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Abstract

This paper considers the sparse eigenvalue problem, which is to extract dominant (largest) sparse

eigenvectors with at most k non-zero components. We propose a simple yet effective solution called

truncated power method that can approximately solve the underlying nonconvex optimization prob-

lem. A strong sparse recovery result is proved for the truncated power method, and this theory is

our key motivation for developing the new algorithm. The proposed method is tested on applica-

tions such as sparse principal component analysis and the densest k-subgraph problem. Extensive

experiments on several synthetic and real-world data sets demonstrate the competitive empirical

performance of our method.

Keywords: sparse eigenvalue, power method, sparse principal component analysis,

densest k-subgraph

1. Introduction

Given a p× p symmetric positive semidefinite matrix A, the largest k-sparse eigenvalue problem

aims to maximize the quadratic form x⊤Ax with a sparse unit vector x ∈ R
p with no more than k

non-zero elements:

λmax(A,k) = max
x∈Rp

x⊤Ax, subject to ‖x‖= 1, ‖x‖0 ≤ k, (1)

where ‖ · ‖ denotes the ℓ2-norm, and ‖ · ‖0 denotes the ℓ0-norm which counts the number of non-

zero entries in a vector. The sparsity is controlled by the values of k and can be viewed as a

design parameter. In machine learning applications, for example, principal component analysis,

this problem is motivated from the following perturbation formulation of matrix A:

A = Ā+E, (2)

where A is the empirical covariance matrix, Ā is the true covariance matrix, and E is a random

perturbation due to having only a finite number of empirical samples. If we assume that the largest

eigenvector x̄ of Ā is sparse, then a natural question is to recover x̄ from the noisy observation A

when the error E is “small”. In this context, the problem (1) is also referred to as sparse principal

component analysis (sparse PCA).

In general, problem (1) is non-convex. In fact, it is also NP-hard because it can be reduced to the

subset selection problem for ordinary least squares regression (Moghaddam et al., 2006), which is
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known to be NP-hard. Various researchers have proposed approximate optimization methods: some

are based on greedy procedures (e.g., Moghaddam et al., 2006; Jolliffe et al., 2003; d’Aspremont

et al., 2008), and some others are based on various types of convex relaxation or reformulation

(e.g., d’Aspremont et al., 2007; Zou et al., 2006; Journée et al., 2010). Statistical analysis of sparse

PCA has also received significant attention. Under the high dimensional single spike model, John-

stone (2001) proved the consistency of PCA using a subset of features corresponding to the largest

sample variances. Under the same single spike model, Amini and Wainwright (2009) established

conditions for recovering the non-zero entries of eigenvectors using the convex relaxation method

of d’Aspremont et al. (2007). However, these results were concerned with variable selection con-

sistency under a relatively simple and specific example with limited general applicability. More

recently, Paul and Johnstone (2012) studied an extension called multiple spike model, and proposed

an augmented sparse PCA method for estimating each of the leading eigenvectors and investigated

the rate of convergence of their procedure in the high dimensional setting. In another recent work

that is independent of ours, Ma (2013) analyzed an iterative thresholding method for recovering the

sparse principal subspace. Although it also focused on the multiple spike covariance model, the pro-

cedures and techniques considered there are closely related to the method studied in this paper. In

addition, Shen et al. (2013) analyzed the consistency of the sparse PCA method of Shen and Huang

(2008), and Cai et al. (2012) analyzed the optimal convergence rate of sparse PCA and introduced

an adaptive procedure for estimating the principal subspace.

This paper proposes and analyzes a computational procedure called truncated power iteration

method that approximately solves (1). This method is similar to the classical power method, with

an additional truncation operation to ensure sparsity. We show that if the true matrix Ā has a sparse

(or approximately sparse) dominant eigenvector x̄, then under appropriate assumptions, this algo-

rithm can recover x̄ when the spectral norm of sparse submatrices of the perturbation E is small.

Moreover, this result can be proved under relative generality without restricting ourselves to the

rather specific spike covariance model. Therefore our analysis provides strong theoretical support

for this new method, and this differentiates our proposal from previous studies. We have applied the

proposed method to sparse PCA and to the densest k-subgraph finding problem (with proper modi-

fication). Extensive experiments on synthetic and real-world large-scale data sets demonstrate both

the competitive sparse recovering performance and the computational efficiency of our method.

It is worth mentioning that the truncated power method developed in this paper can also be

applied to the smallest k-sparse eigenvalue problem given by:

λmin(A,k) = min
x∈Rp

x⊤Ax, subject to ‖x‖= 1, ‖x‖0 ≤ k,

which also has many applications in machine learning.

1.1 Notation

Let Sp = {A ∈ R
p×p | A = A⊤} denote the set of symmetric matrices, and S

p
+ = {A ∈ S

p,A �
0} denote the cone of symmetric, positive semidefinite matrices. For any A ∈ S

p, we denote its

eigenvalues by λmin(A) = λp(A)≤ ·· · ≤ λ1(A) = λmax(A). We use ρ(A) to denote the spectral norm

of A, which is max{|λmin(A)|, |λmax(A)|}, and define

ρ(A,s) := max{|λmin(A,s)|, |λmax(A,s)|}. (3)

The i-th entry of vector x is denoted by [x]i while [A]i j denotes the element on the i-th row and j-th

column of matrix A. We denote by Ak any k× k principal submatrix of A and by AF the principal
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submatrix of A with rows and columns indexed in set F . If necessary, we also denote AF as the

restriction of A on the rows and columns indexed in F . Let ‖x‖p be the ℓp-norm of a vector x. In

particular, ‖x‖2 =
√

x⊤x denotes the Euclidean norm, ‖x‖1 = ∑d
i=1 |[x]i| denotes the ℓ1-norm, and

‖x‖0 = #{ j : [x] j 6= 0} denotes the ℓ0-norm. For simplicity, we also denote the ℓ2 norm ‖x‖2 by ‖x‖.
In the rest of the paper, we define Q(x) := x⊤Ax. We let supp(x) := { j : [x] j 6= 0} denote the support

set of vector x. Given an index set F , we define

x(F) := argmax
x∈Rp

x⊤Ax, subject to ‖x‖= 1, supp(x)⊆ F.

Finally, we denote by Ip×p the p× p identity matrix.

1.2 Paper Organization

The remaining of this paper is organized as follows: §2 describes the truncated power iteration algo-

rithm that approximately solves problem (1). In §3 we analyze the solution quality of the proposed

algorithm. §4 evaluates the relevance of our theoretical prediction and the practical performance of

the proposed algorithm in applications of sparse PCA and the densest k-subgraph finding problems.

We conclude this work and discuss potential extensions in §5.

2. Truncated Power Method

Since λmax(A,k) equals λmax(A
∗
k) where A∗k is the k× k principal submatrix of A with the largest

eigenvalue, one may solve (1) by exhaustively enumerating all subsets of {1, . . . , p} of size k in

order to find A∗k . However, this procedure is impractical even for moderate sized k since the number

of subsets is exponential in k.

2.1 Algorithm

Therefore in order to solve the spare eigenvalue problem (1) more efficiently, we consider an itera-

tive procedure based on the standard power method for eigenvalue problems, while maintaining the

desired sparsity for the intermediate solutions. The procedure, presented in Algorithm 1, generates

a sequence of intermediate k-sparse eigenvectors x0,x1, . . . from an initial sparse approximation x0.

At each time stamp t, the intermediate vector xt−1 is multiplied by A, and then the entries are trun-

cated to zeros except for the largest k entries. The resulting vector is then normalized to unit length,

which becomes xt . The cardinality k is a free parameter in the algorithm. If no prior knowledge

of sparsity is available, then we have to tune this parameter, for example, through cross-validation.

Note that our theory does not require choosing k precisely (see Theorem 4), and thus the tuning is

not difficult in practice. At each iteration, the computational complexity is in O(kp+ p) which is

O(kp) for matrix-vector product Axt−1 and O(p)1 for selecting k largest elements from the obtained

vector of length p to get Ft .

Definition 1 Given a vector x and an index set F, we define the truncation operation Truncate(x,F)
to be the vector obtained by restricting x to F, that is

[Truncate(x,F)]i =

{

[x]i i ∈ F

0 otherwise
.

1. Our actual implementation employs sorting for simplicity, which has a slightly worse complexity of O(p ln p) instead

of O(p).
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Algorithm 1: Truncated Power (TPower) Method

Input : matrix A ∈ S
p, initial vector x0 ∈ R

p

Output : xt

Parameters : cardinality k ∈ {1, ..., p}
Let t = 1.

repeat

Compute x′t = Axt−1/‖Axt−1‖.
Let Ft = supp(x′t ,k) be the indices of x′t with the largest k absolute values.

Compute x̂t = Truncate(x′t ,Ft).
Normalize xt = x̂t/‖x̂t‖.
t← t +1.

until Convergence;

Remark 2 Similar to the behavior of traditional power method, if A ∈ S
p
+, then TPower tries to

find the (sparse) eigenvector of A corresponding to the largest eigenvalue. Otherwise, it may find

the (sparse) eigenvector with the smallest eigenvalue if −λp(A)> λ1(A). However, this situation is

easily detectable because it can only happen when λp(A)< 0. In such case, we may restart TPower

with A replaced by an appropriately shifted version A+ λ̃Ip×p.

2.2 Convergence

We now show that when A is positive semidefinite, TPower converges. This claim is a direct conse-

quence of the following proposition.

Proposition 3 If all 2k× 2k principal submatrix A2k of A are positive semidefinite, then the se-

quence {Q(xt)}t≥1 is monotonically increasing, where xt is obtained from the TPower algorithm.

Proof Observe that the iterate xt in TPower solves the following constrained linear optimization

problem:

xt = argmax
‖x‖=1,‖x‖0≤k

L(x;xt−1), L(x;xt−1) := 〈2Axt−1,x− xt−1〉.

Clearly, Q(x)−Q(xt−1) = L(x;xt−1)+ (x− xt−1)
⊤A(x− xt−1). Since ‖xt − xt−1‖0 ≤ 2k and each

2k× 2k principal submatrix of A is positive semidefinite, we have (xt − xt−1)
⊤A(xt − xt−1) ≥ 0. It

follows that Q(xt)−Q(xt−1) ≥ L(xt ;xt−1). By the definition of xt as the maximizer of L(x;xt−1)
over x (subject to ‖x‖ = 1 and ‖x‖0 ≤ k), we have L(xt ;xt−1) ≥ L(xt−1;xt−1) = 0. Therefore

Q(xt)−Q(xt−1)≥ 0, which proves the desired result.

3. Sparse Recovery Analysis

We consider the general noisy matrix model (2), and are especially interested in the high dimen-

sional situation where the dimension p of A is large. We assume that the noise matrix E is a dense

p× p matrix such that its sparse submatrices have small spectral norm ρ(E,s) (see (3)) for s in the

same order of k. We refer to this quantity as restricted perturbation error. However, the spectral
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norm of the full matrix perturbation error ρ(E) can be large. For example, if the original covariance

is corrupted by an additive standard Gaussian iid noise vector, then ρ(E,s) = O(
√

s log p/n), which

grows linearly in
√

s, instead of ρ(E) = O(
√

p/n), which grows linearly in
√

p. The main advan-

tage of the sparse eigenvalue formulation (1) over the standard eigenvalue formulation is that the

estimation error of its optimal solution depends on ρ(E,s) with respectively a small s = O(k) rather

than ρ(E). This linear dependency on sparsity k instead of the original dimension p is analogous

to similar results for sparse regression (or compressive sensing). In fact, the restricted perturbation

error considered here is analogous to the idea of restricted isometry property (RIP) considered by

Candes and Tao (2005).

The purpose of the section is to show that if matrix Ā has a unique sparse (or approximately

sparse) dominant eigenvector, then under suitable conditions, TPower can (approximately) recover

this eigenvector from the noisy observation A.

Assumption 1 Assume that the largest eigenvalue of Ā ∈ S
p is λ = λmax(Ā) > 0 that is non-

degenerate, with a gap ∆λ = λ−max j>1 |λ j(Ā)| between the largest and the remaining eigenvalues.

Moreover, assume that the eigenvector x̄ corresponding to the dominant eigenvalue λ is sparse with

cardinality k̄ = ‖x̄‖0.

We want to show that under Assumption 1, if the spectral norm ρ(E,s) of the error matrix is

small for an appropriately chosen s > k̄, then it is possible to approximately recover x̄. Note that

in the extreme case of s = p, this result follows directly from the standard eigenvalue perturbation

analysis (which does not require Assumption 1).

We now state our main result as below, which shows that under appropriate conditions, the

TPower method can recover the sparse eigenvector. The final error bound is a direct generalization

of standard matrix perturbation result that depends on the full matrix perturbation error ρ(E). Here

this quantity is replaced by the restricted perturbation error ρ(E,s).

Theorem 4 We assume that Assumption 1 holds. Let s = 2k+ k̄ with k ≥ k̄. Assume that ρ(E,s)≤
∆λ/2. Define

γ(s) :=
λ−∆λ+ρ(E,s)

λ−ρ(E,s)
< 1, δ(s) :=

√
2ρ(E,s)

√

ρ(E,s)2 +(∆λ−2ρ(E,s))2
.

If |x⊤0 x̄| ≥ θ+δ(s) for some ‖x0‖0 ≤ k, ‖x0‖= 1, and θ ∈ (0,1) such that

µ =
√

(1+2((k̄/k)1/2 + k̄/k))(1−0.5θ(1+θ)(1− γ(s)2))< 1, (4)

then we either have
√

1−|x⊤0 x̄|<
√

10δ(s)/(1−µ), (5)

or for all t ≥ 0
√

1−|x⊤t x̄| ≤ µt

√

1−|x⊤0 x̄|+
√

10δ(s)/(1−µ). (6)

Remark 5 We only state our result with a relatively simple but easy to understand quantity ρ(E,s),
which we refer to as restricted perturbation error. It is analogous to the RIP concept (Candes and

Tao, 2005), and is also directly comparable to the traditional full matrix perturbation error ρ(E).
While it is possible to obtain sharper results with additional quantities, we intentionally keep the

theorem simple so that its consequence is relatively easy to interpret.
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Remark 6 Although we state the result by assuming that the dominant eigenvector x̄ is sparse, the

theorem can also be adapted to certain situations that x̄ is only approximately sparse. In such case,

we simply let x̄′ be a k̄ sparse approximation of x̄. If x̄′− x̄ is sufficiently small, then x̄′ is the dominant

eigenvector of a symmetric matrix Ā′ that is close to Ā; hence the theorem can be applied with the

decomposition A = Ā′+E ′ where E ′ = E +A− Ā′.

Note that we did not make any attempt to optimize the constants in Theorem 4, which are

relatively large. Therefore in the discussion, we shall ignore the constants, and focus on the main

message Theorem 4 conveys. If ρ(E,s) is smaller than the eigen-gap ∆λ/2 > 0, then γ(s) < 1

and δ(s) = O(ρ(E,s)). It is easy to check that for any k ≥ k̄, if γ(s) is sufficiently small then the

requirement (4) can be satisfied for a sufficiently small θ of the order (k̄/k)1/2. It follows that under

appropriate conditions, as long as we can find an initial x0 such that

|x⊤0 x̄| ≥ c(ρ(E,s)+(k̄/k)1/2)

for some constant c, then 1−|x⊤t x̄| converges geometrically until

‖xt − x̄‖= O(ρ(E,s)).

This result is similar to the standard eigenvector perturbation result stated in Lemma 10 of Ap-

pendix A, except that we replace the spectral error ρ(E) of the full matrix by ρ(E,s) that can be

significantly smaller when s≪ p. To our knowledge, this is the first sparse recovery result for

the sparse eigenvalue problem in a relatively general setting. This theorem can be considered as a

strong theoretical justification of the proposed TPower algorithm that distinguishes it from earlier

algorithms without theoretical guarantees. Specifically, the replacement of the full matrix perturba-

tion error ρ(E) with ρ(E,s) gives the theoretical insights on why TPower works well in practice.

To illustrate our result, we briefly describe a consequence of the theorem under the single spike

covariance model of Johnstone (2001) which was investigated by Amini and Wainwright (2009).

We assume that the observations are p dimensional vectors

xi = x̄+ ε,

for i = 1, . . . ,n, where ε∼ N(0, Ip×p). For simplicity, we assume that ‖x̄‖= 1. The true covariance

is

Ā = x̄x̄⊤+ Ip×p,

and A is the empirical covariance

A =
1

n

n

∑
i=1

xix
⊤
i .

Let E = A− Ā, then random matrix theory implies that with large probability,

ρ(E,s) = O(
√

s ln p/n).

Now assume that max j |x̄ j| is sufficiently large. In this case, we can run TPower with a starting

point x0 = e j for some vector e j (where e j is the vector of zeros except the j-th entry being one) so

that |e⊤j x̄| = |x̄ j| is sufficiently large, and the assumption for the initial vector |x⊤0 x̄| ≥ c(ρ(E,s)+
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(k̄/k)1/2) is satisfied with s = O(k̄). We may run TPower with an appropriate initial vector to obtain

an approximate solution xt of error

‖xt − x̄‖= O(
√

k̄ ln p/n).

This bound is optimal (Cai et al., 2012). Note that our results are not directly comparable to those of

Amini and Wainwright (2009), which studied support recovery. Nevertheless, it is worth noting that

if max j |x̄ j| is sufficiently large, then our result becomes meaningful when n = O(k̄ ln p); however

their result requires n = O(k̄2 ln p) to be meaningful, although this is for the pessimistic case of x̄

having equal nonzero values of 1/
√

k̄. Based on a similar spike covariance model, Ma (2013) inde-

pendently presented and analyzed an iterative thresholding method for recovering sparse orthogonal

principal components, using ideas related to what we present in this paper.

Finally we note that if we cannot find an initial vector with large enough value |x⊤0 x̄|, then it

may be necessary to take a relatively large k so that the requirement |x⊤0 x̄| ≥ c(ρ(E,s)+ (k̄/k)1/2)
is satisfied. With such a k, ρ(E,s) may be relatively large and hence the theorem indicates that xt

may not converge to x̄ accurately. Nevertheless, as long as |x⊤t x̄| converges to a value that is not

too small (e.g., can be much larger than |x⊤0 x̄|), we may reduce k and rerun the algorithm with a

k-sparse truncation of xt as initial vector together with the reduced k. In this two stage process,

the vector found from the first stage (with large k) is truncated and normalized, and then used

as the initial value of the second stage (with small k). Therefore we may also regard it as an

initialization method for TPower. Specially, in the first stage we may run TPower with k = p from

arbitrary initialization. In this stage, TPower reduces to the classic power method which outputs

the dominant eigenvector x of A. Let F = supp(x,k) be the indices of x with the largest k absolute

values and x0 := Truncate(x,F)/‖Truncate(x,F)‖. Let θ = x⊤x̄− (k̄/k)1/2
√

1− (x⊤x̄)2−δ(s). It is

implied by Lemma 12 in Appendix A that x⊤0 x̄ ≥ θ+ δ(s). Obviously, if θ(1+θ) ≥ 8(k̄/k)/((1+
4k̄/k)(1− γ(s)2)), then x0 will be an initialization suitable for Theorem 1. From this initialization,

we can obtain a better solution using the TPower method. In practice, one may use other methods

to obtain an approximate x0 to initialize TPower, not necessarily restricted to running TPower with

larger k.

4. Experiments

In this section, we first show numerical results (in §4.1) that confirm the relevance of our theoretical

predictions. We then illustrate the effectiveness of TPower method when applied to sparse principal

component analysis (sparse PCA) (in §4.2) and the densest k-subgraph (DkS) finding problem (in

§4.3). The Matlab code for reproducing the experimental results reported in this section is available

from https://sites.google.com/site/xtyuan1980/publications.

4.1 Simulation Study

In this experiment, we illustrate the performance of TPower using simulated data. Theorem 4

implies that under appropriate conditions, the estimation error
√

1− x⊤t x̄ is proportional to δ(s). By

definition, δ(s) is an increasing function with respect to perturbation error ρ(E,s) and a decreasing

function with respect to the gap ∆λ between the largest eigenvalue and the remaining eigenvalues.

We will verify the results of Theorem 4 by applying TPower to the following single spike model
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with true covariance

Ā = βx̄x̄⊤+ Ip×p

and empirical covariance

A =
1

n

n

∑
i=1

xix
⊤
i ,

where xi ∼ N (0, Ā). For the true covariance matrix Ā, its dominant eigenvector is x̄ with eigen-

value β + 1, and its eigenvalue gap is ∆λ = β. For this model, with large probability we have

ρ(E,s) = O(
√

s ln p/n). Therefore, for fixed dimensionality p, the error bound is relevant to the

triplet {n,β,k}. In this study, we consider a setup with p = 1000, and x̄ is a k̄-sparse uniform

random vector with k̄ = 20 and ‖x̄‖= 1. We are interested in the following two cases:

1. Cardinality k is tuned and fixed: we will study how the estimation error is affected by sample

size n and eigen-gap β.

2. Cardinality k is varying: for fixed sample size n and eigen-gap β, we will study how the

estimation error is affected by cardinality k in the algorithm.

4.1.1 ON INITIALIZATION

Theorem 4 suggests that TPower can benefit from a good initial vector x0. We initialize x0 by using

the warm-start strategy suggested at the end of §3. In our implementation, this strategy is specialized

as follows: we sequentially run TPower with cardinality {8k,4k,2k,k}, using the (truncated) output

from the previous running as the initial vector for the next running. This initialization strategy works

satisfactory in our numerical experiments.

4.1.2 TEST I: CARDINALITY k IS TUNED AND FIXED

In this case, we test with n∈{100,200,500,1000,2000} and β∈{1,10,50,100,200,400}. For each

pair {n,β}, we generate 100 empirical covariance matrices and employ the TPower to compute a

k-sparse eigenvector x̂. For each empirical covariance matrix A, we also generate an independent

empirical covariance matrix Aval to select k from the candidate set K = {5,10,15, ...,50} by maxi-

mizing the following criterion:

k̂ = argmax
k∈K

x̂(k)⊤Aval x̂(k),

where x̂(k) is the output of TPower for A under cardinality k. For different pairs (n,β), the tuned

values of k could be different. For example, for (n,β) = (100,1), k = 10 will be selected; while

for (n,β) = (100,10), k = 20 will be selected. Note that Theorem 4 does not require an accurate

estimation of k. Figure 1(a) shows the estimation error curves as functions of β under various n. It

can be observed that for any fixed n, the estimation error decreases as eigen-gap β increases; and

for any fixed β, the estimation error decreases as sample size n increases. This is consistent with the

prediction of Theorem 4.

4.1.3 TEST II: CARDINALITY k IS VARYING

In this case, we fix sample size n= 500 and eigen-gap β= 400, and test the values of k∈{20...,500}
that are at least as large as the true sparsity k̄ = 20. We generate 100 empirical covariance matrices

and employ the TPower to compute a k-sparse eigenvector. Figure 1(b) shows the estimation error
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(a) Estimation error vs. eigen-gap β (under various sample
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n = 500, β = 400: experimental error
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(b) Estimation error bound vs. cardinality k (with n = 500

and β = 400). Both theoretical and empirical curves are

plotted.

Figure 1: Estimation error curves on the simulated data. For better viewing, please see the original

pdf file.

curves as functions of k. It can be observed that the estimation error becomes larger as k increases.

This is consistent with the prediction of Theorem 4. For a fixed k, provided that the conditions are

satisfied in Theorem 4, we can also calculate the theoretical estimation error bound
√

10δ(s)/(1−
µ). The curve of the theoretical bound is plotted in the same figure. As predicted by Theorem 4, the

theoretical bound curve dominates the empirical error curve. Similar observations are also made for

other fixed pairs {n,β}.

4.2 Sparse PCA

Principal component analysis (PCA) is a well established tool for dimensionality reduction and has

a wide range of applications in science and engineering where high dimensional data sets are en-

countered. Sparse principal component analysis (sparse PCA) is an extension of PCA that aims

at finding sparse vectors (loading vectors) capturing the maximum amount of variance in the data.

In recent years, various researchers have proposed various approaches to directly address the con-

flicting goals of explaining variance and achieving sparsity in sparse PCA. For instance, greedy

search and branch-and-bound methods were investigated by Moghaddam et al. (2006) to solve

small instances of sparse PCA exactly and to obtain approximate solutions for larger scale prob-

lems. d’Aspremont et al. (2008) proposed the use of greedy forward selection with a certificate of

optimality. Another popular technique for sparse PCA is regularized sparse learning. Zou et al.

(2006) formulated sparse PCA as a regression-type optimization problem and imposed the Lasso

penalty (Tibshirani, 1996) on the regression coefficients. The DSPCA algorithm of d’Aspremont

et al. (2007) is an ℓ1-norm based semidefinite relaxation for sparse PCA. Shen and Huang (2008)

resorted to the singular value decomposition (SVD) to compute low-rank matrix approximations of

the data matrix under various sparsity-inducing penalties. Mairal et al. (2010) proposed an online
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learning method for matrix decomposition with sparsity regularization. More recently, Journée et al.

(2010) studied a generalized power method to solve sparse PCA with a certain dual reformulation of

the problem. Similar power-truncation-type methods were also considered by Witten et al. (2009)

and Ma (2013).

Given a sample covariance matrix, Σ ∈ S
p
+ (or equivalently a centered data matrix D ∈ R

n×p

with n rows of p-dimensional observations vectors such that Σ = D⊤D) and the target cardinality

k, following the literature (Moghaddam et al., 2006; d’Aspremont et al., 2007, 2008), we formulate

sparse PCA as:

x̂ = argmax
x∈Rp

x⊤Σx, subject to ‖x‖= 1,‖x‖0 ≤ k. (7)

The TPower method proposed in this paper can be directly applied to solve the above problem. One

advantage of TPower for Sparse PCA is that it directly addresses the constraint on cardinality k. To

find the top m rather than the top one sparse loading vectors, a common approach in the literature

(d’Aspremont et al., 2007; Moghaddam et al., 2006; Mackey, 2008) is to use the iterative deflation

method for PCA: subsequent sparse loading vectors can be obtained by recursively removing the

contribution of the previously found loading vectors from the covariance matrix. Here we employ

a projection deflation scheme proposed by Mackey (2008), which deflates a vector x̂ using the

formula:

Σ′ = (Ip×p− x̂x̂⊤)Σ(Ip×p− x̂x̂⊤).

Obviously, Σ′ remains positive semidefinite. Moreover, Σ′ is rendered left and right orthogonal to x̂.

4.2.1 CONNECTION WITH EXISTING SPARSE PCA METHODS

In the setup of sparse PCA, TPower is closely related to GPower (Journée et al., 2010) and sPCA-

rSVD (Shen and Huang, 2008) which share the same spirit of thresholding iteration to make the

loading vectors sparse. Indeed, GPower and sPCA-rSVD are identical except for the initialization

and post-processing phases (see, e.g., Journée et al., 2010). TPower is most closely related to the

GPowerℓ0
(Journée et al., 2010, Algorithm 3) in the sense that both are characterized by rank-

1 approximation and alternate optimization with hard-thresholding. Indeed, given a data matrix

D ∈ R
n×p, GPowerℓ0

solves the following ℓ0-norm regularized rank-1 approximation problem:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F + γ‖x‖0, subject to ‖z‖= 1.

GPowerℓ0
is essentially a coordinate descent procedure which iterates between updating x and z.

Given xt−1, the update of zt is zt = Dxt−1/‖Dxt−1‖. Given zt , the update of xt is a hard-thresholding

operation which selects those entries in D⊤zt = D⊤Dxt−1/‖Dxt−1‖ with squared values greater than

γ and then normalize the vector after truncation. From the viewpoint of rank-1 approximation, it

can be shown that TPower optimizes the following cardinality constrained problem:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F , subject to ‖z‖= 1, ‖x‖= 1, ‖x‖0 ≤ k.

Indeed, based on the fact that z = Dx/‖Dx‖ is optimal at any x, the above problem is identical to

the formulation (7). To update xt , TPower selects the top k entries of D⊤Dxt−1 and then normalize

the truncated vector. Therefore, we can see that TPower and GPowerℓ0
differs in the thresholding

manner: the former selects the top k entries in D⊤Dxt−1 while the latter preserves those entries in
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D⊤Dxt−1 with squared values greater than γ‖Dxt−1‖2. Another rank-1 approximation formulation

was considered by Witten et al. (2009) with ℓ1-norm ball constraint:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F , subject to ‖z‖= 1, ‖x‖= 1, ‖x‖1 ≤ c.

Its minimization procedure, called Projected Matrix Decomposition (PMD), alternates between the

update of x and the update of z; where the update of x is a soft-thresholding operation.

Our method is also related to the Iterative Thresholding Sparse PCA (ITSPCA) method (Ma,

2013) which concentrates on recovering a sparse subspace of dimension m under the spike model.

In particular, when m= 1, ITSPCA reduces to a power method with thresholding. However, TPower

differs from ITSPCA in the following two aspects. First, the truncation strategy is different: we

truncate the vector by preserving the top k largest absolute entries and setting the remaining entries

to zeros, while ITSPCA truncates the vector by setting entries below a fixed threshold to zeros.

Second, the analysis is different: TPower is analyzed under the matrix perturbation theory and thus

is deterministic, while the analysis of ITSPCA focused on the convergence rate under the stochastic

multiple spike model.

TPower is essentially a greedy selection method for solving problem (1). In this viewpoint, it

is related to PathSPCA (d’Aspremont et al., 2008) which is a forward greedy selection procedure.

PathSPCA starts from the empty set and at each iteration it selects the most relevant variable and

adds it to the current variable set; it then re-estimates the leading eigenvector on the augmented

variable set. Both TPower and PathSPCA output sparse solutions with exact cardinality k.

4.2.2 RESULTS ON TOY DATA SET

To illustrate the sparse recovering performance of TPower, we apply the algorithm to a synthetic

data set drawn from a sparse PCA model. We follow the same procedure proposed by Shen and

Huang (2008) to generate random data with a covariance matrix having sparse eigenvectors. To

this end, a covariance matrix is first synthesized through the eigenvalue decomposition Σ =V DV⊤,

where the first m columns of V ∈ R
p×p are pre-specified sparse orthogonal unit vectors. A data

matrix X ∈ R
n×p is then generated by drawing n samples from a zero-mean normal distribution

with covariance matrix Σ, that is X ∼N (0,Σ). The empirical covariance Σ̂ matrix is then estimated

from data X as the input for TPower.

Consider a setup with p = 500, n = 50, and the first m = 2 dominant eigenvectors of Σ are

sparse. Here the first two dominant eigenvectors are specified as follows:

[v1]i =

{

1√
10
, i = 1, ...,10

0, otherwise
, [v2]i =

{

1√
10
, i = 11, ...,20

0, otherwise
.

The remaining eigenvectors v j for j ≥ 3 are chosen arbitrarily, and the eigenvalues are fixed at the

following values:






λ1 = 400,
λ2 = 300,
λ j = 1, j = 3, ...,500.

We generate 500 data matrices and employ the TPower method to compute two unit-norm sparse

loading vectors u1,u2 ∈ R
500, which are hopefully close to v1 and v2. Our method is compared
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on this data set with a greedy algorithm PathPCA (d’Aspremont et al., 2008), two power-iteration-

type methods GPower (Journée et al., 2010) and PMD (Witten et al., 2009), two sparse regression

based methods SPCA (Zou et al., 2006) and online SPCA (oSPCA) (Mairal et al., 2010), and the

standard PCA. For GPower, we test its two block versions GPowerℓ1,m and GPowerℓ0,m with ℓ1-

norm and ℓ0-norm penalties, respectively. Here we do not directly compare to two representative

sparse PCA algorithms sPCA-rSVD (Shen and Huang, 2008) and DSPCA (d’Aspremont et al.,

2007) because the former is shown to be identical to GPower up to initialization and post-processing

phases (Journée et al., 2010), while the latter is suggested by the authors as a secondary choice after

PathSPCA. All tested algorithms were implemented in Matlab 7.12 running on a desktop. We use

the two-stage warm-start strategy for initialization. Similar to the empirical study in the previous

section, we tune the cardinality parameter k on independently generated validation matrices.

In this experiment, we regard the true model to be successfully recovered when both quanti-

ties |v⊤1 u1| and |v⊤2 u2| are greater than 0.99. Table 1 lists the recovering results by the considered

methods. It can be observed that TPower, PathPCA, GPower, PMD and oSPCA all successfully

recover the ground truth sparse PC vectors with high rate of success. SPCA frequently fails to re-

cover the spares loadings on this data set. The potential reason is that SPCA is initialized with the

ordinary principal components which in many random data matrices are far away from the truth

sparse solution. Traditional PCA always fails to recover the sparse PC loadings on this data set. The

success of TPower and the failure of traditional PCA can be well explained by our sparse recovery

result in Theorem 4 (for TPower) in comparison to the traditional eigenvector perturbation theory

in Lemma 10 (for traditional PCA), which we have already discussed in §3. However, the success

of other methods suggests that it might be possible to prove sparse recovery results similar to The-

orem 4 for some of these alternative algorithms. The running time of these algorithms on this data

is listed in the last column of Table 1. It can be seen that TPower is among the top efficient solvers.

Algorithms Parameter |v⊤1 u1| |v⊤2 u2| Prob. of succ. CPU (in ms)

TPower k = 10 .9998 (.0001) .9997 (.0002) 1 6.14 (0.76)

PathSPCA k = 10 .9998 (.0001) .9997 (.0002) 1 77.42 (2.95)

GPowerℓ1,m γ = 0.8 .9997 (.0016) .9996 (.0022) 0.99 6.22 (0.30)

GPowerℓ0,m γ = 0.8 .9997 (.0016) .9991 (.0117) 0.99 6.07 (0.30)

PMD c = 3.0 .9998 (.0001) .9997 (.0002) 1 11.97 (0.48)

oSPCA λ = 3 .9929 (.0434) .9923 (.0483) 0.97 24.74 (1.20)

SPCA λ1 = 10−3 .9274 (.0809) .9250 (.0810) 0.25 799.99 (50.62)

PCA − .9146 (.0801) .9086 (.0790) 0 3.87 (1.59)

Table 1: The quantitative results on a synthetic data set. The values |v⊤1 u1|, |v⊤2 u2|, CPU time (in

ms) are in format of mean (std) over 500 running.

4.2.3 RESULTS ON PITPROPS DATA

The PitProps data set (Jeffers, 1967), which consists of 180 observations with 13 measured vari-

ables, has been a standard benchmark to evaluate algorithms for sparse PCA (see, e.g., Zou et al.,

2006; Shen and Huang, 2008; Journée et al., 2010). Following these previous studies, we also con-

sider to compute the first six sparse PCs of the data. In Table 2, we list the total cardinality and
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the proportion of adjusted variance (Zou et al., 2006) explained by six components computed with

TPower, PathSPCA (d’Aspremont et al., 2008), GPower, PMD, oSPCA and SPCA. From these re-

sults we can see that on this relatively simple data set, TPower, PathSPCA and GPower perform

quite similarly and are slightly better than PMD, oSPCA and SPCA.

Table 3 lists the six extracted PCs by TPower with cardinality setting 6-2-1-2-1-1. We can see

that the important variables associated with the six PCs are exclusive except for the variable “ringb”

which is simultaneously selected by PC1 and PC4. The variable “diaknot” is excluded from all the

six PCs. The same loadings are also extracted by both PathSPCA and GPower under the parameters

listed in Table 2.

Method Parameters Total cardinality Prop. of explained variance

TPower cardinalities: 7-2-4-3-5-4 25 0.8887

TPower cardinalities: 6-2-1-2-1-1 13 0.7978

PathSPCA cardinalities: 7-2-4-3-5-4 25 0.8834

PathSPCA cardinalities: 6-2-1-2-1-1 13 0.7978

GPowerℓ1,m γ = 0.22 26 0.8438

GPowerℓ1,m γ = 0.50 13 0.7978

PMD c = 1.50 25 0.8244

PMD c = 1.10 13 0.7309

oSPCA λ = 0.2 27 0.8351

oSPCA λ = 0.4 12 0.6625

SPCA see Zou et al. (2006) 18 0.7580

Table 2: The quantitative results on the PitProps data set. The result of SPCA is taken from Zou

et al. (2006).

PCs
x1

topd

x2

length

x3

moist

x4

testsg

x5

ovensg

x6

ringt

x7

ringb

x8

bowm

x9

bowd

x10

whorls

x11

clear

x12

knots

x13

diaknot

PC1 .4444 .4534 0 0 0 0 .3779 .3415 .4032 .4183 0 0 0

PC2 0 0 .7071 .7071 0 0 0 0 0 0 0 0 0

PC3 0 0 0 0 1.000 0 0 0 0 0 0 0 0

PC4 0 0 0 0 0 .8569 .5154 0 0 0 0 0 0

PC5 0 0 0 0 0 0 0 0 0 1.000 0 0

PC6 0 0 0 0 0 0 0 0 0 0 0 1.000 0

Table 3: The extracted six PCs by TPower on PitProps data set with cardinality setting 6-2-1-2-1-1.

Note that in this setting, the extracted significant loadings are non-overlapping except for

“ringb”. And the variable “diaknot” is excluded from all the six PCs.

4.2.4 RESULTS ON BIOLOGICAL DATA

We have also evaluated the performance of TPower on two gene expression data sets, one is the

Colon cancer data from Alon et al. (1999), the other is the Lymphoma data from Alizadeh et al.

(2000). Following the experimental setup of d’Aspremont et al. (2008), we consider the 500 genes

with the largest variances. We plot the variance versus cardinality tradeoff curves in Figure 2, to-
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Figure 2: The variance versus cardinality tradeoff curves on two gene expression data sets. For

better viewing, please see the original pdf file.

gether with the result from PathSPCA and the upper bounds of optimal values from d’Aspremont

et al. (2008). Note that our method performs almost identical to the PathSPCA which is demon-

strated to have optimal or very close to optimal solutions in many cardinalities. The computational

time of the two methods on both data sets is comparable and is less than two seconds.

4.2.5 SUMMARY

To summarize this group of experiments on sparse PCA, the basic finding is that TPower performs

quite competitively in terms of the tradeoff between explained variance and representation sparsity.

The performance is comparable or superior to leading methods such as PathSPCA and GPower.

It is observed that TPower, PathSPCA and GPower outperform PMD, oSPCA and SPCA on the

benchmark data Pitprops. It is not surprising that TPower and GPower behave similarly because

both are power-truncation-type method (see the previous §4.2.1). While strong theoretical guarantee

can be established for the TPower method, it remains open to show that PathSPCA and GPower have

a similar sparse recovery performance.

4.3 Densest k-Subgraph Finding

As another concrete application, we show that with proper modification, TPower can be applied

to the densest k-subgraph finding problem. Given an undirected graph G = (V,E), |V | = n, and

integer 1≤ k≤ n, the densest k-subgraph (DkS) problem is to find a set of k vertices with maximum

average degree in the subgraph induced by this set. In the weighted version of DkS we are also

given nonnegative weights on the edges and the goal is to find a k-vertex induced subgraph of

maximum average edge weight. Algorithms for finding DkS are useful tools for analyzing networks.

In particular, they have been used to select features for ranking (Geng et al., 2007), to identify cores

of communities (Kumar et al., 1999), and to combat link spam (Gibson et al., 2005).
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It has been shown that the DkS problem is NP hard for bipartite graphs and chordal graphs

(Corneil and Perl, 1984), and even for graphs of maximum degree three (Feige et al., 2001). A

large body of algorithms have been proposed based on a variety of techniques including greedy al-

gorithms (Feige et al., 2001; Asahiro et al., 2002; Ravi et al., 1994), linear programming (Billionnet

and Roupin, 2004; Khuller and Saha, 2009), and semidefinite programming (Srivastav and Wolf,

1998; Ye and Zhang, 2003). For general k, the algorithm developed by Feige et al. (2001) achieves

the best approximation ratio of O(nε) where ε < 1/3. Ravi et al. (1994) proposed 4-approximation

algorithms for weighted DkS on complete graphs for which the weights satisfy the triangle inequal-

ity. Liazi et al. (2008) has presented a 3-approximation algorithm for DkS for chordal graphs.

Recently, Jiang et al. (2010) proposed to reformulate DkS as a 1-mean clustering problem and

developed a 2-approximation to the reformulated clustering problem. Moreover, based on this re-

formulation, Yang (2010) proposed a 1+ ε-approximation algorithm with certain exhaustive (and

thus expensive) initialization procedure. In general, however, Khot (2006) showed that DkS has no

polynomial time approximation scheme (PTAS), assuming that there are no sub-exponential time

algorithms for problems in NP.

Mathematically, DkS can be restated as the following binary quadratic programming problem:

max
π∈Rn

π⊤Wπ, subject to π ∈ {1,0}n,‖π‖0 = k, (8)

where W is the (non-negative weighted) adjacency matrix of G. If G is an undirected graph, then

W is symmetric. If G is directed, then W could be asymmetric. In this latter case, from the fact that

π⊤Wπ= π⊤W+W⊤
2

π, we may equivalently solve Problem (8) by replacing W with W+W⊤
2

. Therefore,

in the following discussion, we always assume that the affinity matrix W is symmetric (or G is

undirected).

4.3.1 THE TPOWER-DKS ALGORITHM

We propose the TPower-DkS algorithm as an adaptation of TPower to the DkS problem. The process

generates a sequence of intermediate vectors π0,π1, ... from a starting vector π0. At each step t the

vector πt−1 is multiplied by the matrix W , then πt is set to be the indicator vector of the top k entries

in Wπt−1. The TPower-Dks is outlined in Algorithm 2. The convergence of this algorithm can be

justified using the same arguments of bounding optimization as described in §2.2.

Algorithm 2: Truncated Power Method for DkS (TPower-DkS)

Input : W ∈ S
n
+,, initial vector π0 ∈ R

n

Output : πt

Parameters : cardinality k ∈ {1, ...,n}
Let t = 1.

repeat

Compute π′t =Wπt−1.

Identify Ft = supp(π′t ,k) the index set of π′t with top k values.

Set πt to be 1 on the index set Ft , and 0 otherwise.

t← t +1.
until Convergence;

913



YUAN AND ZHANG

Remark 7 By relaxing the constraint π ∈ {0,1}n to ‖π‖ =
√

k, we may convert the densest k-

subgraph problem (8) to the standard sparse eigenvalue problem (1) (up to a scaling) and then

directly apply TPower (in Algorithm 1) for solution. Our numerical experience shows that such a

relaxation strategy also works satisfactory in practice, although is slightly inferior to TPower-DkS

(in Algorithm 2) which directly addresses the original problem.

Remark 8 As aforementioned that the DkS problem is generally NP-hard. The quality of its ap-

proximate solution can be measured by the approximation ratio defined as the output objective to

the optimal objective. Recently, Jiang et al. (2010) proposed to reformulate DkS as a 1-mean clus-

tering problem and developed a 2-approximation to the reformulated clustering problem. Moreover,

based on this reformulation, Yang (2010) proposed a 1+ ε-approximation algorithm with certain

exhaustive (and thus expensive) initialization procedure. Provided that W is positive semidefinite

with equal diagonal elements, trivial derivation shows that TPower-DkS is identical to the method

of Jiang et al. (2010). Therefore, the approximation ratio results from Jiang et al. (2010); Yang

(2010) can be shared by TPower-DkS in this restricted case.

Note that in Algorithm 2 we require that W is positive semidefinite. The motivation of this

requirement is to guarantee the convexity of the objective in problem (8), and thus the convergence

of Algorithm 2 can be justified by the similar arguments in §2.2. In many real-world DkS problems,

however, it is often the case that the affinity matrix W is not positive semidefinite. In this case,

the objective is non-convex and thus the monotonicity of TPower-DkS does not hold. However,

this complication can be circumvented by instead running the algorithm with the shifted quadratic

function:

max
π∈Rn

π⊤(W + λ̃Ip×p)π, subject to π ∈ {0,1}n,‖π‖0 = k.

where λ̃ > 0 is large enough such that W̃ =W + λ̃Ip×p ∈ S
n
+. On the domain of interest, this change

only adds a constant term to the objective function. The TPower-DkS, however, produces a different

sequence of iterates, and there is a clear tradeoff. If the second term dominates the first term (say

by choosing a very large λ̃), the objective function becomes approximately a squared norm, and the

algorithm tends to terminate in very few iterations. In the limiting case of λ̃→ ∞, the method will

not move away from the initial iterate. To handle this issue, we propose to gradually increase λ̃

during the iterations and we do so only when the monotonicity is violated. To be precise, if at a time

instance t, π⊤t Wπt < π⊤t−1Wπt−1, then we add λ̃Ip×p to W with a gradually increased λ̃ by repeating

the current iteration with the updated matrix until π⊤t (W + λ̃Ip×p)πt ≥ π⊤t−1(W +λIp×p)πt−1,2 which

implies π⊤t Wπt ≥ π⊤t−1Wπt−1.

4.3.2 ON INITIALIZATION

Since TPower-DkS is a monotonically increasing procedure, it guarantees to improve the initial

point π0. Basically, any existing approximation DkS method, for example, greedy algorithms (Feige

et al., 2001; Ravi et al., 1994), can be used to initialize TPower-DkS. In our numerical experiments,

we observe that by simply setting π0 as the indicator vector of the vertices with the top k (weighted)

degrees, our method can achieve very competitive results on all the real-world data sets we have

tested on.

2. Note that the inequality π⊤t (W + λ̃Ip×p)πt ≥ π⊤t−1(W + λ̃Ip×p)πt−1 is deemed to be satisfied when λ̃ is large enough,

for example, when W + λ̃Ip×p ∈ S
n
+.

914



TRUNCATED POWER METHOD FOR SPARSE EIGENVALUE PROBLEMS

4.3.3 RESULTS ON WEB GRAPHS

We have tested TPower on four page-level web graphs: cnr-2000, amazon-2008, ljournal-2008,

hollywood-2009, from the WebGraph framework provided by the Laboratory for Web Algorithms.3

We treated each directed arc as an undirected edge. Table 4 lists the statistics of the data sets used

in the experiment.

Graph Nodes (|V |) Total Arcs (|E|) Average Degree

cnr-2000 325,557 3,216,152 9.88

amazon-2008 735,323 5,158,388 7.02

ljournal-2008 5,363,260 79,023,142 14.73

hollywood-2009 1,139,905 113,891,327 99.91

Table 4: The statistics of the web graph data sets.

We compare our TPower-DkS method with two greedy methods for the DkS problem. One

greedy method is proposed by Ravi et al. (1994) which is referred to as Greedy-Ravi in our experi-

ments. The Greedy-Ravi algorithm works as follows: it starts from a heaviest edge and repeatedly

adds a vertex to the current subgraph to maximize the weight of the resulting new subgraph; this

process is repeated until k vertices are chosen. The other greedy method is developed by Feige et al.

(2001, Procedure 2) which is referred as Greedy-Feige in our experiments. The procedure works as

follows: let S denote the k/2 vertices with the highest degrees in G; let C denote the k/2 vertices in

the remaining vertices with largest number of neighbors in S; return S∪C.

Figure 3 shows the density value π⊤Wπ/k and CPU time versus the cardinality k. From the

density curves we can observe that on cnr-2000, ljournal-2008 and hollywood-2009, TPower-DkS

consistently outputs denser subgraphs than the two greedy algorithms, while on amazon-2008,

TPower-DkS and Greedy-Ravi are comparable and both are better than Greedy-Feige. For CPU

running time, it can be seen from the right column of Figure 3 that Greedy-Feige is the fastest

among the three methods while TPower-DkS is only slightly slower. This is due to the fact that

TPower-DkS needs iterative matrix-vector products while Greedy-Feige only needs a few degree

sorting operations. Although TPower-DkS is slightly slower than Greedy-Feige, it is still quite

efficient. For example, on hollywood-2009 which has hundreds of millions of arcs, for each k,

Greedy-Feige terminates within about 1 second while TPower terminates within about 10 seconds.

The Greedy-Ravi method is however much slower than the other two on all the graphs when k is

large.

4.3.4 RESULTS ON AIR-TRAVEL ROUTINE

We have applied TPower-DkS to identify subsets of American and Canadian cities that are most

easily connected to each other, in terms of estimated commercial airline travel time. The graph4

is of size |V | = 456 and |E| = 71,959: the vertices are 456 busiest commercial airports in United

States and Canada, while the weight wi j of edge ei j is set to the inverse of the mean time it takes

to travel from city i to city j by airline, including estimated stopover delays. Due to the headwind

3. These four data sets are publicly available at http://lae.dsi.unimi.it/datasets.php.

4. The data is available at www.psi.toronto.edu/affinitypropogation.
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(b) amazon-2008
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(c) ljournal-2008
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Figure 3: Identifying densest k-subgraph on four web graphs. Left: density curves as a function of

cardinality. Right: CPU time (in second) curves as a function of cardinality. For better

viewing, please see the original pdf file.
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effect, the transit time can depend on the direction of travel; thus 36% of the weight are asymmetric.

Figure 4(a) shows a map of air-travel routine.

As in the previous experiment, we compare TPower-DkS to Greedy-Ravi and Greedy-Feige

on this data set. For all the three considered algorithms, the densities of k-subgraphs under differ-

ent k values are shown in Figure 4(b), and the CPU running time curves are given in Figure 4(c).

From the former figure we observe that TPower-DkS consistently outperforms the other two greedy

algorithms in terms of the density of the extracted k-subgraphs. From the latter figure we can

see that TPower-DkS is slightly slower than Greed-Feige but much faster than Greedy-Ravi. Fig-

ure 4(d)∼4(f) illustrate the densest k-subgraph with k = 30 output by the three algorithms. In each of

these three subgraph, the red dot indicates the representing city with the largest (weighted) degree.

Both TPower-DkS and Greedy-Feige reveal 30 cities in east US. The former takes Cleveland as the

representing city while the latter Cincinnati. Greedy-Ravi reveals 30 cities in west US and CA and

takes Vancouver as the representing city. Visual inspection shows that the subgraph recovered by

TPower-DkS is the densest among the three.

After discovering the densest k-subgraph, we can eliminate their nodes and edges from the graph

and then apply the algorithms on the reduced graph to search for the next densest subgraph. This se-

quential procedure can be repeated to find multiple densest k-subgraphs. Figure 4(g)∼4(i) illustrate

sequentially estimated six densest 30-subgraphs by the three considered algorithms. Again, visual

inspection shows that our method outputs more geographically compact subsets of cities than the

other two. As a quantitative result, the total densities of the six subgraphs discovered by the three

algorithms are: 1.14 (TPower-DkS), 0.90 (Greedy-Feige) and 0.99 (Greedy-Ravi), respectively.

5. Conclusion

The sparse eigenvalue problem has been widely studied in machine learning with applications such

as sparse PCA. TPower is a truncated power iteration method that approximately solves the non-

convex sparse eigenvalue problem. Our analysis shows that when the underlying matrix has sparse

eigenvectors, under proper conditions TPower can approximately recover the true sparse solution.

The theoretical benefit of this method is that with appropriate initialization, the reconstruction qual-

ity depends on the restricted matrix perturbation error at size s that is comparable to the sparsity

k̄, instead of the full matrix dimension p. This explains why this method has good empirical per-

formance. To our knowledge, this is one of the first theoretical results of this kind, although our

empirical study suggests that it might be possible to prove related sparse recovery results for some

other algorithms we have tested. We have applied TPower to two concrete applications: sparse PCA

and the densest k-subgraph finding problem. Extensive experimental results on synthetic and real-

world data sets validate the effectiveness and efficiency of the TPower algorithm. To summarize,

simply combing power iteration with hard-thresholding truncation provides an accurate and scalable

computational method for the sparse eigenvalue problem.
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Figure 4: Identifying densest k-subgraph of air-travel routing. Top row: Route map, and the density

and CPU time evolving curves. Middle row: The densest 30-subgraph discovered by

the three considered algorithms. Bottom row: Sequentially discovered six densest 30-

subgraphs by the three considered algorithms. For better viewing, please see the original

pdf file.
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Appendix A. Proof Of Theorem 4

Our proof employs several technical tools including the perturbation theory of symmetric eigen-

value problem (Lemma 9 and Lemma 10), the convergence analysis of traditional power method

(Lemma 11), and the error analysis of hard-thresholding operation (Lemma 12).

We state the following standard result from the perturbation theory of symmetric eigenvalue

problem (see, e.g., Golub and Loan, 1996).

Lemma 9 If B and B+U are p× p symmetric matrices, then ∀1≤ k ≤ p,

λk(B)+λp(U)≤ λk(B+U)≤ λk(B)+λ1(U),

where λk(B) denotes the k-th largest eigenvalue of matrix B.

Lemma 10 Consider set F such that supp(x̄) ⊆ F with |F| = s. If ρ(E,s) ≤ ∆λ/2, then the ratio

of the second largest (in absolute value) to the largest eigenvalue of sub matrix AF is no more than

γ(s). Moreover,

‖x̄⊤− x(F)‖ ≤ δ(s) :=

√
2ρ(E,s)

√

ρ(E,s)2 +(∆λ−2ρ(E,s))2
.

Proof We may use Lemma 9 with B = ĀF and U = EF to obtain

λ1(AF)≥ λ1(ĀF)+λp(EF)≥ λ1(ĀF)−ρ(EF)≥ λ−ρ(E,s)

and ∀ j ≥ 2,

|λ j(AF)| ≤ |λ j(ĀF)|+ρ(EF)≤ λ−∆λ+ρ(E,s).

This implies the first statement of the lemma.

Now let x(F), the largest eigenvector of AF , be αx̄+βx′, where ‖x̄‖2 = ‖x′‖2 = 1, x̄⊤x′ = 0 and

α2 +β2 = 1, with eigenvalue λ′ ≥ λ−ρ(E,s). This implies that

αAF x̄+βAFx′ = λ′(αx̄+βx′),

implying

αx′⊤AF x̄+βx′⊤AFx′ = λ′β.

That is,

|β|= |α| x′⊤AF x̄

λ′− x′⊤AFx′
≤ |α| |x

′⊤AF x̄|
λ′− x′⊤AFx′

= |α| |x
′⊤EF x̄|

λ′− x′⊤AFx′
≤ t|α|,

where t = ρ(E,s)/(∆λ− 2ρ(E,s)). This implies that α2(1+ t2) ≥ α2 + β2 = 1, and thus α2 ≥
1/(1+ t2). Without loss of generality, we may assume that α > 0, because otherwise we can replace

x̄ with −x̄. It follows that

‖x(F)− x̄‖2 = 2−2x(F)⊤x̄ = 2−2α≤ 2

√
1+ t2−1√

1+ t2
≤ 2t2

1+ t2
.

This implies the desired bound.

The following result measures the progress of untruncated power method.
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Lemma 11 Let y be the eigenvector with the largest (in absolute value) eigenvalue of a symmetric

matrix A, and let γ < 1 be the ratio of the second largest to largest eigenvalue in absolute values.

Given any x such that ‖x‖= 1 and y⊤x > 0; let x′ = Ax/‖Ax‖, then

|y⊤x′| ≥ |y⊤x|[1+(1− γ2)(1− (y⊤x)2)/2].

Proof Without loss of generality, we may assume that λ1(A)= 1 is the largest eigenvalue in absolute

value, and |λ j(A)| ≤ γ when j > 1. We can decompose x as x = αy+βy′, where y⊤y′ = 0, ‖y‖ =
‖y′‖= 1, and α2 +β2 = 1. Then |α|= |x⊤y|. Let z′ = Ay′, then ‖z′‖ ≤ γ and y⊤z′ = 0. This means

Ax = αy+βz′, and

|y⊤x′|= |y
⊤Ax|
‖Ax‖ =

|α|
√

α2 +β2‖z′‖2
≥ |α|

√

α2 +β2γ2

=
|y⊤x|

√

1− (1− γ2)(1− (y⊤x)2)

≥|y⊤x| [1+(1− γ2)(1− (y⊤x)2)/2].

The last inequality is due to 1/
√

1− z≥ 1+ z/2 for z ∈ [0,1). This proves the desired bound.

The following lemma quantifies the error introduced by the truncation step in TPower.

Lemma 12 Consider x̄ with supp(x̄) = F̄ and k̄ = |F̄|. Consider y and let F = supp(y,k) be the

indices of y with the largest k absolute values. If ‖x̄‖= ‖y‖= 1, then

|Truncate(y,F)⊤x̄| ≥ |y⊤x̄|− (k̄/k)1/2 min

[

√

1− (y⊤x̄)2,(1+(k̄/k)1/2) (1− (y⊤x̄)2)

]

.

Proof Without loss of generality, we assume that y⊤x̄ = ∆ > 0. We can also assume that ∆ >
√

k̄/(k̄+ k) because otherwise the right hand side is smaller than zero, and thus the result holds

trivially.

Let F1 = F̄ \F , and F2 = F̄ ∩F , and F3 = F \ F̄ . Now, let ᾱ = ‖x̄F1
‖, β̄ = ‖x̄F2

‖, α = ‖yF1
‖,

β = ‖yF2
‖, and γ = ‖yF3

‖. let k1 = |F1|, k2 = |F2|, and k3 = |F3|. It follows that α2/k1 ≤ γ2/k3.

Therefore

∆2 ≤ [ᾱα+ β̄β]2 ≤ α2 +β2 ≤ 1− γ2 ≤ 1− (k3/k1)α
2.

This implies that

α2 ≤ (k1/k3)(1−∆2)≤ (k̄/k)(1−∆2)< ∆2, (9)

where the second inequality follows from k̄≤ k and the last inequality follows from the assumption

∆ >
√

k̄/(k̄+ k). Now by solving the following inequality for ᾱ

αᾱ+
√

1−α2
√

1− ᾱ2 ≥ αᾱ+ββ̄≥ ∆

under the condition ∆ > α≥ αᾱ, we obtain that

ᾱ≤ α∆+
√

1−α2
√

1−∆2 ≤min
[

1,α+
√

1−∆2
]

≤min
[

1,(1+(k̄/k)1/2)
√

1−∆2
]

, (10)

920



TRUNCATED POWER METHOD FOR SPARSE EIGENVALUE PROBLEMS

where the second inequality follows from the Cauchy-Schwartz inequality and ∆≤ 1,
√

1−α2 ≤ 1,

while the last inequality follows from (9). Finally,

|y⊤x̄|− |Truncate(y,F)⊤x̄| ≤ |(y−Truncate(y,F))⊤x̄|

≤ αᾱ≤ (k̄/k)1/2 min

[

√

1− (y⊤x̄)2,(1+(k̄/k)1/2) (1− (y⊤x̄)2)

]

,

where the last inequality follows from (9) and (10). This leads to the desired bound.

Next is our main lemma, which says each step of sparse power method improves eigenvector

estimation.

Lemma 13 Assume that k ≥ k̄. Let s = 2k+ k̄. If |x⊤t−1x̄|> θ+δ(s), then

√

1−|x̂⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s).

Proof Let F = Ft−1∪Ft ∪ supp(x̄). Consider the following vector

x̃′t = AFxt−1/‖AFxt−1‖, (11)

where AF denotes the restriction of A on the rows and columns indexed by F . We note that replacing

x′t with x̃′t in Algorithm 1 does not affect the output iteration sequence {xt} because of the sparsity

of xt−1 and the fact that the truncation operation is invariant to scaling. Therefore for notation

simplicity, in the following proof we will simply assume that x′t is redefined as x′t = x̃′t according to

(11).

Without loss of generality and for simplicity, we may assume that x′⊤t x(F) ≥ 0 and x⊤t−1x̄ ≥
0, because otherwise we can simply do appropriate sign changes in the proof. We obtain from

Lemma 11 that

x′⊤t x(F)≥ x⊤t−1x(F) [1+(1− γ(s)2)(1− (x⊤t−1x(F))2)/2].

This implies that

[1− x′⊤t x(F)]≤[1− x⊤t−1x(F)] [1− (1− γ(s)2)(1+ x⊤t−1x(F))(x⊤t−1x(F))/2]

≤[1− x⊤t−1x(F)] [1−0.5θ(1+θ)(1− γ(s)2)],

where in the derivation of the second inequality, we have used Lemma 10 and the assumption of the

lemma that implies x⊤t−1x(F)≥ x⊤t−1x̄−δ(s)≥ θ. We thus have

‖x′t − x(F)‖ ≤ ‖xt−1− x(F)‖
√

1−0.5θ(1+θ)(1− γ(s)2).

Therefore using Lemma 10, we have

‖x′t − x̄‖ ≤ ‖xt−1− x̄‖
√

1−0.5θ(1+θ)(1− γ(s)2)+2δ(s).

This is equivalent to

√

1−|x′t⊤x̄| ≤
√

1−|x⊤t−1x̄|
√

1−0.5θ(1+θ)(1− γ(s)2)+
√

2δ(s).
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Next we can apply Lemma 12 and use k ≥ k̄ to obtain

√

1−|x̂⊤t x̄| ≤
√

1−|x′t⊤x̄|+((k̄/k)1/2 + k̄/k)(1−|x′t⊤x̄|2)

≤
√

1−|x′t⊤x̄|
√

1+2((k̄/k)1/2 + k̄/k)

≤ µ

√

1−|xt−1
⊤x̄|+

√
10δ(s).

This proves the second desired inequality.

We are now in the position to prove Theorem 4.

Proof of Theorem 4:

Let us distinguish the following two complementary cases:

Case I: θ+δ(s)> 1−10δ(s)2/(1−µ)2. In this case, we have that x⊤0 x̄≥ θ+δ(s)> 1−10δ(s)2/(1−
µ)2 which implies the inequality (5).

Case II: θ+δ(s)≤ 1−10δ(s)2/(1−µ)2. In this case, we first prove by induction that for all t ≥ 0,

x⊤t x̄ ≥ θ+ δ(s). This is obviously hold for t = 0. Assume that |x⊤t−1x̄| ≥ θ+ δ(s). Let us further

distinguish the following two cases:

(a)

√

1−|x⊤t−1x̄| ≥
√

10δ(s)/(1−µ). From Lemma 13 we obtain that

√

1−|x⊤t x̄| ≤
√

1−|x̂⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s)≤
√

1−|x⊤t−1x̄|,

where the first inequality follows from |x⊤t x̄| = |x̂⊤t x̄|/‖x̂t‖ ≥ |x̂⊤t x̄|. This implies |x⊤t x̄| ≥
|x⊤t−1x̄| ≥ θ+δ(s).

(b)

√

1−|x⊤t−1x̄|<
√

10δ(s)/(1−µ). Based on the previous argument we have

√

1−|x⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s)<
√

10δ(s)/(1−µ),

which implies that |x⊤t x̄|> 1−10δ(s)2/(1−µ)2 ≥ θ+δ(s).

In both cases (a) and (b), we have |x⊤t x̄| ≥ θ+ δ(s) and this finishes the induction. Therefore, by

recursively applying Lemma 13 we have that for all t ≥ 0

√

1−|x⊤t x̄| ≤ µt

√

1−|x⊤0 x̄|+
√

10δ(s)/(1−µ),

which is inequality (6). This completes the proof.
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