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Abstract

Graph-based semi-supervised learning (SSL) methods play an increasingly important role in prac-

tical machine learning systems, particularly in agnostic settings when no parametric information

or other prior knowledge is available about the data distribution. Given the constructed graph rep-

resented by a weight matrix, transductive inference is used to propagate known labels to predict

the values of all unlabeled vertices. Designing a robust label diffusion algorithm for such graphs

is a widely studied problem and various methods have recently been suggested. Many of these

can be formalized as regularized function estimation through the minimization of a quadratic cost.

However, most existing label diffusion methods minimize a univariate cost with the classification

function as the only variable of interest. Since the observed labels seed the diffusion process, such

univariate frameworks are extremely sensitive to the initial label choice and any label noise. To

alleviate the dependency on the initial observed labels, this article proposes a bivariate formulation

for graph-based SSL, where both the binary label information and a continuous classification func-

tion are arguments of the optimization. This bivariate formulation is shown to be equivalent to a

linearly constrained Max-Cut problem. Finally an efficient solution via greedy gradient Max-Cut

(GGMC) is derived which gradually assigns unlabeled vertices to each class with minimum con-

nectivity. Once convergence guarantees are established, this greedy Max-Cut based SSL is applied

on both artificial and standard benchmark data sets where it obtains superior classification accu-

racy compared to existing state-of-the-art SSL methods. Moreover, GGMC shows robustness with

respect to the graph construction method and maintains high accuracy over extensive experiments

with various edge linking and weighting schemes.

Keywords: graph transduction, semi-supervised learning, bivariate formulation, mixed integer

programming, greedy Max-Cut

1. Introduction

In many real applications, labeled samples are scarce but unlabeled samples are abundant. Paradigms

that consider both labeled and unlabeled data, that is, semi-supervised learning (SSL) methods, have
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been increasingly explored in practical machine learning systems. While many semi-supervised

learning approaches estimate a smooth function over labeled and unlabeled examples, this article

presents a novel approach which emphasizes a bivariate optimization problem over the classifica-

tion function and the labels. Prior to describing the method in detail, we briefly mention other SSL

methods and previous work to motivate this article’s contributions.

One of the earliest examples of the empirical advantages of SSL was co-training, a method first

developed for text mining problems (Blum and Mitchell, 1998) and later extended in various forms

to other applications (Chawla and Karakoulas, 2005; Goldman and Zhou, 2000). Therein, multi-

ple classifiers are first estimated using conditionally independent feature sets of training data. The

performance advantages of this method rely heavily on the existence of independent and comple-

mentary classifiers. Theoretical results show that some mild assumptions on the underlying data

distribution are sufficient for co-training to work (Balcan et al., 2005; Wang and Zhou, 2010). How-

ever, performance can dramatically degrade if the classifiers do not complement each other or the

independence assumption does not hold (Krogel and Scheffer, 2004). Though co-training is concep-

tually similar to semi-supervised learning due to the way it incorporates unlabeled data, the classifier

training procedure itself is often supervised.

The extension of traditional supervised support vector machines (SVMs) to the semi-supervised

scenario is another widely used SSL algorithm. Instead of maximizing separation (via a maximum-

margin hyperplane) over training data as in standard SVMs, semi-supervised SVMs (S3VMs) es-

timate a hyperplane to balance maximum-margin partitioning of labeled data while encouraging

a separation through low-density regions of the data (Vapnik, 1998). For example, transductive

support vector machines (TSVMs) were developed as one of the earliest incarnations of semi-

supervised SVMs (Joachims, 1999).1 Various optimization techniques have been applied to solve

S3VMs (Chapelle et al., 2008), resulting in a wide range of methods, such as low density separation

(Chapelle and Zien, 2005), semi-definite programming based methods (Bie and Cristianini, 2004;

Xu et al., 2008), and a branch-and-bound based approach (Chapelle et al., 2007).

Another family of SSL methods known as graph-based approaches have recently become popu-

lar due to their high accuracy and computational efficiency. Graph-based semi-supervised learning

(GSSL) treats both labeled and unlabeled samples from a data set as vertices in a graph and builds

pairwise edges between these vertices which are weighted by the affinity between the corresponding

samples. The small portion of vertices with labels are then used by SSL methods to perform graph

partition or information propagation to predict labels for unlabeled vertices. For instance, the graph

mincuts approach formulates the label prediction as a graph cut problem (Blum and Chawla, 2001;

Blum et al., 2004). Other GSSL methods, like graph transductive learning, formulate the problem

as regularized function estimation over an undirected weighted graph. These methods optimize a

trade-off between the accuracy of the classification function on labeled samples and a regulariza-

tion term that favors a smooth function. The weighted graph and the optimal function ultimately

propagate label information from labeled data to unlabeled data to produce transductive predic-

tions. Popular algorithms for GSSL include graph cuts (Blum and Chawla, 2001; Blum et al., 2004;

Joachims, 2003; Kveton et al., 2010), graph random walks (Azran, 2007; Szummer and Jaakkola,

2002), manifold regularization (Belkin et al., 2005, 2006; Sindhwani et al., 2008, 2005), and graph

regularization (Zhou et al., 2004; Zhu et al., 2003). Comprehensive survey articles have also been

disseminated (Zhu, 2005).

1. It is actually more appropriate to call this method a semi-supervised SVM since the learned classifier is indeed

inductive (Zhu and Goldberg, 2009).
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For some synthetic and real data problems, GSSL approaches do achieve promising perfor-

mance. However, previous research has identified several realistic settings and labeling situations

where this performance can be compromised (Wang et al., 2008b). In particular, both the graph

construction methodology and the label initialization conditions can significantly impact prediction

accuracy (Jebara et al., 2009). For a well-constructed graph such as the one shown in Figure 1(a),

many GSSL methods produce satisfactory predictions. However, for graphs involving non-separable

manifold structure as shown in Figure 1(b), prediction accuracy may deteriorate. Even if one as-

sumes that the graph structures used in the above methods faithfully describe the data manifold,

GSSL algorithms may still be misled by problems in the label information. Figure 3 depicts several

cases where the label information leads to invalid graph transduction solutions for all the aforemen-

tioned algorithms.

In order to handle such challenging labeling conditions, we first extend the existing GSSL for-

mulation by casting it as a bivariate optimization problem over the classification function and the

labels. Then we demonstrate that minimizing the mixed bivariate cost function can be reduced to

a pure integer programming problem that is equivalent to a constrained Max-Cut problem. Though

semi-definite programming can be used to obtain approximate solutions, these are impractical due

to scalability issues. Instead, an efficient greedy gradient Max-Cut (GGMC) solution is developed

which remedies the instability previous methods seem to have vis-a-vis the initial labeling condi-

tions on the graph. In the proposed greedy solution, initial labels simply act as initial values of

the graph cut which is incrementally refined until convergence. During each iteration of the greedy

search, the optimal unlabeled vertex is assigned to the labeled subset with minimum connectivity

to maximally preserve cross-subset edge weight. Finally, an overall cut is produced after placing

the unlabeled vertices into one of the label sets. It is then straightforward to obtain the final label

prediction from the graph cut result. Note that this greedy gradient Max-Cut solution is equivalent

to alternating between minimization of the cost over the label matrix and minimization of the cost

over the prediction function. Moreover, to alleviate dependencies on the initialization of the cut (the

given labels), a re-weighting of the connectivity between unlabeled vertices and labeled subsets is

proposed. This re-weighting performs a within-class normalization using vertex degree as well as a

between-class normalization using class prior information. We demonstrate that the greedy gradient

Max-Cut based graph transduction produces significantly better performance on both artificial and

real data sets.

The remainder of this paper is organized as the follows. Section 2 provides a brief background

of graph-based SSL and discusses some open issues. In Section 3, we present our bivariate graph

transduction framework, followed by the theoretical proof of its equivalence with the constrained

Max-Cut problem in Section 4. In addition, a greedy gradient Max-Cut algorithm is proposed.

Section 5 provides experimental validation for the algorithm on both toy and real classification

data sets. Comparisons with leading semi-supervised methods are made. Concluding remarks and

discussions are then provided in Section 6.

2. Background and Open Issues

In this section, we introduce some notation and then revisit two critical components of graph-based

SSL: graph construction and label propagation. Subsequently, we discuss some challenging issues

such as SSL’s sensitivity to graph construction and label initialization.
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Figure 1: Examples of constructed k-nearest-neighbors (kNN) graphs with k = 5 on the artificial

two moon data set for a) the completely separable case; and b) the non-separable case

with noisy samples.

2.1 Notations

We first summarize the notation used in this article. Assume we are given iid (independent and iden-

tically distributed) labeled samples {(x1,z1), . . . ,(xl,zl)} as well as unlabeled samples

{xl+1, . . . ,xl+u} drawn from a distribution p(x,z). Define the set of labeled inputs as Xl = {x1, . . . ,xl}
with cardinality |Xl|= l and the set of unlabeled inputs Xu = {xl+1, . . . ,xl+u}with cardinality |Xu|=
u. The labeled set Xl is associated with labels Zl = {z1, · · · ,zl}, where zi ∈ {1, · · · ,c}, i = 1,2, · · · , l.
The goal of semi-supervised learning is to infer the missing labels {zl+1, · · · ,zn} corresponding to

the unlabeled data {xl+1, · · · ,xn}, where typically l << n (l + u = n). A crucial component of

GSSL is the estimation of a weighted sparse graph G from the input data X = Xl ∪Xu. Subse-

quently, a labeling algorithm uses G and the known labels Zl = {z1, . . . ,zl} to provide estimates

Ẑu = {ẑl+1, . . . , ẑl+u} which try to approximate the true labels Zu = {zl+1, . . . ,zl+u} as measured by

an appropriately chosen loss function.

In this article, assume the undirected graph converted from the data X is represented by

G = {X,E}, where the set of vertices is X = {xi} and the set of edges is E = {ei j}. Each sample xi

is treated as a vertex and the weight of edge ei j is wi j. Typically, one uses a kernel function k(·) over

pairs of points to compute weights. The weights for edges are used to build a weight matrix which

is denoted by W = {wi j}. Similarly, the vertex degree matrix D = diag([d1, · · · ,dn]) is defined as

di =
n

∑
j=1

wi j. The graph Laplacian is defined as ∆∆∆ = D−W and the normalized graph Laplacian is

L = D−1/2∆∆∆D−1/2 = I−D−1/2WD−1/2.

The graph Laplacian and its normalized version can be viewed as operators on the space of functions

f which can be used to define a regularization measure of smoothness over strongly-connected

regions in a graph (Chung and Biggs, 1997). For example, the smoothness measurement of functions

f using L over a graph is defined as

〈 f ,L f 〉= ∑
i

∑
j

wi j

∥

∥

∥

∥

∥

f (xi)√
di

− f (x j)√
d j

∥

∥

∥

∥

∥

2

.
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Finally, the label information is formulated as a label matrix Y = {yi j} ∈ B
n×c, where yi j = 1

if sample xi is associated with label j for j ∈ {1,2, · · · ,c}, that is, zi = j, and yi j = 0 otherwise.

For single label problems (as opposed to multi-label problems), the constraints
c

∑
j=1

yi j = 1 are also

imposed. Moreover, we will often refer to row and column vectors of such matrices, for instance,

the i’th row and j’th column vectors of Y are denoted as Yi· and Y· j, respectively. Let F = f (X)
be the values of classification function over the data set X. Most of the GSSL methods then use

the graph quantity W as well as the known labels to recover a continuous classification function

F ∈ R
n×c by minimizing a predefined cost on the graph.

2.2 Graph Construction for Semi-Supervised Learning

To estimate Ẑu = {ẑl+1, . . . , ẑl+u} using G and the known labels Zl = {z1, . . . ,zl}, we first convert the

data points X = Xl ∪Xu into a graph G = {X,E,W}. This section discusses the graph construction

method, X→ G , in detail. Given input data X with cardinality |X| = l + u, graph construction

produces a graph G consisting of n = l+u vertices where each vertex is associated with the sample

xi. The estimation of G from X usually proceeds in two steps.

The first step is to compute a score between all pairs of vertices using a similarity function. This

creates a full adjacency matrix K ∈ R
n×n, where Ki j = k(xi,x j) is computed using kernel function

k(·) to measure sample similarity. Subsequently, in the second step of graph construction, the matrix

K is sparsified and reweighted to produce the final matrix W. Sparsification is important since it

leads to improved efficiency, better accuracy, and robustness to noise in the label inference stage.

Furthermore, the kernel function k(·) is often only locally useful as a similarity and does not recover

reliable weights between pairs of samples that are relatively far apart.

2.2.1 GRAPH SPARSIFICATION

Starting with the fully connected matrix K, sparsification removes edges by recovering a binary

matrix B ∈ B
n×n where Bi j = 1 indicates that an edge is present between sample xi and x j, and

Bi j = 0 indicates the edge is absent (assume Bii = 0 unless otherwise noted). Here we will primarily

investigate two graph sparsification algorithms: neighborhood approaches including the k-nearest

and ε neighbors algorithms, and matching approaches such as b-matching (BM) (Edmonds and

Johnson, 2003). All such methods operate on the matrix K or, equivalently, the distance matrix

H ∈ R
n×n obtained from K element-wise as Hi j =

√

Kii +K j j−2Ki j.

Sparsification via Neighborhood Methods: There are two typical ways to build a neighborhood

graph: the ε-neighborhood graph connecting samples within a distance of ε, and the kNN (k-nearest-

neighbors) graph connecting k closest samples. Recent studies show the dramatic influences that

different neighborhood methods have on clustering techniques (Carreira-Perpinán and Zemel, 2005;

Maier et al., 2009). In practice, the kNN graph remains a more common approach since it is more

adaptive to scale variation and data density anomalies while an improper threshold value in the ε-

neighborhood graph may result in disconnected components or subgraphs in the data set or even

isolated singleton vertices, as shown in Figure 2(b). In this article, we often use kNN neighborhood

graphs since the ε-neighborhood graphs provide consistently weaker performance. In the remainder

of this article, we will use neighborhood and kNN neighborhood graph interchangeably without

specific declaration.
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Figure 2: The synthetic data set used for demonstrating different graph construction approaches. a)

The synthetic data; b) The ε-nearest neighbor graph; c) The k-nearest neighbor graph; d)

The b-matched graph.

More specifically, the k-nearest neighbor graph is a graph in which two vertices xi and x j are

connected by an edge if the distance Hi j between xi and x j is within or equal k-th smallest among

the distances from xi to other samples in X. Roughly speaking, the k-nearest neighbors algorithm

starts with a matrix B̂ of all zeros and for each point, searches for the k closest points to it (without

considering itself). If a point j is one of the k closest neighbors to i, then we set B̂i j = 1. It is

straightforward to show that k-nearest neighbors search solves the following optimization problem:

min
B̂∈B

∑i j
B̂i jHi j (1)

s.t. ∑ j
B̂i j = k, B̂ii = 0, ∀i, j ∈ 1, . . . ,n.

The final solution of Equation (1) is produced by symmetrizing B̂ as follows Bi j = max(B̂i j, B̂ ji).
2

This greedy algorithm is in fact not solving a well defined optimization problem over symmetric

binary matrices. In addition, since it produces a symmetric matrix only via the ad hoc maximization

over B̂ and its transpose, the solution B it produces does not satisfy the equality ∑k Bi j = k, but,

rather, only satisfies the inequality ∑ j Bi j ≥ k. Ironically, despite conventional wisdom and the

nomenclature, the k-nearest neighbors algorithm is producing an undirected subgraph with more

2. It is possible to replace the maximization operator with minimization to produce a symmetric matrix, yet in the setting

B = min(B̂, B̂⊤) the solution B only satisfies the inequality ∑ j Bi j ≤ k and not the desired equality.
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than k neighbors for each vertex. This motivates researchers to investigate the b-matching algorithm

which actually achieves the desired output.

Sparsification via b-Matching: The b-matching problem generalizes maximum weight match-

ing, that is, the linear assignment problem, where the objective is to find the binary matrix to mini-

mize the optimization problem

min
B∈B∑i j

Bi jHi j (2)

s.t. ∑ j
Bi j = b,Bii = 0,Bi j = B ji, ∀i, j ∈ 1, . . . ,n.

achieving symmetry directly without post-processing. Here, the symmetric solution is recovered

up-front by enforcing the additional constraints Bi j = B ji. The matrix then satisfies the equality

∑ j Bi j = ∑i Bi j = b strictly. The solution to Equation (2) is not quite as straightforward or efficient

as the greedy k-nearest neighbors algorithm. A polynomial time O(bn3) solution has been known,

yet recent advances show that much faster alternatives are possible via (guaranteed) loopy belief

propagation (Huang and Jebara, 2007).

Compared with the neighborhood graphs, the b-matching graph is balanced or b-regular. In

other words, each vertex in the b-matched graph has exactly b edges connecting it to other vertices.

This advantage plays a key role when conducting label propagation on typical samples X which are

unevenly and non-uniformly distributed. Our previous work applied b-matching to construct graphs

for semi-supervised learning tasks and demonstrated the superior performance over some unevenly

sampled data (Jebara et al., 2009). For example, in Figure 2, this data set clearly contains two

clusters of points, a dense Gaussian cluster surrounded by a ring cluster. Furthermore, the cluster

data is unevenly sampled; one cluster is dense and the other is fairly sparse. In this example, the k-

nearest neighbor graph constantly generates many cross-cluster edges while b-matching efficiently

alleviates this problem by removing most of the improper edges. The example clearly shows that

the b-matching technique produces regular graphs which could overcome the drawback of cross-

structure linkages often generated by nearest neighbor methods. This intuitive study confirms the

importance of graph construction methods and advocates b-matching as a valuable alternative to

k-nearest neighbors, a method that many practitioners expect to produce regular undirected graphs,

though in practice often generates irregular graphs.

2.2.2 GRAPH EDGE RE-WEIGHTING

Once a graph has been sparsified and a binary matrix B is computed and used to delete unwanted

edges, several procedures can then be used to update the weights in the matrix K to produce a final

set of edge weights W. Specifically, whenever Bi j = 0, the edge weight is also wi j = 0; however,

Bi j = 1 implies that wi j ≥ 0. Two popular approaches are considered here for estimating the non-

zero components of W.

Binary Weighting: The simplest approach for building the weighted graph is the binary weight-

ing approach, where all the linked edges in the graph are given the weight 1 and the edge weights

of disconnected vertices are given the weight 0. In other words, this setting simply uses W = B.

However, this uniform weight on graph edges can be sensitive, particularly if some of the graph

vertices were improperly connected by the sparsification procedure (either the neighborhood based

procedures or the b-matching procedure).

Gaussian Kernel Weighting: An alternative approach is Gaussian kernel weighting which is

often applied to modulate sample similarity. Therein, the edge weight between two connected
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samples xi and x j is computed as:

wi j = Bi j exp

(

−d2(xi,x j)

2σ2

)

,

where the function d(xi,x j) evaluates the dissimilarity of samples xi and x j, and σ is the kernel

bandwidth parameter. There are many choices for the distance function d(·) including any ℓp dis-

tance, χ2 distance, and cosine distance (Zhu, 2005; Belkin et al., 2005; Jebara et al., 2009).

This final step in the graph construction procedure ensures that the unlabeled data X has now

been converted into a graph G with a weighted sparse undirected adjacency matrix W. Given this

graph and some initial label information Yl , any of the current popular algorithms for graph based

SSL can be used to solve the labeling problem.

2.3 Univariate Graph Regularization Framework

Given the constructed graph G = {X,E}, whose geometric structure is represented by the weight

matrix W, the label inference task is to diffuse the known labels Zl to all the unlabeled vertices

Xu in the graph and estimate Ẑu. Designing a robust label diffusion algorithm for such graphs is a

widely studied problem (Chapelle et al., 2006; Zhu, 2005; Zhu and Goldberg, 2009).

Here we are particularly interested in a category of approaches, which estimate the prediction

function F∈Rn×c by minimizing a quadratic cost defined over the graph. The cost function typically

involves a trade-off between the smoothness of the function over the graph of both labeled and

unlabeled data (consistency of the predictions on closely connected vertices) and the accuracy of the

function at fitting the label information on the labeled vertices. Approaches like the Gaussian fields

and harmonic functions (GFHF) method (Zhu et al., 2003) and the local and global consistency

(LGC) method (Zhou et al., 2004) fall into this category, so does our previous method of graph

transduction via alternating minimization (Wang et al., 2008b).

Both LGC and GFHF define a cost function Q that involves the combined contribution of two

penalty terms: the global smoothness Qsmooth and local fitting accuracy Q f it . The final prediction

function F is obtained by minimizing the cost function as:

F∗ = arg min
F∈Rn×c

Q (F) = arg min
F∈Rn×c

(Qsmooth(F)+Q f it(F)) . (3)

A natural formulation of the above cost function is LGC (Zhou et al., 2004) which uses an elastic

regularizer framework as follows

Q (F) = ‖F‖2
G +

µ

2
‖F−Y‖2. (4)

The first term ‖F‖2
G represents function smoothness over graph G and ‖F−Y‖2 measures the em-

pirical loss on given labeled samples. Specifically, in LGC, the function smoothness is defined using

the semi-inner product

Qsmooth = ‖F‖2
G =

1

2
〈F,LF〉= 1

2
tr(F⊤LF).

Note that the coefficient µ in Equation (4) balances global smoothness and local fitting terms.

If we set µ = ∞ and use a standard graph Laplacian quantity ∆∆∆ for the smoothness term, the above
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framework reduces to the harmonic function formulation (Zhu et al., 2003). More precisely, the cost

function only preserves the smoothness term as

Q (F) = tr(F⊤∆∆∆F). (5)

Meanwhile, the harmonic function F minimizing the above cost also satisfies two conditions:

∂Q

∂F u
= ∆∆∆Fu = 0,

Fl = Yl ,

where Fl ,Fu are the function values of f (·) over labeled and unlabeled vertices, that is, Fl = f (Xl),
Fu = f (Xu), and F = [Fl Fu]

⊤
. The first equation above denotes the zero derivative of the object

function on the unlabeled data and the second equation clamps the function value on the given label

value Yl . Both LGC and GFHF are univariate regularization frameworks where the continuous pre-

diction function is treated as the only variable in the optimization procedure. The optimal solutions

for Equation (4) and Equation (5) are easily obtained by solving a linear system.

2.4 Open Issues

Existing graph-based SSL methods hinge on having good label information and an appropriately

constructed graph (Wang et al., 2008b; Liu et al., 2012). But the heuristic design of the graph may

result in suboptimal inference. In addition, the label propagation procedure can easily be misled if

there exist excessive noise or outliers in the initial labeled set. Finally, in iid settings, the difference

between empirically estimated class proportions and their true expected value is bounded (Huang

and Jebara, 2010). However, practical annotation procedures are not necessarily iid and labeled

data may have empirical class frequencies that deviate significantly from the expected class ratios.

These degenerate situations seem to plague real world problems and compromise the performance

of many state-of-the-art SSL algorithms. We next discuss some open issues which occur often in

graph construction and label propagation, two critical components of all GSSL algorithms.

2.4.1 SENSITIVITY TO GRAPH CONSTRUCTION

As shown in Figure 1(a), a well-built graph obtained from separable manifolds of data will achieve

good results with most existing GSSL approaches. However, practical applications often produce

non-separable graphs as shown in Figure 1(b). In addition to the widely used kNN graph, we showed

that b-matching could be used successfully for graph construction (Jebara et al., 2009). But both

kNN graphs and b-matched graphs are heuristics and require the careful selection of the parameter

k or b which controls the number of links incident to each vertex in the graph. Moreover, edge

reweighing on the sparse graph often also requires exploration forcing the user to select kernels and

various kernel parameters. All these heuristic steps in graph design require extra effort from the

user and demand some level of familiarity with the data domain.

2.4.2 SENSITIVITY TO LABEL NOISE

Most of the existing GSSL methods are based on an univariate quadratic regularization framework

which relies heavily on the quality of the initially assigned labels. For certain synthetic and real

data problems, such graph transduction approaches achieve promising performance. However, sev-

eral realistic labeling conditions produce unsatisfactory performance (Wang et al., 2008b). Even if
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Figure 3: Examples illustrating the sensitivity of graph-based SSL to adverse labeling conditions.

Particularly challenging conditions are shown in (a) where an uninformative label on an

outlier sample is the only negative label (denoted by a black circle) and in (g) where

imbalanced labeling is involved. Prediction results are shown for the GFHF method (Zhu

et al., 2003) in (b) and (h), the LGC method (Zhou et al., 2004) in (c) and (i), the LapSVM

method (Belkin et al., 2006) in (d) and (j), the TSVM method (Joachims, 1999) in (e) and

(k); and our method in (f) and (l).

the graph is perfectly constructed from the data, problematic initial labels under practical situations

can easily deteriorate the performance of SSL prediction. Figure 3 provides examples depicting

imbalanced and noisy labels that lead to invalid graph transduction solutions for all the aforemen-

tioned algorithms. The first labeling problem involves uninformative labels (Figure 3(a)). The only
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negative label (dark circle) is located in an outlier region where the low density connectivity limits

its diffusion to the rest of the graph. The leading SSL methods classify the majority of unlabeled

nodes in the graph as positive (Figure 3(b)-Figure 3(e)). Such conditions are frequent in real prob-

lems like content-based image retrieval (CBIR) where the visual query example is not necessarily

representative of the class. Another difficult case is due to imbalanced labeling. There, the ratio

of training labels is disproportionate to the underlying class proportions. For example, Figure 3(g)

depicts two half-circles with an almost equal number of samples. However, since the training labels

contain three negative samples and only one positive example, the SSL predictions are strongly bi-

ased towards the negative class (see Figures 3(h) to 3(k)). This imbalanced labeling situation occurs

frequently in realistic problems such as the annotation of microscopic images (Wang et al., 2008a).

Therein, the human labeler favors certain cellular phenotypes due to domain-specific biological hy-

potheses. To tackle these issues, we next propose a novel bivariate framework for graph-based SSL

and describe an efficient algorithm that achieves it via alternating minimization.

3. Bivariate Framework for Graph-Based SSL

We first propose an extension to the existing graph regularization-based SSL formulations by casting

the problem as a bivariate optimization over both the classification function and the unknown labels.

Then we demonstrate that the minimization of this bivariate cost reduces to a linearly constrained

binary integer programming (BIP) problem. This problem can be approximated via semi-definite

programming yet this approach is impractical due to scalability issues. We instead explore a fast

method which alternates minimization of the cost over the label matrix and the prediction function.

3.1 The Cost Function

Recall the univariate regularization formulation for graph-based SSL in Equation (3). Also note that

the optimization problem in existing approaches such as LGC and GFHF can be broken up into

separate parallel problems since the cost function decomposes into additive terms that only depend

on individual columns of the prediction matrix F (Wang et al., 2008a). Such a decomposition reveals

that biases may arise if the input labels are disproportionately imbalanced. In addition, when the

graph contains background noise and makes class manifolds non-separable (as in Figure 1(b)), these

existing graph transduction approaches fail to output reasonable classification results.

Since the univariate framework treats the initial label information as a constant, we propose a

novel bivariate optimization framework that explicitly optimizes over both the classification function

F and the binary label matrix Y:

(F∗,Y∗) = argminF∈Rn×c,Y∈Bn×cQ (F,Y)

s.t. yi j ∈ {0,1},
∑

c

j=1
yi j = 1,

yi j = 1, for zi = j, j = 1, · · · ,c.,

where B
n×c is the set of all binary matrices Y of size n× c. For a labeled sample xi ∈ Xl , yi j = 1

if zi = j, and the constraint ∑c
j=1 yi j = 1 indicates that this a single label prediction problem. We

specify the cost function as

Q (F,Y) =
1

2
tr
(

F⊤LF+µ(F−Y)⊤(F−Y)
)

. (6)
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Finally, rewriting the cost as a summation (Zhou et al., 2004) reveals a more intuitive formulation

where

Q (F,Y) =
1

2

n

∑
i=1

n

∑
j=1

wi j

∥

∥

∥

∥

∥

Fi·√
di

− F j·
√

d j

∥

∥

∥

∥

∥

2

+
µ

2

n

∑
i=1

‖Fi·−Yi·‖2 .

3.2 Reduction to a Univariate Problem

In the new graph regularization framework proposed above, the cost function involves two variables

to be optimized. Simultaneously recovering both solutions is intractable due to the mixed integer

programming problem over binary Y and continuous F. To solve the issue, we first show how to

reduce the original mixed problem to a univariate optimization problem with respect to the label

variable Y.

F optimization step:

In each loop with Y fixed, the classification function F ∈ R
n×c is continuous and the cost function

is convex, allowing the minimum to be recovered by setting the partial derivative to zero:

∂Q

∂F∗
= 0 =⇒ LF∗+µ(F∗−Y) = 0

=⇒ F∗ = (L/µ+ I)−1Y = PY, (7)

where we denote the P matrix as

P = (L/µ+ I)−1,

and name it the propagation matrix since it is used to derived a prediction function F given a label

matrix Y. Because the graph is often symmetric, it is easy to show that the graph Laplacian L and

the propagation matrix P are both symmetric.

Y optimization step:

Next replace F in Equation (6) by its optimal value F∗ from the solution of Equation (7). This yields

Q (Y) =
1

2
tr(Y⊤P⊤LPY+µ(PY −Y)⊤(PY−Y))

=
1

2
tr
(

Y⊤
[

P⊤LP+µ(P⊤− I)(P− I)
]

Y
)

=
1

2
tr
(

Y⊤AY
)

,

where we group all the constant parts in the above equation and define

A = P⊤LP+µ(P⊤− I)(P− I) = P⊤LP+µ(P− I)2.

The final optimization problem becomes

Y∗ = argmin
1

2
tr
(

Y⊤AY
)

s.t. yi j ∈ {0,1},
∑ j

yi j = 1, j = 1, · · · ,c
yi j = 1, for zi = j, j = 1, · · · ,c. (8)
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The first constraint produces a binary integer problem and the second one ∑ j yi j = 1 produces a

single assignment constraint, that is, each vertex can only be assigned one class label. The third

group of constraints encodes the initial label information in the variable Y. Since the binary matrix

Y ∈ B
n×c is subject to linear constraints of the form ∑ j yi j = 1 and initial labeling conditions, the

optimization in Equation (8) requires solving a linearly constrained binary integer programming

(BIP) problem which is NP hard (Cook, 1971; Karp, 1972).

3.3 Incorporating Label Normalization

A straightforward approach to solving the minimization problem in Equation (8) is to use the gradi-

ent to greedily update the label variable Y. However, this may produce biased classification results

in practice since, at each iteration, the class with more labels will be preferred and will propagate

more quickly to the unlabeled examples. This arises in practice (as in Figure 3) and is due to the

fact that Y starts off sparse and contains many unknown entries. To compensate for this bias during

label propagation, we propose using a normalized label variable Ỹ = ΛΛΛY for computing the cost

function in Equation (6) as

Q =
1

2
tr
(

F⊤LF+µ(F− Ỹ)⊤(F− Ỹ)
)

=
1

2
tr
(

F⊤LF+µ(F−ΛΛΛY)⊤(F−ΛΛΛY)
)

. (9)

The diagonal matrix ΛΛΛ = diag(λλλ) = diag([λ1, · · · ,λn]) is introduced to re-weight or re-balance the

influence of labels from different classes as it modulates the label importance based on node degree.

The value of λi (i = 1, · · · ,n) is computed using the vertex degree di and label information

λi =

{

p j · di

∑k yk jdk
: yi j = 1

0 : otherwise,
(10)

where p j is the prior of class j and is subject to the constraint
c

∑
j=1

p j = 1. The value of p j can be

either estimated from the labeled training set or simply set to be uniform p j = 1/c ( j = 1, · · · , c)

in agnostic situations (when no better prior is available or if the labeled data is plagued by biased

sampling). Using the normalized label matrix Ỹ in the bivariate formulation allows labeled nodes

with high degrees to contribute more during the label propagation process. However, the total

diffusion of each class is kept equal (for agnostic settings with no priors available) or proportional

to the class prior (for the setting with prior information). Therefore, the influence of different classes

is balanced even if the given class labels are imbalanced. If class proportion information is known,

it can be integrated by scaling the diffusion with the appropriate prior. In other words, the label

normalization attempts to enforce simple concentration inequalities which, in the iid case require

the predicted label results to concentrate around the underlying class ratios (Huang and Jebara,

2010). This intuition is in line with prior work that uses class proportion information in transductive

inference where class proportion is enforced as a hard constraint (Chapelle et al., 2007) or as a

regularizer (Mann and McCallum, 2007).

3.4 Alternating Minimization Procedure

To solve the above refined problem, we proposed an alternating minimization algorithm (Wang et al.,

2008b). Briefly, starting with Equation (9) and repeating the similar derivation as in Section 3.2, we
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obtain the optimal solution F∗ and the final cost function with respect to label variable Y as

F∗ = PỸ = PΛΛΛY, (11)

Q =
1

2
tr
(

Ỹ⊤AỸ
)

=
1

2
tr
(

Y⊤ΛΛΛAΛΛΛY
)

. (12)

Instead of finding the global optimum Y∗, we only take an incremental step in each iteration to

modify a single entry in Y. Namely in each iteration, we find the optimal position (i∗, j∗) in the

matrix Y and change the binary value of yi∗ j∗ from 0 to 1. To do this, we find the direction with the

largest negative gradient guiding our choice of binary step on Y. Specifically, we evaluate ‖▽QY‖
and find the largest negative value to determine (i∗, j∗).

Note that the setting yi∗ j∗ = 1 is equivalent to modifying the normalized label matrix Ỹ by setting

ỹi∗, j∗ = εi∗ ,0< εi∗ < 1, and Y, Ỹ can be converted from each other componentwise. Thus, the greedy

optimization of Q with respect to Y is equivalent to greedy minimization of Q with respect to Ỹ.

More formally, we derive the gradient of the above loss function ∇ỸQ = ∂Q

∂Ỹ
and recover it with

respect to Y as:

∂Q

∂Ỹ
= AỸ = AΛΛΛY. (13)

As described earlier, we search the gradient matrix ∇ỸQ to find the minimal element

(i∗, j∗) = argminxi∈Xu,1≤ j≤c∇ỹi j
Q .

Because of the binary nature of Y, we simply set yi∗ j∗ = 1 instead of making a continuous

update. Accordingly, the node weight matrix ΛΛΛt+1 can be recalculated with the updated Yt+1 in

the iteration t + 1. The update of Y is greedy and thus it could backtrack from predicted labels in

previous iterations without convergence guarantees. We propose a straightforward way to guarantee

convergence and avoid backtracking or unstable oscillation in the greedy propagation process: once

an unlabeled point has been labeled, its labeling can no longer be changed. Thus, we remove the

most recently labeled point (i∗, j∗) from future consideration and conduct search over the remaining

unlabeled data only. In other words, to avoid retroactively changing predicted labels, the labeled

vertex xi∗ is removed from Xu and added to Xl .

Note that although the optimal F∗ can be computed using Equation (11), this need not be done

explicitly. Instead, the new value is implicitly used in Equation (14) only to update Y. In the fol-

lowing, we summarize the update rules from step t to t +1 in the alternating minimization scheme.

. Compute gradient matrix:

(∇ỸQ )t = AỸt = AΛΛΛtYt ,ΛΛΛt = diag(λλλt).

. Update one label:

(i∗, j∗) = argminxi∈Xu,1≤ j≤c(∇ỹi j
Q )t ,

yt+1
i∗ j∗ = 1.
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. Update label normalization matrix:

λt+1 =

{

Dii

∑k Yt+1
k j Dkk

: yt+1
i j = 1

0 : otherwise.

. Update the list of labeled and unlabeled data:

Xt+1
l ←− Xt

l +xi∗ ; Xt+1
u ←− Xt

u−xi∗ .

Starting with a few given labels, the method iteratively and greedily updates the label matrix Y

to derive new labels in each iteration. The newly obtained labels are then use in the next iteration.

Notice that the label normalization vector is re-computed for each iteration due to the change of

label set. Although the original objective is formed in a bivariate manner in Equation 6, the above

alternating optimization procedure drives the prediction of new labels without explicitly calculating

F∗ as is done in other graph transduction methods like LGC and GFHF. This unique feature makes

the proposed algorithm very efficient since we only update the gradient matrix ∇ỸQ for prediction

new labels in each iteration.

Due to the greedy assignment step and the lack of back-tracking, the algorithm can repeat the

alternating minimization (or the gradient computation) at most n− l times. Each minimization

step over F and Y requires O(n2) complexity and, thus, the total complexity of the above greedy

algorithm is O(n3). However, the update of the graph gradient can be done efficiently by modifying

only a single entry in Y per iteration. This further reduces the computational cost down to O(n2).
Empirically, the value of the loss function Q decreases rapidly in the the first dozen iterations and

steadily converges afterward (Wang et al., 2009). This phenomenon indicates that early stopping

strategy could be applied to speed up the training and prediction (Melacci and Belkin, 2011). Once

the first few iterations are completed, the new labels are added and the standard propagation step can

be used to predict the optimal F∗ as indicated in Equation (11) over the whole graph in one step. The

details of the algorithm, namely graph transduction via alternating minimization, can be referred to

Wang et al. (2008b). In the following section, we provide a greedy Max-Cut based solution, which

essentially interprets the above alternating minimization procedure from a graph cut view.

4. Greedy Max-Cut for Semi-Supervised Learning

In this section, we introduce a connection between the proposed bivariate graph transduction frame-

work and the well-known maximum cut problem. Then, a greedy gradient based Max-Cut solution

will be developed and related to the above alternating minimization algorithm.

4.1 Equivalence to a Constrained Max-Cut Problem

Recall the optimization problem defined in Equation (8) which is exactly a linearly constrained

binary integer programming (BIP) problem. In the case of a two-class problem, this optimization

will be reduced to a weighted Max-Cut problem over the graph GA = {X,A} subject to linear

constraints. The cost function in Equation (8) can be rewritten as

Q (Y) =
1

2
tr
(

Y⊤AY
)

=
1

2
tr
(

AYY⊤
)

=
1

2
tr(AR) ,
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where A = {ai j} and R = YY⊤. Considering the constraints ∑ j yi j = 1 and Y∈Bn×2 for a two-class

problem, we let

Y = [y e−y],

where y∈Bn (i.e., y = {yi},yi ∈ {0,1}, i = 1, · · · ,n) and e = [1,1, · · · ,1]⊤ are column vectors. Then

rewrite R as

R = YY⊤ = [y e−y][y e−y]⊤

= ee⊤−y(e⊤−y⊤)− (e−y)y⊤. (14)

Now rewrite the cost function in Equation (14) by replacing R with Equation (14)

Q (y) =
1

2
tr
(

A
[

ee⊤−y(e⊤−y⊤)− (e−y)y⊤
])

.

Since ee⊤ is the all-ones matrix, we obtain

1

2
tr
(

Aee⊤
)

=
1

2
∑

i
∑

j

Ai j.

It is easy to show that A is symmetric and

y(e⊤−y⊤) = [(e−y)y⊤]⊤.

Next, simplify the cost function Q as

Q (y) =
1

2
tr
(

Aee⊤
)

− tr
[

(e⊤−y⊤)Ay
]

=
1

2
tr
(

Aee⊤
)

−y⊤A(e−y).

Since the first part is a constant, the optimal value y∗ of the above minimization problem is the

argument of the maximization problem

y∗ = argmin
y

Q (y) = argmax
y

y⊤A(e−y).

Define a new function f (y) as

f (y) = y⊤A(e−y).

Again, the variable y ∈ B
n is a binary vector and e = [1,1, · · · ,1]⊤ is the unit column vector.

Now we show that maximization of the above function maxy f (y) is exactly a Max-Cut problem if

we treat the symmetric matrix A as the weighted adjacency matrix of an undirected graph GA =
{VA,A}. Note that the diagonal elements of A could be non-zero Aii 6= 0, i = 1,2, · · · ,n, which

indicates the undirected graph GA has self-connected nodes. Assume A = A0 + AΛ, where A0

is the matrix obtained by zeroing the diagonal elements of A and AΛ is a diagonal matrix with

AΛ
ii = Aii,A

Λ
i j = 0, i, j = 1,2, · · · ,n, i 6= j. It is straightforward to show that the the function f (y)

can be written as

f (y) = y⊤(A0 +AΛ)(e−y) = y⊤A0(e−y).
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In other words, the non-zero elements in A do not affect the value of f (y). Therefore, in the rest

of this article, we can assume that the matrix A has zero diagonal elements unless the text specifies

otherwise.

Since y = {y1,y2, · · · ,yn} is a binary vector, each setting of y partitions the vertex set VA in the

graph GA into two disjoint subsets (S1,S2). In other words, the two subsets S1 = {vi|yi = 1} and

S2 = {vi|yi = 0} satisfy S1∪S2 =VA and S1∩S2 = /0. The maximization problem can then be written

as

max f (y) = max∑
i, j

ai j · yi(1− y j) = max
1

2
∑

vi∈S1
v j∈S2

ai j.

Because each binary vector y resulting in a partition (S1,S2) over the graph GA and f (y) is a corre-

sponding cut, the above maximization max f (y) is easily recognized as a Max-Cut problem (Deza

and Laurent, 2009). However, in graph based semi-supervised learning, the variable y is partially

specified by the initial label values. This given label information can be interpreted as a set of linear

constraints on the Max-Cut problem. Thus, the optimal solution can achieved by solving a linearly

constrained Max-Cut problem (Karp, 1972). In addition, we also show that a multi-class problem

equals a Max K-Cut problem (K = c) (refer to Appendix A). Note that previous work used min-cut

over the original data graph G = {X,W} to perform semi-supervised learning (Blum and Chawla,

2001; Blum et al., 2004). A key difference of the above formulation lies in the fact that we perform

max-cut over the transformed graph GA = {X,A}.
However, since there is no guarantee that the weights on the graph GA are non-negative, so-

lutions to the Max-Cut problem can be difficult to find (Barahona et al., 1988). Therefore, in the

following subsection, we will propose a gradient greedy solution to efficiently solve the above

Max-Cut problem, which can be treated as a different view of the previous alternating minimization

solution.

4.2 Label Propagation by Gradient Greedy Max-Cut

For the standard Max-Cut problem, many approximation techniques have been developed, including

the most remarkable Goemans-Williamson algorithm using semidefinite programming (Goemans

and Williamson, 1994, 1995). However, applying these guaranteed approximation schemes to solve

the constrained Max-Cut problem for Y mentioned above is infeasible due to the constraints on

initial labels. Furthermore, there is no guarantee that all edge weights ai j of the graph GA are

non-negative, a fundamental requirement in solving a standard Max-Cut problem (Goemans and

Williamson, 1995). Instead, here we use a greedy gradient based strategy to find local optima by

assigning each unlabeled vertex to the label set with minimum connectivity to maximize cross-set

edge weights iteratively.

The greedy Max-Cut algorithm randomly selects unlabeled vertices and places each of them into

the appropriate class subset depending on the edges between this unlabeled vertex and the vertices

in the labeled subset. Given the label information, the initial label set for class j can be constructed

as S j = {xi|yi j = 1} or S j = {xi|zi = j}, i = 1,2, · · · ,n; j = 1,2, · · · ,c. Define the following as the

connectivity between unlabeled vertex xi and labeled subset S j

ci j =
n

∑
m=1

aimym j = Ai.Y. j, (15)
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Algorithm 1 Greedy Max-Cut for Label Propagation

Input: the graph GA = {X,A}, the given labeled vertex Xl , and initial labels Y;

Initialization:

obtain the initial cut {S j} by assigning the labeled vertex Xl to each subset:

S j = {xi|yi j = 1}, j = 1,2, · · · ,c
unlabeled vertex set Xu = X\Xl ;

repeat

randomly select an unlabeled vertex xi ∈ Xu

compute the connectivity ci j, j = 1,2, · · · ,c
place the vertex to the labeled subject S j∗ :

j∗ = argmin j ci j

add xi to Xl: Xl ←− Xl +xi;

remove xi from Xu: Xu←− Xu−xi;

until Xu = /0

Output: the final cut and the corresponding labeled subsets S j, j = 1,2, · · · ,c

where Ai. is the i’th row vector of A and Y. j is the j’th column vector of Y. Intuitively, ci j represents

the sum of edge weights between vertex xi and label set S j given the graph GA with edge weights A.

Based on this definition, a straightforward local search for the maximum cut involves placing each

unlabeled vertex xi ∈ Xu in the labeled subset S j with minimum connectivity ci j to maximize the

cross-set edge weights as shown in Algorithm (1). In order to achieve a good solution Algorithm (1)

should be run multiple times with different random seeds after which the best cut overall is output

(Mathieu and Schudy, 2008).

While the above method is computationally cumbersome, it still does not resolve the issue of

undesired local optima and may generate biased cuts. According to the definition in Equation (15),

the initialized labels determine the connectivity between unlabeled vertices and labeled subsets. If

the computed connectivity is negative, the above random search will prefer assigning unlabeled

vertices to the label set with the most labeled vertices which results in biased partitioning. Such

biased partitioning also occurs in minimum cut problems over an undirected graph with positive

weights (Shi and Malik, 2000). Other label initialization problems may also produce a poor cut.

For example, the numbers of labels from different classes may deviate from the underlying class

proportions. Alternatively, the labeled vertices may be outliers and lie in regions of the graph

with low density. Such labels often lead to weak label prediction results (Wang et al., 2008a).

Furthermore, the algorithm’s random selection of an unlabeled vertex results in unstable predictions

since the chosen unlabeled vertex xi could have equally low connectivity to multiple label subsets

S j.

To address the aforementioned issues, we first modify the original definition of connectivity to

alleviate label imbalance across different classes. A weighted connectivity is computed as

ci j = p j ·
n

∑
m=1

λmaimym j = p j ·ΛΛΛAi.Y. j. (16)

The diagonal matrix ΛΛΛ = diag([λ1, λ2, · · · , λn] is called the label weight matrix as in Equation (10)

λi =

{

di/dS j
: if xi ∈ S j, j = 1, · · · ,c

0 : otherwise,

788



SEMI-SUPERVISED LEARNING USING GREEDY MAX-CUT

Algorithm 2 Greedy Gradient based Max-Cut for Label Propagation

Input: the graph GA = {X,A} and the given labeled vertex Xl , and initial label Y;

Initialization:

obtain the initial cut {S j} through assigning the labeled vertex Xl to each subset:

S j = {xi|yi j = 1}, j = 1,2, · · · ,c
unlabeled vertex set Xu = X\Xl ;

repeat

for all j = 0 to |Xu| do

compute weighted connectivity:

ci j =
n

∑
k=1

λiaikyk j,xi ∈ Xu, j = 1, · · · ,c
end for

update the cut {Si} by placing the vertex xi∗ to the S j∗’th subset:

(i∗, j∗) = arg min
i, j,xi∈Xu

ci j

add xi to Xl: Xl ←− Xl +xi;

remove xi from Xu: Xu←− Xu−xi;

until Xu = /0

Output: the final cut and the corresponding labeled subsets S j, j = 1,2, · · · ,c

where dS j
= ∑xm∈S j

dm is the sum of the degrees of the vertices in the label set S j. This heuristic

setting weights the importance of each label based on degree which alleviates the adverse impact of

outliers. If we ignore class priors, this definition of ΛΛΛ coincides with the one in Equation (10).

Finally, to handle any instability due to the random search algorithm, we propose a greedy

gradient search approach where the most beneficial vertex is assigned to the label set with minimum

connectivity. In other words, we first compute the connectivity matrix C = {ci j} ∈ R
n×c that gives

the connectivity between all unlabeled vertices to existing label sets

C = AΛΛΛY.

Then we examine C to identify the element (i∗, j∗) with minimum value as

(i∗, j∗) = arg min
i, j:xi∈Xu

ci j.

This means that the unlabeled vertex xi∗ has the least connectivity with label set S j∗ . Then, we

update the labeled set S j∗ by adding vertex xi∗ as one greedy step to maximize the cross-set edge

weights. This greedy search can be repeated until all the unlabeled vertices are assigned to labeled

sets. In each iteration of the greedy cut process, the weighted connectivity of all unlabeled vertices

to labeled sets is re-computed. Then the vertex with minimum connectivity is placed in the proper

labeled set. The algorithm is summarized in Algorithm (2).

The connectivity matrix C can also be viewed as the gradient of the cost function Q in Equa-

tion (12) with respect to Ỹ. This is precisely the same setting used in Equation (13) of the alternating

minimization algorithm

C =
∂Q

∂Ỹ
= AΛΛΛY.

789



WANG, JEBARA AND CHANG

We name the algorithm greedy gradient Max-Cut (GGMC) since, in the greedy step, the unla-

beled vertices are assigned labels in a manner that reduces the value of Q along the direction of

the steepest descent. Consider both the variables Y and F in the original bivariate formulation in

Equation (9). The greedy Max-Cut method is equivalent to the alternating minimization procedure

discussed earlier. Unlike graph-cut based SSL methods such as mincuts (Blum and Chawla, 2001;

Blum et al., 2004), our GGMC algorithm tends to generate more natural graph cuts and avoid biased

solutions since it uses a weighted connectivity matrix. This allows it to effectively handle the issues

mentioned earlier and, in practice, achieve significant gains in accuracy while retaining efficiency.

4.3 Complexity and Speed Up

Assume the graph has n = |X| vertices and a subset Xl with l = |Xl| labeled vertices (where l≪ n).

The greedy gradient algorithm terminates after at most n− l ≃ n iterations. In each iteration of

the greedy gradient algorithm, the connectivity matrix C is updated by a matrix multiplication (an

n× n-matrix is multiplied by a n× c-matrix). Hence, the complexity of the greedy algorithm is

O(cn3).
However, the greedy algorithm can be greatly accelerated in practice. For example, the com-

putation of the connectivity in Equation (16) can be done incrementally after assigning each new

unlabeled vertex to a certain label set. This circumvents the re-calculation of all the entries in the

C matrix. Assume in the t’th iteration the connectivity is Ct and an unlabeled vertex xi with degree

di is assigned to the labeled set S j. Clearly, for all remaining unlabeled vertices, the connectivity

to the labeled sets remains unchanged except for the j’th labeled set. In other words, only the j’th

column of C needs updating. This update is performed incrementally via

Ct+1
. j =

dS t
j

dS t+1
j

Ct
. j +

di

dS t+1
j

A.i,

where dS t+1
j

= dS t
j
+di is the sum of the degrees of the labeled vertices after assigning xi to the labeled

set S j. This incremental update reduces the complexity of the greedy gradient search algorithm to

O(n2).

5. Experiments

In this section, we demonstrate the superiority of the proposed GGMC method over state-of-the-art

semi-supervised learning methods using both synthetic and real data. Previous work showed that

LapSVM and LapRLS outperform other semi-supervised approaches such as Transductive SVMs

TSVM (Joachims, 1999) and ∇TSVM (Chapelle and Zien, 2005). Therefore, we limit our compar-

isons to only the LapRLS, LapSVM (Sindhwani et al., 2005; Belkin et al., 2005), LGC (Zhou et al.,

2004) and GFHF (Zhu et al., 2003). To set various hyper-parameters such as γI,γr in LapRLS and

LapSVM, we followed the default configurations used in the literature. Similarly, for GGMC and

LGC, we set the hyper-parameter µ = 0.01 across all data sets. For the computational cost, GGMC,

LGC and GFHF required very similar run-times to output a prediction. However, LapRLS and

LapSVM need significant longer training time, especially for multiple-class problems since multiple

rounds of one-vs-all training have to be performed.

As in Section 2, any real implementation of graph-based SSL needs a graph construction method

algorithm that builds a graph from the training data X. This is then followed by a sparsification
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Figure 4: Experimental results on the noisy two-moon data set simulating different graph construc-

tion approaches and label conditions. Figures a) d) g) use binary weighting. Figures b)

e) h) use fixed Gaussian kernel weighting. Figures c) f) i) use adaptive Gaussian kernel

weighting. Figures a) b) c) vary the number of labels. Figures d) e) f) vary the value of k

in the graph construction. Figures g) h) i) vary the label imbalance ratio.

procedure to generate the sparse connectivity matrix B and a weighting procedure to obtain weights

on the edges in B. In these experiments, we used the same graph construction procedure for all the

SSL algorithms. The sparsification was done using the standard k-nearest-neighbors approach and

the edge weighting involved either binary weighting or Gaussian kernel weighting. In the latter case,

the ℓ2 distance dℓ2
(xi,x j) is used and the kernel bandwidth σ is estimated in two different ways. The

first estimate uses a fixed σ defined as the average distance between each selected sample and its k’th

nearest neighbor (Chapelle et al., 2006). In addition, a second adaptive approach is also considered

which locally estimates the parameter σ to the mean distance in the k-nearest neighborhoods of the

samples xi and x j (Wang et al., 2008a).
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Figure 5: Experimental results on the USPS digits data set under varying levels of labeling using:

a) binary weighting; b) fixed Gaussian kernel weighting and c) adaptive Gaussian kernel

weighting.

5.1 Noisy Two-Moon Data Set

We first compared GGMC with several representative SSL algorithms using the noisy two-moon

data set shown in Figure 3. Despite the near-perfect classification results reported on clean versions

of this data set (Sindhwani et al., 2005; Zhou et al., 2004), small amounts of noise quickly degrade

the performance of previous algorithms. In Figure 3, two separable manifolds containing 600 two-

dimensional points are mixed with 100 noisy outlier samples. The noise foils previous methods

which are sensitive to the locations of the initial labels, disproportional sampling from the classes,

and outlier noise. All experiments are repeated with 100 independent folds with random sampling

to show the average error rate of each algorithm.

The first group of experiments varies the number of labels provided to the algorithms. We

uniformly used k = 6 in the k-nearest-neighbors graph construction and applied the aforementioned

three edge-weighting schemes. The average error rates of the predictions on the unlabeled points is

shown in Figures 4(a), 4(b) and 4(c). These correspond to binary edge weighting, fixed Gaussian

kernel edge weighting, and adaptive Gaussian kernel edge weighting, respectively. The results

clearly show that GGMC is robust to the size of the label set and and generates perfect prediction

results for all three edge-weighting schemes.

The second group of experiments demonstrate the influence of the number of edges (i.e., the

value of k) in the graph construction method. We varied the value of k from 4 to 20 and Figures 4(d),

4(e), and 4(f) show results for the different edge-weighting schemes. Once again, GGMC achieves

significantly better performance in most cases.

Finally, we studied the effect of imbalanced labeling on the SSL algorithms. We fix one class

to have only one label and then randomly select r labels from the other classes. Here, r indicates

the imbalance ratio and we study the range 1 ≤ r ≤ 20. Figures 4(g), 4(h), and 4(i) show the

results with different edge-weighting schemes. Clearly, GGMC is insensitive to the imbalance since

it computes a per-class label weight normalization which compensates directly for differences in

label proportions.

In summary, Figure 4 depicted the performance advantages of GGMC relative to LGC, GFHF,

LapRLS, and LapSVM methods. We clearly see that the four previous algorithms are sensitive to

the initial labeling conditions and none of them produces perfect prediction. Furthermore, the error

rates of LGC and GFHF increase significantly when labeling becomes imbalanced, even if many
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Figure 6: Performance of LGC, GFHF, LapRLS, LapSVM, and GGMC algorithms using the UCI

data sets. The horizontal axis is the number of training labels provided while the vertical

axis is the average error rate achieved over 100 random folds. Results are based on k-

nearest neighbor graphs shown in a) for the Iris data set, in b) for the Wine data set and

in c) for the Breast Cancer data set. Results are based on b-matched graphs shown in d)

for the Iris data set, in e) for the Wine data set and in f) for the Breast Cancer data set.

labels are made available. However, GGMC achieves high accuracy regardless of the imbalance

ratio and the size of the label set. Furthermore, GGMC remains robust to the graph construction

procedure and the edge-weighting strategy.

5.2 Handwritten Digit Data Set

We also evaluated the algorithms in an image recognition task where handwritten digits in the USPS

database are to be annotated with the appropriate label {0,1, . . . ,9}. The data set contains gray scale

handwritten digit images involving 16×16 pixels. We randomly sampled a subset of 4000 samples

from the data. For all the constructed graphs, we used the k-nearest-neighbors algorithm with k = 6

and tried the three different edge-weighting schemes above. We varied the total number of labels

from 20 to 100 while guaranteeing that each digit class had at least one label. For each setting, the

average error rate was computed over 20 random folds.

The experimental results are shown in Figures 5(a), 5(b), and 5(c) which correspond to the three

different edge-weighting schemes. As usual, GGMC significantly improves classification accuracy

relative to other approaches, especially when few labeled training examples are available. The

average error rates of GGMC are consistently low with small standard deviations. This demonstrates

that the GGMC method is less sensitive to the number and locations of the initial training labels.
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Figure 7: Performance of LGC, GFHF, LapRLS, LapSVM, and GGMC algorithms using the COIL-

20 and Animal data sets. The horizontal axis is the number of training labels provided

while the vertical axis is the average error rate. Results are shown in a) for the COIL-210

object data set, and in b) for the Animal data set.

5.3 UCI Data Sets

We tested GGMC and the other algorithms on benchmark data sets from the UCI Machine Learning

Repository (Frank and Asuncion, 2010). Specifically, we used the Iris, Wine, and Breast Cancer

data sets. The numerical attributes of the data sets are all normalized to span the range [0,1]. For all

three data sets, we used a k-nearest-neighbors graph construction procedure with k = 6 and explored

the Gaussian kernel with fixed bandwidth as the edge-weighting scheme, where the bandwidth is

set as the average distance between each selected sample and its k’th nearest neighbor.

Figure 6 shows the performance of the various SSL algorithms. The vertical axis is the average

error rate computed over 100 random folds and the horizontal axis shows the number of labeled sam-

ples provided at training time. Besides using the k-nearest neighbor graphs, we also evaluated the

perform using the b-matched graphs on this data set. The GGMC method significantly outperforms

other algorithms in most test cases, especially when little labeled data is available.

5.4 COIL-20 Object Images

We investigated the object recognition problem using the well-known Columbia Object Image Li-

brary (COIL-20), which contains 1440 gray-scale images of 20 objects (Nene et al., 1996). The

images sequences were obtained when the objects were placed on a turntable table with black

background, where one image was taken for each 5-degree interval. As with UCI data sets, we

constructed kNN graphs with k = 6 and used a fixed bandwidth for edge weighting. The number of

given labels from all object categories was varied from 20 to 40 with the guarantee that each object

class has at least one label. Figure 7(a) shows the performance curves in terms of the average error

rate of 100 random tests, where GGMC outperformed all other methods.
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5.5 NEC Animal Data Set

The NEC Animal data set contains sequences of images of 60 toy animals and has been used as a

benchmark data set for image and video classification (Mobahi et al., 2009). Each toy animal has

around 72 images taken at different poses. The data set contains a total of 4371 images, each of

size 580× 480 pixels. In the experiments, the images were re-sized to 96× 72 pixels and the grey

intensity was used as the feature representation. The previous graph construction methodology was

followed and algorithm performance was evaluated using the average error rate across 100 random

folds with the number of initial labels varying from 60 to 100. In the experiments, the GGMC

method again achieved the best performance among all tested methods. In particular, when given

very sparse labels, that is, one label per class, GGMC produced significantly lower error rates.

6. Conclusion and Discussion

The performance of existing graph-based SSL methods depends heavily on the availability of accu-

rate initial labels and good connectivity structure. Otherwise, performance can significantly degrade

if labels are not distributed evenly across classes, if the initial label locations are biased, or if noise

and outliers corrupt the underlying manifold structure. These problems arise in many real world

data sets and limit the performance of state-of-the-art SSL algorithms. Furthermore, several heuris-

tic choices in the SSL approach require considerable exploratory work by the practitioner before the

methods perform well in a specific problem domain.

This article addressed these shortcomings and proposed a novel graph-based semi-supervised

learning method named greedy gradient Max-Cut (GGMC). Our main contributions include:

1. Extending the existing univariate quadratic regularization framework to an optimization over

both label matrix and classification function. Such an extension allows us to treat input labels

as part of the optimization problem and thereby alleviate SSL’s sensitivity to initial labels.

2. Demonstrating that the bivariate formulation is actually a mixed integer programming prob-

lem which can be reduced to a binary integer programming (BIP) problem. In addition, we

show that an alternating minimization procedure can be used to derive a locally optimal solu-

tion.

3. Proving that the proposed bivariate formulation is equivalent to a Max-Cut problem for the

two-class case and proving that it is equivalent to a Maximum K-cut problem for the multi-

class case. In addition, we proposed an efficient solution with O(n2) complexity. This greedy

gradient Max-Cut (GGMC) solution presents a different interpretation for the alternating min-

imization procedure from a graph cut view.

Unlike other graph-cut based SSL methods such as min-cut (Blum and Chawla, 2001; Blum

et al., 2004), the proposed GGMC algorithm tends to generate more natural graph cuts and avoids

biased solutions. In addition, it uses a weighted connectivity matrix to normalize the label matrix.

The result is a solution that can cope with all the aforementioned degeneracies. It improves accuracy

in practice while remaining efficient. Future work will extend the proposed methods to out-of-

sample settings where additional data points are added to the prediction problem without requiring a

full retraining procedure. Another interesting extension of the bivariate framework is active learning

which can potentially reduce the amount of labels necessary for accurate prediction (Goldberg et al.,

2011).
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Appendix A. Multi-Class Case as a Max K-Cut Problem

Here, we show that K-class bivariate graph transduction is equivalent to a Max K-Cut problem. If

the number of classes is K, the label variable Y is a n×K matrix denoting the classification result.

Therein, Yi j = 1 indicates that vertex xi is assigned the label j. We rewrite the cost function in

Equation (8) as

Q (Y) =
1

2
tr
(

Y⊤AY
)

=
1

2

K

∑
k=1

Y⊤.kAY.k.

Let yk = Y.k be a column vector of Y. Let the non-zero elements in yk denote the vertices in subset

Sk, where k = 1,2, · · · ,K, S1 ∪ S2 ∪ · · · ∪ SK = VA, and Sm ∩ Sn = /0 if m 6= n. Then the above cost

function is equivalent to

Q (y1,y2, · · · ,yK) =
1
2

K

∑
k=1

y⊤k Ayk = ∑
xi ,x j∈Sk

i< j

Ai j

= ∑
i< j

Ai j−
K−1

∑
m=1

K

∑
n=m+1

∑
xi∈Sm
x j∈Sn

Ai j.

Therefore the original minimization problem is equivalent to maximizing the sum of the weight of

the edges between the disjoint sets Sk, that is, the maximum K-cut problem

max
S1,...,SK

K−1

∑
m=1

K

∑
n=m+1

∑
xi∈Sm
x j∈Sn

Ai j.
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