussian noise with a standard deviation of 0.2. The
first input variable is irrelevant and variables 2-5 have an increasing linear effect on the
target. The effects of input variables 6-10 are increasingly nonlinear and the last three of
them require at least three hidden units for explaining the observations.

Figure 3(a) shows the converged NN-EP solution with fixed zero-mean Gaussian priors
on the input weights. The number of hidden units was set to K = 10 and the noise
variance σ2 was inferred using the prior definition µθ,0 = 2 log(0.05) and σ2θ,0 = 22. The
Gaussian priors were defined by initializing the prior site parameters of the input weights
as {µ̃w,j = 0, σ̃2w,j = 0.42}Kdj=1. The dark grey lines illustrate the posterior mean predictions
and the shaded light gray area the 95% approximate posterior predictive intervals of the
latent function f(x). The graphs are obtained by changing the value of each input in turn
from −5 to 5 while keeping the others fixed at zero. The training observations are obtained
by sampling all input variables linearly from the interval xi,j ∈ [−π, π]. Panel (b) shows
the resulting NN-EP solution when the Gaussian priors of the network in panel (a) are
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Figure 3: Case 2: An artificial regression problem where the observations are formed as a
sum of additive input effects dependent on ten input features. The true additive
effects are shown with black lines and the estimated mean predictions with dark
grey lines. The 95% posterior predictive intervals are shaded with light grey.
(a) A converged EP approximation for a neural network with ten hidden units
and fixed zero-mean Gaussian priors on the input weights. (b) The resulting EP
approximation when the Gaussian priors of the network in panel (a) are replaced
with Gaussian ARD priors with separate scale parameters φ1, ..., φd for all input
variables, and additional EP iterations are done until a new converged solution
is obtained. Figure 4 visualizes the approximate posterior distributions of the
parameters of the ARD network from panel (b).

replaced with Gaussian ARD priors with adaptive scale parameter φ1, ..., φd and additional
EP iterations are done until convergence. Prior distributions for the scale parameters were
defined as φl ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52. This prior definitions

favors small input variances close to 0.01 but enables also larger values around one. It should
be noted that the actual variance parameters σ̃2w,j of the prior site approximations can attain
much larger values from the EP updates.

With the Gaussian priors (Figure 3(a)), the predictions do not capture the nonlinear
effects very accurately and the model produces a small nonzero effect on the irrelevant input
1. Applying the ARD priors (Figure 3(b)) with additional iterations produces clearly more
accurate predictions on the latent input effects and effectively removes the predictive effect
of input 1. The overall approximate posterior uncertainties on the latent function f(x) are
also smaller compared with the initial Gaussian priors. We should note that the result of
panel (a) depends on the initial Gaussian prior definitions and choosing a smaller σ̃2w,j = 0.22

or optimizing it could give more accurate predictions compared with the solution visualized
in panel (a).

Figure 4 shows the 95% posterior credible intervals for the input weights w (a), the prior
scale parameters φ1, ..., φd (b), and the output weights v (c) of the NN-EP approximation
with ARD priors visualized in Figure 3(b). In panel (a) the input weights from the different
hidden units are grouped together according to the different additive input effects 1–10,
and the weights related to the linear effects 1–5 are scaled by 40 for illustration purposes,
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Figure 4: Case 2: Visualization of the model parameters related to the artificial regression
problem shown in Figure 3. Panels (a), (b), and (c) show the 95% marginal
posterior credible intervals for the input weights w, the scale parameters φ1, ..., φd,
and the output weights v of the neural network with Gaussian ARD priors from
Figure 3(b). In panel (a) the input weights associated with each additive input
effect (1-10) are grouped together (the bias terms are not shown). The weight
distributions related to the linear input effects 1–5 are much smaller compared
with the nonlinear effects 6–10, which is why they are scaled by 40 for better
illustration in panel (a).

because they are much smaller compared with the weights associated with the nonlinear
input effects 6–10. From panels (a) and (c) we see that only hidden units are 1–5 and 9
have clearly non-zero effect on the predictions. The linear effects of inputs 1–5 are modeled
by unit 3 that has very small but clearly nonzero input weights in panel (a) and a very
large output weight in panel (a). The input weights related to the irrelevant input 1 are all
zero in the 95% posterior credible level. By comparing panels (a) and (c) we can also see
that hidden units 1, 2, 4, 5, and 9 are most probably responsible for modeling the nonlinear
input effects 6-7 because of large input weights values. Panel (b) gives further evidence on
this interpretation because the scale parameters associated with the nonlinear input effects
6–10 are clearly larger compared to effects 1–5. The scale parameters associated with the
linear input effects 1–5 increase steadily as the magnitudes of the true effects increase.
These results are congruent with the findings of Lampinen and Vehtari (2001) who showed
by MCMC experiments that with MLP models the magnitudes of the ARD parameters
and the associated input weights also reflect the degree of nonlinearity associated with the
latent input effects, not only the relevance of the input features.

4.3 Case 3: Comparison of a Finite vs. Infinite Network with Observations
from a Latent Function with a Discontinuity

The third case study compares the performance of the finite NN-EP network with an in-
finite GP network in a one-dimensional regression problem with a strong discontinuity.
Figure 5 shows the true underlying function (black lines) that has a discontinuity at zero
together with the noisy observations (black dots). Panel (a) shows the predictive distri-
butions obtained using NN-EP with ten hidden units (K = 10) and Laplace priors with
one common scale parameter φ. The prior distribution for the scale parameter was defined
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Figure 5: Case 3: An artificial regression problem consisting of noisy observations (black
dots) generated from a latent function (black lines) that has a discontinuity at
zero. Panel (a) shows the mean predictions (dark grey line) and the 95% credible
intervals (light gray shaded area) obtained using the proposed EP approach for
a NN with ten hidden units and Laplace priors with one common scale param-
eter φ on the input weights. Panel (b) visualizes the corresponding predictive
distribution obtained using a GP with a neural network covariance function.

with µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52, and the noise variance σ2 was inferred from the

data using the prior definition µθ,0 = 2 log(0.05) and σ2θ,0 = 22. Panel (b) shows the corre-
sponding predictions obtained using a GP with a neural network covariance function. With
the GP network the noise variance was optimized together with the other hyperparameters
using the marginal likelihood. The finite NN-EP network explains the discontinuity with a
slightly smoother step compared to infinite GP network, but the GP mean estimate shows
fluctuations near the discontinuity. It seems that the infinite GP network fits more strongly
to individual observations near the discontinuity. This shows that a flexible parametric
model with a limited complexity may generalize better with finite amount of observations
even though the GP model includes the correct solution a priori. This is in accordance with
the results described by Winther (2001).

4.4 Predictive Comparisons with Real World Data

In this section the predictive performance of NN-EP is compared to three other nonlin-
ear regression methods using the following real-world data sets: the concrete quality data
(Concrete) analyzed by Lampinen and Vehtari (2001), the Boston housing data (Housing)
and the unnormalized Communities and Crime data (Crime) that can be obtained from the
UCI data repository (Bache and Lichman, 2013), and the robot arm data (Kin40k) utilized
by Schwaighofer and Tresp (2003).3 The number of observations n and the number of input
features d are shown in Table 1 for each data set. The Kin40k includes originally only 8

3. Kin40k data is based on the same simulation of the forward kinematics of an 8 link all-revolute robot
arm as the Kin family of data sets available at http://www.cs.toronto.edu/~delve/ except for lower
noise level and larger amount of observations.
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input features but we added 92 irrelevant uniformly sampled random inputs to create a
challenging feature selection problem. The columns of the input matrices X and the output
vectors y were normalized to zero mean and unit variance for all methods. The predictive
performance of the models was measured using the log predictive densities and the squared
errors evaluated with separate test data. We used 10-fold cross-validation with the Housing,
Concrete, and Crime data, whereas with Kin40k we chose randomly 5000 data points for
training and used the remaining observations for validation.

The proposed NN-EP solution was computed using two alternative prior definitions:
Laplace priors with one common scale parameter φ (NN-EP-LA), and Gaussian ARD priors
with separate scale parameters φ1, ..., φd for all inputs including the input bias terms (NN-
EP-ARD). With both prior frameworks, the hyperpriors for the scale parameters were
defined as φl ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52. This definition

encourages small input weight variances (around 0.012) but enables also large input weight
values if required for strong nonlinearities assuming the input variables are scaled to unit
variance. The noise level θ = log(σ2) was inferred from data with a prior distribution
defined by µθ,0 = 2 log(0.01) and σ2θ,0 = 22, which is a sufficiently flexible prior when the
output variables y are scaled to unit variance. The methods used for comparison include an
MCMC-based MLP network with ARD priors (NN-MC) and two GPs with a neural network
covariance function: one with common variance parameter for all inputs (GP), and another
with separate variance hyperparameters for all inputs (GP-ARD). With both GP models the
hyperparameters were estimated by gradient-based optimization of the analytically tractable
marginal likelihood (Rasmussen and Williams, 2006). For NN-MC and NN-EP, we set the
number of hidden units to K = 10 with the Housing, Concrete, and Crime data sets. With
the Kin40k data, we set K = 30 because n is large and fewer units were found to produce
clearly worse data fits.

Table 1 summarizes the means (mean) and standard deviations (std) of the log predictive
densities (LPDs) and the squared errors (SEs). Because the distributions of the LPD values
are heavily skewed towards negative values, we summarize also the lower 1% percentiles (prct
1%). Similarly, because the SE values are skewed towards positive values we summarize
also the 99% percentiles (prct 99%). These additional measures describe the quality of
the worst case predictions of the methods. Table 1 summarizes also the average relative
CPU times (cputime) required for parameter estimation and predictions using MATLAB
implementations. The GP models were implemented using the GPstuff toolbox (Vanhatalo
et al., 2013) and NN-MC was implemented using the MCMCstuff toolbox.4 The CPU times
were averaged over the CV-folds and scaled so that the relative cost for NN-EP is one. These
running time measures are highly dependent on the implementation, the tolerance levels
in optimization and iterative algorithms, and the number of posterior draws, and therefore
they are reported only to summarize the main properties regarding the scalability of the
different methods. When assessing the results with respect to the Housing and Concrete
data sets, it is worth noting that there is evidence that an outlier-robust observation model
is beneficial over the Gaussian model used in this comparison with both data sets (Jylänki
et al., 2011).

4. The MCMCstuff toolbox can be obtained from http://becs.aalto.fi/en/research/bayes/mcmcstuff/

and the GPstuff toolbox from http://becs.aalto.fi/en/research/bayes/gpstuff/.
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Housing log predictive density (LPD) squared error (SE)
(n=506, d=13) mean std prct 1% mean std prct 99% cputime

NN-EP-LA -0.44 1.64 -7.55 0.15 0.45 2.42 1.0
NN-EP-ARD -0.50 1.66 -6.31 0.17 0.49 1.60 1.0
NN-MC -0.08 1.17 -4.54 0.11 0.50 1.18 110.5
GP -0.29 2.35 -7.57 0.13 0.53 1.98 0.3
GP-ARD -0.20 2.00 -10.71 0.10 0.37 1.53 1.0

Concrete (n=215, d=27)

NN-EP-LA 0.18 0.85 -3.05 0.05 0.08 0.30 1.0
NN-EP-ARD 0.05 1.03 -4.61 0.05 0.11 0.57 0.8
NN-MC 0.22 1.52 -3.62 0.04 0.08 0.28 103.0
GP -0.07 1.70 -5.12 0.06 0.11 0.66 0.03
GP-ARD 0.15 1.98 -4.23 0.04 0.08 0.28 0.6

Crime (n=1993, d=102)

NN-EP-LA -0.83 0.89 -4.64 0.31 0.55 2.60 1.0
NN-EP-ARD -0.84 0.89 -4.81 0.31 0.55 2.75 0.2
NN-MC -0.80 0.93 -4.81 0.29 0.53 2.60 19.8
GP -0.81 0.91 -4.80 0.30 0.54 2.69 0.2
GP-ARD -0.81 1.01 -5.49 0.30 0.55 2.75 4.4

Kin40k (n=5000, d=100)

NN-EP-LA -0.59 0.89 -4.27 0.19 0.29 1.38 1.0
NN-EP-ARD 0.27 1.19 -4.63 0.03 0.08 0.37 0.9
NN-MC 0.49 1.51 -5.37 0.02 0.07 0.26 48.7
GP -1.15 0.72 -4.18 0.58 0.83 4.06 0.5
GP-ARD 0.64 1.11 -3.90 0.02 0.05 0.24 32.3

Table 1: A predictive assessment of the proposed EP approach for neural networks with
two different prior definitions: Laplace priors with one common scale parameter φ
(NN-EP-LA) and Gaussian ARD priors with separate scale parameters φ1, ..., φd
for all inputs (NN-EP-ARD). Comparisons are made with a neural network with
ARD priors inferred using MCMC (NN-MC), and two GPs with a neural network
covariance: one with a common variance hyperparameter for all inputs (GP), and
another with separate variance hyperparameters for all inputs (GP-ARD). The log
predictive densities are summarized with their means, standard deviations (std),
and lower 1% percentiles (prct 1%). The squared errors are summarized with their
means, standard deviations (std), and upper 99% percentiles (prct 99%).

Table1 shows that NN-EP-LA performs slightly better compared to NN-EP-ARD in
all data sets except in Kin40k, where NN-EP-ARD gives clearly better results. The main
reason for this is probably the stronger sparsity of the NN-EP-ARD solutions: In Kin40k
data there are a large number truly irrelevant features that should be completely pruned out
of the model, whereas with the other data sets most features have probably some relevance
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for predictions or at least they are not generated in a completely random manner. Further
evidence for this is given by the clearly better performance of GP-ARD over GP with the
Kin40k data.

If the mean log predictive densities (MLPDs) are considered, the NN-MC approach based
on a finite network performs best in all data sets except with Kin40k, where the infinite GP-
ARD network is slightly better. The main reason for this is probably the strong nonlinearity
of the true latent mapping, which requires a large number of hidden units, and consequently
the infinite GP network with ARD priors gives very accurate predictions. In pair-wise
comparisons the differences in MLPDs are significant in 95% posterior credible level only
with Housing and Kin40k data sets. In terms of mean squared errors (MSEs), GP-ARD is
best in all data sets except Crime, but with 95% credible level the pair-wise differences are
significant only with the Kin40k data. With the Kin40k data, the performance of NN-MC
could probably be improved by increasing K or drawing more posterior samples, because
learning the nonlinear mapping with a large number of unknown parameters and potentially
multimodal posterior distribution may require a very large number of posterior draws.

When compared with NN-MC and GP-ARD, NN-EP gives slightly worse MLPD scores
with all data sets except with Concrete. The pair-wise differences in MLPDs are significant
with 95% credible level in all cases except with the Concrete data. In terms of MSE scores,
NN-EP is also slightly but significantly worse with 95% credible level in all data sets. By
inspecting the std:s and 1% percentiles of the LPDs, it can be seen that NN-EP achieves
better or comparable worst case performance when compared to GP-ARD. In other words,
NN-EP seems to make more cautions predictions by producing less very high or very low
LPD values. One possible explanation for this behavior is that it might be an inherent
property of the chosen approximation. Approximating the possibly multimodal tilted dis-
tribution p̂(hi,k), where one mode is near the cavity distribution q−i(hi,k) and another at
the values of hi,k giving the best fit for yi, with an unimodal Gaussian approximation as
described in Appendix C, may lead to reduced fit to individual observations. Another pos-
sibility is that the EP-iterations have converged into a suboptimal stationary solution or
the maximum number of iterations has been exceeded. Doing more iterations or using an
alternative non-zero initialization for the input-layer weights might result in better data fit.
The second possibility is supported by the generally acknowledged benefits from different
initializations, for example, the unsupervised schemes discussed by Erhan et al. (2010), and
our experiments using the Kin40k data without the extra random inputs. We found that
initializing the location parameters µ̃v,k and µ̃w,j of the prior site approximations (13) and
(14) using a gradient-based MAP estimate of the weights w and v, and relaxing the prior
site approximations after initial iterations using the proposed EP framework, can result
in better MSE and MLPD scores. However, such alternative initialization schemes were
left out of these experiments, because our aim was to test how good performance could be
obtained using only the EP algorithm with the zero initialization described in Section 3.5.

The CPU times of Table 1 indicate that with small n the computational cost of NN-EP
is larger compared to GP-ARD, which requires only one O(n3) Cholesky decomposition
per analytically tractable marginal likelihood evaluation. However, as n increases GP-ARD
becomes slower, which is why several different sparse approximation schemes have been
proposed (see, e.g, Rasmussen and Williams, 2006). Furthermore, assuming a non-Gaussian
observation model, such as the binary probit classification model, GP or GP-ARD would
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require several O(n3) iterations to form Laplace or EP approximations for the marginal
likelihood at each hyperparameter configuration. With NN-EP, probit or Gaussian mixture
models could be used without additional computations. The computational cost of NN-EP
increases linearly with n and K, but as d increases the posterior updates of q(wk), which
scale as O(Kd3), become more demanding. The results of Table 1 were generated using
a sequential scheme for updating q(wk) (see Algorithm 1), which can be seen as larger
computational costs with respect to NN-MC with the Crime and Kin40k data sets. One
option with larger d is to use parallel EP updates, but this may require more damping
or better initialization for the input weight approximations. Another possibility would be
to use fully factorized posterior approximations in place of q(wk), or to assign different
overlapping subgroups of the input features into the different hidden units and to place
hierarchical prior scale parameters between the groups.

5. Discussion

In this article, we have described how approximate inference using EP can be carried out
with a two-layer NN model structure with sparse hierarchical priors on the network weights,
resulting in a novel method for nonlinear regression problems.

We have described a computationally efficient EP algorithm that utilizes independent
approximations for the weights associated with the different hidden units and layers to
achieve computational complexity scaling similar to an ensemble of K sparse linear models.
More generally, our approach can be regarded as a non-linear adaptation of the various EP
methods proposed for sparse linear regression models. This is achieved by constructing a
factorized Gaussian approximation for the posterior distribution resulting from the nonlin-
ear MLP model structure with a linear input layer, and adapting the algorithms proposed
for sparse linear models on the Gaussian approximations of the hidden units. Because
of the structure of the approximation, all existing methodology presented for facilitating
the computations in sparse linear models can be applied on the hidden unit approximations
separately. We have also introduced an EP framework that enables definition of flexible hier-
archical priors using higher level scale parameters that are shared by a group of independent
linear models (in our case the hidden units). The proposed EP approach enables efficient
approximate integration over these scale parameters simultaneously with the coefficients of
the linear models. We used this framework for inferring the common scale parameter of
Laplace priors assigned to the input weights, and to implement Gaussian ARD priors for
the input-layer. In this article, we have focused on the Gaussian observation model, but
the method can be readily extended to others as well (e.g., binary probit classification and
robust regression with Gaussian mixture models).

Using simple artificial examples we demonstrated several desirable characteristics of our
approach. The sparsity promoting priors can be used to suppress the confounding predictive
influences of possibly irrelevant features without the potential risk of overfitting associated
with point-estimate-based ARD priors. More precisely, the approximate integration over
the posterior uncertainty helps to avoid pruning out potentially relevant features in cases
with large uncertainty on the input relevances. Albeit more challenging to estimate, the
finite parametric model enables a posteriori inspection of the model structure and feature
relevances using the hyperparameter and weight approximations. Furthermore, the para-
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metric model structure can also be used to construct more constrained models by assigning
different input variables into different hidden units, defining overlapping groups for the in-
puts using the hierarchical scale priors, using different nonlinear activation functions for the
different hidden units, or using fixed interaction terms dependent on certain hidden units
as inputs for the output-layer.

In the derivations of the EP algorithm, we have also described different computational
techniques that could be useful in other models and approximation methods. These include
the EP approximation for the hierarchical priors on the scale parameters of the weights
that could be useful in combining sparse linear models associated with different subjects or
measurement instances, the noise estimation framework that could be used for estimating
the likelihood parameters in sparse linear models or approximate Gaussian filtering meth-
ods, and the proposed approach for approximating the tilted distributions of the hidden
unit activations that could be useful in forming EP approximations for observation models
involving sums of nonlinear functions taken from random variables with factorized Gaussian
posterior approximations.

A Matlab demonstration code implementing the proposed EP approach for neural net-
works will be made available at http://becs.aalto.fi/en/research/bayes/epnn/.
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Appendix A. Cavity Distributions with the Factorized Approximation

Because the likelihood terms p(yi|vTg(hi), θ) depend on the input weights w only through
the linear transformation hi = [hi,1, ..., hi,K ]T, where hi,k = wT

k xi, the EP updates can be
implemented by propagating the moments of hi and v. Assuming the factorized approx-
imation (19) for w1, ...,wK and v, the parameters of the cavity distribution (21) can be
determined from

q−i(w,v, θ) = q−i(v)

K∏
k=1

q−i(wk)q−i(θ) ∝ q(v)

K∏
k=1

q(wk)q(θ)
(
t̃v,i(v)

K∏
k=1

t̃wk,i(wk)t̃θ,i(θ)
)−η

,

which can be transformed into

q−i(hi,v, θ) = q−i(v)

K∏
k=1

q−i(hi,k)q−i(θ) (38)

by applying the transformation hi,k = wT
k xi. Plugging in q(wk) = N (µwk ,Σwk) from

(36) and the site approximations t̃wk,i(wk|τ̃i,k, ν̃i,k) from (35), and doing the transfor-
mation hi,k = wT

k xi, results in the following scalar mean and variance for q−i(hi,k) =
N (hi,k|m−i,k, V−i,k):

V−i,k = (V −1i,k − ητ̃i,k)
−1

m−i,k = V−i,k(V
−1
i,k mi,k − ην̃i,k), (39)
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where the mean and variance of hi,k under the current approximation q(wk) are denoted with
mi,k = xT

i µwk and Vi,k = xT
i Σwkxi, respectively. Similarly, plugging in q(v) = N (µv,Σv)

from (37) and the site approximation t̃v,i(v|α̃i, β̃i) from (35) gives the cavity distribution
q−i(v) = N (v|µ−i,Σ−i) with the mean and covariance given by

Σ−i = Σv + Σvα̃is
−1α̃T

i Σv

µ−i = a + Σvα̃is
−1α̃T

i a, (40)

where s = η−1 − α̃T
i Σvα̃i and a = µv − ηΣvβ̃i. Using q(θ) = N (µθ, σ

2
θ) from (17)

and the site approximation t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) from (12) gives the cavity distribution q−i(θ) =

N (µθ,−i, σ
2
θ,−i) with the mean and variance given by

σ2θ,−i =
(
σ−2θ − ητ̃θ,i

)−1
µθ,−i = σ2θ,−i(σ

−2
θ µθ − ην̃θ,i), (41)

where the site parameters are written in their natural exponential forms τ̃θ,i = σ̃−2θ,i and

ν̃θ,i = σ̃−2θ,i µ̃θ,i. Using (39), (40), and (41) the cavity evaluations can be implemented
efficiently: for the input weights wk and the noise parameter θ only scalar moments of
hi,1, ..., hi,K and θ need to be determined, and for the output weights v rank-one matrix
updates are required.

Appendix B. Tilted Moments of the Output Weights

To obtain closed-form expressions for the parameters of the likelihood site approximations
t̃v,i(v|α̃i, β̃i), {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, and t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) that satisfy the moment match-
ing condition (23), we need to form suitable approximations for the marginal means and
covariances of {hi,k = wT

k xi}Kk=1, v, and θ resulting from the tilted distribution (22). First,
we combine the cavity distribution (38) with the i:th likelihood term to obtain a transformed
tilted distribution

p̂i(hi,v, θ) ∝ p(yi|vTg(hi), θ)
ηq−i(v|µ−i,Σ−i)

K∏
k=1

q−i(hi,k|m−i,k, V−i,k)q−i(θ|µθ,−i, σ2θ,−i),

(42)

where the cavity parameters are given by (39)–(41). We start by assuming the noise level θ
known and present a simple and efficient way to approximate the moments of v in this ap-
pendix. In Appendix C we describe a more accurate approximation scheme for the marginal
moments of hi,k, and finally extend the presented approach for approximate integration over
q−i(θ) in Appendix D.

In the following we consider an approximate scheme which has already been utilized
in the unscented Kalman filtering framework for inferring the weights of a neural network
(Wan and van der Merwe, 2000). The approach is based on the assumption that the
probability distribution of the random vector [uT

i , ỹi]
T = [hT

i ,v
T, ỹi]

T that is given by
p̂i(hi,v, ỹi|θ) ∝ p(ỹi|vTg(hi), θ)

ηq−i(hi)q−i(v), can be reasonable well approximated with a
joint Gaussian approximation q̂i(hi,v, ỹi). Here random variable ỹi corresponds to a target
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yi, which we assume first unknown and condition upon later. The Gaussian approximation
is constructed as

q̂i(hi,v, ỹi) = N

m−i
µ−i
mỹi

 ,
 V−i 0 Σhi,ỹi

0 Σ−i Σv,ỹi

ΣT
hi,ỹi

ΣT
v,ỹi

Vỹi

 , (43)

where the marginal means and covariances of hi and v are set equal to the cavity moments
m−i = [m−i,1, ...,m−i,K ]T, V−i = diag(V−i,1, ..., V−i,K), µ−i and Σ−i defined in (39) and
(40), respectively. The dependencies of ỹi from hi and v are approximated linearly by
determining the central moments mỹi = E(ỹi|θ), Vỹi = Var(ỹi|θ), Σhi,ỹi = Cov(hi, ỹi|θ),
and Σv,ỹi = Cov(v, ỹi|θ) with respect to p̂i(hi,v, ỹi|θ) using, e.g., the unscented transform.
Approximations to the mean and covariance of the tilted distribution (42) can now be deter-
mined by conditioning on ỹi in the joint Gaussian approximation (43) to obtain E(ui|ỹi, θ)
and Cov(ui|ỹi, θ), and plugging in the observation ỹi = yi.

In our experiments, this approach was found sufficiently accurate for approximating
the moments of v, which is most likely explained by the conditional linear dependence
of fi on v via transformation fi = vTg(hi) in the observation model. To facilitate the
upcoming approximate integration over q−i(θ) in Appendix D, we rewrite the moments
mỹi , Vỹi , and Σv,ỹi in equation (43) using the latent function value fi = vTg(hi) instead of
the noisy observation ỹi. Because p̂i(ỹi,hi,v|θ) = p̂i(ỹi|fi, θ)p̂i(hi,v|θ), where p̂i(ỹi|fi, θ) ∝
N(ỹi|fi, exp(θ))η ∝ N(ỹi|fi, exp(θ)/η) and p̂i(hi,v|θ) ∝ q−i(hi)q−i(v), we can write the
required moments as

mỹi = E (E(ỹi|fi, θ)|θ) = E(fi|θ) = mfi

Vỹi = Var (E(ỹi|fi, θ)|θ) + E (Var(ỹi|fi, θ)|θ) = Var(fi|θ) + E
(
η−1 exp(θ)|θ

)
= Vfi + η−1 exp(θ)

Σv,ỹi = E (E(v, ỹi|fi))− E(v) E(E(ỹi|fi)) = E (E(v|fi) E(ỹi|fi))− E(v) E(fi)

= E (E(vfi|fi))− E(v) E(fi) = Cov(v, fi) = Σv,fi , (44)

where integrals over fi are taken with respect to p̂i(hi,v|θ) using substitution fi = vTg(hi),
and on the last two lines we have omitted the conditioning on θ for clarity. Using (43) and
(44), we form the approximation to the marginal tilted distribution of v as p̂i(v|θ) ≈
N (µ̂i(θ), Σ̂i(θ)) with the mean and covariance given by

µ̂i(θ) = µ−i + Σv,fiV
−1
ỹi

(yi −mfi)

Σ̂i(θ) = Σ−i −Σv,fiV
−1
ỹi

ΣT
v,fi

, (45)

where Vỹi = Vfi + η−1 exp(θ). Because p̂i(hi,v|θ) ∝ q−i(hi)q−i(v) factorizes between
hi,1, ..., hi,K and v according to (38), the central moments of fi = vTg(hi) required in
(45) can be computed efficiently as

mfi = E(fi) = µT
−imgi

Vfi = Var(fi) = mT
giΣ−imgi + VT

gi(diag(Σ−i) + µ−i ◦ µ−i)
Σv,fi = Cov(v, fi) = Σ−imgi , (46)
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where ◦ denotes the element-wise matrix product, and the (K + 1) × 1 vectors mgi =
E(g(hi)) and Vgi = Var(g(hi)) are formed by computing the means and variances from
each component of gi = g(hi) = [g(hi,1), ..., g(hi,K), 1]T with respect to q−i(hi) defined in
(39). Note that the last elements of mgi and Vgi are one and zero corresponding to the
output bias term v0.

With the probit activation function (2) the elements of mgi can be computed analytically
as

E(g(hi,k)) = 2K−1/2
(

Φ
(
m−i,k(1 + V−i,k)

−1/2
)
− 0.5

)
,

and for computing the variance vector Vgi , the following integral has to be evaluated
numerically for all k = 1, ...,K:

Var(g(hi,k)) = 2(Kπ)−1
∫ sin−1(ρ)

0
exp

(
−

m2
−i,k

(1 + V−i,k)(1 + sin(x))

)
dx,

where ρ = V−i,k(1 + V−i,k)
−1. Other activation functions could be incorporated by using

one-dimensional numerical quadratures. Note that with the full posterior couplings (33),
K-dimensional numerical integrations would be required to approximate mfi , Vfi , and Σv,fi .

Appendix C. Tilted Moments for the Hidden Unit Activations

To determine the parameters of the site approximations {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, we need to
form suitable approximations for the marginal means and covariances of {hi,k = wT

k xi}Kk=1

resulting from the transformed tilted distribution (42). In this appendix we approximate
these tilted moments with known θ and extend the approach for unknown noise level in
Appendix D. The marginal conditional tilted distribution of hi,k is given by

p̂i(hi,k|θ) ∝
∫∫

p(yi|vTg(hi), θ)
ηq−i(v|µ−i,Σ−i)dv

K∏
k′=1

q−i(hi,k′ |m−i,k′ , V−i,k′)dhi,−k,

(47)

where hi,−k contains all other hidden unit activations except hi,k. The challenge in approx-
imating the mean and variance of p̂i(hi,k|θ) is that this marginal density can have multiple
distinct modes, one related to the high-density areas of the cavity distribution q−i(hi) and
another one related to the likelihood p(yi|vTg(hi), θ), that is, to the values of hi,k that give
better fit for the left-out observation yi. In our numerical experiments, the simple approach
from Appendix B that is based on a joint Gaussian approximation to [hT

i ,v
T, fi] was found

to underestimate the marginal probability mass of the latter mode related to yi especially
in cases where the modes were clearly separated from each other. This problem was found
to be mitigated by decreasing η, which probably stems from leaving a fraction of the old
site approximation t̃wk,i(wk|τ̃i,k, ν̃i,k) from the previous iteration in the approximation that
in turn shifts the cavity towards the observation yi. With some difficult data sets, η-values
as small as 0.5 were found necessary for obtaining a good data fit but usually this also
required more iterations for achieving convergence compared to larger values of η.

To form robust approximations to the marginal tilted distributions p̂i(hi,k|θ) also in the
presence of multiple modes, we propose an alternative approximate method that enables
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numerical integration over the values of hi,k using one-dimensional quadratures. More
precisely, we aim to form a computationally cheap approximation to the integration over v
and hi,−k in (47) and use it to explore numerically the effect of hi,k on the marginal density
p̂i(hi,k|θ). The key difference from the Gaussian approximation of Appendix B is that
more complex dependencies between hi,k and fi = vTg(hi) can be taken into account by
numerically inspecting an approximation to p̂i(hi,k|θ) at different values of hi,k in contrast to
relaying only on linear dependencies encoded by Cov(hi,k, fi) (or equivalently Cov(hi,k, ỹi))
in approximation (43).

To approximate the marginalization over hi,−k and v in equation (47), we utilize the
fact that the likelihood term p(yi|vTg(hi), θ) depends on v and hi only through the trans-
formed scalar function value fi = vTg(hi). We first approximately transform the inte-
gration variables from {h−i,v} to the univariate latent function value fi = vTg(hi) =
vT
−kg(hi,−k) + vkg(hi,k) that depends on hi,k, and subsequently integrate analytically over

fi. For the likelihood term in (47), we plug in the transformed variable fi = vTg(hi),
but for the cavity distributions q−i(v)

∏
k 6=k′ q−i(hi,k′) we need to make a transformation

to obtain q−i(fi|hi,k), that is, the cavity distribution of fi conditioned on hi,k. Because,
q−i(fi|hi,k) cannot be computed analytically, we utilize the analytical moments from (46)
to approximate it with a univariate Gaussian as

q−i(fi|hi,k) ≈ N (fi|mfi(hi,k), Vfi(hi,k)) , (48)

where mfi(hi,k) and Vfi(hi,k) are the mean and variance of fi computed with respect to
q−i(v,hi,−k) = q−i(v|µ−i,Σ−i)

∏
k 6=k′ q−i(hi,k′ |m−i,k, V−i,k) with fixed hi,k. The required

conditional moments mfi(hi,k) and Vfi(hi,k) can be computed efficiently using equation
(46) by modifying the k:th element of mgi = E(g(hi)) and Vgi = Var(g(hi)) corresponding
to the known values of hi,k, that is, setting [mgi ]k = g(hi,k) and [Vgi ]k = 0. Using equation
(48), we can write the following approximation for the marginal tilted distribution of hi,k:

p̂i(hi,k|θ) ∝
∫
N (yi|vT

−kg(hi,−k) + vkg(hi,k), exp(θ))ηq−i(v)
K∏
k′=1

q−i(hi,k′)dvdhi,−k

=

∫
N (yi|fi, exp(θ))η q−i (fi|hi,k)) q−i(hi,k)dfi

≈ Z(θ)N
(
yi|mfi(hi,k), Vfi(hi,k) + η−1 exp(θ)

)
q−i(hi,k)

≈ Ẑi,k(θ)q̂i
(
hi,k|m̂i,k(θ), V̂i,k(θ)

)
, (49)

where all output weights excluding vk are denoted by v−k, Ẑi,k(θ) is a normalizing constant,

and q̂i(hi,k|m̂i,k(θ), V̂i,k(θ)) = N (hi,k|m̂i,k(θ), V̂i,k(θ)) is the final Gaussian approximation
to p̂i(hi,k|θ). In the last step we have substituted approximation (48) and carried out the
integration over fi analytically to give Z(θ) = (2π exp(θ))(1−η)/2η−1/2. Approximation (49)
enables numerical inspection for possible multimodality of p̂i(hi,k|θ), and it can be used for

approximating the conditional tilted means m̂i,k(θ) and variances V̂i,k(θ) efficiently with
one-dimensional numerical quadratures.

In our implementation, for each hidden unit k = 1, ...,K, we first computed mfi(hi,k)
and Vfi(hi,k) using (46) in all quadrature points that were selected to cover all the relevant
cavity density q−i(hi,k). In this step we reused the means mgi = E(g(hi)) and variances
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Vgi = Var(g(hi)) that were computed previously to determine the moments of p̂i(v|θ) with
(45). Note that only terms dependent on [mgi ]k have to be re-evaluated for each value of
hi,k, because [mgi ]k = g(hi,k) and [Vgi ]k = 0. Then we computed the tilted mean m̂i,k(θ)

and variance V̂i,k(θ) using the same values of the integrand in the third line of (49) for each
k = 1, ...,K.

The approximation (48) can be justified using the central limit theorem according to
which the distribution of the sum in fi =

∑K
k′=1 vk′g(hi,k′) + v0 given hi,k approaches a

normal distribution as K increases. Therefore, the approximate transformation used in
(48) and (49) becomes more accurate as the number of hidden units increase. However,
the proposed approximation can be very useful also with smaller values of K, because the
predictions are made using exactly the same scheme (see Appendix H). During training, the
input weight approximations are adjusted so that the Gaussian approximations of q(fi|hi,k)
in (48) encompass the high-density regions of the likelihood terms p(yi|fi, θ) in equation
(49). Therefore, the approximation should be able to produce high predictive densities also
for test observations.

A similar approach has been used by Ribeiro and Opper (2011) to form factorized
EP approximations for the input weights with linear single-layer models. They used the
central limit argument to form second-order Taylor approximations for the marginal tilted
distributions resulting from univariate Gaussian approximations for the input weights. We
utilize the same idea to approximate the tilted moments of the transformed variables hi,k =
wT
k xi using numerical quadratures and an input weight approximation that can be factorized

between the different hidden units.

Appendix D. Tilted Moments with Unknown Noise Level

In this appendix we propose ways to approximate the moments of v, {hi,k = wT
k xi}Kk=1,

and θ resulting from the transformed tilted distribution (42) by extending the derivations
of Appendices B and C for approximate integration over θ for the setting where the noise
level is assumed unknown and estimated using the proposed EP framework. The mean µ̂θ,i
and variance σ̂2θ,i of the marginal tilted distribution

p̂i(θ)∝
∫
p(yi|vTg(hi), θ)

ηq−i(v|µ−i,Σ−i)dv
K∏
k=1

q−i(hi,k|m−i,k, V−i,k)dhiq−i(θ|µθ,−i, σ2θ,−i),

can be approximated with a similar approach to the one that was used to determine the
moments of p̂i(hi,k|θ) in Appendix C. We first transform the integration over v and hi to in-
tegration over fi = vTg(hi) by forming a Gaussian approximation to the cavity distribution
of fi as

q−i(fi|θ) = q−i(fi) ≈ N (fi|mfi , Vfi),

where the mean mfi and variance Vfi are computed using (46). Note that q−i(fi|θ) is
independent of θ, because of the factorized approximation. Then, assuming a Gaussian
observation model, we can integrate analytically over fi to obtain a numerical approximation
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for the tilted distribution of θ:

p̂i(θ) ∝
∫
N (yi|vTg(hi), exp(θ))ηq−i(v)q−i(hi)dvdhiq−i(θ)

=

∫
N (yi|fi, exp(θ))η q−i(fi)q−i(θ)dfi

≈ Z(θ)N
(
yi|mfi , Vfi + η−1 exp(θ)

)
q−i(θ) ≈ Ẑiq̂i(θ|µ̂θ,i, σ̂2θ,i), (50)

where Z(θ) = (2π exp(θ))(1−η)/2η−1/2, Ẑi is an approximation to the normalization term
of the tilted distribution (22), and q̂i(θ|µ̂θ,i, σ̂2θ,i) = N (θ|µ̂θ,i, σ̂2θ,i) is our final Gaussian
approximation to the marginal tilted distribution p̂i(θ). The approximate tilted mean µ̂θ,i,

variance σ̂2θ,i, and normalization term Ẑi can be computed by integrating numerically over
the integrand on the third line of (50) using a quadrature. From (50) we also see that the
normalization term Ẑi can by approximated with Ẑi(θ) = Z(θ)N

(
yi|mfi , Vfi + η−1 exp(θ)

)
,

if θ is known or fixed.
To approximate the marginal mean and covariance of v with unknown θ, we can utilize

the conditional tilted moments from equation (45) by taking expectations with respect to

q̃i(θ) = Ẑ−1i Z(θ)N
(
yi|mfi , Vfi + η−1 exp(θ)

)
q−i(θ),

because the conditional moments are determined using an approximation to p̂i(hi,v|θ) and
from (50) we see that p̂i(hi,v, θ) ≈ Ẑ−1i p̂i(hi,v|θ)q̃i(θ). In case of the simple joint Gaussian
approximation for v we can write

µ̂i = Ep̂i(v)(v) = Ep̂i(θ)
(

Ep̂i(v|θ)(v|θ)
)
≈ Eq̃i(θ)(µ̂i(θ))

= µ−i + Σv,fi Eq̃i(θ)
(
V −1yi

)
(yi −mfi), (51)

where the conditional mean of v with respect to p̂i(v|θ) is approximated using (45), and
the integration over V −1yi = (Vfi + η−1 exp(θ))−1 can be done using a one-dimensional
quadrature. Similarly, for the marginal covariance of v we can write

Σ̂i = Covp̂i(v)(v) = Ep̂i(θ)
(

Covp̂i(v|θ)(v|θ)
)

+ Covp̂i(θ)
(

Ep̂i(v|θ)(v|θ)
)

≈ Eq̃i(θ)
(
Σ̂i(θ)

)
+ Eq̃i(θ)

((
µ̂i(θ)− µ̂i

)
(µ̂i(θ)− µ̂i)

T
)

= Σ−i −Σv,fi

(
Eq̃i(θ)

(
V −1yi

)
− (yi −mfi)

2 Varq̃i(θ)
(
V −1yi

))
ΣT

v,fi
, (52)

where the conditional covariance of v with respect to p̂i(v|θ) is approximated using (45) and
Varq̃i(θ)

(
V −1yi

)
= Eq̃i(θ)

(
(V −1yi − Eq̃i(θ)(V

−1
yi ))2

)
can be computed with a numerical quadra-

ture. For the output weights v the integration over the uncertainty of θ can be done without
significant additional computational cost. The mean Eq̃i(θ)(V

−1
yi ) and variance Varq̃i(θ)(V

−1
yi )

can be determined by reusing the same function evaluations that are needed in the quadra-
ture integrations of µ̂θ,i, σ̂

2
θ,i, and Ẑi according to equation (50).

Approximating the marginal tilted moments of the hidden unit activations hi,k with
unknown θ is more demanding because determining the means and variances of p̂i(hi,k)
using the approximation (49) requires two-dimensional numerical quadratures over both
hi,k and θ in

p̂i(hi,k, θ) ≈ Ẑ−1i Z(θ)N
(
yi|mfi(hi,k), Vfi(hi,k) + η−1 exp(θ)

)
q−i(θ)q−i(hi,k), (53)
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for each hidden unit k = 1, ...,K. To reduce the computational burden, we approximate the
probability density of p̂i(hi,k, θ) to be relatively sharply peaked near the marginal expected
value µ̂θ,i determined using (50) leading to approximation

p̂i(hi,k) ≈ Ẑ−1i Z(θ)N
(
yi|m(hi,k), V (hi,k) + η−1 exp(µ̂θ,i)

)
q−i(hi,k)

≈ q̂i
(
hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)

)
, (54)

where q̂i(hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)) = N (hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)) is our final Gaussian ap-
proximation for p̂i(hi,k). This approximation does not require any additional computational
effort compared to the conditional estimate (49) and the difference in accuracy compared
to the two-dimensional quadrature estimate based on (53) was found small after a few
iterations provided that there are enough observations.

Appendix E. Site Parameters and Damped Updates

In this appendix we present closed form expressions for the parameters of the likelihood site
approximations t̃v,i(v|α̃i, β̃i), {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, and t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) that are obtained
by applying the moment matching condition (23) with the approximate tilted moments
derived in Appendices B–D.

Using the moment matching condition Σ̂−1i = Σ−1−i + ηα̃iα̃
T
i resulting from (23) and

approximate tilted covariance Σ̂i from (45) or (52), we can write the following expression
for the scale parameter vector α̃i of the i:th approximate site term t̃v,i(v|α̃i, β̃i) defined in
(35):

α̃i = mgisign(âi)|âi|1/2
(
1− âimT

giΣ−imgi

)−1/2
η−1/2, (55)

where âi = V −1yi = (Vfi + η−1 exp(θ))−1 > 0 with known θ (see equation (45)), and âi =
Eq̃i(θ)

(
V −1yi

)
− (yi −mfi)

2 Varq̃i(θ)
(
V −1yi

)
with unknown θ (see equation (52)). Similarly for

the location parameter vector β̃i, equation (23) results in the moment matching condition
Σ̂−1i µ̂i = Σ−1−iµ−i + ηβ̃i that together with the approximate tilted mean µ̂i from equation
(45) or (51) gives

β̃i = mgi

(
1− âimT

giΣ−imgi

)−1 (
âim

T
giµ−i + b̂i(yi −mfi)

)
η−1 (56)

where âi is defined similarly with the previous equation, b̂i = V −1yi with known θ (see

equation (45)), and b̂i = Eq̂i(θ)
(
V −1yi

)
when θ is unknown (see equation (51)).

By looking at equations (55) and (56) we can now extend our previous discussion about
the structure of the site parameters after equation (37) in Section 3.3. The mean and
covariance of the posterior approximation q(v) defined in equation (37) can be interpreted
as the posterior distribution of a linear model where the input features are replaced with the
expected values of the nonlinearly transformed input layer activations mgi = Eq−i(g(x̃T

i w))

and pseudo observations ỹi = mT
giµ−i+â

−1
i b̂i(yi−mfi) are made according to an observation

model N (ỹi|mT
giv, â

−1
i −mT

giΣ−imgi).
Damping the site updates can improve the numerical robustness and convergence of

the EP algorithm, but applying damping on the site precision structure T̃i,vv = α̃iα̃
T
i
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resulting from equations (37) and (55), that is, T̃new
i,vv = (1− δ)α̃old

i (α̃old
i )T + δα̃iα̃

T
i , would

break the outer product form of the likelihood site approximations (35) and produce a
computationally more demanding rank-K site precision after K iterations. In case the
input weight approximations q(wk) were kept fixed while updating the output weights v,
the expected activations m(gi) would remain constant and one could consider damping only
the scalar terms on the right hand side of equations (55) and (56).

In the more general case where also the site parameters τ̃i,k and ν̃i,k related to the input
weights are updated simultaneously, we can approximate the new site precision structure
T̃new
i,vv = AiA

T
i , where Ai = [(1 − δ)1/2α̃old

i , δ1/2α̃i] and α̃i is obtained from (55), with
its largest eigenvector at each site update step. This requires solving the eigenvector vi
corresponding to the largest eigenvalue λi of the 2× 2 matrix AT

i Ai ≈ viλiv
T
i after which

the new damped site parameter vector can be approximated as

α̃new
i = Aivi. (57)

Damping the site location vector β̃i is straightforward because update β̃new
i = (1− δ)β̃old

i +
δβ̃i = bi, where β̃i is obtained from (56), will preserve the structure of the site approxima-
tion (35). However, approximation α̃new

i = Aivi changes the moment consistency conditions
used in deriving (56) which is why β̃new

i has to be modified so that combining it with α̃new
i

according to the moment matching rule (23) results in the same mean vector µv as the
rank-2 site AiA

T
i combined with bi:

µv =
(
Σ−1−i + ηα̃new

i (α̃new
i )T

)−1 (
Σ−1−iµ−i + ηβ̃new

i

)
=
(
Σ−1−i + ηAiA

T
i

)−1 (
Σ−1−iµ−i + ηbi

)
. (58)

In other words, we approximate the posterior covariance Σv = (Σ−1−i + ηAiA
T
i )−1 resulting

from the rank-two damped update with the rank-one update Σv ≈ (Σ−1−i +ηα̃new
i (α̃new

i )T)−1

but choose β̃new
i so that the mean µv will be exact. Plugging in α̃new

i = Aivi and solving
for β̃new

i gives the following update rule

β̃new
i = bi + η−1Ai(viv

T
i − I)(AT

i Σ−iAi + η−1I)−1AT
i (µ−i + ηΣ−ibi), (59)

where bi = (1− δ)β̃old
i + δβ̃i with β̃i given by (56).

Because of the factorized posterior approximation (19), the likelihood site approxima-
tion terms associated with the input weights decouple over the different hidden units as∏K
k=1 t̃wk,i(wk|τ̃i,k, ν̃i,k) and consequently the moment matching condition (23) results in

simple scalar site parameter updates. Using the moment matching condition with the cav-
ity definitions (39) and the tilted moments approximated with either (49) or (54) gives the
following site updates

τ̃newi,k = (1− δ)τ̃i,k + δη−1(V̂ −1i,k − V
−1
−i,k) = τ̃i,k + δη−1(V̂ −1i,k − V

−1
i,k ) (60)

ν̃newi,k = (1− δ)ν̃i,k + δη−1(V̂ −1i,k m̂i,k − V −1−i,km−i,k) = ν̃i,k + δη−1(V̂ −1i,k m̂i,k − V −1i,k mi,k),

where δ ∈ (0, 1] is a damping factor and the marginal tilted mean m̂i,k and variance V̂i,k are
computed using (49) or (54) depending on whether θ is known or unknown. Equation (60)
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shows that the EP iterations on the input weights wk have converged when the approximate
marginal means mi,k and variances Vi,k of the activations hi,k from all hidden units are
consistent with all tilted distributions.

In case θ is inferred using EP, parameter updates for the site approximations t̃θ,i(θ|µ̃θ,i, σ̃2θ,i)
can be derived by combining the cavity definitions (41) with the tilted moment approxima-
tions (50) according to the moment consistency conditions (23), which results in

τ̃newθ,i = τ̃θ,i + δη−1
(
σ̂−2θ,i − σ

−2
θ

)
(61)

ν̃newθ,i = ν̃θ,i + δη−1(σ̂−2θ,i µ̂θ,i − σ
−2
θ µθ),

where we have written the site parameters in their natural exponential forms as τ̃θ,i = σ̃−2θ,i
and ν̃θ,i = σ̃−2θ,i µ̃θ,i.

Appendix F. EP Algorithm for the Weight Prior Terms

This appendix summarizes an EP algorithm that can be used to determine the site approxi-
mations of the weight prior terms (13) and (14) as discussed in Section 3.2.2. The following
algorithm is written for the input weight terms

p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) ∝ N (wj |µ̃w,j , σ̃2w,j)N (φlj |µ̃φ,j , σ̃
2
φ,j)

that depend also on the scale parameters {φl}Ll=1. We denote the parameters of the site
approximations in their natural exponential forms as τ̃w,j = σ̃−2w,j , ν̃w,j = σ̃−2w,jµ̃w,j , τ̃φ,j = σ̃−2φ,j
and ν̃φ,j = σ̃−2φ,jµ̃φ,j . The algorithm can be applied for updating the output weight terms
for k = 1, ...,K,

p(vk) ≈ Z̃v,k t̃v,k(vk) ∝ N (vk|µ̃v,k, σ̃2v,k),
by leaving out the computations related to parameters φl, and replacing the natural param-
eters ν̃w,j and τ̃w,j with τ̃v,k = σ̃−2v,kµ̃v,k and ν̃v,k = σ̃−2w,k, and the posterior approximation
q(wk) = N (µwk ,Σwk) with q(v) = N (µv,Σv). One iteration of the algorithm consist of
the following update steps for all site approximations j = K(k − 1) + 1, ...,K(k − 1) + d
related to all hidden units k = 1, ...,K:

1. Compute the mean and covariance of the cavity distribution q−j(wj) = N (mw,−j , Vw,−j):

Vw,−j = (V −1w,j − ητ̃w,j)
−1

mw,−j = Vw,−j(V
−1
w,jmw,j − ην̃w,j), (62)

where the approximate mean and variance of wj are given by mw,j = [µwk ]i = µwkei
and Vw,j = [Σwk ]i,i = eTi Σwkei with µwk and Σwk defined by (36), i = j −K(k− 1),
and ei the i:th unit vector. Compute also the mean and covariance of the cavity
distribution q−j(φlj ) = N (mφ,−j , Vφ,−j):

Vφ,−j = (σ−2φlj ,
− ητ̃φ,j)−1

mφ,−j = Vφ,−j(σ
−2
φlj
µφlj − ην̃φ,j), (63)

where µφlj and σ2φlj
are the mean and covariance of q(φlj ) given by (18).
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2. Compute the marginal moments Ẑw,j , m̂w,j = E(wj), V̂w,j = Var(wj), m̂φ,j = E(φlj ),

and V̂φ,j = Var(φlj ) of the tilted distribution p̂j(wj , φlj ) either analytically or using a
numerical quadrature depending on the functional form of the prior term p(wj |φlj ):

p̂j(wj , φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )p(wj |φlj )
η

≈ N (wj |m̂w,j , V̂w,j)N (φlj |m̂φ,j , V̂φ,j), (64)

where Ẑw,j =
∫
q−j(wj)q−j(φlj )p(wj |φlj )ηdwjdφlj .

3. Update the site parameters related to t̃w,j(wj) as τ̃neww,j = τ̃w,j + ∆τ̃w,j and ν̃neww,j =

ν̃w,j + ∆ν̃w,j together with the parameters related to t̃φ,j(φlj ) as τ̃newφ,j = τ̃φ,j + ∆τ̃φ,j
and ν̃newφ,j = ν̃φ,j + ∆ν̃φ,j , where the parameter adjustments damped by δ ∈ (0, 1] are
given by

∆τ̃w,j = δη−1(V̂ −1w,j − V
−1
w,j )

∆ν̃w,j = δη−1(V̂ −1w,j m̂w,j − V −1w,jmw,j)

∆τ̃φ,j = δη−1(V̂ −1φ,j − σ
−2
φlj

)

∆ν̃φ,j = δη−1(V̂ −1φ,j m̂φ,j − σ−2φljµφlj ). (65)

4. If sequential EP is used, update the posterior approximation q(wk) = N (µw,Σw)
using a rank-one update:

Σnew
wk

= Σwk − aj∆τ̃w,js
−1
j aT

j

µnew
wk

= µwk + ajs
−1
j (∆ν̃w,j −∆τ̃w,jmw,j), (66)

where sj = 1+∆τ̃w,jVw,j and aj = Σwei with i = j−K(k−1). Also the determinant
of Σwk can be updated sequentially as log |Σnew

wk
| = log |Σwk | − log(sj), which can be

used in evaluating the approximate marginal likelihood as described in Appendix I.
For the scalar φlj , the posterior q(φlj ) = N (µφlj , σ

2
φlj

) can be updated as

σ2φlj
new

=
(
σ−2φlj

+ ∆τ̃φ,j

)−1
µnewφlj

= σ2φlj
new
(
σ−2φlj

µφlj + ∆ν̃φ,j

)
. (67)

Steps 1–4 are repeated until all the tilted distributions are consistent with the approximate
posterior, that is, m̂w,j = mw,j , V̂w,j = Vw,j , m̂φ,j = µφlj and V̂φ,j = σ2φlj

. In parallel

EP, step 4 is replaced with a single re-computation of {µwk}Kk=1 and {Σwk}Kk=1 using,
e.g., K Cholesky decompositions after each sweep over all the site approximations j =
K(k − 1) + 1, ...,K(k − 1) + d for all the hidden units k = 1, ...,K.

Appendix G. Improving the Numerical Stability of the EP algorithm

This appendix outlines some practical procedures for conducting the updates (57), (59),
(60), and (65) so that the EP algorithm 1 remains numerically stable. From (66) we see
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that the approximate posterior Σwk becomes ill-conditioned (or negative definite) in a
sequential update if sj ≤ 0, that is, when ∆τ̃w,j ≤ −V −1w,j , because |Σnew

wk
| = |Σwk |/sj .

According to (65), this can result from site updates where ∆τ̃w,j ≤ −V −1w,j , corresponding

to cases with V̂ −1w,j ≤ (1−η/δ)V −1w,j . If no damping is used , i.e., δ = 1, this requires that the

tilted precision V̂ −1w,j becomes very small (or even negative if η = 1) corresponding to a very
(or infinitely) large approximate posterior uncertainty in p̂j(wj). Therefore, it is sensible
to make sure that each EP update is done only if the corresponding tilted distribution is
proper. From V̂ −1w,j ≤ (1− η/δ)V −1w,j we can also see that using damping δ < 1 helps to avoid
problems arising from inaccurate tilted moment derivations. This discussion applies also to
the rank-one updates in the EP iterations for the likelihood terms in line 5 of Algorithm 1
with si = 1 + ∆τ̃i,kVi,k, Vi,k = xT

i Σwkxi, and ai = Σwkxi.

Another type of problem can arise from the rank-one update (66) if −V −1w,j < ∆τ̃w,j < 0,
although the approximate covariance remains positive definite. If the site precisions τ̃w,j that
are used to construct Σwk according to (36) are allowed to become negative, a large negative
site precision adjustment ∆τ̃w,j can cause some of the cavity precisions {V −1w,−l}l 6=j related
to the other terms to become very small or even negative at subsequent cavity computation
steps (62) (Jylänki et al., 2011). Negative cavity precisions should not occur if all site
precision parameters are non-negative but still, with certain models, the cavity variances
can become very large causing unstable tilted moment integrations and site updates (Minka,
2001a; Seeger, 2008). Because negative cavity precisions are associated with too large
negative adjustments ∆τ̃w,j , a useful heuristic way to mitigate these problems is to apply
more damping in the updates with ∆τ̃w,j < 0 in (65). As a result, more cautious steps are
taken whenever the posterior variances are increased locally but otherwise greedier updates
are done to decrease the posterior uncertainty. In our experiments, this was found helpful
especially with the updates of the likelihood term approximations t̃wk,i(w|τ̃i,k, ν̃i,k) in (60).
In case of parallel updates in lines 6 and 7 of Algorithm 1, the posterior covariances can
be recomputed by gradually increasing damping (especially for the negative site precision
adjustments) as many times as required so that all the resulting cavity distributions are
well defined.

Constraining the site precision parameters to positive values can improve the stability
and convergence of the EP algorithm but it can also change the properties of the poste-
rior approximation because the moment consistency conditions (23) may not be satisfied
anymore. In addition, constraining the site precisions may not be sensible with certain
models. For example, a robust non-log-concave observation model can result in negative
precision parameters for the likelihood terms related to the outlying observations mean-
ing that such observations increase the posterior uncertainty locally. Thus, we do not
wish to tamper with the likelihood site parameters, because our observation model is also
non-log-concave and prone to multimodal tilted distributions. On the other hand, con-
straining the precision parameters of the prior site approximations can be viewed as setting
a limit to the maximum prior uncertainty on the unknown model parameters. Therefore,
we chose to leave the parameters τ̃i,k, α̃i, and τ̃θ,i = σ̃−2θ,i related to the likelihood term

approximations (12) and (35) unconstrained but assign constraints τ̃v,k = σ̃−2v,k ≥ τ̃min and

τ̃w,j = σ̃−2w,j ≥ τ̃min to the precision parameters of the prior term approximations (13) and

(14) with some small positive value such as 0.12 for τ̃min. In practice, this is implemented
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by modifying the outcome of the tilted moment derivations (64) in the algorithm of Ap-
pendix F with V̂ −1w,j = V −1w,j + δ−1η(τ̃min − τ̃w,j) whenever the unconstrained update (65)
results in τ̃neww,j < τ̃min. Recomputing the update (65) with this modified tilted variance re-
sults in slightly underestimated variances only in case of very wide tilted distributions but
the tilted means m̂w,j are matched exactly. In our experiments, this improved the stability
of the challenging likelihood term updates in lines 2–7 of Algorithm 1 by preventing the
effective weight prior variances σ̃2v,k and σ̃2w,j from becoming very large.

Appendix H. Computing the Predictions

The prediction for a new test input x∗ can be computed using approximations (17), (36)
and (37), as follows

p(y∗|x∗) ≈
∫
p(y∗|f(x∗), θ)q(v|µv,Σv)

K∏
k=1

q(wk|µwk ,Σwk)q(θ|µθ, σ2θ)dvdwdθ

≈
∫
N (y∗|f∗, exp(θ))N (f∗|mf∗ , Vf∗)q(θ)df∗dθ

=

∫
N (y∗|mf∗ , Vf∗ + exp(θ))q(θ)dθ, (68)

where the approximate mean mf∗ and Vf∗ of the latent function value f(x∗) = f∗ =∑K
k=1 vkg(wT

k x∗) + v0 is approximated in the same way as in equation (46). The cavity
mean µ−i and covariance Σ−i are replaced with µv and Σv, and the means mg∗ = E(g(h∗))
and variances Vg∗ = Var(g(h∗)) of the hidden unit activations are computed with re-
spect to the approximations q(wk) = N (wk|µwk ,Σwk). The predictive mean is given
by E(y∗|x∗) = E(E(y∗|x∗, θ)) = E(mf∗) = mf∗ . The predictive variances Var(y∗|x∗) =
E(Var(y∗|x∗, θ)) + Var(E(y∗|x∗, θ)) = Vf∗ + E(exp(θ)) and the predictive densities p(y∗|x∗),
can be approximated either with a plug-in value for θ = µθ or by integrating over θ using
a numerical quadrature (in the experiments we used numerical quadratures).

Appendix I. Marginal Likelihood Approximation

An EP approximation to the log marginal likelihood logZ = log p(y|X,γ) conditioned on
the fixed hyperparameters γ as defined in (8) can be computed in a numerically stable and
efficient manner following the general EP formulation for Gaussian approximating families
summarized by Cseke and Heskes (2011, appendix C). Adopting the formulation for our
approximate family gives

logZEP = Ψ(µv,Σv) +

K∑
k=1

Ψ(µwk ,Σwk) + Ψ(µθ, σ
2
θ) +

L∑
l=1

Ψ(µφ,l, σ
2
φ,l)

+
1

η

n∑
i=1

(
ln Ẑi + Ψ(µθ,−i, σ

2
θ,−i)−Ψ(µθ, σ

2
θ) +

K∑
k=1

(
Ψ(m−i,k, V−i,k)−Ψ(mi,k, Vi,k)

))
+

1

η

n∑
i=1

(1

2

(
s−1i (aT

i α̃i)
2 − ηβ̃T

i (µv + ai)− ln(siη)
))
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+
1

ηw

Kd∑
j=1

(
log Ẑw,j +Ψ(mw,−j , Vw,−j)−Ψ(mw,j , Vw,j) +Ψ(µφ,−j , σ

2
φ,−j)−Ψ(µφlj , σ

2
φlj

)
)

+
1

ηv

K∑
k=1

(
ln Ẑv,k + Ψ(mv,−k, Vv,−k)−Ψ(mv,k, Vv,k)

)
−Ψ(µv0 , σ

2
v0)−Ψ(µθ,0, σ

2
θ,0)−

L∑
l=1

Ψ(µφ,0, σ
2
φ,0), (69)

where η, ηw, and ηv are the fraction parameters related to the model terms p(yi|fi, θ),
p(wj |φlj ), and p(vk), respectively, and si = η−1 − α̃T

i Σvα̃i together with ai = µv − ηΣvβ̃i
can be computed during the cavity computations (40). The normalization terms Ψ(·, ·)
related to unnormalized Gaussian densities (also known as log partition functions) computed
for various Gaussian cavity and marginal distributions in (69) are defined as

Ψ(µ,Σ) = log

∫
exp

(
−1

2
wTΣ−1w + νTw

)
dw =

1

2
µTν +

1

2
log |Σ|+ d

2
log(2π),

where w, µ, and ν = Σ−1µ are d × 1 vectors and Σ is a d × d matrix. The approximate
means and covariances in line one of (69) are given by equations (37), (36), (18), and (17) in
respective order. The cavity and marginal moments in line two related to the likelihood sites
are defined in (41) and (39). Line three corresponds to Ψ(µ−i,Σ−i)−Ψ(µv,Σv), which can
be computed efficiently using si = η−1 − α̃T

i Σvα̃i and ai = µv − ηΣvβ̃i as defined in the
cavity computations (40). The cavity and marginal moments in line four associated with the
prior terms p(wj |φlj ) are computed using (62), and analogous definitions can also be used
in line five that is related to prior terms p(vk). The last line of (69) contains the constant
normalization terms related to the fixed Gaussian priors including p(v0) = N (µv0 , σ

2
v0) for

the output bias, p(θ) = N (µθ,0, σ
2
θ,0) for the noise level, and p(φl) = N (µφ,0, σ

2
φ,0) for the

input weight scales for l = 1, ..., L.

When θ is inferred using EP, the normalization terms of the tilted distributions in line
two of (69), which are defined by

Ẑi ≈
∫
p(yi|vTg(hi), θ)

ηq−i(v,hi, θ)dvdhidθ,

can be computed using approximation (50). Otherwise, they can be computed using the
expression Ẑi = Z(θ)N

(
yi|mfi , Vfi + η−1 exp(θ)

)
from (50) with the known value of θ. The

normalization terms of the other tilted distributions related to the prior terms on lines four
and five are defined as

Ẑv,k =

∫
p(vk|σ2v,0)ηvq−k(vk)dvk and Ẑw,j =

∫
p(wj |φlj )

ηwq−j(wj)q−j(φlj )dwjdφlj ,

and they can be computed during the step 2 of the EP algorithm summarized in Appendix F.

All terms of equation (69) excluding Ψ(µv,Σv) and Ψ(µwk ,Σwk) can be computed with-
out significant additional cost simultaneously during the EP update of the corresponding
site approximation. Term Ψ(µv,Σv) can be computed using one Cholesky decomposition
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at each parallel update step of q(wk) in line 7 of Algorithm 1. Similarly, if parallel updates
are used for the input weight approximations, Ψ(µwk ,Σwk) can be computed using the
same Cholesky decompositions that are used to recompute q(wk) in line 6 of Algorithm 1.
In case sequential EP is used for q(wk) in line 5 of Algorithm 1, vectors νwk = Σ−1wk

µwk

and determinant term log |Σv| can be updated simultaneously with the rank-1 updates of
µwk and Σwk that are given by (66).

The EP approximation logZEP has the appealing property that its partial derivatives
with respect to the site parameters in their canonical forms5 are zero when the algorithm
has been iterated until convergence (Opper and Winther, 2005). This follows form the fact
that the fixed points of the EP algorithm correspond to the stationary points of (69) with
respect to the site parameters (or equivalently the cavity parameters) using constraints
of the form V −1−i,k = V −1i,k − ητ̃i,k and V −1−i,km−i,k = V −1i,k mi,k − ην̃i,k, which are equivalent
to the cavity definitions. Thereby, the marginal likelihood approximation can be used for
gradient-based estimation of the hyperparameters σ2v,0, σ

2
v0,0

, µ2φ,0 and σ2φ,0, and also param-

eters θ and {φl}Ll=1 in case they are not inferred within the EP framework for determining
{q(wk)}Kk=1 and q(v). Because the convergence of the likelihood approximation can take
many iterations it is advisable to initialize the hyperparameters to sensible values and run
the EP algorithm once until sufficient convergence starting from a zero initialization for
the site parameters. After that, gradient-based local update steps can be taken for the
hyperparameter values by continuing the EP iterations from the previous site parameter
values at each new hyperparameter configuration.
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Daniel Hernández-Lobato, José M. Hernández-Lobato, and Pierre Dupont. Generalized
spike-and-slab priors for Bayesian group feature selection using expectation propagation.
Journal of Machine Learning Research, 14:1891–1945, 2013.
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