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Abstract

Fano’s inequality lower bounds the probability of transmission error through a communication

channel. Applied to classification problems, it provides a lower bound on the Bayes error rate and

motivates the widely used Infomax principle. In modern machine learning, we are often interested

in more than just the error rate. In medical diagnosis, different errors incur different cost; hence, the

overall risk is cost-sensitive. Two other popular criteria are balanced error rate (BER) and F-score.

In this work, we focus on the two-class problem and use a general definition of conditional entropy

(including Shannon’s as a special case) to derive upper/lower bounds on the optimal F-score, BER

and cost-sensitive risk, extending Fano’s result. As a consequence, we show that Infomax is not

suitable for optimizing F-score or cost-sensitive risk, in that it can potentially lead to low F-score

and high risk. For cost-sensitive risk, we propose a new conditional entropy formulation which

avoids this inconsistency. In addition, we consider the common practice of using a threshold on the

posterior probability to tune performance of a classifier. As is widely known, a threshold of 0.5,

where the posteriors cross, minimizes error rate—we derive similar optimal thresholds for F-score

and BER.

Keywords: balanced error rate, F-score (Fβ-measure), cost-sensitive risk, conditional entropy,

lower/upper bound

1. Introduction

In the information theory literature, Fano’s inequality (Fano, 1961) is a well known result linking the

transmission error probability of a noisy communication channel to standard information theoretic

quantities such as conditional entropy and mutual information (Shannon, 1948). From a machine

learning perspective, we can treat a classification problem as a noisy channel; then the inequality

provides us with a lower bound on the Bayes error rate, that is, the minimum error rate attainable by

any classifier, for that problem. A few years later, several upper bounds were also reported, of which

the simplest one is as follows: the Bayes error rate of a multi-class problem cannot exceed half of

the Shannon conditional entropy (of the class label given the feature vector). This relationship was

first obtained by Tebbe and Dwyer III (1968)1—see Equation (7) therein, and later by Hellman

∗. The corresponding author

1. We thank an anonymous reviewer for bringing this to our attention.
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and Raviv (1970) using a different argument from Tebbe’s. It will be nevertheless referred to as

Hellman’s bound or Hellman’s inequality in the paper, as Tebbe’s result is actually stronger than the

one we have just stated. See Appendix A (Figure 10) for more detail.

In practice, information measures are often easier than the error probability to evaluate and

manipulate (Kailath, 1967). Consequently, both Fano’s and Hellman’s bounds are useful since they

give, from the respective side, some indication of the minimum achievable error rate for a given

classification task. More importantly, as shown by Figure 1, the two bounds are both increasing

functions of the conditional entropy. Therefore, minimizing the conditional entropy of a system

is roughly equivalent to minimizing its probability of error or Bayes error rate. This justifies a

general learning principle proposed in the late 1980’s, called the Infomax or maximum information

preservation principle:2

The Infomax Principle (Linsker, 1989, p. 186): The principle applies to a layer L of

cells that provides input to a next layer M. The mapping of the input signal vector L

onto an output signal vector M, f : L → M, is characterized by a conditional probability

density function (“pdf”) P(M|L). The set S of allowed mappings f is specified. The

input pdf PL(L) is also given. The infomax principle states that a mapping f should

be chosen for which the Shannon information rate [the authors: that is, the mutual

information I(L;M)] is a maximum (over all f in the set S).

The Infomax Principle (Linsker, 1988, p. 486): An equivalent statement of this prin-

ciple is: The L-to-M transformation is chosen so as to minimize the amount of infor-

mation that would be conveyed by the input values L to someone who already knows

the output values M. [The authors: that is, the Shannon conditional entropy H(M|L) is

the quantity to be minimized.]

As an optimization principle, Infomax has been employed to devise learning algorithms for

a wide range of applications. For instance, Linsker (1989) used it to identify independent input

signals fed into a linear system from the system’s output. His work was later extended by Bell and

Sejnowski (1995) to nonlinear systems, yielding an independent component analysis algorithm that

is capable of successfully separating unknown mixtures of up to ten speakers.

Another important example is the family of information theoretic filtering methods for feature

selection and extraction (Guyon and Elisseeff, 2003; Torkkola, 2003; Duch, 2006). In feature se-

lection (for classification problems), the input signal could be any subset of features, Xθ, where,

following Brown et al. (2012), θ is a binary vector with a 1 indicating the corresponding feature

is selected and a 0 indicating it is discarded. The output signal is the class label Y . The Infomax

principle in this context can thus be stated as:

A subset of features Xθ should be chosen so that the mutual information I(Xθ;Y ) is

maximized, or, equivalently, the conditional entropy H(Y |Xθ) is minimized.

Indeed, this is well justified by Fano’s inequality and the monotonically increasing relationship

between Fano’s bound on error probability and conditional entropy (see Figure 1). As shown by

Brown et al. (2012), most of the mutual-information-based feature selection filters in the literature

are in fact heuristic approximations of the above Infomax principle, under different independence

2. While Linsker directly introduced it as a heuristic principle, we highlight the close relationship between Infomax and

the error rate minimization principle; and regard the former as a “derived” principle of the latter.
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assumptions on features. It seems that people have been taking Infomax for granted: many believe

that choosing those features sharing the maximum mutual information with the class label will best

facilitate the subsequent classification procedure. In this paper, however, we will show that this

is not necessarily the case when F-score or cost-sensitive risk is concerned, via both analytical

analysis and numerical examples.
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Figure 1: The lower (Fano) and upper (Hellman & Raviv) bounds on the Bayes error rate in terms of

Shannon’s conditional entropy, for the two-class problem. As both bounds are increasing

functions of the conditional entropy, minimizing the conditional entropy would implicitly

minimize the Bayes error rate.

Inspired by Fano’s result and its widespread utility in machine learning, over the past several

decades many researchers have focused on deriving new lower/upper bounds of the Bayes error rate,

using various definitions of conditional entropy. We have already mentioned the works of Tebbe

and Dwyer III (1968) and Hellman and Raviv (1970). Besides that, Ben-Bassat (1978) derived

the lower and upper bounds by means of f -entropies, following the lines originally proposed by

Kovalevsky (1968). Using the same method, Golic (1987) discussed the lower and upper bounds

based on what he called concave measures and information measures. Later, Feder and Merhav

(1994) re-derived the same upper bound in terms of Shannon’s conditional entropy. More recently,

Erdogmus and Principe (2004) proposed a family of lower/upper bounds in terms of the Rényi

entropy (Rényi, 1961). These bounds are all increasing functions of the concerned entropy. This

extends our understanding of the Infomax principle, since there are dozens of definitions of entropy

in the literature (Taneja, 2001) of which most can be used as the objective function. For instance,

Hild II et al. (2006) proposed a mutual information measure based on Rényi’s quadratic entropy;

and use it to perform feature extraction in the Infomax framework.

All the above bounds are on the Bayes error rate; and to date no analytical investigation has

been reported on the relationship between conditional entropy and other performance criteria of
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classifiers such as F-score and balanced error rate.3 On the other hand, both balanced error rate and

F-score are widely employed in practice; and under certain circumstances they are of more interest

than the error rate. Indeed, F-score is used widely in the field of information retrieval (Manning

et al., 2008); whereas balanced error rate is suitable for situations where the distribution of objects

is biased among classes. Another situation for which the error rate alone is of little interest is that

when different decision errors incur different penalties. In this case, the cost difference between

different kinds of errors should be taken into account; the resulting performance measure is called

cost-sensitive risk in this paper.

As we have discussed above, it is the monotonicity of Fano’s and Hellman’s bounds that justifies

Infomax as an optimization principle for minimizing the error rate. An important question arises:

“is it still a rational principle when the ultimate goal is to minimize the balanced error rate, to

maximize the F-score, or to minimize the cost-sensitive risk?” In this work, we provide an answer

to this question, by first deriving the tight lower/upper bounds on the minimum balanced error rate,

the maximum F-score and the minimum cost-sensitive risk, as functions of conditional entropy; and

then examining the monotonicity of these bounds.

1.1 Paper Outline

For binary classification problems Fano’s and Hellman’s inequalities provide respectively the tight

lower and upper bounds on the Bayes error rate (the minimal achievable error rate), in terms of the

Shannon conditional entropy. Analogously, in this paper we concentrate on the two-class problem

and aim to derive the tight lower and upper bounds on the minimum balanced error rate, on the

maximum F-score, and on the minimum cost-sensitive risk. We however shall do this using a general

definition of conditional entropy that includes Shannon’s as a special case, in three steps:

1. Derive the analytical expressions of balanced error rate, F-score and cost-sensitive risk for a

given classifier applied to a given classification task. These three quantities will be denoted as

BER, FSC and CSR, respectively. See Table 1 for a list of the notations consistently employed

in this paper.

2. Compute the optimum values of BER, FSC and CSR over all classifiers. The resulting quan-

tities are denoted as BER, FSC and CSR, respectively. Note here that we use the underline

(overline) to indicate that a quantity has been minimized (maximized).

3. Derive the tight lower and upper bounds on BER, on FSC and on CSR, by means of the condi-

tional entropy (of the considered problem) as given by Definition 2 (page 1043).

Notice that while the values of BER, FSC and CSR depend on both the given task and the con-

cerned classifier, their optimum values BER, FSC and CSR are classifier-independent. In other words,

here we emphasize that the paper is mainly concerned with problems, rather than classifiers or al-

gorithms. More precisely, one main target of this paper is to establish the universal relationship

between the conditional entropy and one of the three optimum performance measures: BER, FSC

and CSR. Here the word “universal” refers to that our results hold for any classification task instead

of a particular one. To make this point even clearer, a formal expression unifying the main results of

this paper will be highlighted at the end of Section 3, after we have set forth the necessary notions.

3. That being said, we should point out that empirical analysis and comparison of different performance criteria does

exist in the literature. See Caruana and Niculescu-Mizil (2004) for example.
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Symbol Meaning

X space of feature vectors (or objects)

x, y; x, y feature vector of an object and its true class label, the sans-serif

font is used when they are treated as random variables

ŷ(·); ŷ(x), ŷ(x) classifiers, or the predicted class label for a given object

X0, X1 decision region corresponding to class 0 and class 1, see Equation (1)

µ marginal distribution of the feature vector x, see Equation (2)

η(x), η(x) posterior probability of class 1 given the object x, see Equation (2);

the symbol η(x) is used when it is seen as a random variable

(µ,η) the pair (µ,η) is called a (classification) task, see page 1038

t̃ for t ∈ [0,1] shorthand of 1− t, for example, η̃(x) = Pr{y = 0 | x= x} (cf. Equation (2))

t+ for t ∈ R shorthand of max{0, t}, used in Equation (47) and thereafter

π, π̃ prior probability of class 1 and 0, see Equations (4) and (5)

TP, FP, TN, FN proportion of true positive, false positive, true negative,

false negative; see also Table 2

c0,c1 the cost of false positive and false negative, see Equation (15)

PREC, REC, SPEC precision, recall and specificity of classifiers, see page 1039

ERR, BER, CSR, FSC error rate, balanced error rate, F-score and cost-sensitive risk

of a given classifier ŷ(·); see Equations (11), (13), (15) and (17)

ERR, BER, CSR, FSC the optimum value of ERR, BER, CSR or FSC in a given task

hbin(η), η ∈ [0,1] binary entropy function, see Equation (19) for its definition

Table 1: List of symbols consistently used in the paper and their meaning

The rest of the paper is organized as follows. Section 2 explains some terminologies and no-

tations to be used in this paper; these include the asymptotic expressions of (balanced) error rate

(Section 2.2), cost-sensitive risk (Section 2.3) and F-score (Section 2.4). In Section 3, after briefly

introducing Fano’s and Hellman’s inequalities, we present a novel geometric derivation of the two

for the case where the conditional entropy is defined by a concave function. We then derive the

analytical expression of the minimum cost-sensitive risk, as well as its tight lower and upper bounds

in Section 4. The expression of minimum balanced error rate and its lower/upper bounds are given

in Section 5. While Section 6 is devoted to computing the maximum F-score, in Section 7 we

examine the relationship between the maximum F-score and conditional entropy. In Section 8, we

show that minimizing conditional entropy does not necessarily maximize the F-score or minimize the

cost-sensitive risk. Consequently, standard mutual information is not a proper criterion for learning

if the final target is to minimize the cost-sensitive risk or maximize the F-score of the subsequent

classification process. A proper information measure for cost-sensitive risk, called cost-sensitive

conditional entropy, is proposed in Section 8.2. Finally, Section 9 concludes the paper with a sum-

mary of the main contributions and some possible extensions of this work.
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2. Background

In this section we introduce the necessary background and establish the appropriate formal notions

to frame the contributions of the paper.

2.1 Classification Tasks and Binary Classifiers

In this paper, we denote by X the space of feature vectors; and identify each object with its feature

vector x ∈ X . In the binary classification problem, each object x is assumed to belong to one of two

classes which are labeled as y = 0 (negative) and y = 1 (positive), respectively. A classifier can then

be described as a binary-valued function, ŷ : X →{0,1}, that maps each object x ∈X to its predicted

class label ŷ(x).4 Each such classifier ŷ(·) induces naturally a partition of the feature space X into

two decision regions, X0 and X1, as defined respectively by

X0 = {x ∈ X | ŷ(x) = 0} , X1 = {x ∈ X | ŷ(x) = 1} . (1)

By definition, it is obvious that X0∪X1 = X and X0∩X1 =∅ for any classifier. Conversely, any pair

(X0,X1) satisfying the two conditions defines a binary classifier ŷ(x) that takes the value 0 for x ∈ X0

and 1 for x ∈ X1. In this paper we shall use the two representations of classifiers interchangeably.

In the traditional probabilistic framework, both the feature vector and the class label are seen

as random variables. For the sake of clarity, we shall use the sans-serif font for random variables;

so x ∈ X represents the feature vector of an object and y ∈ {0,1} the corresponding class label.

To specify the joint distribution of x and y, we denote by µ the (marginal) distribution of x and by

η(x) ∈ [0,1] the conditional probability of class 1 given that x= x—the two symbols are borrowed

from Devroye et al. (1996, Chapter 2). Formally, for any measurable subset A of X and any feature

vector x ∈ X , we write

µ(A) := Pr{x ∈ A} , η(x) := Pr{y = 1 | x= x} . (2)

Furthermore, for any t ∈ [0,1], we define t̃ := 1− t. Then η̃(x) = Pr{y = 0 | x = x} for any x ∈ X ;

and the joint distribution of (x,y) can be written as

Pr{x ∈ A,y = 1}=
∫

A η(x)dµ , Pr{x ∈ A,y = 0}=
∫

A η̃(x)dµ . (3)

We shall call (µ,η) a classification task, or simply a task, as it completely describes the problem

in the sense that other quantities can all be computed from the pair. For instance, putting A = X in

the two equations of Equation (3), we get the (marginal) probability of the two classes, which will

be denoted as π and π̃, respectively:

π := Pr{y = 1}=
∫

X
η(x)dµ , (4)

π̃ = Pr{y = 0}=
∫

X
η̃(x)dµ . (5)

4. Such classifiers are sometimes called deterministic in the literature; the other type being probabilisitc, which produce

a vector of estimated class probabilities instead of a class label for each given object (Garg and Roth, 2001). A more

general variant of the latter is a discriminant function, which outputs vectors of continuous scores (often bearing no

probabilistic interpretations). See Steinwart (2007) and Tewari and Bartlett (2007) for instance. In this paper we

consider only deterministic classifiers.
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2.2 Error Rate and Balanced Error Rate of a Classifier

The error rate of a classifier is the proportion of misclassified examples in a test data set; and the

balanced error rate is the arithmetic mean of the misclassification rate in each class. So the value

of (balanced) error rate depends not only on the classifier, but also on the test data set selected.

To remove finite sample effects, we consider a data set of infinite size and hence the asymptotic

expressions of error rate and balanced error rate. In particular, for the two-class problem, these can

be defined based on the notions of true positive, true negative, false positive and false negative.

Let ŷ(·) be a classifier applied to the task (µ,η); and {(xi,yi)}
n
i=1 a set of test examples inde-

pendently drawn from the distribution (3). According to the value of true class labels yi and their

predictions ŷi = ŷ(xi), i = 1, . . . ,n, the n examples fall into four categories, as shown in Table 2.

Denote by TP, FP, FN and TN the proportion5 of examples in the four types, then, as these are also

the frequency of the respective events, when n → ∞ they tend to

TP → Pr{ŷ(x) = 1,y = 1}= Pr{x ∈ X1,y = 1}=
∫

X1
η(x)dµ , (6)

FP → Pr{ŷ(x) = 1,y = 0}= Pr{x ∈ X1,y = 0}=
∫

X1
η̃(x)dµ , (7)

FN → Pr{ŷ(x) = 0,y = 1}= Pr{x ∈ X0,y = 1}=
∫

X0
η(x)dµ , (8)

TN → Pr{ŷ(x) = 0,y = 0}= Pr{x ∈ X0,y = 0}=
∫

X0
η̃(x)dµ , (9)

respectively, where the subsets X0 and X1 are defined by Equation (1); and the last equality in each

equation follows from Equation (3).

y = 1 y = 0

ŷ = 1 true positive (TP); cost: c11 false positive (FP); cost: c10

ŷ = 0 false negative (FN); cost: c01 true negative (TN); cost: c00

Table 2: Confusion matrix for two possible outcomes and the associated cost matrix

We now define some commonly known performance criteria of binary classifiers for later use.

As shown in Nguyen et al. (2009), these can all be written as functions of the above four quantities.

• The error rate of a classifier is denoted as ERR in this paper, which is the proportion of

misclassified objects, that is, ERR := Pr{ŷ(x) 6= y}= FN+ FP.

• The precision, PREC, is the proportion of predicted positives (ŷ = 1) which are actual positive

(ŷ = y = 1), that is, PREC := Pr{y = 1 | ŷ(x) = 1}= TP/(TP+ FP).

• The recall, denoted REC, is the proportion of actual positives (y = 1) which are predicted

positive (y = ŷ = 1), that is, REC := Pr{ŷ(x) = 1 | y = 1}= TP/(TP+ FN).

• Finally, the balanced error rate is defined as the arithmetic mean of the error rate within the

two classes 0 and 1, that is,

BER := 1
2

Pr{ŷ(x) = 1 | y = 0}+ 1
2

Pr{ŷ(x) = 0 | y = 1}

= 1
2
{FP/(TN+ FP)+ FN/(TP+ FN)} . (10)

5. Typically, the four quantities refer to the number of examples; by “rescaling” them to the proportion we are able to

discuss the case where the test set contains infinitely many examples, that is, n → ∞.
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We now derive the analytical expressions of error rate and balanced error rate. By the asymptotic

expressions of FP and FN, Equations (7) and (8), we immediately obtain

ERR = FN+ FP =
∫

X0
η(x)dµ+

∫
X1

η̃(x)dµ . (11)

Furthermore, by Equations (6)–(9) and the facts that X1 ∩X0 =∅ and X1 ∪X0 = X , we know

TP+ FN =
∫

X
η(x)dµ = π , TN+ FP =

∫
X

η̃(x)dµ = π̃ . (12)

It then follows that

FN

TP+ FN
= π−1 ·

∫
X0

η(x)dµ ,
FP

TN+ FP
= π̃−1 ·

∫
X1

η̃(x)dµ .

Therefore, by Equation (10),

BER = 1
2

(

π−1
∫

X0
η(x)dµ+ π̃−1

∫
X1

η̃(x)dµ
)

. (13)

2.3 Cost-Sensitive Risk

According to Table 2, when an object gets misclassified, it can be either a false positive or a false

negative. In the criterion of error rate, the two types of errors are treated equally. In some applica-

tions, however, the two kinds of errors may have significantly different consequences. In medical

testing, for instance, a false negative (i.e., a mistaken diagnosis that a disease is absent, when it is

actually present) is typically more serious than a false positive.

One common way to capture the different effects of false positive and false negative is to assign

a (different) cost to each of the four outcomes in Table 2. Following the convention of Elkan (2001),

we denote by cŷy the cost of classifying an object to the class ŷ, when it is actually from the class y.

For the two-class problem, this gives rise to a 2×2 matrix called the cost matrix, which is presented

also in Table 2. The expected cost of a given classifier ŷ(·) is called the cost-sensitive risk and

denoted CSR in the paper—here the modifier “cost-sensitive” is borrowed from Elkan (2001). From

Table 2, we see that

CSR = c11 · TP+ c10 · FP+ c01 · FN+ c00 · TN . (14)

As has been pointed out by Elkan (2001), for a “reasonable” cost matrix, the cost of labeling an

example incorrectly should always be greater than the cost of labeling it correctly. In our notation,

this is equivalent to requiring that c10 > c00 and c01 > c11. In this paper, we further assume that

c11 = c00 = 0;6 and, to simplify our notations, write c0 = c10 and c1 = c01—that is, the first sub-

script (which is ŷ) is dropped; so cy (y = 0,1) is the cost incurred when an object in the class y is

misclassified. Using these notations and Equations (7), (8), we can rewrite Equation (14) as

CSR = c01 · FN+ c10 · FP = c1 ·
∫

X0
η(x)dµ+ c0 ·

∫
X1

η̃(x)dµ . (15)

Obviously, the above expression degenerates into Equation (11) when c1 = c0 = 1. This confirms

that the error rate ERR is in fact a special case of the family of cost-sensitive risks.

6. This condition can actually be weakened to c11 = c00; in other words, the cost of labeling an object correctly is a

constant, regardless of the true class of that object. In this case, we have CSR = c00+(c10−c00) ·FP+(c01−c00) ·FN;

so by subtracting the constant c00 from CSR, we obtain essentially the same expression as in Equation (15).
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The relationship between BER and CSR is little more subtle. At first glance one may think of

BER also as a special case of CSR, since we can get Equation (13) by putting

c1 =
1
2
π−1 , c0 =

1
2
π̃−1 (16)

in Equation (15). But a closer look at the expressions of BER and CSR reveals that they are both

functionals of the task (µ,η) and the classifier (X0,X1) under consideration. Moreover, the value

of CSR depends on the two costs c0 and c1, whereas BER does not—the two coefficients in Equa-

tion (16) are computed from (µ,η). Hence the two quantities should be written, in a more for-

mal way, as BER(µ,η, ŷ) and CSR(µ,η, ŷ;c0,c1), respectively. It is now clear that in general we

cannot treat BER as a special CSR, because there is no uniform setting of c0 and c1 such that

BER(µ,η, ŷ) = CSR(µ,η, ŷ;c0,c1). On the other hand, most machine learning papers are about learn-

ing algorithms, with the underlying distribution (µ,η) assumed to be fixed. In that case, or, more

generally, as far as only the tasks (µ,η) with fixed priors π and π̃ are concerned, BER can be regarded

as the cost-sensitive risk as defined by Equations (15) and (16). We will discuss this problem further

in Section 5 when we derive bounds on the minimum BER.

2.4 Information Retrieval and F-Score

Manning et al. (2008, p. 1) defines information retrieval as:

Information retrieval (IR) is finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collections

(usually stored on computers).

As an illustrative example, let us consider a typical document retrieval system which accepts a

query from the user and returns a subset of “matched” documents retrieved from a huge collection.

To evaluate the performance of the system, we assume that each document is known to be either

relevant or non-relevant to a particular query. This has formulated the process as a two-class problem

in which the positive class consists of those relevant documents; and the negative class corresponds

to the set of irrelevant ones. Accordingly, the retrieval system acts as a classifier: the retrieved

documents are (seen as) predicted positive. Therefore, we can rewrite, for example,

precision as: PREC =
TP

TP+ FP
=

|{relevant documents}∩{retrieved documents}|

|{retrieved documents}|
,

recall as: REC =
TP

TP+ FN
=

|{relevant documents}∩{retrieved documents}|

|{relevant documents}|
.

From the above two expressions, we see that precision can be seen as the probability that a re-

trieved document is truly relevant to the query. Therefore, a high value of precision can be obtained

by only returning those documents that are relevant with high confidence. In this way, however, we

probably will miss lots of relevant documents. Similarly, the recall can be viewed as the probability

that a relevant document is retrieved for the query. So it is trivial to achieve recall of 100% by

returning all documents in response to any query. In conclusion, neither precision nor recall alone

is enough to serve as a performance measure of information retrieval systems; and we need to take

the two into account simultaneously.
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A well-known criterion in the community of information retrieval is F-score, defined as the

harmonic mean of precision and recall,

FSC :=
2× PREC× REC

PREC+ REC
=

2× TP

(TP+ FN)+(TP+ FP)
=

2 ·
∫

X1
η(x)dµ

π+µ(X1)
. (17)

In the above computation, we have used the first equality of Equation (12) and the identity

TP+ FP =
∫

X1
η(x)dµ+

∫
X1

η̃(x)dµ =
∫

X1
1dµ = µ(X1) .

F-score is also known as F1 measure. It is a member of a broader family of performance mea-

sures called Fβ, where β varies the emphasis on precision versus recall. In this paper we shall focus

on the case of β = 1, and consistently use the term “F-score”.

3. Extending Fano’s and Hellman’s Bounds for the Two-Class Problem

For a given classification problem, the minimum achievable error rate by any classifier is called its

Bayes error rate, and denoted as ERR in this paper. In the introduction section, we have already

mentioned the main results in the literature that are related to our work. They are all about bounding

the quantity ERR by means of different conditional entropies, to which a unifying introduction will

be given shortly. Although these known bounds hold for the multi-class problem in general, here we

shall review only the binary case, leaving a brief introduction to the multi-class case to Appendix A.

More precisely, in this section we will present a novel geometric derivation of Fano’s and Hellman’s

inequalities for the two-class case and extend it to a broad family of conditional entropies. We do

this because the same technique will be used throughout the paper to derive bounds on other optimal

performance criteria.

For the two-class problem, it is well known that the classifier which predicts all objects x with

the posterior η(x) = Pr{y= 1 | x= x}> 0.5 as positive (and others as negative) minimizes the error

rate; and the minimum error rate is7

ERR =
∫

X
min{η(x), η̃(x)}dµ . (18)

It is also well known that for a binary random variable with the distribution (η,1−η) = (η, η̃), its

Shannon entropy is defined by the binary entropy function

hbin(η) :=−η · logη− η̃ · log η̃ , η ∈ [0,1] . (19)

For binary classification, the value of η depends on the input object x ∈ X , as given by Equation (2).

The expectation of the above function with respect to the object distribution, x∼ µ, is the Shannon

conditional entropy (of the class y given the object x):

Hs(y|x) := Ex∼µ[hbin(η(x))] =
∫

X
hbin(η(x))dµ , (20)

where the subscript s stands for “Shannon”.

Fano’s inequality connects the Shannon conditional entropy, Hs(y|x), to the Bayes error rate,

ERR, by hbin(ERR) > Hs(y|x). As ERR 6 0.5 and the function hbin(η) is monotonically increasing

7. These facts will become clear after we have derived the expression of the minimum cost-sensitive risk in Section 4.
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for 0 6 η 6 0.5, this actually provides a lower bound on ERR in terms of Hs(y|x). The upper bound

is defined by Hellman’s inequality, which can be written in our notation as ERR 6
1
2
Hs(y|x). The

two bounds had been graphically shown in Figure 1.

In the literature, the two inequalities were proven using different methods; see, for example,

Cover and Thomas (2006, Section 2.10) and Hellman and Raviv (1970). Here we propose a novel

geometric proof that they can be obtained simultaneously, based upon an “obvious” fact which we

state as a theorem (because of its fundamental importance in the paper).

Theorem 1 The expectation of a random vector (assume it exists) in the Euclidean space R
m lies

in the convex hull of the range of that random vector.

This proposition, probably well known and intuitively clear—since the expectation of a random

vector is essentially the convex combination of the vectors in its range, is in fact nontrivial. To the

best of our knowledge (and to our surprise), there is no proof to Theorem 1 in the literature (we

thought it should be in some textbooks on probability theory, but we cannot find one). We hence

provide one of ourselves in Appendix B.4.

Theorem 1 gives rise to a general geometric strategy for deriving/proving inequalities like

Fano’s, as outlined in Scheme 3, where the derivation of the lower and upper bounds on Hs(y|x)
has been used as a demonstration. One should have no difficulty to see that this geometric method

can be extended, straightforwardly, to the family of concave and symmetric functions h(η), instead

of the particular function hbin(η). In fact, we even can go one step further, by dropping the require-

ment that h(η) be symmetric. We hence introduce the following general definition of conditional

entropy.

Definition 2 Let h(η) with η ∈ [0,1] be a concave function satisfying8 h(0) = h(1) = 0. The con-

ditional entropy of a given classification task (µ,η) is defined as

H(y|x) := Ex∼µ[h(η(x))] =
∫

X
h(η(x))dµ . (21)

This definition of conditional entropy is general enough to include most of entropies in the lit-

erature. For example, the Shannon entropy is obtained by setting h(η) = hbin(η); and letting

h(η) = − log(η2 + η̃2), we get Rényi’s quadratic entropy (Principe and Xu, 1999). Another ex-

ample is weighted entropy (Guiasu, 1971), which for the binary case is defined by the function

h(η) = −w1η · logη−w0η̃ · log η̃, where w0,w1 > 0 are two weights. Note that this function is

asymmetric when w0 6= w1.

Scheme 3 A general geometric strategy for deriving tight lower and upper bounds on one perfor-

mance/information measure in terms of another measure

Assume we want to derive the tight lower/upper bounds on Hs(y|x) in terms of ERR:

1. The first step is to find a random vector with expectation [ERR,Hs(y|x)] (the vector com-

prising the concerned quantities). In fact, by Equations (20) and (18) we easily see that

[ERR,Hs(y|x)] = Ex∼µ[e(η(x)),hbin(η(x))], where the function e(·) is defined by

e(η) := min{η, η̃} , η ∈ [0,1] . (22)

So the random vector [e(η(x)),hbin(η(x))] is what we want.

8. As subtracting a linear function (of η) from a concave function still gives a concave function, imposing the condition

h(0) = h(1) = 0 on the definition will result in no loss of generality.
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2. Next, we need to find the range of [e(η(x)),hbin(η(x))], the random vector obtained in Step

1. Apparently, this is the curve ℓ := {[e(η),hbin(η)] | η ∈ [0,1]}.9 But hbin(η) is a symmetric

function, that is, hbin(η) = hbin(η̃), by the definition of e(η) we know the curve ℓ is in fact the

left half of hbin(η), as depicted in Figure 2-a.

3. We then construct the convex hull of the curve ℓ, which for this example is the bow shape

OABCO bounded by the curve OCB (i.e., h = h(e)) from above and by the line segment OAB

(i.e., h = 2e) from below—see Appendix B.2 and B.3 for a rigorous discussion on the convex

hull of a given curve or subset.

4. Now Theorem 1 shows the point [ERR,Hs(y|x)] is in the area OABCO. We can thus directly

“read”, for any given value of ERR, the lower and upper bounds of Hs(y|x) from the convex

hull of ℓ, in an obvious way and simultaneously. The correctness of the bounds so obtained

is guaranteed by Theorem 1. For this example, the two bounds are 2e|e=ERR
6 Hs(y|x) 6

h(e)|e=ERR
, that is, 2ERR 6 Hs(y|x) 6 h(ERR), which are exactly Fano’s and Hellman’s re-

sults.

5. Last but not least, it is easy to show that each point in the convex hull of ℓ can be attained by

some classification task (see the proof to Theorem 5). Thus, the bounds obtained as above are

tight.

To illustrate the generality of the proposed geometric scheme, we apply it to a general concave

function h(η) which might be asymmetric. For this, only the second and third steps in Scheme 3

need to be adapted slightly, as follows.

2. For an asymmetric function h(η), the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} consists of two

parts which can be expressed as h = h(e)—as e(η) = η for η ∈ [0,0.5], and h = h(1−e)—as

e(η) = η̃ = 1−η for η ∈ [0.5,1]. Graphically, this means that ℓ is the left half of the curve

h = h(η) plus its right half flipped along the vertical line η = 0.5, as is shown in Figure 2-b.

3. The convex hull of ℓ, denoted coℓ, can then be expressed as10 (recall that ẽ = 1− e)

coℓ= {(e,h) | e ∈ [0,0.5], [min{h(e),h(ẽ)}]⌣ 6 h 6 [max{h(e),h(ẽ)}]⌢} , (23)

where, for any real-valued function f (·) defined on a convex set, f⌣ denotes the convex hull

of f , that is, the greatest convex function with the same domain as f that does not exceed f ;

and f⌢ is the concave hull of f , the smallest concave function that is larger than or equal to

f at each point in the domain of f .

We are now ready to “read” the lower and upper bounds of H(y|x) from the set coℓ, as Theorem

1 has already told us that [ERR,H(y|x)] ∈ coℓ. But before that, we would first simplify the two

bounds [. . .]⌣ and [. . .]⌢ in Equation (23), to get a cleaner result. The function h(·) is concave, so is

9. Strictly speaking, this should be ℓ := {[e(η(x)),hbin(η(x))] | x ∈ X }. But as we are investigating the universal

relationship, the “wildest” case where the range of η(x) is [0,1] should be considered.

10. See Appendix B.3 for a proof for this.
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Figure 2: a. The graph of the function hbin(η) (solid line), with η as the x-axis and hbin as the y-axis.

As this is a symmetric function, its left part BCO represents the curve ℓ= {[e(η),hbin(η)] |
η ∈ [0,1]}—now the x-axis stands for e(η). The convex hull of ℓ is hence the region

bounded by the solid curve (left half) and the dashed line OAB—now we have ERR for

the x-axis and H(y|x) for the y-axis. By flipping this bow shape along the diagonal line

through the points [0,0] and [1,1], we get exactly Figure 1, that is, Fano’s and Hellman’s

bounds.

b. The graph of an asymmetric function h(η)—the broken line ODBFGH, and the curve

ℓ= {[e(η),h(η)] |η∈ [0,1]}, which consists of the broken lines ODB and OCEB (obtained

from HGFB through a right-to-left flipping). The convex hull of ℓ is then the polygon

OBEDCO (dotted line). As in the symmetric case, here the upper/lower bounds on ERR

can be obtained by flipping this polygon along the diagonal line.

min{h(e),h(1−e)} as a function of e ∈ [0,0.5], as it is the minimum of two concave functions. But

the convex hull of a concave function is an affine function through its two endpoints. Therefore,

[min{h(e),h(1− e)}]⌣ = 2 ·h(0.5) · e .

Here we have used the assumption that h(0) = h(1) = 0. Moreover, if h(·) is symmetric, that

is, h(e) = h(ẽ), then max{h(e),h(ẽ)} = h(e) is a concave function; and its concave hull is itself:

[max{h(e),h(ẽ)}]⌢ = h(e).

Putting the above discussion together, we obtain the following theorem that extends Fano’s and

Hellman’s results to that using an arbitrary concave function h : [0,1]→ R in the definition of the

conditional entropy.

Theorem 4 (extension of Fano’s and Hellman’s inequalities) Let h : [0,1]→R be a concave func-

tion with h(0) = h(1) = 0. Then for any classification task (µ,η) we have

2 ·h(0.5) · ERR 6 H(y|x)6 [max{h(ERR),h(1− ERR)}]⌢ . (24)
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In particular, for symmetric functions h(·) the above inequality can be simplified to

2 ·h(0.5) · ERR 6 H(y|x)6 h(ERR) .

In next section we shall extend the above theorem further to a relationship between the conditional

entropy H(y|x) and the minimum cost-sensitive risk CSR—of which ERR is a special case.

Furthermore, from Theorem 1 and the definition of the convex hull of a set, we can easily see

the two bounds of H(y|x) given by Equation (24) are tight, in the sense that for any concave function

h(·) and any given value of ERR, both bounds are reachable by some task (µ,η). In fact, we have an

even stronger result, for which a short proof is presented as the “template” for other similar tightness

proofs in the paper.

Theorem 5 For any concave function h : [0,1] → R with h(0) = h(1) = 0, and any point [e0,h0]
inside the convex set coℓ as given by Equation (23), there exists a task (µ,η) for which it holds that

ERR = e0 and H(y|x) = h0.

Proof Since the point [e0,h0] lies in the convex hull of ℓ = {[e(η),h(η)] | η ∈ [0,1]}, there are n

points on the curve ℓ, say {[e(ηi),h(ηi)]}i=1,...,n, such that [e0,h0] is the convex combination of the

n points with the coefficients {βi}i=1,...,n, that is,

e0 = ∑n
i=1 βie(ηi) , h0 = ∑n

i=1 βih(ηi) ,

where βi > 0 satisfy ∑n
i=1 βi = 1. We can thus construct a classification task in which the feature

space X consists exactly of n points, {x(1), . . . ,x(n)}, with the probability mass µ(x(i)) and the pos-

terior η(x(i)) given by

µ(x(i)) = Pr{x= x(i)}= βi , η(x(i)) = Pr{y = 1 | x= x(i)}= ηi .

Clearly, for this task (µ,η) we have ERR = e0 and H(y|x) = h0.

Corollary 6 In Theorem 4 (Equation (24)), the two bounds on H(y|x) are tight. That is, given any

concave function h : [0,1]→ R with h(0) = h(1) = 1 and any value of ERR ∈ [0,0.5], there are two

(different) tasks for which the two inequalities in Equation (24) become equalities, respectively.

Proof Apply Theorem 5 to the point [e0,h0] = [ERR, 2 · h(0.5) · ERR] and to the point [e0,h0] =
[ERR, [max{h(ERR),h(1− ERR)}]⌢].

To summarize, in this fundamental section we proposed a general geometric approach to de-

riving/proving inequalities that links the conditional entropy of classification tasks with an optimal

performance measure, for example, the Bayes error rate ERR. By Theorem 1, Theorem 5 and Corol-

lary 6, the inequalities obtained in this way are guaranteed to be correct and sharp. They are also

universal in that Theorem 4 holds for any task (µ,η).
Following the discussion at the end of Section 2.3, here we would emphasize again that the two

quantities in the inequality, ERR and H(x|y), are actually functionals of tasks; and should be written

respectively as ERR(µ,η) and Hh(µ,η) in a more formal way. Here the subscript h is used to stress
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the role of the function h(·) in the definition of conditional entropy. In accordance, Equation (24)

should be written as

2 ·h(0.5) · ERR(µ,η)6 Hh(µ,η)6 [max{h(ERR(µ,η)),h(1− ERR(µ,η))}]⌢ ;

and it holds for any concave function h : [0,1]→R satisfying h(0) = h(1) = 0 and any classification

task (µ,η), as has been asserted by Theorem 4.

In the next four sections we will derive the similar inequalities for the quantities CSR, BER and

FSC, which have the following uniform form:

f (XX(µ,η))6 Hh(µ,η)6 g(XX(µ,η)) , XX stands for CSR,BER or FSC , (25)

where f (·) is a proper convex function and g(·) a proper concave function. Like Equation (24), for

CSR and FSC the corresponding inequality holds for any task (µ,η). The quantity BER is special, for

which the two “bounding” functions f (·) and g(·) involve an extra parameter: the positive prior π,

which presents also in the expression of BER—see Equation (32) in page 1052. Consequently, the

result holds only for the tasks (µ,η) with fixed class priors, namely, Pr{y= 1}= π and Pr{y= 0}=
π̃. But when π is also seen as a functional of (µ,η), then the inequality (25)—which now links BER,

Hh and π, becomes universal.

4. Bounds on the Minimum Cost-Sensitive Risk

We now study the relationship between the conditional entropy H(y|x) and the minimum cost-

sensitive risk CSR, using the same geometric strategy as given in the preceeding section. To this

end, we need first to derive the expression of CSR.

We have already derived in Section 2.3 the analytical expression of the cost-sensitive risk for

a given classifier, which, as shown in Equation (15), is the sum of two integrals of the functions

c1η(x) and c0η̃(x) over the disjoint subsets X0 and X1 of the space X , respectively. To obtain its

minimum (over all possible classifiers), we use that both c1η(x) and c0η̃(x) are larger than or equal

to the minimum of the two. It thus follows that

CSR =
∫

X0
c1η(x)dµ+

∫
X1

c0η̃(x)dµ

>
∫

X0
min{c1η(x),c0η̃(x)}dµ+

∫
X1

min{c1η(x),c0η̃(x)}dµ .

But as X0 ∩ X1 = ∅ and X0 ∪ X1 = X , the above two integrals
∫

Xi
min{. . .}dµ, i = 0,1, can be

combined into one (over the whole space X ), yielding CSR >
∫

X
min{c1η(x),c0η̃(x)}dµ. Moreover,

this inequality becomes equality when (and only when) the condition:

c1η(x) = min{c1η(x),c0η̃(x)} on X0 ; and

c0η̃(x) = min{c1η(x),c0η̃(x)} on X1

is fulfilled. This is equivalent to requiring that c1η(x)6 c0η̃(x), that is, η(x)6 c0

c0+c1
for (and only

for) all x ∈ X0. Therefore, the minimum cost-sensitive risk is

CSR =
∫

X
min{c1η(x),c0η̃(x)}dµ ; (26)

and this minimum is achieved by the classifier ŷ(x)= [[η(x)> c0

c0+c1
]], where [[·]] denotes the indicator

function which takes value 1 if the bracketed statement is true and 0 otherwise. This result is well

known in Bayesian decision theory; see, for example, Duda et al. (2001, page 26).
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Note that the error rate can be seen as a special cost-sensitive risk with c0 = c1 = 1, so its

minimum can be obtained from Equation (26) by putting c0 = c1 = 1. This gives us exactly the ex-

pression Equation (32), and the corresponding optimal classifier is ŷ(x) = [[η(x)> c0

c0+c1
]] = [[η(x)>

0.5]], which have been stated in Section 3 as well established in the literature.

We now derive, in terms of CSR, the lower and upper bounds on the conditional entropy H(y|x)
as given by Definition 2. Following the geometric lines in Scheme 3, we define the function e(η) as

(again, this is reduced to Equation (22) for c0 = c1 = 1)

e(η) := min{c1η,c0η̃} , η ∈ [0,1] . (27)

Then, Equations (21) and (26) can rewritten as the mathematical expectations of h(η(x)) and

e(η(x)), respectively:

[CSR,H(y|x)] = Ex∼µ[e(η(x)),h(η(x))]. (28)

We thus have accomplished the first step in Scheme 3. By Theorem 1, in the e-h plane the point

[CSR,H(y|x)] lies in the convex hull of the curve ℓ := {[e(η),h(η)] | η ∈ [0,1]}. The problem then

amounts to finding the convex hull of ℓ which we shall discuss shortly.

By the definition of e(η), Equation (27), one easily sees that e = c1η when η 6
c0

c0+c1
and that

e = c0η̃ = c0 −c0η when η >
c0

c0+c1
. It then follows that 0 6 e(η)6 c0c1

c0+c1
, with the minimum value

0 attained at η = 0 or η = 1; and the maximum c0c1

c0+c1
obtained at η = c0

c0+c1
. At this point, we find

it most convenient to normalize the two costs c0 and c1 (by multiplying them by a common factor)

to such that c0c1

c0+c1
= 0.5, that is, c−1

0 + c−1
1 = 2. Then the range of e is always [0,0.5].

To simplify the derivation procedure we further assume, without loss of generality, that c1 > c0.

In Section 5, this assumption will be used to obtain bounds on BER from that on CSR, see the proof

to Corollary 8. The inequality c1 > c0 is equivalent to c−1
1 6 c−1

0 , which together with c−1
0 +c−1

1 = 2

implies that 1 6 c−1
0 < 2 and 0 < c−1

1 6 1. We thus get c0 ∈ (0.5,1], c1 ∈ [1,∞) and c0

c0+c1
= 1

2c1
6

1
2
.

Furthermore, from the equality c−1
0 + c−1

1 = 2 we know c0 = c1

2c1−1
. So the cost matrix is now

characterized by a single parameter c1 ∈ [1,∞), as shown in Figure 3.
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Figure 3: The relationship between the values of c0 and c1 (left) and the cost-matrix as characterized

by the cost c1 (right).

We now study the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} (Step 2 in Scheme 3). Based on the

above assumptions, we see that when η changes from 0 to 1
2c1

, e = c1η changes from 0 to 0.5;

and when η changes from 1
2c1

further to 1, e = c0 − c0η changes from 0.5 back to 0, both in a

linear manner. Therefore, the curve ℓ= {[e(η),h(η)] | η ∈ [0,1]} consists of two parts, namely h =
h(c−1

1 e), e ∈ [0,0.5] (corresponding to η ∈ [0, 1
2c1

]) and h = h(1− c−1
0 e), e ∈ [0,0.5] (corresponding

to η ∈ [ 1
2c1

,1]). The first part h = h(c−1
1 e) is obtained from the graph of h(η), η ∈ [0, 1

2c1
] by

linearly lengthening it from the interval [0, 1
2c1

] to that on the interval [0,0.5]. The second part
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h = h(1− c−1
0 e) is obtained from the graph of h(η), η ∈ [ 1

2c1
,1] by first linearly shrinking it from

the interval [ 1
2c1

,1] to over the interval [ 1
2
,1], and then flipping the resulting curve along the vertical

line at η = 0.5.

The above dynamical procedure is demonstrated in Figure 4-a for the settings c1 = 2.5, c0 =
0.625 and h(η) =−η · logη− (1−η) log(1−η) (Shannon). In Figure 4-a, we start with the graph

of h = h(η), the curve OABF. This curve is divided into two parts by the point A whose coordinate

is ( 1
2c1

,h( 1
2c1

)). To obtain the curve ℓ, we first move horizontally A to the point C which has the

coordinate of (0.5,h( 1
2c1

)). The other points on the curve OABF are moved linearly, with the two

endpoints O and F being fixed. This gives us the curve OCDF, whose left part OC represents the

function h = h(c−1
1 e), e ∈ [0,0.5]; and its right half CDF is described by the function h = h(1−

c−1
0 (1− e)), e ∈ [0.5,1]. Next, we flip the right part CDF along the vertical line at η = 0.5, yielding

the curve OHEC which is the graph of h = h(1−c−1
0 e), e ∈ [0,0.5]. The curve ℓ is then the union of

the curve OHEC and the curve OC, that is, the closed curve OHECO.
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Figure 4: a. The procedure for getting the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} (OHECO) from the

graph of h(η) (the curve OABF), for the settings of c0 = 0.625, c1 = 2.5 and h(η) =
−η logη− η̃ log η̃. See the text for more explanation.

b. The tight lower (the line OGC) and upper (the curve OHEG) bounds on H(y|x) as

functions of CSR. Stated in the other way, if the conditional entropy H(y|x) is known,

then the upper bound of CSR is determined by the curve OGCE; and its lower bound is

given by the curve OHE.

The next step is to find the convex hull of ℓ. By Definition 2, h(η) is a concave function. So

both h = h(c−1
1 e) and h = h(1− c−1

0 e) are concave functions (of e). Moreover, for any symmetric

function h(η), from Figure 4-a we see that the curve OHEC is above the curve OC. Mathematically,

this can be expressed as h(c−1
1 e) 6 h(1− c−1

0 e), which is true for all symmetric concave functions
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h(η).11 Therefore, the convex hull of the curve OHECO can be obtained by simply connecting the

points O and C with a straight line. This is plotted in Figure 4-b, where the region OHECGO is the

convex hull of the curve OHECO; it also represents the reachable region of the point [CSR,H(y|x)].
It is now clear that the value of H(y|x) is lower bounded by the straight line OC, which is the

graph of the function h = 2h( 1
2c1

)e, e ∈ [0,0.5], and upper bounded by the curve OHEC, which is

described by the function h = h(1− c−1
0 e) = h(c−1

0 e), e ∈ [0,0.5]—since h(·) has been assumed to

be symmetric here. We thus obtain

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 h(c−1
0 · CSR) . (29)

By a similar discussion to that above Theorem 4, we can extend Equation (29) to asymmetric

functions h(·). In this case it is not necessarily that h(c−1
1 e) 6 h(1 − c−1

0 e) for e ∈ [0,0.5]. In

Figure 4-b, this means that the dashed curve OC, that is, h = h(c−1
1 e), could intersect with the curve

OHEC, that is, h = h(1− c−1
0 e), at points other than O and C. Consequently, the right hand side of

Equation (29) should now be replaced by the concave hull function of the maximum of h(c−1
1 e) and

h(1− c−1
0 e). That is,

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ .

Moreover, analogous to Theorem 5 and Corollary 6, we can prove the above two bounds on H(y|x)
are both tight. These results are summarized in the following theorem.

Theorem 7 (tight bounds on H(y|x) as functions of CSR) Let h : [0,1]→R be a concave function

that satisfies h(0) = h(1) = 0. Then for any binary classification problem (µ,η) we have

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ , (30)

where H(y|x) is defined as in Definition 2, and CSR given by Equation (26). In particular, when h(·)
is a symmetric function, it holds that 2 ·h( 1

2c1
) · CSR 6 H(y|x)6 h(c−1

0 · CSR).

One observes that when c0 = c1 = 1 the above theorem is reduced to Theorem 4, so it is the extension

of Fano’s and Hellman’s results to the cost-sensitive case.

To simplify the discussion, let us return to the symmetric case. To get the lower/upper bounds

on CSR in terms of H(y|x) from Theorem 7, we notice that the function h(η) is symmetric on the

interval [0,1] and hence monotonically non-decreasing on [0,0.5]. It thus follows from the inequality

H(y|x)6 h(c−1
0 · CSR) that

h−1
[0,0.5](H(y|x))6 c−1

0 · CSR 6 1−h−1
[0,0.5](H(y|x)) ,

where h−1
[0,0.5] denotes the inverse of the function h(η) restricted on [0,0.5]. This inequality together

with 2h( 1
2c1

) · CSR 6 H(y|x) implies

c0 ·h
−1
[0,0.5](H(y|x))6 CSR 6 min

{

c0 − c0 ·h
−1
[0,0.5](H(y|x)), 1

2
· [h( 1

2c1
)]−1 ·H(y|x)

}

. (31)

In Figure 4-b, the above lower bound c0 · h−1
[0,0.5](H(y|x)) corresponds to the curve OHE; and the

upper bound min{. . .} corresponds to the curve OGCE (see the description of Figure 4-b).

11. Here is a short proof. As h(η) is symmetric and concave, it attains its maximum at η = 0.5; and it is monotonically

non-decreasing on the interval [0,0.5] and monotonically non-increasing on [0.5,1]. So to prove h(c−1
1 e) 6 h(1−

c−1
0 e) it suffices to show that c−1

1 e 6 1 − c−1
0 e 6 1 − c−1

1 e, of which the first inequality follows from the facts

e ∈ [0,0.5] and c−1
0 + c−1

1 = 2; and the second inequality is clear from the assumption c0 6 c1.
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Figure 5: The lower (solid line) and upper (dashed line) bounds on the minimum cost-sensitive

risk, CSR, in terms of Shannon’s conditional entropy. From left to right the cost of false

negative is set to be c1 = 1, 5
3

and 20, respectively; and the cost of false positive is de-

termined by the condition c−1
0 + c−1

1 = 2. Attached with each graph is the corresponding

cost matrix, where p (n) refers to the real positive (negative); and p̂ (n̂) is the predicted

positive (negative). Note that the left figure reproduces Fano’s and Hellman’s bounds (see

Figure 1).

To give the reader an intuitive feeling about how the two bounds on the minimum cost-sensitive

risk as shown in Equation (31) vary in accordance with different settings of c0 and c1, we plotted in

Figure 5 curves of these lower/upper bounds for c1 = 1, c1 =
5
3

and c1 = 20, with the corresponding

cost matrix attached for each subfigure. From the figure we see that when the parameter c1 increases

from 1 to ∞, the peak point C (at which CSR takes the maximum value 0.5) moves left from the top

right corner [1,0.5] to the top left corner [0,0.5]; whereas another extreme point E (at which H(y|x)
takes the maximum value 1) moves down from the point [1,0.5] to the point [1,0.25].

A fact one should notice is that here the (tight) upper bound on CSR is no longer monotoni-

cally increasing with H(y|x), especially when c1 is large, that is, the positive class is regarded as

much more important than the negative class. This implies a non-intuitive situation. Usually with

classification problems, as we decrease the conditional entropy, we would expect the worst case

classification scenario to improve. With cost-sensitive risk, however, as we decrease entropy, in

the worst case the cost-sensitive risk could possibly become larger—compare the points C and E in

Figure 5. This important observation was not noted before in the literature. We will discuss it in

more detail in Section 8.

5. Bounding the Minimum Balanced Error Rate by Conditional Entropy

The main goal in this section is to derive the tight lower and upper bounds on minimum balanced

error rate, BER, for binary classification problems with given conditional entropy H(y|x) and (prior)

class probabilities, π= Pr{y= 1} and π̃= Pr{y= 0}. To do so, we need first to derive the expression

of BER.
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As we have already mentioned at the end of Section 2.3, for any given task (µ,η) the balanced

error rate BER as a functional of classifiers ŷ(·) can be seen as a special cost-sensitive risk with

c1 =
1
2
π−1 and c0 =

1
2
π̃−1. This observation allows us to re-use the analysis presented in Section

4 to obtain the expression of the minimum balanced error rate, BER. In fact, putting c1 = 1
2
π−1

and c0 = 1
2
π̃−1 in Equation (26)—note that the derivation of Equation (26) does not rely on the

conditions c−1
0 + c−1

1 = 2 and c0 6 c1, we at once get

BER = 1
2

∫
X

min{π−1η(x), π̃−1η̃(x)}dµ ; (32)

and the corresponding optimal classifier is ŷ(x) = [[η(x)> c0

c0+c1
]] = [[η(x)> π]].

We have also pointed out that, as far as only those tasks (µ,η) with constant class probabilities

π = Pr{y= 1} and π̃ = Pr{y= 0} are concerned, the quantity BER can still be regarded as a special

case of CSR. Accordingly, BER as a functional of tasks (µ,η) is a special case of CSR, that is,

BER(µ,η) = CSR(µ,η;c0,c1) with c0 =
1
2
π̃−1 and c1 =

1
2
π−1. (Conceptually, however, the two are

totally different, as we will see soon.) We thus get from Theorem 7 the following corollary.

Corollary 8 (bounds on H(y|x) as functions of BER) Let h(η), η ∈ [0,1], be a concave function

satisfying h(0) = h(1) = 0 and h(η) = h(1−η) (symmetric). Then for any binary classification task

(µ,η) with Pr{y = 1}= π it holds that

2 ·h(π) · BER 6 H(y|x)6

{

h(2π̃ · BER) if π 6 0.5
h(2π · BER) if π > 0.5

, (33)

where H(y|x) is defined as in Definition 2, and BER is given by Equation (32).

Proof If π 6
1
2
, the settings c1 = 1

2
π−1 and c0 = 1

2
π̃−1 satisfy the two conditions c0 6 c1 and

c−1
0 + c−1

1 = 2. So from Equation (29) we get h(π) ·2BER 6 H(y|x) 6 h(2π̃ · BER). For the case of

π >
1
2
, we still set c1 =

1
2
π−1 and c0 =

1
2
π̃−1 but interchange the roles of c0 and c1 in Equation (29).

This gives us h(π) · 2BER 6 H(y|x) 6 h(2π · BER). Here we have used the fact that h(π) = h(π̃)—
notice that h(·) is a symmetric function.

As we have just said, balanced error rate and cost-sensitive risk are two different concepts. The

main difference is that in the expression of CSR, Equation (15), the two coefficients c0 and c1 depend

on neither µ nor η; whereas for BER, Equation (13), the values of c0 and c1 depend on the concerned

problem (µ,η). This difference results in that the two bounds on H(y|x) as claimed by Corollary 8

are not necessarily tight any more. The reason is that, in terms of CSR, the lower/upper bounds on

H(y|x) are obtained over all tasks with a fixed value of CSR; whereas in terms of BER, we implicitly

imposed an additional condition on the tasks, namely, the class probabilities should also be fixed as

π and π̃. Consequently, the development presented in Section 4 can not be directly applied here to

obtain the tight bounds.

We now use Scheme 3 to derive the tight bounds on H(y|x) in terms of BER and π. The resulting

bounds are presented in Theorem 11.—This is only for theoretical convenience: in practice we are

often more interested in using H(y|x) to bound BER, which can be obtained from Theorem 11 by

simply interchanging the axes of H(y|x) and BER, as has been done in Figure 6-b. In fact, we have

already used this technique to study the bounds on CSR in terms of H(y|x), see the derivation of

Equation (31) in page 1050.
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In Equation (21), we have already expressed H(y|x) as the mathematical expectation of some

function of η(x). The other two quantities involved, π and BER, can also be written in this way.

In fact, by Equations (32) and (4), one easily sees that BER = 1
2
Ex∼µ[r(η(x))] and π = Ex∼µ[η(x)],

where the function r(η) is defined as

r(η) := min{π−1η, π̃−1η̃} , η ∈ [0,1] .

So Equations (4), (32) and (21) can be rewritten together in vector notation as

[π,2BER,H(y|x)] = Ex∼µ[η(x),r(η(x)),h(η(x))] . (34)

It then follows from Theorem 1 that the point [π,2BER,H(y|x)] is in the convex hull of the curve

ℓ= {[η,r(η),h(η)] | η ∈ [0,1]} in the three dimensional η-r-h space.

Next we would implement the second and third steps in Scheme 3, for which we use the graph

of ℓ and its convex hull with π = 0.3 and h(η) =−η logη− η̃ log η̃ (Shannon) as the example (see

Figure 6-a). For any given value of π, the function r(η) is piecewise linear: it equals to π−1η if

η 6 π and π̃−1η̃ otherwise. The curve ℓ is hence divided into two parts by the point [π,1,h(π)]—the

point A in Figure 6-a. The part with η 6 π is in the plane η = πr (plane AOD); and the part with

η > π is in the plane η̃ = π̃r (plane ABD). For such a curve simple geometry tells us that its convex

hull is bounded by the triangle OAB, the two bow shapes OAO and ABA, and the minimal “concave”

curved surface OAB bordered by the curve ℓ and the line segment OB—see Appendix B.3 for more

detail.

Finally, we want to compute the tight lower and upper bounds on H(y|x) from the convex hull

of ℓ. For any fixed value of π, this is equivalent to seeking the intersection of the plane η = π and the

convex hull of ℓ. From Figure 6-a, it is easy to see that H(y|x) is lower bounded by the line segment

AC, the intersection of the planes ADC (the plain η = π) and OAB (the “tight lower bound” of the

convex hull of ℓ). It is also obvious that the two endpoints of AC have the coordinates A(π,1,h(π))
and C(π,0,0). Therefore,

h(π) ·2BER 6 H(y|x) . (35)

This inequality is same as the first inequality in Equation (33); they are nevertheless obtained by

different methods. The most important difference is that here we can safely claim the sharpness of

the inequality (by an argument similar to that in Theorem 5 and Corollary 6), which is not clear

from Corollary 8.

Analogously, the tight upper bound on H(y|x) is determined by the intersection curve of plane

η = π (plane ADC) and the aforementioned curved surface OAB. Therefore, to compute this tight

upper bound we need to find the maximal value of h such that the point [π,2BER,h] is in the convex

hull of ℓ. By the definition of convex hull, this can be done as follows. Pick any two points, say M

and N (not plotted in Figure 6-a), on the curve ℓ or the line segment OB, so that the line segment MN

meets the vertical line defined by η = π and r = 2BER, say the line EF in the figure, at some point

K. By definition, we know point K is in the convex hull. So its h-coordinate, Kh, is no more than the

maximal value of H(y|x); and the maximum of Kh (over all possible pairs M and N) is exactly the

tight upper bound of H(y|x).
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Figure 6: a. The curve ℓ= {[η,r(η),h(η)] | η ∈ [0,1]} and its convex hull in the η-r-h space.

b. The tight lower (solid lines) and upper (dashed lines) bounds on BER versus the Shan-

non conditional entropy for π = 0.1 (A) and π = 0.3 (B). Note the difference between

the bow shape (B) here and that in the middle graph of Figure 5—the two use the same

parameters: π = 0.3, that is, c1 =
5
3
.

To compute the maximal value of Kh, let M, N be as above and write ρ := 2BER. Then, as K is

on the line segment MN, there exists a unique t ∈ (0,1) such that

Kη = t̃ ·Mη + t ·Nη = π , (36)

Kr = t̃ ·Mr + t ·Nr = ρ , (37)

Kh = t̃ ·Mh + t ·Nh , (38)

where the subscript η,r or h denotes the corresponding coordinate of the concerned point. We shall

discuss two different cases separately.

Case 1: One of M and N, say M, is on line segment OB. That is, Mr = Mh = 0 and 0 6 Mη 6 1.

If 0 6 Mη 6 π, by Equation (36), Nη > π and so Nr = π̃−1(1−Nη). This equation, together with

Equations (36) and (37), implies that Nη = 1− t−1π̃ρ and Mη = 1− t̃−1π̃ρ̃. So from Equation (38)

we know Kh = t ·h(1−t−1π̃ρ), where the range of t is determined by the condition 06Mη 6 π, from

which we obtain t ∈ [ρ,ρ+πρ̃]. Similarly, for π 6 Mη 6 1 it holds that Nη 6 π and Nr = π−1Nη; and

by solving the three equations (36)–(38) we get Nη = t−1πρ, Mη = t̃−1πρ̃, and Kh = t · h(t−1πρ),
with t ∈ [ρ,ρ+ π̃ρ̃].

Case 2: Both M and N are on the curve ℓ. Without loss of generality, assume Mη 6 Nη. Then by

Equation (36) we know Mη 6 π 6 Nη; and hence Mr = π−1Mη and Nr = π̃−1(1−Nη). Substituting

the two equations into Equation (37) and solving the resulting linear equations (36) and (37), we
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arrive at Mη = π− t̃−1ππ̃ρ̃ and Nη = π+ t−1ππ̃ρ̃. It then follows from Equation (38) that Kh =
t̃ · h(π− t̃−1ππ̃ρ̃) + t · h(π+ t−1ππ̃ρ̃), where t ∈ [πρ̃,ρ+ πρ̃], as is determined by the conditions

Mη > 0 and Nη 6 1.

Summing up the above discussion, we conclude that the tight upper bound on H(y|x) is the

maximum of the three maxima:

K
(1)
h = max{ f1(t) := t ·h(1− t−1π̃ρ) | t ∈ [ρ,ρ+πρ̃]} , (39)

K
(2)
h = max{ f2(t) := t ·h(t−1πρ) | t ∈ [ρ,ρ+ π̃ρ̃]} , (40)

K
(3)
h = max{ f3(t) := t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) | t ∈ [πρ̃,ρ+πρ̃]} . (41)

Lemma 9 Let h : [0,1]→ R be a concave function. Let u,v,w ∈ [0,1] and α,β,γ > 0 be such that

α+β = γ and αu+βv = γw. Then

α ·h(u)+β ·h(v)6 γ ·h(w) . (42)

Proof The case of α = β = γ = 0 is trivial. If at least one of the three is nonzero, then γ > 0 since

γ = α+β. Equation (42) is then just a reformulation of the characterizing (defining) inequality of

concave functions, t ·h(u)+ t̃ ·h(v)6 h(t ·u+ t̃ · v), with t = γ−1α.

Lemma 10 In Equations (39)–(41), (a) the functions f1(t) and f2(t) are monotonically non-decreasing,

so K
(1)
h = f1(ρ+πρ̃) and K

(2)
h = f2(ρ+ π̃ρ̃); (b) the function f3(t) is concave, and its value at the

two endpoints are f3(ρ+πρ̃) = K
(1)
h and f3(πρ̃) = K

(2)
h , respectively.

Proof (a) For t1, t2 ∈ [ρ,ρ+ πρ̃] satisfying t1 6 t2, we need to show that f1(t1) 6 f1(t2), that is,

t1 · h(1− t−1
1 π̃ρ) 6 t2 · h(1− t−1

2 π̃ρ). This can be obtained by substituting (α,β,γ) = (t1, t2 − t1, t2)
and (u,v,w) = (1− t−1

1 π̃ρ,1,1− t−1
2 π̃ρ) into Equation (42) and using the fact that h(1) = 0.

Similarly, the inequality f2(t1)6 f2(t2), that is, t1 ·h(t
−1
1 πρ)6 t2 ·h(t

−1
2 πρ) can be proven using

the settings (α,β,γ) = (t1, t2 − t1, t2) and (u,v,w) = (t−1
1 πρ,0, t−1

2 πρ) for Equation (42), as well as

the fact that h(0) = 0.

(b) For any t1, t2 ∈ [πρ̃,ρ+ πρ̃] and α ∈ (0,1), write t = α · t1 + α̃ · t2. We want to prove that

f3(t)> α · f3(t1)+ α̃ · f3(t2). But Lemma 9 implies that

t̃ ·h(π− t̃−1ππ̃ρ̃)> αt̃1 ·h(π− t̃−1
1 ππ̃ρ̃)+ α̃t̃2 ·h(π− t̃−1

2 ππ̃ρ̃) ,

t ·h(π+ t−1ππ̃ρ̃)> αt1 ·h(π+ t−1
1 ππ̃ρ̃)+ α̃t2 ·h(π+ t−1

2 ππ̃ρ̃) .

The sum of the above two inequalities is exactly what we want: f3(t)>α · f3(t1)+ α̃ · f3(t2). Finally,

the two identities f3(ρ+πρ̃) = f1(ρ+πρ̃) = K
(1)
h and f3(πρ̃) = f2(ρ+ π̃ρ̃) = K

(2)
h can be verified

by direct computation.

As a consequence of the above lemma, we see that H(y|x) is actually upper bounded by the

quantity K
(3)
h as defined in Equation (41), that is,

H(y|x)6 max
{

f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) | t ∈ [πρ̃,ρ+πρ̃]
}

, (43)
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where ρ = 2BER is two times of the minimum balanced error rate and π = Pr{y = 1} the prior

probability of the positive class. Furthermore, using an argument similar to that for Theorem 5 and

Corollary 6, we can prove the above upper bound on H(y|x) is tight.

Combining Equation (35) and Equation (43), we get

Theorem 11 (tight bounds on H(y|x) in terms of BER and π) Let h(η), η ∈ [0,1], be a concave

function satisfying h(0)= h(1)= 0. Then for any binary classification task (µ,η) with Pr{y= 1}= π

it holds that

2 ·h(π) · BER 6 H(y|x)6 max{ f3(t) | t ∈ [πρ̃,ρ+πρ̃]}= K
(3)
h , (44)

where ρ = 2BER and the function f3(t) is defined by Equation (43).

Notice that Theorem 11 does not require that h(·) be symmetric. Furthermore, as has been pointed

out earlier, there are two ways to understand this theorem. The first way is to see π as a given

parameter, then Equation (44) describes the relationship between the functionals H(y|x) and BER;

and it holds for any task with Pr{y = 1} = π. We can also regard π as a functional of tasks, then

Equation (44) connects the three quantities: π, BER and H(y|x); and holds for any classification task

(µ,η).
In Theorem 11, the tight upper bound on H(y|x) has been written as the maximum of a concave

function f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) over the interval [πρ̃,ρ+πρ̃]. This maximum

has no closed-form expression in general, we therefore resort to numerical methods. If the function

h(·) is differentiable, so is f3(t)—the derivative of f3(t) is

f ′3(t) =−h(π− t̃−1ππ̃ρ̃)− t̃−1ππ̃ρ̃ ·h′(π− t̃−1ππ̃ρ̃)

+h(π+ t−1ππ̃ρ̃)− t−1ππ̃ρ̃ ·h′(π+ t−1ππ̃ρ̃) .

In this case, the maximum of f3(t) can be obtained by checking the values of its derivative f ′3(t).

First at the two endpoints πρ̃ and ρ+ πρ̃: if f ′3(πρ̃) 6 0, then K
(3)
h = f3(πρ̃); if f ′3(ρ+ πρ̃) > 0,

then K
(3)
h = f3(ρ+πρ̃). Otherwise we need to calculate the unique solution t0 ∈ (πρ̃,ρ+πρ̃) to the

equation f ′3(t) = 0 and obtain K
(3)
h = f3(t0). This can be done very efficiently by simple numerical

methods such as bisection, since f ′3(t) is a non-increasing function of t. If h(·) is not differentiable,

one still can use simple numerical methods such as the Fibonacci search and the golden section

search (Brent, 1973, p. 68) to locate the maximum of f3(t), since f3(t) is a unimodal function.

For the Shannon conditional entropy, h(η) = −η log p− η̃ log η̃ and the value of f ′3(t) at the

two endpoints are f ′3(ρ+πρ̃) = −∞ and f ′3(πρ̃) = ∞, respectively. The problem is thus reduced to

solving the equation f ′3(t) = 0, which can be simplified to

π log(1− t̃−1π̃ρ̃)+ π̃ log(1+ t̃−1πρ̃) = π log(1+ t−1π̃ρ̃)+ π̃ log(1− t−1πρ̃) .

Its solution t0 is then substituted into the expression of f3(t), yielding the tight upper bound of

H(y|x). In Figure 6-b the lower and upper bounds on H(y|x) are plotted versus minimum balanced

error rate BER = 1
2
ρ for π = 0.1 and 0.3—corresponding to c1 =

1
2
π−1 = 5 and 5

3
. The graph has

used the x-axis for H(y|x) and the y-axis for BER, so that one can easily check the bounds on BER

for given values of H(y|x). One may compare the middle graph of Figure 5 with Figure 6-b, to

confirm that the upper bound on H(y|x) stated by Corollary 8 is indeed untight (for those tasks with

0 < BER < 0.5). In Appendix C, we will show that the upper bound of H(y|x) given by Theorem 11

is never looser than that in Corollary 8.
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To conclude, we have used the proposed geometric method to derive the tight lower and upper

bounds on H(y|x) in terms of BER and π. By flipping the curve of these bounds along the diagonal

line, we can also get the tight lower and upper bounds on BER as functions of H(y|x) and π, as we

have done for the quantity CSR—see Equation (31). As shown by Corollary 8, these tight bounds are

not obtained by simply taking the balanced error rate as a special cost-sensitive risk, even though

here the value of π is assumed to be a constant. This confirms that balanced error rate and cost-

sensitive risk are two essentially different performance measures.

6. Maximum F-score in the Binary Classification Problem

We now consider the relationship between F-score and conditional entropy. As before, we shall first

derive the maximum value of F-score for a given classification problem (µ,η). By Equation (17),

this amounts to maximizing the set function

Γ(X1) := 1
2

FSC = [π+µ(X1)]
−1 ·

∫
X1

η(x)dµ , (45)

under the assumption that the object distribution µ and the conditional class probability η(x) are

constants (so the class probability π is also a constant).

Lemma 12 Let the set function Γ(X1) be as in Equation (45). For any measurable subset X1 of X ,

let X
′
1 = {x ∈ X | η(x)> Γ(X1)}. Then Γ(X ′

1)> Γ(X1).

Proof Write θ = Γ(X1). Let A = {x ∈ X1 | η(x)6 θ} and B = {x /∈ X1 | η(x)> θ}. Then A ⊆ X1,

B∩X1 =∅ and X
′
1 = (X1 \A)∪B. Thus, by Equation (45),

Γ(X ′
1) =

∫
X

′
1
η(x)dµ

π+µ(X ′
1)

=

∫
X1

η(x)dµ+
∫

B η(x)dµ−
∫

A η(x)dµ

π+µ(X1)+µ(B)−µ(A)
.

As η(x) > θ on B,
∫

B η(x)dµ > θµ(B). Similarly,
∫

A η(x)dµ 6 θµ(A). Furthermore, by the def-

inition of Γ(X1), we have
∫

X1
η(x)dµ = θ[π + µ(X1)]. All these three facts together imply that

Γ(X ′
1)> θ = Γ(X1).

This theorem allows us to consider only classifiers of the form ŷ(x) = [[η(x) > θ]] when max-

imizing the F-score, where θ ∈ [0,1] is a threshold. To determine the optimal threshold θ so that

the F-score, or, equivalently, the function Γ(X1) is maximized, where the set X1 is defined via θ as

X1(θ) = {x ∈ X | η(x)> θ}, we rewrite Equation (45) as a function of θ:

Γ(θ) =

∫
X1

η(x)dµ

π+µ(X1)
=

θµ(X1)+
∫

X1
[η(x)−θ]dµ

π+µ(X1)
= θ+

∫
X1
[η(x)−θ]dµ−πθ

π+µ(X1)
. (46)

For any r ∈R, write r+ := max{0,r}. By the definition of X1, η(x)−θ > 0 iff x ∈ X1. So for x ∈ X1,

[η(x)−θ]+ = η(x)−θ; and for x /∈ X1, [η(x)−θ]+ = 0. It therefore follows that
∫

X1
[η(x)−θ]dµ =∫

X
[η(x)−θ]+dµ . Substituting this into Equation (46), we obtain

Γ(θ) =
θµ(X1)+

∫
X
[η(x)−θ]+dµ

π+µ(X1)
= θ+

∫
X
[η(x)−θ]+dµ−πθ

π+µ(X1)
. (47)
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Lemma 13 The function g(θ) :=
∫

X
[η(x)−θ]+dµ−πθ, where θ ∈ [0,1], is continuous and strictly

decreasing, with g(0) = π and g(1) =−π.

Proof Since |(η− θ1)
+− (η− θ2)

+| 6 |θ1 − θ2|, we have |g(θ1)− g(θ2)| 6 (1+π)|θ1 − θ2|, so

g(θ) is continuous. It is strictly decreasing because its first term is non-increasing (with respect to θ)

and its second term, −πθ, is strictly decreasing. Finally, as 0 6 η(x)6 1, we know [η(x)]+ = η(x)
and [η(x)−1]+ = 0; so g(0) = π and g(1) =−π.

By this lemma, we know there exists a unique θ∗ ∈ (0,1) such that g(θ∗) = 0, that is,

∫
X
[η(x)−θ∗]+dµ−πθ∗ = 0 . (48)

We now prove it is this θ∗ that maximizes the function Γ(θ); and the maximum value is Γ(θ∗) = θ∗,

as can be easily seen from Equation (47) and Equation (48).

Lemma 14 The function Γ(θ) as given by Equation (46) is maximized at θ∗.

Proof We shall use the first expression of Γ(θ) from Equation (46), in which the subset X1 is

defined as X1 = {x ∈ X | η(x) > θ}. If θ < θ∗, define A := {x ∈ X | η(x) > θ∗} and B := {x ∈ X |
θ∗ > η(x)> θ}. Then it is clear that A∩B =∅ and A∪B = X1. Thus,

Γ(θ) =

∫
A η(x)dµ+

∫
B η(x)dµ

π+µ(A)+µ(B)
.

Now, as θ∗ = Γ(θ∗) = [π+ µ(A)]−1 ·
∫

A η(x)dµ, we have
∫

A η(x)dµ = θ∗ · [π+ µ(A)]. Moreover,∫
B η(x)dµ 6 θ∗µ(B) since η(x)6 θ∗ on B. Therefore, Γ(θ)6 θ∗ = Γ(θ∗).

If θ > θ∗, define A as before and B := {x ∈ X | θ > η(x) > θ∗}. Then B ⊆ A and X1 = A \B.

Thus,

Γ(θ) =

∫
A η(x)dµ−

∫
B η(x)dµ

π+µ(A)−µ(B)
.

Since η(x) > θ∗ for x ∈ B, it holds that
∫

B η(x)dµ > θ∗µ(B); whereas the equality
∫

A η(x)dµ =
θ∗ · [π+µ(A)] remains true. So, again, we obtain Γ(θ)6 θ∗ = Γ(θ∗).

In summary, to determine the maximum F-score for a given classification problem, one needs

only to find the unique solution θ∗ to the equation (48). The maximum F-score is then FSC =
2 · Γ(θ∗) = 2θ∗; and the corresponding optimal classifier is ŷ(x) = [[η(x) > θ∗]]. An interesting

implication of the equality FSC = 2θ∗ is that θ∗ 6
1
2

(as FSC 6 1). That is, for F-score the optimal

threshold is always less than or equal to 0.5.

7. Bounds on the Maximum F-score in Terms of Conditional Entropy

In this section, we derive bounds on maximum F-score, FSC, in terms of the conditional entropy

H(y|x) as defined by Equation (21). As before, we shall first examine the range of H(y|x) for any

given value of FSC.
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In the preceding section we have proved that θ∗ := 1
2

FSC ∈ [0,0.5] (as FSC 6 1) is the unique

solution to the equation (48), which, by Equation (4), can be rewritten as

∫
X
{θ∗ ·η(x)− [η(x)−θ∗]+}dµ = 0; i.e., Ex∼µ[u(η(x))] = 0 ,

where u(η) := θ∗η− (η−θ∗)+ is a function on [0,1]. For any fixed value of θ∗, we know from the

above equation and Equations (4) and (21) that

[π,0,H(y|x)] = Ex∼µ[η(x),u(η(x)),h(η(x))] . (49)

By Theorem 1, in the η-u-h space [π,0,H(y|x)] is a point in the convex hull of the curve ℓ =
{[η,u(η),h(η)] | η ∈ [0,1]}.—We have completed (a variant of) the first step in Scheme 3.

In Figure 7-a the graph of the curve ℓ is plotted for θ∗= 0.3 and the Shannon conditional entropy.

By the definition of u(η), we have u(η) = θ∗η for η 6 θ∗ and u(η) = θ∗− θ̃∗η for η > θ∗. Thus,

as in the case of balanced error rate, here the curve ℓ consists also of two parts each of which is in

a plane. Consequently, its convex hull is bounded by three flat facets and one curved surface OAB

(O is the origin) which is the minimum concave surface with line segment OB and curve ℓ as its

boundary.—These are the second and third steps in Scheme 3.

As its second coordinate is a constant 0, the point [π,0,H(y|x)] lies in the intersection of the

plane u = 0 and the convex hull of ℓ. Therefore, as shown by Figure 7-a, H(y|x) is lower bounded

by the line OD; and upper bounded by the curve OE that is the intersection of the plane u = 0 and

the curved surface OAB we just mentioned. Notice here that, π is not fixed, but may take values

between the points O and C (C is the intersection point of line u = h = 0 and plane u = θ∗− θ̃∗η).

That is, π ∈ [0,θ∗/θ̃∗]. Thus, the lower bound of H(y|x) is given by the minimum h-coordinate of

points on the line segment OD. Obviously, this equals to 0, the h-coordinate of the origin point O,

which happens when π tends to zero. That means, for any given value of θ∗, the tight lower bound

of H(y|x) is always 0.

Similarly, the maximum h-coordinate of points on the curve OE is the upper bound of H(y|x).
For symmetric functions h(·), we shall soon prove that the endpoint E has the maximum h-coordinate

(over all points on the curve OE). Furthermore, from Figure 7-a we know the η-coordinate of E is

Eη = θ∗/θ̃∗, so its h-coordinate Eh = h(θ∗/θ̃∗) = h
(

FSC

2−FSC

)

.

From the above discussion we obtain the tight lower and upper bounds on H(y|x), as follows

(the fourth step in Scheme 3).

Theorem 15 (tight bounds on H(y|x) in terms of FSC) Let H(y|x) be the conditional entropy de-

fined by a symmetric concave function h : [0,1]→R. Then for any two-class problem (µ,η), it holds

that

0 6 H(y|x)6 h
(

FSC

2−FSC

)

, (50)

and the two inequalities are sharp.

A remark on Theorem 15: As we have used a variant of Scheme 3 to derive the inequality (50),

the two general theorems 1 and 5 cannot be directly applied here and we need to prove it sepa-

rately. In fact, in the above we have established the one-to-one correspondence between FSC and

the equation Ex∼µ[u(η(x))] = 0 with u(η) = θ∗η− (η−θ∗)+ and θ∗ = 1
2

FSC. That is, a task with

the optimum F-score FSC must satisfy the condition Ex∼µ[u(η(x))] = 0; and conversly, a task sat-

isfying this condition must have the optimum F-score FSC. Therefore, although we cannot find a
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Figure 7: a. The curve ℓ= {[η,u(η),h(η)] | η ∈ [0,1]} and its convex hull in the η-u-h space; ODE

is the intersection of the plane u = 0 and the convex hull, in which we are interested.

b. An geometric interpretation of Lemma 18: draw from a point K on the line η = θ 6
1
2

two tangent lines of h(η), the height of the left tangent point L is less than that of the right

one R, provided that h(η) is symmetric. To prove the second inequality in Equation (50),

here the right tangent point R is set to be on the line η = θ̃−1θ; so it corresponds to the

point E in Figure a.

random variable with expectation FSC, we still can apply Theorem 1 to the auxiliary random vari-

able u(η(x)) in which θ∗ = 1
2

FSC serves as a parameter. The resulting tight bounds on H(y|x) are in

fact 0 6 H(y|x)6 h(θ∗/θ̃∗), which can be rewritten as Equation (50).—So here we see an implicit

use of Scheme 3.

Analogous to the analysis in page 1050, from Theorem 15 we can easily derive the lower and

upper bounds on the maximum F-score by means of conditional entropy. This is best illustrated by

Figure 8, where the Shannon conditional entropy is used for H(y|x). In general, as the function h(·)
is symmetric and concave, for any given value of H(y|x) in the range of h(·), there exists a unique

β ∈ [0,0.5] such that h(β) = h(1−β) = H(y|x). So from Figure 8 we know the value of FSC must

satisfy β 6
FSC

2−FSC
6 1−β, that is,

2β
1+β 6 FSC 6

2−2β
2−β . An interesting observation of this inequality is

that FSC can only assume the value 2
3

when β = 1
2
, that is, when H(y|x) = 1. This can be explained

as follows.

For the Shannon entropy it holds that 1 > H(y) > H(y|x); so H(y|x) = 1 would imply that

H(y) = 1 and I(x;y) = H(y)−H(y|x) = 0, where I(x;y) is the mutual information between x and y.

From I(x;y) = 0 we know x and y are independent; and from H(y) = 1, Pr{y= 0}= Pr{y= 1}= 1
2
.

In other words, essentially there is only one classification task whose conditional entropy is 1; and it
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is actually the most “uncertain” one. It is also the most difficult problem in that the feature vector is

completely uninformative and the class label totally random. For such a task, the error probability

on any object is always 0.5, regardless of which class is predicted. Hence, TP = FP and TN = FN.

It then follows from the second expression of FSC in Equation (17) that FSC = 2×TP

3×TP+FN
. Now, as

FN > 0, the F-score has the maximum value 2
3
; and this happens when FN = 0, which requires that

all objects be regarded as positive.
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Figure 8: The relationship between FSC and H(y|x). For given FSC, the dashed line AB is the lower

bound on H(y|x); and the solid line ACB the upper bound. Therefore, for given value of

H(y|x), the curve BC is the upper bound of FSC; and the curve AC is the lower bound.

For the remainder of the section we will complete the derivation/proof of Theorem 15 by show-

ing that E is the “highest” point on the curve OE, under the assumption that the concave function

h(·) is symmetric, that is, h(η) = h(η̃) for any η ∈ [0,1]. To simplify the proof, we further assume

that h(·) is a differentiable function.12 The following two lemmas are easy to see. They are there

only because they will be referenced several times and so help to shorten the argument that follows.

Lemma 16 Let h : [0,1] → R be a symmetric, differentiable and concave function. Then for η ∈
[0, 1

2
], h′(η)> 0, that is, h(η) is monotonically non-decreasing; and for η ∈ [ 1

2
,1], h(η) is monoton-

ically non-increasing. Moreover, h′(1−η) =−h′(η) for η ∈ [0,1].

Lemma 17 Let h : [0,1] → R be a differentiable concave function and a ∈ [0,1]. Then f (t) :=
h(t)+h′(t) · (a− t) is non-increasing on [0,a]; and non-decreasing on [a,1].

Proof For s, t ∈ [0,a] satisfying s < t, the mean value theorem implies that, for some u ∈ (s, t),
h(s)−h(t) = h′(u) · (s− t). Since h is concave, its derivative h′ is monotonically non-increasing. In

12. This assumption is in fact unnecessary: if h(·) is non-differentiable at some point η0, we can use any number between

its right derivative h′(η0+) and left derivative h′(η0−) to replace h′(η0).
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particular, we have h′(s)> h′(u)> h′(t). It thus follows that

f (s) = h(s)+h′(s) · (a− s)
= h(t)+h′(u) · (s− t)+h′(s) · (a− s)
> h(t)+h′(u) · (s− t)+h′(u) · (a− s)
> h(t)+h′(t) · (a− t) = f (t) .

So f (t) is a non-increasing function on [0,a]. Following a similar line, one can prove that f (t) is

non-decreasing on the interval [a,1].

Lemma 18 Let h(η) be as in Lemma 16. For θ ∈ [0, 1
2
], let a 6 θ and b > θ be such that h(a)+

h′(a)(θ−a) = h(b)−h′(b)(b−θ). Then h(a)6 h(b).

Proof If b 6
1
2
, by Lemma 16 we at once get h(a)6 h(b). Assume now b > 1

2
, by Lemma 16 we

know h′(a)> 0 and h′(b)6 0. Since θ 6
1
2
, the assumed equality implies

h(b)−h′(b)(b− 1
2
) 6 h(b)−h′(b)(b−θ) as θ 6

1
2

and h′(b)6 0

= h(a)+h′(a)(θ−a) the assumed equality

6 h(a)+h′(a)( 1
2
−a) as θ 6

1
2

and h′(a)> 0

= h(ã)−h′(ã)(ã− 1
2
) . by Lemma 16

By a 6 θ 6
1
2
, we have ã >

1
2
. By Lemma 17, h(b)− h′(b)(b− 1

2
) is non-decreasing with re-

spect to b ∈ [ 1
2
,1]. So the above inequality implies b 6 ã. As b > 1

2
, by Lemma 16 we know

h(b)> h(ã) = h(a).

In geometry (see Figure 7-b), h(a) + h′(a)(θ− a) represents the “height” of the intersection

point of the vertical line η = θ and the tangent line of h(η) at η = a. With this in mind, we see that

the assumed equality in Lemma 18 means the two tangent lines are drawn from one point on the

line η = θ. Thus, for a symmetric function h(η) and θ = 1
2
, this would give us the tangent points a

and b = ã (by symmetry); and so h(a) = h(b). When the line η = θ moves left, that is, θ < 1
2
, the

tangent points a and b also move left. This would result in h(a)6 h(b).
In Figure 7-a, we draw in the plane AFB (i.e., u = θ∗ − θ̃∗η) the tangent line of the curve ℓ

at point E, intersecting with line AF at K. From this point K we draw the tangent line of ℓ in the

plane OAF (u = θ∗η). These are represented in Figure 7-b as their projection on the plane u = 0.

Assume M and N are the intersection points of the two tangent lines with the vertical lines at B and

O, respectively. Then, by Lemma 16, the slope of KN is larger than zero; so the h-coordinate of N,

Nh, is less than that of the left tangent point L, which, by Lemma 18, is further less than that of the

right tangent point E. We thus get Nh 6 Eh.

We now “transfer” the graph in Figure 7-b back to Figure 7-a. Intuitively, one can imagine that

Figure 7-b is folded along the line FA; and then put on the broken-line OFB in Figure 7-a (after

the obvious lengthening operation). As h is concave, in the η-u-h space the broken line NKM is

obviously “above” curve ℓ, that is, the curve OAEB. So the plane KMN is above the convex hull of

ℓ. It follows that line NE, the intersection line of the two planes KMN and u = 0, is above the curve

OE (the one in Figure 7-a), the intersection of plane u = 0 and the convex hull of ℓ. Therefore, the

maximum h-coordinate of points on line NE is larger than that of the curve OE. But we have already

shown that Nh 6 Eh, so Eh = h(θ∗/θ̃∗) is larger than the maximum h-coordinate of points on the

curve OE. The second inequality in Equation (50) now gets proved.
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8. Infomax Is Not Proper for Optimizing Cost-Sensitive Risk or F-Score

In the introduction section, we pointed out that the Infomax principle is consistent with the learning

target of minimizing the error rate. The reason is that both Fano’s bound and Hellman’s bound

are monotonically increasing with the conditional entropy; so minimizing the conditional entropy

normally results in lower error rate. The same phenomenon is also observed between conditional en-

tropy and balanced error rate (see Figure 6-b). In this sense, Infomax is suitable also for minimizing

the balanced error rate.

As for F-score, however, the lower bound on the maximum F-score, FSC, is an increasing func-

tion of conditional entropy, as is depected in Figure 8. This implies a counterintuitive situation.

Usually with classification problems, as we decrease the conditional entropy, we can expect the

worst case (measured by the maximum F-score) classification scenario to improve. With F-score,

however, as we decrease entropy, the worst case F-score gets even worse, decreasing to zero when

H(y|x) tends to zero. As we have briefly mentioned at the end of Section 4, the same non-intuitve

scenario is observed for the upper bound on the minimum cost-sensitive risk—see, Figure 4-b.

Moreover, from Figure 8 we see that FSC may take any value between 0 and 1 when H(y|x) tends

to zero. This also seems non-intuitive as H(y|x) = 0 means y is a deterministic function of x, for

which the best classifier should have F-score 1.

In this section, we discuss the possible reasons of these inconsistencies through some simple

examples. The first example is constructed to illustrate that for any given value of FSC, there are

classification problems whose maximum F-score is FSC; but the conditional entropy H(y|x) can be

arbitrary small.—If the maximum F-score of a problem is small, we would think of it as a difficult

task, since no classifier would perform well (as measured by F-score) on it. Intuitively, this means

the relationship between x and y is quite uncertain, hence the conditional entropy H(y|x) should be

large. However, our first example shows that is is not necessarily the case.

Example 1 Here the feature space consists only of two distinct vectors, say, X = {x(1),x(2)}. The

joint distribution of x and y is given by

[Pr{x(1),0}, Pr{x(2),0}, Pr{x(1),1}, Pr{x(2),1}] = [a, b, 0, π] ,

where a,b,π are positive numbers with sum 1.

For this task there are four different classifiers which can be encoded naturally as 00, 01, 10 and

11, according to the predicted label on x(1) and x(2). The F-score of these classifiers are FSC(00) =
FSC(10) = 0, FSC(01) = 2π

2π+b
and FSC(11) = 2π

2π+a+b
. The computation procedure is detailed in

Table 3, where the top-left corner is the joint distribution of x and y. It thus follows that FSC =
FSC(01) = 2π

2π+b
. The (Shannon) conditional entropy of this task is calculated as

H(y|x) = H(xy)−H(x) = (b+π) log(b+π)−b logb−π logπ.

Now let λ = b
π , then the above FSC and H(y|x) can be written respectively as

FSC = 2
2+λ , H(y|x) = π · [(λ+1) log(λ+1)−λ logλ] =: π · f (λ) .

In the above computation, we have factorized H(y|x) as the product of two terms. The first term

π describes the imbalance between the two classes; the second term f (λ) is an increasing function
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y = 0 1 ŷ(x) ŷ(x) ŷ(x) ŷ(x)

x= x(1) a 0 0 0 1 1

x= x(2) b π 0 1 0 1

TP 0 π 0 π

TN a+b a b 0

FN π 0 π 0

FP 0 b a a+b

FSC 0 2π
2π+b

0 2π
2π+a+b

Table 3: Computing the maximum F-score for Example 1

of the ratio λ = b
π = Pr(0|x2)

Pr(1|x2)
, which reflects the uncertainty of the task. In particular, for any fixed

FSC or λ, H(y|x) can be arbitrarily small if we let π → 0. This certainly does not hint the involved

problem is deterministic.

Next, we will see a more instructive example. It can be seen as the “dual” of Example 1, in

that now the value of FSC is shown to be variable (by tuning a free parameter) with the conditional

entropy being fixed.

Example 2 In this example, the feature space consists of three vectors, X = {x(1),x(2),x(3)}. The

marginal distribution of x ∈ X (i.e., the probability measure µ, see Table 1) is given by

[Pr{x(1)}, Pr{x(2)}, Pr{x(3)}] = [a, b, c] ,

where a,b,c are positive numbers with sum 1. The conditional probability of class 1 is denoted as

ηi = Pr{y = 1 | x= x(i)} for i = 1,2,3; and set to be [η1,η2,η3] = [0.5,0,1].

According to Definition 2, the conditional entropy of the above task can be written as

H(y|x) = a ·h(η1)+b ·h(η2)+ c ·h(η3) = a ,

since for the binary entropy function it holds that h(0.5) = 1 and h(0) = h(1) = 0. There are eight

different classifiers though, we actually need only to compute the F-score for two of them to get the

maximum F-score. This is because the object x(2) should be classified as negative and x(3) as positive

for sure, by any F-score-maximizing classifier—see, the results of Section 6. Only the classification

of x(1) is unclear; so we calculate the F-score of the two classifiers 001 and 101. Letting η1 = 0.5 in

Table 4 we get FSC(001) = 2c
2c+0.5a

and FSC(101) = 2c+a
2c+1.5a

. It is clear that FSC(001) 6 FSC(101),
therefore

FSC = FSC(101) =
2c+a

2c+1.5a
.

Although the example is very simple, it does reveal quite a few insights into the notions of

conditional entropy and F-score. First of all, for any given value of H(y|x) = a, one can freely

adjust the value of the maximum F-score by tuning the parameter c. In more detail, FSC is an

increasing function of c. As 0 6 c 6 1− a, it is easy to see that FSC ranges from 2
3

(at c = 0) to
2−a

2−0.5a
(at c = 1−a) for the particular problem considered here.

Secondly, the quantity b does not present in the expressions of H(y|x) and FSC. In general,

based on the conditional probability η(x) = Pr{y = 1 | x = x}, we can classify the objects (feature

1064



ON BER, F-SCORE, COST-SENSITIVE RISK AND CONDITIONAL ENTROPY

y = 0 1 ŷ(x) ŷ(x)

x= x(1) η̃1a η1a 0 1

x= x(2) b 0 0 0

x= x(3) 0 c 1 1

TP c η1a+ c

TN η̃1a+b b

FN η1a 0

FP 0 η̃1a

FSC
2c

2c+η1a
2c+2η1a

2c+(1+η1)a

Table 4: Computing the maximum F-score for Example 2

vectors) in a given task into three catrgories, namely, those belong surely to the positive (η(x) = 1)

or the negative (η(x) = 0) class and those might be in either class (0 < η(x) < 1). The proportion

of the three types are denoted here as c, b, and a, respectively. Then from the example we see

that the conditional entropy H(y|x) is independent of the “certain” objects (due to the fact that

h(0) = h(1) = 0). In other words, it measures purely the amount of “uncertainty” for a classification

task, which includes two factors, a and h(η1). The former factor represents the “population” of

uncertain objects; and the latter represents the (average) degree of uncertainty of these objects.

On the other hand, the maximum F-score depends on the uncertain objects and the positive

objects; but not on the negative objects. This is because the definition of F-score, Equation (17),

does not take the true negative term, TN, into account. Consequently, classifiers aiming to maximize

the F-score would intend to classify objects as positive, as this will increase the true positive and

so increase the F-score—it will decrease the true negative at the same time, which however is not

captured by F-score. This phenomenon is also reflected in the expression of the optimal classifier,

ŷ(x) = [[η(x)> θ∗]] (cf. the last paragraph of Section 6). Here the threshold θ∗ is determined by the

condition FSC(θ∗) = 2θ∗, which, as has been explained at the end of Section 6, is below 0.5. So an

object would be regarded as positive even if the conditional probability of the positive class is less

than half.

Finally, in this example the minimum value of FSC is 2
3

(the horizontal line through the point C

in Figure 8), far from the lower bound. This is due to that we have set η1 = 0.5; by using a lower

value for η1, we can in principle hit the lower bound curve AC in Figure 8. For instance, in the next

example, we will see a setup with FSC = 0.625 < 2
3
.

8.1 On Information-Theoretic Feature Filtering Methods

Feature selection is a key step when dealing with high-dimensional data; it aims to find useful

features and discard others, hence reduces the dimensionality. There are three major categories of

feature selection techniques (Guyon and Elisseeff, 2003). Embedded methods (Lal et al., 2006)

exploit the structure of specific classes of classifiers to guide the feature selection process. Wrapper

methods (Kohavi and John, 1997) search the space of feature subsets, using the training/validation

performance of a particular classifier to measure the utility of a candidate subset. These two are

classifier-dependent, with the disadvantage of a considerable computational load, and may produce

subsets that are overly specific to the classifiers used. In contrast, filter methods (Duch, 2006)

separate the classification and feature selection components, and select features using a heuristic
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scoring criterion that measures how potentially useful a feature or feature subset may be when used

in a classifier.

Information-theoretic feature filters use an information measure (usually the mutual information

between the selected features and class label) as the scoring criterion. The idea behind is that fea-

tures showing maximum mutual information with class label are usually most useful for predicting

the class label. This is well justified when the (balanced) error rate is concerned, as we have argued

earlier. In this section, however, we will illustrate, using a simple example, that feature selection

methods based on mutual information may fail to choose the optimal features when the classification

performance is measured by F-score or cost-sensitive risk. Here we assume the perfect classifier,

that is, the classifier with maximum F-score or minimum cost-sensitive risk, can be derived once

the feature subset is determined.

Example 3 In this example, we assume the objects are described by two features, x1 and x2, both

of which take three distinct values. That is, xi ∈ {x
(1)
i ,x

(2)
i ,x

(3)
i } for i = 1,2. The joint distribution of

x1, x2, and y are set to be

y = 0 x2 = x
(1)
2 x

(2)
2 x

(3)
2

x1 = x
(1)
1 0.33 0 0

x
(2)
1 0.174 0.1 0

x
(3)
1 0 0 0

y = 1 x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 0.15 0 0.18

x
(2)
1 0 0 0

x
(3)
1 0.066 0 0

The target here is to select one feature to predict the class label.

As we can see here, by selecting either feature we are actually comparing two different problems

that are described respectively by the distribution of the pairs (x1,y) and (x2,y). So we compute the

two distributions from the given joint distribution of (x1,x2,y), which gives us

Pr{x1,y}=





0.33 0.33

0.274 0

0 0.066



 ; Pr{x2,y}=





0.504 0.216

0.1 0

0 0.18



 . (51)

Both Pr{x1,y} and Pr{x2,y} are structurally similar to the one in Example 2, with the parameters

[a,b,c;η1] = [0.66,0.274,0.066;0.5] and [0.72,0.1,0.18;0.3] respectively. So we can reuse the

computation there to obtain the Shannon conditional entropy

H(y|x1) = a ·h(η1) = 0.66 ·h(0.5) = 0.66 ,

H(y|x2) = a ·h(η1) = 0.72 ·h(0.3) = 0.6345 .

Thus, according to the Infomax principle, the second feature x2 should be selected as the class label

predictor.

However, the maximum F-score of the two problems tells us a different story. For (x1,y), we

already have (see Example 2)

FSC = FSC(101) =
2c+a

2c+1.5a
=

2×0.066+0.66

2×0.066+1.5×0.66
= 0.7059 . (52)
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For (x2,y), we need to compare the F-score of the classifiers 001 and 101. It follows from Table 4

that

FSC(001) =
2c

2c+η1a
=

2×0.18

2×0.18+0.3×0.72
= 0.625 ,

FSC(101) =
2c+2η1a

2c+(1+η1)a
=

2×0.18+0.6×0.72

2×0.18+1.3×0.72
= 0.6111 .

Thus, FSC = FSC(001) = 0.625, which is less than that of (x1,y) at 0.7059 in Equation (52). This

reveals that while the feature x2 is selected by Infomax, it is in fact possible to design a better

classifier (as measured by F-score) using the first feature x1. The constructed problem shows that

to minimize error rate and balanced error rate we should pick feature x2; whereas to minimize

cost-sensitive risk we should pick a different feature, x1.

We now examine the minimum cost-sensitive risk of the two problems (x1,y) and (x2,y). As-

sume the cost of a false negative is c1 = 2.5 and that of a false positive is c0 = 0.625. If the feature x1

is used, then, by Equation (51), the optimal classifier is 101 (which produces a false positive on x(1)

with probability 0.33); and the corresponding minimum cost-sensitive risk is CSR = CSR(101) =
0.625×0.33= 0.2063. When the feature x2 is selected, we compute CSR(001) = 2.5×0.216= 0.54

and CSR(101) = 0.625×0.504= 0.315. Thus, CSR = CSR(101) = 0.315. It thus follows that choos-

ing the feature x1 would (potentially) obtain a lower cost-sensitive risk 0.2063, contradicting the

selection suggested by Infomax.

On the other hand, the minimum (balanced) error rate of the problem (x1,y) is

ERR = 0.33 , BER = 0.33
2×(0.33+0.274) = 0.2732 .

For both criteria, the optimal classifier is 101. For the problem (x2,y), we have

ERR = 0.216 , BER = 0.216
2×(0.216+0.18) = 0.2727 ,

with both minima obtained at the classifier 001. Therefore, selecting x2 will do better than x1 as to

minimize the (balanced) error rate, in agreement with Infomax.

8.2 Towards Proper Information Measures for Cost-Sensitive Risk

In the preceding section, we constructed an example demonstrating that Shannon’s mutual informa-

tion is generally not a proper criterion for feature selection when the cost-sensitive risk or F-score

is concerned. A natural question one would immediately raise is what is the proper information

measure for the two criteria then? So far, this problem is not completely solved; and we only have

partial solution.

In Section 4 we derived the tight lower and upper bounds on the conditional entropy H(y|x) in

terms of the minimum cost-sensitive risk CSR (see Figure 4-b); and noticed that the upper bound is

not an increasing function of CSR. On the other hand, as we have emphasized several times, it is the

monotonicity of Fano’s and Hellman’s bounds that justifies the Infomax principle. This motivates us

to construct concave functions h(η) such that the conditional entropy H(y|x) as defined in Definition

2 has lower and upper bounds that are monotonically increasing with respect to CSR.

As we can see in Figure 4, the curve OCDF plays an important role in determining the lower and

upper bounds on H(y|x). It is obtained from the graph of the function h(η) by a simple piecewise
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Figure 9: a. To get a symmetric concave curve OCF after the transform as indicated by the arrow AC

in Figure 4-a, we apply an inverse transform to the target curve OCF. That is, we move the

peak point C back to the point A with the η-coordinate 1
2c1

, yielding the curve OAF that

represents the function h(η) in the definition of conditional entropy—see Equation (21).

b. The lower (the line OGC) and upper (the curve OC) bounds on Hcs(y|x) are obtained

from the curve OCF in Figure 9-a using the same transform as in Figure 4. Both bounds

are now monotonically increasing functions of CSR. This can be contrasted with the

standard conditional entropy bounds in Figure 4-b.

linear transformation on the input η. Its left part OC determines the lower bound; and its right part

CDF (after flipping along the central vertical line) corresponds to the upper bound. Thus, if we can

construct a concave function h(η) that makes the curve OCDF symmetric (for example, coincide

with the curve OABF), then the lower and upper bounds on H(y|x) would be very similar to Fano’s

and Hellman’s, respectively. As shown in Figure 9, this can be done by applying a piecewise linear

transform to the input variable of a symmetric concave function, so that the peak point C on its

graph is moved left to the point A with the first coordinate 1
2c1

.

Denote by g(η), η ∈ [0,1], the function corresponding to the curve OCF in Figure 9-a. Then the

curve OAF is described by the function13

h(η) =

{

g(c1η) if η ∈ [0, 1
2c1

) ,

g(1− c0η̃) if η ∈ [ 1
2c1

,1] ,
(53)

13. This can be easily verified by checking the value of h(η) at η = 0, 1
2c1

,1, which should be g(0), g( 1
2 ) and g(1),

respectively.
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where the costs c0 and c1 satisfy the conditions c1 > c0 and c−1
0 + c−1

1 = 2. In particular, when

g(η) = hbin(η) =−η logη− (1−η) log(1−η) (Shannon), we have

h(η) =

{

−(c1η) log(c1η)− (1− c1η) log(1− c1η) = hbin(c1η) if η ∈ [0, 1
2c1

) ,

−(c0η̃) log(c0η̃)− (1− c0η̃) log(1− c0η̃) = hbin(c0η̃) if η ∈ [ 1
2c1

,1] .
(54)

Substituting the above expression into Equation (21), we get a new definition of conditional entropy

which we call the cost-sensitive conditional entropy and denote as Hcs(y|x). That is, Hcs(y|x) :=
Ex∼µ[h(η(x))], with h(η) defined as above.

We now compute the value of Hcs(y|x) for the two classification tasks (x1,y) and (x2,y) as

defined in Example 3, under the settings of c0 = 0.625, c1 = 0.25. By Equation (51), we know that

the marginal distribution of x1 is Pr{x1 = x
(1,2,3)
1 }= [0.66,0.274,0.066]; the conditional probability

of the positive class is η1,2,3 = Pr{y = 1 | x1 = x
(1,2,3)
1 } = [0.5,0,1]. By Equation (54), we have

h(η1) = hbin(c0η̃1) = hbin(0.625 · 0.5) = 0.6211; h(η2) = hbin(c1η2) = hbin(0) = 0; and h(η3) =
hbin(c0η̃3) = hbin(0) = 0. Thus,

Hcs(y|x1) = Pr{x1 = x
(1)
1 } ·h(η1) = 0.66×0.6211 = 0.4099 .

Similarly, for the feature x2, we have η1,2,3 = Pr{y = 1 | x2 = x
(1,2,3)
2 }= [0.3,0,1] and Pr{x2 =

x
(1,2,3)
2 } = [0.72,0.1,0.18]. Thus, h(η1) = hbin(c0η̃1) = hbin(0.625 · 0.7) = 0.6853 and h(η2) =

h(η3) = 0. We thus get

Hcs(y|x2) = Pr{x2 = x
(1)
2 } ·h(η1) = 0.72×0.6853 = 0.4934 .

Since Hcs(y|x1)< Hcs(y|x2), the feature x1 would be selected according to the cost-sensitive condi-

tional entropy. This coincides with the decision we previously obtained by directly comparing the

value of CSR.

In conclusion, Shannon’s mutual information or conditional entropy is not a proper surrogate

learning objective in dealing with a cost-sensitive situation or when the subsequent classification

process is assessed by the metric of F-score. Conversely, we have proven the positive result that

Shannon’s information is appropriate for balanced error rate. For cost-sensitive risk minimization

problems, we suggest to use a cost-sensitive variant of normal symmetric conditional entropies

as defined by Equation (53). As far as the authors know, this definition of conditional entropy

has not been studied in the context of feature selection. The work by Elkan (2001) might be the

closest to ours, where he investigated the possibility of adapting a given learning algorithm to the

cost-sensitive situation by simply adjusting the prior probability of each class (whereas here we

intend to change the posterior probabilities). For F-score maximization, we have not found a proper

information measure so far.

9. Conclusion and Future Work

Inspired by the widespread use of Fano’s inequality in machine learning—in particular, in feature

selection, the paper has extended Fano’s and Hellman’s bounds (on error probability) to the bounds

on other commonly used criteria including balanced error rate, F-score and cost-sensitive risk. To

this end, we developed a general geometric method which enables us to derive the tight bounds

on the above mentioned criteria using a general definition of conditional entropy (see Definition

1069



ZHAO, EDAKUNNI, POCOCK AND BROWN

2), in a uniform way. These bounds are presented in three main theorems of the paper: Theorems

7, 11 and 15. Our work extends previous knowledge on the relationship between classification

performance criteria and conditional entropy (Ben-Bassat, 1978; Golic, 1987; Feder and Merhav,

1994; Erdogmus and Principe, 2004).

The advantage of the proposed geometric approach is clear: it provides a visible and intuitive

insight into the relationship between the concerned criteria and information measures. Moreover,

defining the conditional entropy through a general concave function h(η) in fact gives us much

more than what we have stated so far. For example, let h(η) = min{η, η̃} in Theorem 15, we

immediately get the bounds on the Bayes error rate in terms of maximum F-score: 0 6 ERR 6

min{ FSC

2−FSC
,1− FSC

2−FSC
}.

When deriving the bounds on the maximum F-score and the minimum cost-sensitive risk, some

new findings were noticed, which, interestingly, might be of more interest than the bounds them-

selves. Firstly, as a by-product of the bounds on the maximum F-score, FSC, in Section 6 we proved

that the optimal classifiers for maximizing the F-score have the form ŷ(x) = [[η(x)> θ]]. This prop-

erty is called the probability thresholding principle for binary classifications by Lewis (1995); and

has been proved by Lewis (1995) and Jansche (2007) independently for finite input spaces X . Here

we presented a proof for the general case where X is an arbitrary set, which, to the best of our

knowledge, is novel.

The most important new finding in the paper is that the Infomax principle based on standard

information measures could be misleading when F-score or cost-sensitive risk is used as the per-

formance measure. We illustrated this by analytical argument and a simple example in the field of

feature selection. For cost-sensitive risk, we proposed an alternative information measure, whose

usefulness is justified by the same example (and by the monotonicity of the resulting bounds, see

Figure 9-b). To summarize,

Shannon’s conditional entropy is not a proper criterion for feature selection when the

subsequent classification process is measured by F-score or cost-sensitive risk. Instead,

we suggest to use a cost-sensitive variant as defined by Equation (53).

A corresponding measure for F-score is left as an open problem for further research. This is

a challenging question due to the fact that F-score is defined on the whole object space, whereas

information measures are usually defined through the conditional probabilities on single objects,

Pr{y = 1 | x = x}. To find a proper information measure for the F-score maximization problem is

a research topic in our group to be pursued in the future. As the presented bounds hold only for

binary problems, extending them to the multi-class problem is also a topic of interest in the group.

We finish the paper with an important remark. The paper is theory-oriented; it is concerned with

problems, not with classifiers or algorithms. More precisely, while the performance of a classifier

could be measured by error rate, balanced error rate, F-score or cost-sensitive risk, their optimum

value over all classifiers can be seen as different difficulty measures of the concerned problem. On

the other hand, the conditional entropy H(y|x) measures the amount of uncertainty about the class

label remaining after we have observed the object. Thus, it can also be seen as a difficulty measure

of classification tasks. From this perspective, in this paper we are examining the relationship be-

tween two different types of difficulty measures of classification problems. Our main finding is that

Shannon’s conditional entropy as a difficulty measure is inconsistent with the maximum F-score and

the minimum cost-sensitive risk. This fact has serious implications in the field of feature selection,

as we have discussed in Section 8.
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Appendix A. Bounds on the Bayes Error Rate: the Multi-Class Case

We have already mentioned in the introduction section the main work in the literature that are

related to ours. These are all about bounding the Bayes error rate by means of different conditional

entropies. This section briefly introduces a unifying derivation of these bounds, based on the work

of Tebbe and Dwyer III (1968), Ben-Bassat (1978) and Golic (1987). As Fano’s bound and others’

actually hold for the multi-class problem, we need to extend the notations introduced in Section 2

to catch up with the multi-class case.14 These new notations are used only in this section and not

listed in Table 1.

Assume there are m classes which are labeled by the integers 1 to m. Then a classifier can be

written as a function ŷ(x) on X that takes values in the set {1, . . . ,m}. Similar to the binary case,

we decompose the joint distribution of (x,y) as the product of the marginal distribution of x and the

conditional distribution of y given x. As such, the definition of µ(A) is unchanged, see Equation (2).

But the quantity η(x) is now replaced by an m-dimensional vector η(x) = [η1(x), . . . ,ηm(x)], with

ηy(x) := Pr{y = y | x= x} , ∀x ∈ X , ∀y ∈ {1, . . . ,m} .

By the above definition we see that the elements of η(x) are non-negative and sum to 1. Such vectors

are called probability vectors in statistics. We shall denote by Pm the set of probability vectors of

dimension m, which is also known as the probability simplex in R
m:

Pm := {η ∈ R
m | ηy > 0 for all y = 1, . . . ,m; and ∑m

y=1 ηy = 1} .

In terms of µ and η, the joint distribution of (x,y) can be written as

Pr{x ∈ A,y = y}=
∫

A ηy(x)dµ , ∀A ⊆ X measurable , ∀y ∈ {1, . . . ,m} .

Letting A = X in the above formula, we get the (prior) probability of each class,

πy := Pr{y = y}=
∫

X
ηy(x)dµ , ∀y ∈ {1, . . . ,m} .

Note that the vector of class probabilities, π := [π1, . . . ,πm], is also a probability vector.

As before, we call the pair (µ,η) a (classification) task, whose conditional entropy is defined as

follows.

Definition 19 Let h : Pm → R be a symmetric concave function—the word “symmetric” refers to

that, for any η = [η1, . . . ,ηm] ∈ Pm and any permutation (i1, . . . , im) of {1, . . . ,m}, it holds that

h(η1, . . . ,ηm) = h(ηi1 , . . . ,ηim). The conditional entropy of a task (µ,η) is

H(y|x) :=
∫

X
h(η(x))dµ = Ex∼µ[h(η(x))] .

14. Only in this section we discuss the multi-class problem; the rest of the paper is devoted to the binary case.
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In particular, letting h(η) =−∑m
i=1 ηi logηi, we get the Shannon conditional entropy.

For any classification task (µ,η), the (expected) error rate of a given classifier ŷ : X →{1, . . . ,m}
can be computed as

ERR = Pr{y 6= ŷ(x)}

= 1−Pr{y = ŷ(x)}

= 1−∑m
y=1 Pr{y = y, ŷ(x) = y}

= 1−∑m
y=1

∫
Xy

ηy(x)dµ ,

where Xy are subsets of the feature space X determined by the classifier ŷ(x) via Xy := {x ∈ X |
ŷ(x) = y}, for y = 1, . . . ,m. Therefore, the error rate is minimized when ηy(x) is the maximum

element in the whole vector η(x) on the set Xy. That is,

ERR = 1−∑m
y=1

∫
Xy

max{η(x)}dµ = 1−
∫

X
max{η(x)}dµ = Ex∼µ[1−max{η(x)}] ,

where, for any vector η, max{η} denotes its maximum entry.

Following the line presented in Section 3, here we need to examine the range of the point

[ERR,H(y|x)] = Ex∼µ[e(η(x)),h(η(x))] in the error rate versus conditional entropy plane. Here the

function e(η) is defined as e(η) = 1−max{η}; for the binary case, this becomes e(η) = min{η, η̃}.

So the problem is now reduced to finding the convex hull of the set {[e(η),h(η)] | η ∈ Pm}, which

further amounts to computing the extreme values of h(η) given that e(η) is fixed.

Lemma 20 Let h : Pm → R be a symmetric concave function. Let η ∈ Pm be such that e(η) = r.

Then h(η) is maximized when one element of η equals to 1− r and the others are all r
m−1

; and it is

minimized when all entries of η are either 1− r or 0, except one whose value is determined by the

condition that η has element sum 1.

In particular, for the function h(η) =−∑m
i=1 ηi logηi, we have

hmax(r) := max
η∈Pm,e(η)=r

h(η) =−(1− r) · log(1− r)− r · log
(

r
m−1

)

,

hmin(r) := min
η∈Pm,e(η)=r

h(η) =−k · (1− r) · log(1− r)−β · logβ ,

where k is the maximum integer such that k · (1− r)6 1 and β = 1− k · (1− r).
The graphs of hmax(r) and hmin(r) are plotted in Figure 10 for the case of m = 5 classes. Notice

that for m = 5, max{η} > 0.2, so the range of r = e(η) = 1−max{η} is [0,0.8]. From the figure

we see that while hmax(r) is a smooth function, the curve of hmin(r) consists of m−1 = 4 segments,

connected by the endpoints A, B, and C. The r-coordinate of these endpoints are determined by the

condition k · (1− r) = 1, for k = 1, . . . ,m corresponding to the points O, A, . . . , D, respectively.

By definition, the region between the curves of hmax(r) and hmin(r) is exactly the set {[e(η),h(η)] |
η ∈ Pm}. Moreover, it can be proven that hmax(r) is concave and hmin(r) concave within each seg-

ment; their graph also shows this. Therefore, the convex hull of {[e(η),h(η)] | η ∈ Pm} is bounded

by the curve OD and the broken line OABCD, which represent the tight lower (Fano) and upper

(Tebbe) bounds on the Bayes error rate, ERR, in terms of the conditional entropy, H(y|x). Fur-

thermore, the broken line OABCD forms a convex function, so it is lower bounded by its most left

segment OA. This actually gives us the Hellman inequality, ERR 6
1
2
H(y|x).
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Figure 10: Graphs of the functions hmax(r) (solid line) and hmin(r) (dashed line) for the m = 5 class

problem. From the two curves we obtain the tight lower bound (Fano), the tight upper

bound (Tebbe, the dotted broken line OABCD) on the Bayes error rate, and the Hellman

bound.

The above derivation is simple and elegant. However, it can not be directly applied to the case

of balanced error rate (for multi-class problems). The main difficulty is that now we have an extra

condition on the posterior probabilities η(x), namely, its integral over the space X should be equal

to the class probability π. So the problem of bounding balanced error rate actually amounts to

min or max H(y|x) =
∫

X
h(η(x))dµ

subject to
∫

X
η(x)dµ = π ,

1
m

∫
X

miny=1,...,m{π−1
y ηy(x)}dµ = BER ,

which is a very difficult optimization problem, even for the case of m = 2.

In this paper, we restrict ourselves to the binary case (so the vector η(x) can be represented by a

scalar η(x), as is shown in the paper) and consider the reachable region of the 3-dimensional point

[η,r(η),h(η)]—where r(η) = min{π−1η, π̃−1η̃}, rather than the 2-dimensional point [r(η),h(η)].
As such, we avoid solving the above optimization problem, which is extremely hard as we can tell.

Finally, we should also mention that extending our method to the multi-class case is also diffi-

cult, if not impossible. Because that will involve the reachable region of the high (m+ 2) dimen-

sional point [η,r(η),h(η)] with r(η) := miny=1,...,m{π−1
y ηy}.

Appendix B. Mathematical Foundation

In this section we discuss three fundamental points which support the content of the paper and

provide a mathematically more rigorous foundation.15

15. We thank two anonymous reviewers for pointing out these imperfection to us.
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1. The concept of a true label can be very messy in the commonly used setup for pattern classi-

fication which involves only the jointly-distributed random variables (x,y).

2. The convex hull of the curves ℓ in the paper are obtained heuristically, a more rigorous treate-

ment is needed.

3. The geometric arguments in this paper are based on the proposition: the expectation of a

random vector u ∈ R
n lies in the convex hull of its range. While this is correct in intuition, it

needs a mathematical proof.

As the above three problems make sense not only for the specific topic studied here, but also from a

broader viewpoint of pattern classification and probability theory, we place the discussion of them

in a separate section.

B.1 A Mathematical Definition of True Class Labels

To describe the classification problem in a mathematical framework, many textbooks on machine

learning start off with a joint distribution of the feature vector x and the class label y. For example,

in Devroye et al. (1996, Chapter 1) the authors wrote:

. . . More formally, an observation is a d-dimensional vector x. The unknown nature of

the observation is called a class. It is denoted by y . . .

and in Chapter 2 they continued with:

. . . The random pair (x,y) may be described in a variety of ways: for example, it is de-

fined by the pair (µ,η), where µ is the probability measure for x and η is the regression

of y on x. . . .

While this treatment has the advantages of simplicity and ease to understand, it fails to capture some

natural notions rised in real applications such as the true label of an object. It is also not a uniform

framework in the sense that, whenever a new feature is added, we have to extend the vector x by one

component and redefine the joint distribution.

We now introduce an alternative framework that allows for a clear definition of true class labels.

The key idea is to distinguish between an object and the features describing it. For this, we denote

by Ω the set of all objects ω16 in the considered problem. In medical diagnosis, for example, this

could be (the set of) all people in a country or an area. We can then define a σ-algebra F of subsets

of Ω and a probability measure P on F , yielding a probability space (Ω,F ,P). Note that, here

(Ω,F ,P) serves only as a uniform base for discussion; and the concrete definition of F and P are

not important.

According to the problem at hand, the set Ω is often naturally divided into several (measurable)

subsets that are pairwise disjoint, say Ω = Ω0 ∪Ω1. For example, Ω1 may represent those people

who are affected by a certain disease; and Ω0 is the set of the others. This can be conveniently

described by a function y : Ω → {0,1} that sends each ω ∈ Ωi to the value i (i = 0,1). Since the

subsets Ωi are pairwise disjoint and their union equals to Ω, the function y is well defined. We can

now define the value of y at a particular ω as the true class label of the object ω.

16. More rigorously speaking, here ω is in fact the “name” of the object it represented.
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One main goal in pattern classification is to predict the true class label y(ω), for which we

need to make some measurements on the object ω—obviously, the object itself cannot be used as a

predictor here. The measuring procedure is also described as a measurable function x : Ω → X . For

example, x(ω) might be the vector of heart rate, body temperature and blood pressure of the person

ω. The joint distribution of x and y is induced from the probability measure P, as follows: for any

A ⊆ X measurable and y ∈ {0,1},

Pr{x ∈ A,y = y} := P({ω ∈ Ω | x(ω) ∈ A, y(ω) = y}) .

Thus, every notion in the traditional framework can also be well defined in the new framework, but

not vice versa.

The target of pattern classification is to design a classifier ŷ : X → {0,1} so that some criterion

is minimized or maximized. Since ŷ is a function on X rather than Ω, for each x ∈ X it does not

discriminate between the objects in the set Ωx = {ω ∈ Ω | x(ω) = x}, which may belong to different

classes—that is, y(ω) may not assume a constant value on Ωx. So the best thing we can do is to

choose the best class label (according to the concerned criterion) for each feature vector x ∈ X ; and

assign it to all objects in the set Ωx, regardless of their true class label.

To recapitulate, the concept of a true class label can only be defined for objects, not for feature

vectors; so it is not well defined under the traditional probabilistic framework, which identify an

object with its feature vector. At the feature vector level, the notion of best class labels can be

defined; and its definition depends on the performance criterion used. We however had better keep

using the term “true label” anyway, for otherwise some commonly used notions such as true positive

and misclassification rate would cause even more confusion. Also, dropping this term will make the

discussion in Elkan (2001) about “reasonableness” conditions of cost matrices (see also page 1040

of this paper) meaningless. For this reason, we have abused the notion of true labels in the paper

even though the traditional framework is adopted. It actually should be understood as the true class

label of the particular object ω we are talking about whose feature vector is x.

B.2 On the Convex Hull of a Given Set in R
m

In this section, we propose a recursive procedure to construct the convex hull of a general subset in

the Euclidean space R
m, for which we introduce some basic terminologies first. A set D ⊆ R

m is

said to be convex if αu+ α̃v ∈ D for any u,v ∈ D and any α ∈ [0,1]—recall that α̃ := 1−α. Let

D be a convex set in R
m. A function f : D → R is convex if for any u,v ∈ D and α ∈ [0,1], it holds

that f (αu+ α̃v)6 α · f (u)+ α̃ · f (v) . If, instead, the reversed inequality holds, then f is a concave

function. Notice that convex (concave) functions are defined on convex sets. For any D ⊆ R
m, its

convex hull, denoted as coD in the paper, is defined as the set of all (finite) convex combinations of

points in D,

coD := {∑n
i=1 αiui | n ∈ N, ui ∈ D, αi > 0, ∑n

i=1 αi = 1} .

Another equivalent definition of coD is that it is the smallest convex set that contains D as a subset.

Both definitions will be usee (in proving certain propositions). Furthermore, for any u ∈ R
m we

shall call the sum ∑n
i=1 αiui or the set {(αi,ui)}

n
i=1 a convex decomposition of u in D if it holds that

αi > 0, ∑n
i=1 αi = 1, ui ∈ D and u= ∑n

i=1 αiui. Notice that a vector u ∈ coD if and only if it has at

least one convex decomposition in D.

Lemma 21 The convex hull of any subset D of the real line R is an interval with the endpoints

a = infD and b = supD. Moreover, a ∈ coD iff a ∈ D and b ∈ coD iff b ∈ D.
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Proof We only consider the case where a ∈ D and b /∈ D; the other three possibilities can be

discussed analogously. It is clear that D ⊆ [a,b) and that [a,b) is a convex set. But coD is the

smallest convex set that contains D, thus coD ⊆ [a,b). It now remains to show that [a,b) ⊆ coD

(hence coD = [a,b) and we are done). For any c ∈ [a,b), as b = supD, there exists a t ∈ D such that

c < t < b. Put α = t−c
t−a

, then c = α ·a+ α̃ · t ∈ coD.

Although simple, the above lemma characterizes completely the convex hull of subsets in the 1-

dimensional space. For the high dimensional case, we need further to introduce some new symbols.

For any m ∈N and any E ⊆R
m+1, denote by E↓ the projection of E onto R

m (the subspace of Rm+1

spanned by the first m unit vectors):

E↓ := {u= [u1, . . . ,um] ∈ R
m | [u,s] = [u1, . . . ,um,s] ∈ E for some s ∈ R} .

For each u ∈ R
m, we define E

↑
u := {s ∈ R | [u,s] ∈ E}. Intuitively, E

↑
u ⊆ R can be seen as the

intersection of the set E and the real line “vertically” placed at the point u. Observe that E
↑
u 6=∅ iff

u ∈ E↓ and that [u,s] ∈ E iff s ∈ E
↑
u. Furthermore, with the notions of E↓ and E

↑
u, any E ⊆ R

m+1

can be expressed as E = {[u,s] | u ∈ E↓, s ∈ E
↑
u}. In particular, replacing the set E by its convex

hull in this identity, we obtain

coE = {[u,s] | u ∈ (coE)↓, s ∈ (coE)↑
u
} . (55)

Lemma 22 For any E ⊆ R
m+1, it holds that (coE)↓ = coE↓.

Proof The set coE is convex, so is its projection (coE)↓—see, for example, Rockafellar (1970,

p. 19, Corollary 3.4.1). Moreover, from E ⊆ coE we know E↓ ⊆ (coE)↓. It then follows from the

minimality of coE↓ that coE↓ ⊆ (coE)↓. We now show that (coE)↓ ⊆ coE↓. Let u ∈ (coE)↓,

then [u,s] ∈ coE for some s ∈ R. Hence the vector [u,s] has a convex decomposition in E, say

[u,s] = ∑n
i=1 αi · [ui,si]. It follows from [ui,si] ∈ E that ui ∈ E↓ and so u= ∑n

i=1 αiui ∈ coE↓. This

proves (coE)↓ ⊆ coE↓.

Lemma 22 links the convex hull of a set in R
m+1 to that in R

m and hence simplifies the first

ingredient of Equation (55), (coE)↓. We now analyze its second ingredient, (coE)↑u with u ∈

(coE)↓ = coE↓. First of all, since coE is a convex set, so is (coE)↑u. To see this, let s1,s2 ∈

(coE)↑u, then [u,s1], [u,s2] ∈ coE. But coE is a convex set, so for any α ∈ [0,1] it holds that

α[u,s1] + α̃[u,s2] = [u,αs1 + α̃s2] ∈ coE, that is, αs1 + α̃s2 ∈ (coE)↑u. Secondly, (coE)↑u is a

subset of R, it hence must be an interval—one should have no difficulty to see that every convex set

in R is an interval. The problem is thus reduced to determining the two endpoints of the interval,

that is, the infimum and supremum of (coE)↑u, for which the following two symbols g(·|·) and g(·|·)
are useful.

By the definition of E↓ and E
↑
u, it is obvious that E

↑
u is nonempty for each u ∈ E↓. Now assume

that E ⊆R
m+1 is bounded, that is, E ⊆ [−b,b]m+1 for some b ∈R, then the set E

↑
u is also bounded—

in fact, E
↑
u ⊆ [−b,b] for any u ∈ E↓. For such sets E, the functions

g(·|E) : E↓ → R, u 7→ supE↑
u
, g(·|E) : E↓ → R, u 7→ infE↑

u
(56)
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are well defined (and bounded). Note that for general sets E ⊆ R
m+1, the above functions could be

±∞ at some points u. So the boundness of the set E is necessary for g and g to be real-valued. The

notation g(·|·) and g(·|·) allows us to rewrite the supremum of the set (coE)↑u as g(u|coE) and its

infimum as g(u|coE). Here the functions g(·|coE) and g(·|coE) are also defined by Equation (56),

but with the set E replaced by coE. That is,

g(·|coE) : (coE)↓ → R, u 7→ sup(coE)↑
u
,

g(·|coE) : (coE)↓ → R, u 7→ inf(coE)↑
u
. (57)

In the following we aim to relate the above two functions to g(·|E) and g(·|E).

Lemma 23 Let E ⊆ R
m+1 be a bounded convex set. Then g(·|E) is a convex function and g(·|E) a

concave function on E↓.

Proof Since E is convex, so is its projection E↓. Thus, αu+ α̃v ∈ E↓ for any u,v ∈ E↓ and

α ∈ [0,1]. By the definition of g(·|E), Equation (56), to prove its convexity we need to show

infE
↑
αu+α̃v 6 α · infE↑

u
+ α̃ · infE↑

v
. (58)

For any ε > 0, by the definition of E
↑
u we know there is an s ∈R such that [u,s]∈ E and s < infE

↑
u+

ε. Similarly, there exists a t ∈R satisfying [v, t]∈ E and t < infE
↑
v+ε. Then [αu+ α̃v,αs+ α̃t]∈ E

since E is convex. This means that αs+ α̃t ∈ E
↑
αu+α̃v and so

infE
↑
αu+α̃v 6 αs+ α̃t < α · infE↑

u
+ α̃ · infE↑

v
+ ε .

Since ε > 0 can be arbitrarily small, we get the desired inequality (58).

The concavity of the function g(·|E) can be proven in the similar way.

By this lemma, we at once see that the function g(·|coE) is convex and g(·|coE) concave.

Moreover, as E ⊆ coE and hence E
↑
u ⊆ (coE)↑u for any u ∈ R

m, we know from Equations (56)–

(57) that

g(u|coE)6 g(u|E)6 g(u|E)6 g(u|coE) , ∀u ∈ E↓ .

Here the domain of g(·|E) and g(·|E), E↓, does not need to be convex; and the domain of g(·|coE)

and g(·|coE), (coE)↓ = coE↓, is the convex hull of the domain of g(·|E) and g(·|E). These obser-

vations motivate us to introduce the concepts of the convex/concave hull of functions defined on a

subset of Rm which is not necessarily convex.

Let D ⊆R
m and f : D →R. The concave hull of f is the smallest concave function f⌢ : coD →

R such that f⌢(u) > f (u) for all u ∈ D; and the convex hull of f is the greatest convex function

f⌣ : coD → R with f⌣(u) 6 f (u) for u ∈ D. In particular, if the domain D is itself a convex

set, then coD = D and our definition of f⌣ and f⌢ degenerates into the standard definition. Here

both f⌣ and f⌢ are required to be real-valued. As such, some functions might have no convex or

concave hull. For instance, the function f (t) = t2, t ∈ R does not have concave hull—it would be

f⌢(t) = ∞ if the extended real line is considered instead of R.
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Lemma 24 For any bounded subset E ⊆ R
m+1, the function g(·|coE) is the convex hull of g(·|E);

and g(·|coE) is the concave hull of g(·|E).

Proof We have shown that g(·|coE) : coE↓ → R is a convex function which for any u ∈ E↓

satisfies g(u|coE)6 g(u|E). It thus remains to show that g(·|coE)> f (·) for any convex function

f : coE↓ → R satisfying the same condition.

Let u ∈ coE↓, by definition, g(u|coE) = inf(coE)↑u. Thus, for any ε > 0, there is an s ∈

(coE)↑u such that s < g(u|coE) + ε. By s ∈ (coE)↑u we know [u,s] ∈ coE, so it has a convex

decomposition in E, say [u,s] = ∑n
i=1 αi · [ui,si]. It follows from [ui,si] ∈ E that si ∈ E

↑
ui and hence

g(ui|E) = infE
↑
ui 6 si. Since f : coE↓ → R is a convex function and since f (·)6 g(·|E) on E↓, by

Jensen’s inequality we have

f (u) = f (∑n
i=1 αiui)6 ∑n

i=1 αi · f (ui)6 ∑n
i=1 αi ·g(ui|E) . . .

. . . 6 ∑n
i=1 αisi = s < g(u|coE)+ ε .

As ε > 0 can be arbitrarily small, the above inequality implies f (u) 6 g(u|coE). We thus have

proved that g(·|coE) is the convex hull of g(·|E). By the similar argument, we can prove g(·|coE)
is the concave hull of g(·|E).

Lemma 25 Let D ⊂ R
m be an arbitrary set. Then any lower (upper) bounded function f : D → R

allows for a convex (concave) hull f⌣( f⌢) : coD → R.

Proof On the set coD define two functions f ∗(u) and f∗(u) by

f ∗(u) := sup{∑n
i=1 αi · f (ui) | {(αi,ui)}

n
i=1 a conv. decomp. of u in D} , (59)

f∗(u) := inf{∑n
i=1 αi · f (ui) | {(αi,ui)}

n
i=1 a conv. decomp. of u in D} . (60)

As any u ∈ coD allows for at least one convex decomposition in D, the above set {∑ . . .} is

nonempty and hence its supremum and infimum are well defined. We claim that f⌣ = f∗ when

f is lower bounded and that f⌢ = f ∗ when f is upper bounded.

By the definition of f⌣, to see that f⌣ = f∗ it suffices to show

(a) f∗(·) is a convex function on coD: Let u,v ∈ coD and t ∈ [0,1], we need to prove f∗(tu+
t̃v)6 t · f∗(u)+ t̃ · f∗(v). For any ε > 0, by the definition of f∗(u), there is a convex decomposition

of u in D, {(αi,ui)}
n
i=1, such that f∗(u)>∑n

i=1 αi · f (ui)−ε. Analogously, f∗(v)>∑k
i=1 βi · f (vi)−

ε for some convex decomposition of v, {(βi,vi)}
k
i=1. We thus get

t · f∗(u)+ t̃ · f∗(v)> ∑n
i=1 tαi · f (ui)+∑k

i=1 t̃βi · f (vi)− ε.

But the set {(tαi,ui)}
n
i=1 ∪{(t̃βi,vi)}

k
i=1 forms a convex decomposition of tu+ t̃v, so

f∗(tu+ t̃v)6 ∑n
i=1 tαi · f (ui)+∑k

i=1 t̃βi · f (vi) .

It hence follows that f∗(tu+ t̃v)< t · f∗(u)+ t̃ · f∗(v)+ ε. Since ε > 0 can be arbitrarily small, we

conclude that f∗(tu+ t̃v)6 t · f∗(u)+ t̃ · f∗(v).
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(b) f∗(u)6 f (u) for all u ∈ D: This is obvious as {(1,u)} is a convex decomposition of u in

D.

(c) g(u) 6 f∗(u) for any g : coD → R satisfying the above conditions (a) and (b), and any

u ∈ coD: For any ε > 0, by the definition of f∗(u), there is a convex decomposition of u in D,

{(αi,ui)}
n
i=1, such that f∗(u) > ∑n

i=1 αi · f (ui)− ε. As g(·) is a convex function, and as g 6 f on

D, by Jensen’s inequality we have

∑n
i=1 αi · f (ui)> ∑n

i=1 αi ·g(ui)> g(∑n
i=1 αiui) = g(u),

where the last equality follows from that {(αi,ui)}
n
i=1 is a convex decomposition of u. We thus

know f∗(u)+ ε > g(u) and so f∗(u)> g(u), since ε > 0 can be arbitrarily small.

By the similar argument, one shows that f⌢ = f ∗ for upper bounded functions f .

The above two lemmas enable us to describe the functions g(·|coE) and g(·|coE) in terms of

g(·|E) and g(·|E), respectively. In fact, by putting f (·) = g(·|E) in Equation (59) and f (·) = g(·|E)
in Equation (60), we get

g(u|coE) = sup{∑n
i=1 αig(ui|E) | {(αi,ui)}

n
i=1 a conv. decomp. of u in E↓} , (61)

g(u|coE) = inf{∑n
i=1 αig(ui|E) | {(αi,ui)}

n
i=1 a conv. decomp. of u in E↓} . (62)

Now let us return to the expression (55), coE = {[u,s] | u ∈ (coE)↓, s ∈ (coE)↑u}. As has

been pointed out earlier, for any u ∈ (coE)↓ = coE↓, the set (coE)↑u is an interval in R with the

two endpoints g(u|coE), g(u|coE) determined respectively by Equation (61) and Equation (62).

This interval might be open, closed, or half-open-half-closed, depending on whether or not the

respective endpoint is in the interval. For simplicity we restrict ourselves to bounded and closed

sets E. Then their convex hull coE are also bounded and closed—see, for example, Aliprantis and

Border (2006, p. 185, Corollary 5.33), which in turn implies the set (coE)↑u can only be a closed

interval, (coE)↑u = [g(u|coE),g(u|coE)]. Equation (55) can thus be rewritten as

coE = {[u,s] | u ∈ coE↓, g(u|coE)6 s 6 g(u|coE)} . (63)

The projection E↓ of a bounded closed set E is also bounded and closed, so the above expression

of coE gives naturally rise to a recursive algorithm to construct the convex hull of any bounded and

closed set E, as follows. To get coE we need only to find coE↓ and the functions g(·|coE) and

g(·|coE) as given by Equations (56), (61) and (62); to get coE↓ we need to find coE↓↓ and the

functions g(·|coE↓) and g(·|coE↓); and so forth. As E↓ ⊆ R
m for any E ⊆ R

m+1, this procedure

terminates with the 1-dimensional case after m steps, which has been fully discussed in Lemma 21.

B.3 The Convex Hull of Three Curves ℓ in the Paper

We now apply the recursive procedure presented in the preceding section to three curves occurred

in the paper, to get their convex hull. These curves have been parameterized by the posterior prob-

ability η ∈ [0,1], as listed below—to distinguish, a subscript is used to indicate the quantity with
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which the curve is associated:

ℓCSR = {[e(η),h(η)] | η ∈ [0,1]} , e(η) = min{c1η,c0η̃} ; (64)

ℓBER = {[η,r(η),h(η)] | η ∈ [0,1]} , r(η) = min{π−1η, π̃−1η̃} ; (65)

ℓFSC = {[η,u(η),h(η)] | η ∈ [0,1]} , u(η) = θ∗η− (η−θ∗)+ and θ∗ = 1
2

FSC . (66)

In the above, the function h : [0,1]→ R is concave and satisfies h(0) = h(1) = 0.

B.3.1 THE CONVEX HULL OF ℓCSR

The curve ℓCSR lies in the e-h plane; and, by Equation (63), its convex hull can be expressed as

coℓCSR = {[e0,h0] | e0 ∈ coℓ↓CSR, g(e0|coℓCSR)6 h0 6 g(e0|coℓCSR)} . (67)

As c−1
0 + c−1

1 = 2, the range of e(η) is [0,0.5]—see the analysis in page 1048. We thus have

ℓ↓CSR = {e(η) | η ∈ [0,1]} = [0,0.5] and hence coℓ↓CSR = [0,0.5]. For each e0 ∈ [0,0.5], the set

(ℓCSR)
↑
e0 is computed as follows: (ℓCSR)

↑
e0 = {h0 ∈ R | [e0,h0] ∈ ℓCSR} = {h(η) | e(η) = e0}. But

e(η) = e0 implies η = c−1
1 e0 or η = 1− c−1

0 e0, so (ℓCSR)
↑
e0 = {h(c−1

1 e0),h(1− c−1
0 e0)}. It then

follows from Equation (56) that

g(e0|ℓCSR) = max{h(c−1
1 e0),h(1− c−1

0 e0)} , ∀e0 ∈ [0,0.5] ;

g(e0|ℓCSR) = min{h(c−1
1 e0),h(1− c−1

0 e0)} , ∀e0 ∈ [0,0.5] .

By Lemma 24, we know g(e0|coℓCSR) is the concave hull of g(e0|ℓCSR) and g(e0|coℓCSR) the convex

hull of g(e0|ℓCSR), that is,

g(e0|coℓCSR) = [max{h(c−1
1 e0),h(1− c−1

0 e0)}]
⌢ ,

g(e0|coℓCSR) = [min{h(c−1
1 e0),h(1− c−1

0 e0)}]⌣ = 2 ·h( 1
2c1

) · e0 ,

where the last equality holds because both h(c−1
1 e0) and h(1− c−1

0 e0) are concave functions of e0

and they have the same endpoints: [0,0] and [ 1
2
,h( 1

2c1
)]. Substituting the identity coℓ↓CSR = [0,0.5]

and the above expressions of g(e0|coℓCSR) and g(e0|coℓCSR) into Equation (67), we obtain

coℓCSR = {[e0,h0] | e0 ∈ [0,0.5], 2e0 ·h(
1

2c1
)6 h0 6 [. . .]⌢} , (68)

where the expression in the brackets [. . .] is max{h(c−1
1 e0),h(1− c−1

0 e0)}.

B.3.2 THE CONVEX HULL OF ℓBER AND ℓFSC

The curves ℓBER and ℓFSC are of the same nature: both r(η) and u(η) are piecewise affine functions

whose graph consists of two line segments. They can hence be treated together. By the definition of

r(η) and u(η), we have

r(η) =

{

π−1η if η 6 π

π̃−1η̃ otherwise
, u(η) =

{

θ∗η if η 6 θ∗

θ∗− θ̃∗η otherwise
. (69)

The graph of the two functions for π = θ∗ = 0.3 are shown in Figure 11; they also represent the

curves ℓ↓BER = {[η,r(η)] | η ∈ [0,1]} and ℓ↓
FSC

= {[η,u(η)] | η ∈ [0,1]}, respectively. As both r(η)
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and u(η) are concave functions, by Equation (63) it is easy to see that (the detailed derivation is just

a routine work and omitted here)

coℓ↓BER = {[η,r0] | η ∈ [0,1], 0 6 r0 6 r(η)} ,

coℓ↓
FSC

= {[η,u0] | η ∈ [0,1], (θ∗− θ̃∗)η 6 u0 6 u(η)} . (70)

This is also clear from Figure 11: they are just the triangles OAB.
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Figure 11: a. The graph of the function r(η) (the solid line OAB), which can also be expressed as

ℓ↓BER = {[η,r(η)] | η ∈ [0,1]}. From the graph one easily sees that the convex hull of

ℓ↓BER is the area bounded by the triangle OAB.

b. The same graph and curve (ℓ↓CSR) for the function u(η).

As before, to derive the convex hull of the curve ℓFSC, we use Equation (63) and obtain

coℓFSC = {[η,u0,h0] | [η,u0] ∈ coℓ↓
FSC

, g(η,u0|coℓFSC)6 h0 6 g(η,u0|coℓFSC)}. (71)

The set coℓ↓
FSC

is already known, so it remains to find the expressions of g(η,u0|coℓFSC) and

g(η,u0|coℓFSC), for which we need first to determine the values of g(η,u0|ℓFSC) and g(η,u0|ℓFSC) for

[η,u0]∈ ℓ↓
FSC

—see Equation (61) and Equation (62). By the definition of ℓFSC, we know [η,u0]∈ ℓ↓
FSC

if and only if u0 = u(η); and (ℓFSC)
↑
[η,u0]

= {h(η)} for any [η,u0] ∈ ℓ↓
FSC

. It thus follows from

Equation (56) that g(η,u0|ℓFSC) = g(η,u0|ℓFSC) = h(η) for any point [η,u0] ∈ ℓ↓
FSC

, that is, for any

η ∈ [0,1] and u0 = u(η).

Based upon the above discussion and Equations (61) and (62), we have

g(η,u0|coℓFSC) = sup{∑n
i=1 αi ·h(ηi) | condition on (αi,ηi)} , (72)

g(η,u0|coℓFSC) = inf{∑n
i=1 αi ·h(ηi) | condition on (αi,ηi)} , (73)
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for any [η,u0] ∈ coℓ↓
FSC

, where the unspecified condition is that {(αi,ηi,u(ηi))}
n
i=1 forms a convex

decomposition of the point [η,u0] in ℓ↓
FSC

. In other words, here the parameters αi,ηi ∈ [0,1] should

satisfy ∑n
i=1 αi = 1, ∑n

i=1 αiηi = η and ∑n
i=1 αi ·u(ηi) = u0. Next we shall prove that n 6 2 when the

supremum in Equation (72) is obtained; and that the infimum in Equation (73) is attained at n 6 3

with ηi ∈ {0,θ∗,1}.

We discuss Equation (73) first. For each ηi in a convex decomposition {(αi,ηi,u(ηi))}
n
i=1 of

[η,u0], ηi ∈ [0,θ∗] or ηi ∈ [θ∗,1]. For the former case, we “split up” the item (αi,ηi,u(ηi)) into two

items at η = 0 and θ∗, with the α-parameter computed from the condition that the weighted sum of

the new items equals to the original one. That is, we construct (α1
i ,η

1
i ,u(η

1
i )) and (α2

i ,η
2
i ,u(η

2
i ))

with η1
i = 0 and η2

i = θ∗, such that

α1
i +α2

i = αi , α1
i η1

i +α2
i η2

i = αiηi , α1
i ·u(η

1
i )+α2

i ·u(η
2
i ) = αi ·u(ηi) . (74)

The third equality of Equation (74) is actually an implication of the first two, because u(η) is an

affine function on the interval [0,θ∗]—see Equation (69). By the first two equations in Equation (74),

we know α1
i = αi ·

θ∗−ηi

θ∗ and α2
i = αi ·

ηi

θ∗ . For the case of ηi ∈ [θ∗,1], the split is computed also from

Equation (74), but with η1
i = θ∗ and η2

i = 1. This gives us α1
i = αi ·

1−ηi

1−θ∗ and α2
i = αi ·

ηi−θ∗

1−θ∗ .

In geometry (see Figure 11), the above splitting operation replaces any point M (resp. N) on the

line segment OA (resp. AB) by a (unique) convex combination of the two endpoints O and A (resp.

A and B). We thus get a new set {(α1
i ,η

1
i ,u(η

1
i )),(α

2
i ,η

2
i ,u(η

2
i ))}

n
i=1, which, by Equation (74), is

obviously a convex decomposition of the point [η,u0] in ℓ↓
FSC

. Now, as h(η) is a concave function,

we know from Lemma 9 that α1
i · h(η

1
i )+α2

i · h(η
2
i ) 6 αi · h(ηi). This implies that the sum ∑i αi ·

h(ηi) of the new convex decomposition is no more than that of the original one. Moreover, by its

construction, the η-parameter of this new convex decomposition assumes one of the three values:

0, θ∗ and 1. We can thus “merge” all items with same η-value into one item (in an obvious way),

yielding a convex decomposition of [η,u0] with no more than three items—we wrote “no more than”

because any item with αi = 0 can be removed without changing the whole convex decomposition

and the value of ∑i αi ·h(ηi).
Thus far, we have shown that for any convex decomposition of [η,u0] another convex decompo-

sition can be constructed which has at most three items whose η-parameter are in the set {0,θ∗,1},

and for which the sum ∑i αi ·h(ηi) is less than or equal to that of the original convex decomposition.

Therefore, Equation (73) can be simplified to

g(η,u0|coℓFSC) = inf{α1 ·h(0)+α2 ·h(θ
∗)+α3 ·h(1) | condition on α1,2,3} .

In the above expression, αi > 0 are the coefficients occurred when [η,u0] ∈ coℓ↓
FSC

is written as the

(unique) convex combination of the three points [0,u(0)], [θ∗,u(θ∗)] and [1,u(1)]. In Figure 11, this

corresponds with that a point K in the triangle OAB is written as a convex combination of the three

extreme points O, A and B. As is well know in geometry, such a convex combination is unique.

By the above discussion, the expression of g(η,u0|coℓFSC) can be simplified further to

g(η,u0|coℓFSC) = α1 ·h(0)+α2 ·h(θ
∗)+α3 ·h(1) = α2 ·h(θ

∗) ,

where we have employed the fact h(0) = h(1) = 0, and the coefficients αi are (uniquely) determined

by the linear equations with η and u0 as known constants:

α1 +α2 +α3 = 0 , α1 · [0,u(0)]+α2 · [θ
∗,u(θ∗)]+α3 · [1,u(1)] = [η,u0] .
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As u(0)= 0, u(θ∗)= (θ∗)2 and u(1)= θ∗− θ̃∗, solving the above equations results in α2 =(θ∗θ̃∗)−1 ·
[u0 +η(θ̃∗−θ∗)]. Therefore,

g(η,u0|coℓFSC) = (θ∗θ̃∗)−1 ·h(θ∗) · [u0 +η(θ̃∗−θ∗)] , ∀ [η,u0] ∈ coℓ↓
FSC

. (75)

The expression of g(η,r0|coℓBER) can be derived in a similar way, yielding

g(η,r0|coℓBER) = r0 ·h(π) , ∀ [η,r0] ∈ coℓ↓BER . (76)

Note that both g(η,u0|coℓFSC) and g(η,r0|coℓBER) are affine functions. This fact and Equa-

tion (71) reveal that in Figure 6-a (resp. Figure 7-a) the convex hull of the curve ℓBER (resp. ℓFSC) is

bounded from below by the triangle OAB in the η-r-h (resp. η-u-h) space.

We now study the expression of g(η,u0|coℓFSC), Equation (72). For simplicity, assume that a

convex decomposition {(αi,ηi,u(ηi))}
n
i=1 of [η,u0] have been ordered such that ηi < θ∗ for i < k

and ηi > θ∗ for i > k. We can then “merge” the items {(αi,ηi,u(ηi))}
k−1
i=1 into one, namely, their

weighted sum (α′,η′,u(η′)) with α′ =∑
k−1
i=1 αi and η′ = 1

α′ ·∑
k−1
i=1 αiηi. Similarly, {(αi,ηi,u(ηi))}

n
i=k

can be “merged” into (α′′,η′′,u(η′′)) with α′′ = ∑n
i=k αi and η′′ = 1

α′′ ·∑
n
i=k αiηi. As u(η) is an affine

function on the intervals [0,θ∗] and [θ∗,1]—see Equation (69), one easily verifies that

{(α′,η′,u(η′)),(α′′,η′′,u(η′′))} is a convex decomposition of [η,u0] in ℓ↓
FSC

. Furthermore, by the

concavity of h(η) we know α′ · h(η′) > ∑
k−1
i=1 αi · h(ηi) and α′′ · h(η′′) > ∑n

i=k αi · h(ηi). Hence

α′ · h(η′) +α′′ · h(η′′) > ∑n
i=1 αi · h(ηi). This enables us to consider only convex decompositions

with at most two items when dealing with the function g(η,u0|coℓFSC). That is, Equation (72) can

now be simplified to

g(η,u0|coℓFSC) = sup{t̃ ·h(η′)+ t ·h(η′′) | condition on t,η′ and η′′} , (77)

where t, η′ and η′′ should be such that η′ < θ∗ 6 η′′ and {(t̃,η′,u(η′)),(t,η′′,u(η′′))} forms a

convex decomposition of [η,u0].

In Figure 11, Equation (77) means that for any point K = [η,u0] in the triangle OAB, we need to

find a point M = [η′,u(η′)] on the line segment OA and a point N = [η′′,u(η′′)] on the line segment

AB, such that K is on the line segment MN, that is, K = t̃ ·M+ t ·N. The value of g(η,u0|coℓFSC) is

then the supremum of t ·h(η′)+ t̃ ·h(η′′) over all such pairs (M,N). For the curve ℓBER, we actually

have already carried out this computation in Section 5—see Equations (36)–(38) and (41), whose

correctness gets verified by the discussion here. Moreover, the analysis in this section shows that

calculating Equations (39) and (40) is in fact unnecessary, which was previously proven in Lemma

10. The similar method can be used to simplify the expression of g(η,u0|coℓFSC) to the maximum

of a function of t, like Equation (41).

For the purpose of deriving Theorem 11 and Theorem 15, we will focus only on the case of

u0 = 0 for g(η,u0|coℓFSC) and the case of η= π for g(η,r0|coℓBER). The corresponding expressions

for these two cases are listed below (the detailed computation is omitted):

g(η,0|coℓFSC) = sup{t̃ ·h(t̃−1(ηθ̃∗− tθ∗))+ t ·h(θ∗+ t−1ηθ∗) | t ∈ [η θ∗

θ̃∗
,η θ̃∗

θ∗ ]} , (78)

g(π,r0|coℓBER) = sup{t̃ ·h(π− t̃−1ππ̃r̃0)+ t ·h(π+ t−1ππ̃r̃0) | t ∈ [πr̃0,r0 +πr̃0]} . (79)

Note that the above Equation (79) is same as Equation (41) (if we replace ρ by r0).
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B.4 The Expectation of a Random Vector and the Convex Hull of Its Range

This section is devoted to proving that any random vector in R
m has the expectation lying in the

convex hull of its range. We actually will prove a stronger theorem, which are to be stated in a

formal way after we have introduced the necessary definitions and notations.

Modern probability theory defines a random variable as a measurable function on some prob-

ability space (Ω,F ,P). In particular, a random vector is a measurable function from Ω into the

Euclidean space R
m equipped with the σ-algebra of Borel sets. For any A ∈ F with P(A) > 0 and

any random vector u : Ω → R
m, we write

u(A) := {u(ω) | ω ∈ A} ,

EA[u] := P(A)−1 ·
∫

A u(ω)dP .

Intuitively, u(A)⊆ R
m is the image of the set A ⊆ Ω under the mapping u; and EA[u] is the average

value (weighted by probability) of u on the set A. Note that, when A = Ω the above two quantities

are the range and the expectation of u, respectively.

We are now ready to formally state the main result of this section.

Theorem 26 Let u : Ω → R
m be a random vector and A ∈ F satisfy P(A) > 0. Then EA[u] ∈

cou(A).

The following two lemmas discuss the 1-dimensional case (i.e., m = 1) and are useful for proving

the theorem.

Lemma 27 Let A ∈ F be such that P(A)> 0 and the random variable u : Ω → R satisfy u(ω)> 0

for any ω ∈ A. Then
∫

A u(ω)dP > 0.

Proof For each n ∈ N, define An := {ω ∈ A | u(ω)> 1
n
}, then A1 ⊆ A2 ⊆ ·· · ⊆ An ⊆ ·· · . Further-

more, as u(ω) > 0 for ω ∈ A, we have A =
⋃∞

n=1 An. The continuity of probability measures then

implies limn→∞ P(An) = P(A) > 0. Thus, there exists an N ∈ N such that P(AN) > 0. We thus get∫
A u(ω)dP =

∫
AN

u(ω)dP+
∫

A\AN
u(ω)dP >

1
N
·P(AN)> 0.

Lemma 28 Let u : Ω → R be a real-valued random variable and let A ∈ F be such that P(A)> 0.

Then EA[u] ∈ cou(A).

Proof Write a = infu(A), b = supu(A) and assume that a ∈ u(A) and b /∈ u(A)—there are three

other possibilities to which a similar discussion to the one presented here applies. Then by Lemma

21 we have cou(A) = [a,b); so it suffices to show a 6 EA[u]< b.

As a = infu(A), we have u(ω)> a for all ω ∈ A. Thus, P(A) ·EA[u] =
∫

A u(ω)dP > a ·P(A) and

hence EA[u] > a. To show that EA[u] < b, we define v = b− u. Then v > 0 is a random variable;

and it follows from Lemma 27 that EA[v] = P(A)−1 ·
∫

A v(ω)dP > 0. But EA[v] = b−EA[u], we thus

get EA[u]< b.

We now prove Theorem 26, by inducting on the dimensionality m.
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Proof The case of m = 1 has been established in Lemma 28. Assume that the theorem is true

in R
m−1; and we want to show that it holds also for Rm. If this is not the case, then there exist a

random vector u : Ω → R
m and a set A ∈ A such that P(A)> 0 and EA[u] /∈ cou(A). Without loss

of generality, we can, and do, further assume that EA[u] = 0 (otherwise we turn to considering the

random vector u′(ω) := u(ω)−EA[u]).

As EA[u] = 0 is a point not in the convex set cou(A), there is a hyperplane separating the two—

see for example, Boyd and Vandenberghe (2004, Chapter 2.5). That is, there exist w ∈R
m and c∈R

such that w ·u+c> 0 for all u∈ cou(A) and that w ·0+c= c6 0, where w ·u denotes the standard

inner product of w and u. Thus, w ·u > −c > 0 for any u ∈ cou(A). To simplify the discussion,

we assume w is the first standard unit vector, w = [1,0, . . . ,0]—this can always be obtained by

applying a proper rotation operator on the random vector u, so it causes no loss of generality. Under

this assumption, the inequality w ·u> 0 now reads u1 > 0, for any u= [u1, . . . ,um] ∈ cou(A).

A side remark: intuitively, the above argument says that, since cou(A) is convex and EA[u] /∈
cou(A), we can first move the origin to the point EA[u]; then rotate the axes so that cou(A) lies in

the half space H>0 := {u= [u1, . . . ,um] ∈ R
m | u1 > 0} after the rotation.

We return and continue the proof. Define

H0 := {u ∈ R
m | u1 = 0} , A0 := {ω ∈ A | u(ω) ∈ H0} ,

H>0 := {u ∈ R
m | u1 > 0} , A1 := {ω ∈ A | u(ω) ∈ H>0} .

Then it is clear that A0 ∩A1 =∅. Furthermore, from u(A)⊆ cou(A)⊆ H>0 we know A0 ∪A1 = A.

It hence follows from EA[u] = 0 that

0 = P(A) ·EA[u] =
∫

A u(ω)dP =
∫

A0
u(ω)dP+

∫
A1
u(ω)dP . (80)

Extracting the first component of this equality results in
∫

A1
u1(ω)dP = 0. This is because u1(ω) = 0

on A0 and hence
∫

A0
u1(ω)dP = 0. But u1(ω)> 0 for ω ∈ A1, so by Lemma 27 we know P(A1) = 0,

which in turn implies
∫

A1
u(ω)dP=0 and P(A0)=P(A)> 0 (as A=A0∪A1). Equation (80) can then

be rewritten as 0=P(A0)
−1 ·EA[u] =

∫
A0
u(ω)dP, that is, EA[u] = 0=P(A0)

−1 ·
∫

A0
u(ω)dP=EA0

[u].

On the other hand, A0 ⊆ A implies cou(A0) ⊆ cou(A). So it follows from the assumptions

EA[u] /∈ cou(A) and EA[u] = 0 that 0 /∈ cou(A0). Write u = [u1, . . . ,um] = [u1,v], that is, v =
[u2, . . . ,um]. As u1(ω) = 0 for all ω ∈ A0, we have the following “decomposition”:

u(A0) = {[u1(ω),v(ω)] | ω ∈ A0}

= {(0,v(ω)) | ω ∈ A0}

= {0}×{v(ω) | ω ∈ A0}

= {0}× v(A0) ,

and hence cou(A0) = {0}×cov(A0). This fact together with 0 /∈ cou(A0) implies that 0 /∈ cov(A0).
For the (m− 1)-dimensional random vector v, the induction hypothesis gives EA0

[v] ∈ cov(A0). It

thus follows that EA0
[v] 6= 0, which further implies EA0

[u] 6= 0.

We have proved both EA0
[u] = 0 and EA0

[u] 6= 0; this contradiction reveals that the assumption

EA[u] /∈ cou(A) must not be true. We thus accomplished the proof.
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Appendix C. Proofs to the Main Theorems

For those readers who are not satisfied with the presented derivations and who are really enthusiastic

about rigorous mathematical proofs, we translate in this section the geometric proofs to the main

theorems into the analytical one. We have already done the main job in the preceding section; all

we need to do here is to assemble the discussion presented in that section into a proper proof.

C.1 Proof to Theorem 7

By Equations (28), (64) and Theorem 1, we have [CSR,H(y|x)] ∈ coℓCSR. It then follows from

Equation (68) that

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ .

This proves Equation (30). Furthermore, the proofs to Theorem 5 and Corollary 6 can be moved

straightforwardly here to show the tightness of the two bounds in Equation (30).

C.2 Proof to Theorem 11

By Equations (34), (65) and Theorem 1, we know [π,2BER,H(y|x)] is in the set coℓBER, which, by

Equation (63), can be written as

coℓBER = {[η,r0,h0] | [η,r0] ∈ coℓ↓BER, g(η,r0|coℓBER)6 h0 6 g(η,r0|coℓBER)}.

Now fix η = π in the above expression, and we obtain from Equations (76) and (79) the desired

inequality, Equation (44). The tightness of the obtained bounds can be proven similarly to that in

Theorem 5 and Corollary 6.

C.3 Theorem 11 is Stronger Than Corollary 8

In this section, we intend to show the upper bound of H(y|x) as given by Equation (33) is never

tighter than that in Equation (44). Mathematically, this amount to proving that

max{ f3(t) | t ∈ [πρ̃,πρ̃+ρ]}6

{

h(π̃ρ) if π 6 0.5
h(πρ) if π > 0.5

,

where f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃), ρ = 2BER ∈ [0,1], and h : [0,1]→ R is a sym-

metric concave function satisfying h(0) = h(1) = 1.

To simplify the proof and notation, we shall consider only the case of π6 0.5 under an additional

condition that the function h(·) is differentiable17. For any function as such and any numbers η,η0 ∈
[0,1], by the concavity of h(η) we know h(η) 6 h(η0)+ h′(η0) · (η−η0). If π̃ρ >

1
2
, put η0 =

1− π̃ρ= π+ π̃ρ̃6
1
2
. Since h(η) is symmetric and concave, we know h(η0) = h(π̃ρ) and h′(η0)> 0.

It then follows that

h(π− t̃−1ππ̃ρ̃)6 h(η0)+h′(η0) · (π− t̃−1ππ̃ρ̃−η0) = h(π̃ρ)−h′(η0) · π̃ρ̃ · (1+ t̃−1π) ,

h(π+ t−1ππ̃ρ̃)6 h(η0)+h′(η0) · (π+ t−1ππ̃ρ̃−η0) = h(π̃ρ)−h′(η0) · π̃ρ̃ · (1− t−1π) ,

17. The case where π > 0.5 can be discussed similarly. As before, the differentiability assumption is unnecessary: if h(·)
is non-differentiable at some point η0, we can use any number between its right derivative h′(η0+) and left derivative

h′(η0−) to replace h′(η0).
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and hence f3(t) = t̃ · h(π− t̃−1ππ̃ρ̃)+ t · h(π+ t−1ππ̃ρ̃) 6 h(π̃ρ)− h′(η0) · π̃ρ̃ 6 h(π̃ρ) for any t ∈
[0,1].

Now suppose that π̃ρ < 1
2
. As h(·) is symmetric, by Jensen’s inequality we know

f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π̃− t−1ππ̃ρ̃)6 h(t̃π+ tπ̃−2ππ̃ρ̃).

For t ∈ [πρ̃,πρ̃+ρ], by direct computation we have t̃π+ tπ̃−2ππ̃ρ̃ ∈ [πρ, π̃ρ]. By π 6 0.5 we know

πρ 6 π̃ρ < 1
2

and so h(πρ) 6 h(π̃ρ). Thus f3(t) 6 h(π̃ρ) for any t ∈ [πρ̃,πρ̃+ρ]. So far we have

proved that max{ f3(t) | t ∈ [πρ̃,ρ+πρ̃]}6 h(π̃ρ).

C.4 Proof to Theorem 15

For any binary classification task (µ,η), let θ∗ = 1
2

FSC(µ,η) and let the function u(η) be as in

Equation (69). Then Ex∼µ[u(η(x))] = 0 and hence Equation (49) holds. It follows from Equa-

tion (66) and Theorem 1 that [π,0,H(y|x)] is in the set coℓFSC. So by Equation (71) we know

g(π,0|coℓFSC) 6 H(y|x) 6 g(π,0|coℓFSC), where the range of π is determined by the condition

[π,0] ∈ coℓ↓
FSC

, which by Equation (70) implies π ∈ [0,θ∗/θ̃∗]. It thus follows that

infπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)6 H(y|x)6 supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC) . (81)

By Equation (75), we have g(π,0|coℓFSC) = (θ∗θ̃∗)−1 ·h(θ∗) ·π(θ̃∗−θ∗), so the infimum in Equa-

tion (81) is 0, which is obtained at π = 0. Next we will prove briefly that the right hand side of

Equation (81) equals to h(θ∗/θ̃∗) = h
(

FSC

2−FSC

)

, with the help of Figure 7-b.

For any concave function h : [0,1] → R and η0 ∈ (0,1), it is well known that the left deriva-

tive h′(η0−) and the right derivative h′(η0+) exist and satisfy h′(η0+) 6 h′(η0−). Moreover, for

η1,η2 ∈ (0,1) with η1 > η2, we have h′(η1−)6 h′(η2+). Let s(η0) be a number between h′(η0+)
and h′(η0−) and define f (η) := s(η0) · (η−η0)+ h(η0), η ∈ [0,1]. As is well known, the affine

function f (η) satisfies f (η0) = h(η0) and f (η)> h(η) for any η ∈ [0,1]. Such an affine function is

called a supporting line of h(η) and η0.

Let f1(η) = s(η1) · (η− η1) + h(η1) be a supporting line of h(η) at η1 = θ∗/θ̃∗. This line

intersects with the line η = θ∗ at point K = [θ∗, f1(θ
∗)]. Through the point K there is a supporting

line of h(η) at η2 6 θ∗, which we denote as f2(η) = s(η2) · (η−η2)+h(η2). As h(η) is symmetric

and η2 6 θ∗ 6
1
2
, we have s(η2)> 0. Moreover, since f1(θ

∗) = f2(θ
∗) and η2 6 θ∗ 6 η1, by Lemma

18 we know h(η2)6 h(η1).

In Equation (78) let η = π and relax the resulting expression to

g(π,0|coℓFSC)6 sup{t̃ · f2(t̃
−1(πθ̃∗− tθ∗))+ t · f1(θ

∗+ t−1πθ∗) | t ∈ [π θ∗

θ̃∗
,π θ̃∗

θ∗ ]}

= f1(θ
∗)− s(η2) ·θ

∗+π · [s(η1)θ
∗+ s(η2)θ̃

∗] =: f0(π) .

Since π ∈ [0,θ∗/θ̃∗] and f0(π) is an affine function, the above inequality further implies

g(π,0|coℓFSC)6 max{ f0(0), f0(θ
∗/θ̃∗)} .

As s(η2)> 0, we know f0(0) = f2(θ
∗)− s(η2) ·θ

∗ = f2(0)6 f2(η2) = h(η2). Furthermore,

f0(θ
∗/θ̃∗) = f1(θ

∗)+ s(η1) · (θ
∗)2/θ̃∗ = f1

(

θ∗+(θ∗)2/θ̃∗
)

= f1(η1) = h(η1) .
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It thus follows that f0(0) 6 f0(θ
∗/θ̃∗) and so g(π,0|coℓFSC) 6 h(η1) = h(θ∗/θ̃∗) for any π ∈

[0,θ∗/θ̃∗]. Thus, supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)6 h(θ∗/θ̃∗).

On the other hand, let η = π and t = π · θ̃∗/θ∗ in Equation (78), we obtain

g(π,0|coℓFSC)> t̃ ·h(0)+ t ·h(θ∗/θ̃∗) = π · θ̃∗/θ∗ ·h(θ∗/θ̃∗).

Thus, supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)> g(θ∗/θ̃∗,0|coℓFSC)> h(θ∗/θ̃∗).
So far, we have finished the proof to Equation (50). The tightness of the two inequalities in

Equation (50) can be proven by considering the convex decomposition of the extreme points O =
[0,0,0] (or a point arbitrary close to O) and E = [θ∗/θ̃∗,0,h(θ∗/θ̃∗)] in Figure 7-a. The detail is

similar to that in Theorem 5 and Corollary 6 and omitted here.
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