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Abstract

We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary

example of the target matrix is the inverse of a population covariance or correlation matrix. The

algorithm first estimates each column of the target matrix by the scaled Lasso and then adjusts

the matrix estimator to be symmetric. The penalty level of the scaled Lasso for each column is

completely determined by data via convex minimization, without using cross-validation.

We prove that this scaled Lasso method guarantees the fastest proven rate of convergence in

the spectrum norm under conditions of weaker form than those in the existing analyses of other ℓ1

regularized algorithms, and has faster guaranteed rate of convergence when the ratio of the ℓ1 and

spectrum norms of the target inverse matrix diverges to infinity. A simulation study demonstrates

the computational feasibility and superb performance of the proposed method.

Our analysis also provides new performance bounds for the Lasso and scaled Lasso to guar-

antee higher concentration of the error at a smaller threshold level than previous analyses, and to

allow the use of the union bound in column-by-column applications of the scaled Lasso without

an adjustment of the penalty level. In addition, the least squares estimation after the scaled Lasso

selection is considered and proven to guarantee performance bounds similar to that of the scaled

Lasso.

Keywords: precision matrix, concentration matrix, inverse matrix, graphical model, scaled Lasso,

linear regression, spectrum norm

1. Introduction

We consider the estimation of the matrix inversion Θ∗ satisfying ΣΘ∗ ≈ I for a given data matrix

Σ. When Σ is a sample covariance matrix, our problem is the estimation of the inverse of the

corresponding population covariance matrix. The inverse covariance matrix is also called precision

matrix or concentration matrix. With the dramatic advances in technology, the number of variables

p, or the size of the matrix Θ∗, is often of greater order than the sample size n in statistical and

engineering applications. In such cases, the sample covariance matrix is always singular and a

certain type of sparsity condition is typically imposed for proper estimation of the precision matrix

and for theoretical investigation of the problem. In a simple version of our theory, this condition is
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expressed as the ℓ0 sparsity, or equivalently the maximum degree, of the target inverse matrix Θ∗.
A weaker condition of capped ℓ1 sparsity is also studied to allow many small signals.

Several approaches have been proposed to the estimation of sparse inverse matrices in high-

dimensional setting. The ℓ1 penalization is one of the most popular methods. Lasso-type methods,

or convex minimization algorithms with the ℓ1 penalty on all entries of Θ∗, have been developed

in Banerjee et al. (2008) and Friedman et al. (2008), and in Yuan and Lin (2007) with ℓ1 penal-

ization on the off-diagonal matrix only. This is refereed to as the graphical Lasso (GLasso) due

to the connection of the precision matrix to Gaussian Markov graphical models. In this GLasso

framework, Ravikumar et al. (2008) provides sufficient conditions for model selection consistency,

while Rothman et al. (2008) provides the convergence rate {((p+ s)/n) log p}1/2 in the Frobenius

norm and {(s/n) log p}1/2 in the spectrum norm, where s is the number of nonzero off-diagonal

entries in the precision matrix. Concave penalty has been studied to reduce the bias of the GLasso

(Lam and Fan, 2009). Similar convergence rates have been studied under the Frobenius norm in

a unified framework for penalized estimation in Negahban et al. (2012). Since the spectrum norm

can be controlled via the Frobenius norm, this provides a sufficient condition (s/n) log p→ 0 for

the convergence to the unknown precision matrix under the spectrum norm. However, in the case

of p ≥ n, this condition does not hold for banded precision matrices, where s is of the order of the

product of p and the width of the band.

A potentially faster rate d
√

(log p)/n can be achieved by ℓ1 regularized estimation of individual

columns of the precision matrix, where d, the matrix degree, is the largest number of nonzero entries

in a column. This was done in Yuan (2010) by applying the Dantzig selector to the regression of

each variable against others, followed by a symmetrization step via linear programming. When

the ℓ1 operator norm of the precision matrix is bounded, this method achieves the convergence

rate d
√

(log p)/n in ℓq matrix operator norms. The CLIME estimator (Cai et al., 2011), which

uses the Dantzig selector directly to estimate each column of the precision matrix, also achieves the

d
√
(log p)/n rate under the boundedness assumption of the ℓ1 operator norm. In Yang and Kolaczyk

(2010), the Lasso is applied to estimate the columns of the target matrix under the assumption

of equal diagonal, and the estimation error is studied in the Frobenius norm for p = nν. This

column-by-column idea reduces a graphical model to p regression models. It was first introduced

by Meinshausen and Bühlmann (2006) for identifying nonzero variables in a graphical model, called

neighborhood selection. In addition, Rocha et al. (2008) proposed a pseudo-likelihood method by

merging all p linear regressions into a single least squares problem.

In this paper, we propose to apply the scaled Lasso (Sun and Zhang, 2012) column-by-column

to estimate a precision matrix in the high dimensional setting. Based on the connection of preci-

sion matrix estimation to linear regression, we construct a column estimator with the scaled Lasso,

a joint estimator for the regression coefficients and noise level. Since we only need a sample co-

variance matrix as input, this estimator could be extended to generate an approximate inverse of a

nonnegative-definite data matrix in a more general setting. This scaled Lasso algorithm provides

a fully specified map from the space of nonnegative-definite matrices to the space of symmetric

matrices. For each column, the penalty level of the scaled Lasso is determined by data via convex

minimization, without using cross-validation.

We study theoretical properties of the proposed estimator for a precision matrix under a nor-

mality assumption. More precisely, we assume that the data matrix is the sample covariance matrix

Σ = XT X/n, where the rows of X are iid N(0,Σ∗) vectors. Let R∗ = (diagΣ∗)−1/2Σ∗(diagΣ∗)−1/2

be the population correlation matrix. Our target is to estimate the inverse matrices Θ∗ = (Σ∗)−1 and
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Ω∗ = (R∗)−1. Define

d = max
1≤ j≤p

#{k : Θ∗jk 6= 0}. (1)

A simple version of our main theoretical result can be stated as follows.

Theorem 1 Let Θ̂ and Ω̂ be the scaled Lasso estimators defined in (4), (7) and (9) below with

penalty level λ0 = A
√

4(log p)/n, A > 1, based on n iid observations from N(0,Σ∗). Suppose the

spectrum norm of Ω∗ = (diagΣ∗)1/2Θ∗(diagΣ∗)1/2 is bounded and that d2(log p)/n→ 0. Then,

‖Ω̂−Ω∗‖2 = OP(1)d
√
(log p)/n = o(1),

where ‖·‖2 is the spectrum norm (the ℓ2 matrix operator norm). If in addition the diagonal elements

of Θ∗ is uniformly bounded, then

‖Θ̂−Θ∗‖2 = OP(1)d
√
(log p)/n = o(1).

Theorem 1 provides a simple boundedness condition on the spectrum norm of Ω∗ for the con-

vergence of Ω̂ in spectrum norm with sample size n≫ d2 log p. The additional condition on the

diagonal of Θ∗ is natural due to scale change. The boundedness condition on the spectrum norm of

(diagΣ∗)1/2Θ∗(diagΣ∗)1/2 and the diagonal of Θ∗ is weaker than the boundedness of the ℓ1 operator

norm assumed in Yuan (2010) and Cai et al. (2011) since the boundedness of diagΣ∗ is also needed

there. When the ratio of the ℓ1 operator norm and spectrum norm of the precision matrix diverges to

infinity, the proposed estimator has a faster proven convergence rate. This sharper result is a direct

consequence of the faster convergence rate of the scaled Lasso estimator of the noise level in linear

regression. To the best of our knowledge, it is unclear if the ℓ1 regularization method of Yuan (2010)

and Cai et al. (2011) also achieve the convergence rate under the weaker spectrum norm condition.

An important advantage of the scaled Lasso is that the penalty level is automatically set to

achieve the optimal convergence rate in the regression model for the estimation of each column of

the inverse matrix. This raises the possibility for the scaled Lasso to outperform methods using a

single unscaled penalty level for the estimation of all columns such as the GLasso and CLIME. We

provide an example in Section 7 to demonstrate the feasibility of such a scenario.

Another contribution of this paper is to study the scaled Lasso at a smaller penalty level than

those based on ℓ∞ bounds of the noise. The ℓ∞-based analysis requires a penalty level λ0 satisfying

P{N(0,1/n) > λ0/A} = ε/p for a small ε and A > 1. For A ≈ 1 and ε = po(1), this penalty level

is comparable to the universal penalty level
√
(2/n) log p. However, ε = o(1/p), or equivalently

λ0 ≈
√
(4/n) log p, is required if the union bound is used to simultaneously control the error of p

applications of the scaled Lasso in the estimation of individual columns of a precision matrix. This

may create a significant gap between theory and implementation. We close this gap by providing

a theory based on a sparse ℓ2 measure of the noise, corresponding to a penalty level satisfying

P{N(0,1/n) > λ0/A} = k/p with A > 1 and a potentially large k. This penalty level provides

a faster convergence rate than the universal penalty level in linear regression when log(p/k) ≈
log(p/‖β‖0)≪ log p. Moreover, the new analysis provides a higher concentration of the error

so that the same penalty level λ0 ≈
√
(2/n) log(p/k) can be used to simultaneously control the

estimation error in p applications of the scaled Lasso for the estimation of a precision matrix.
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The rest of the paper is organized as follows. In Section 2, we present the scaled Lasso method

for the estimation of the inversion of a nonnegative definite matrix. In Section 3, we study the

estimation error of the proposed method. In Section 4, we provide a theory for the Lasso and its

scaled version with higher proven concentration at a smaller, practical penalty level. In Section

5, we study the least square estimation after the scaled Lasso selection. Simulation studies are

presented in Section 6. In Section 7, we discuss the benefits of using the scaled penalty levels for

the estimation of different columns of the precision matrix, compared with an optimal fixed penalty

level for all columns. An appendix provides all the proofs.

We use the following notation throughout the paper. For real x, x+ = max(x,0). For a vec-

tor v = (v1, . . . ,vp), ‖v‖q = (∑ j |v j|q)1/q is the ℓq norm with the special ‖v‖ = ‖v‖2 and the usual

extensions ‖v‖∞ = max j |v j| and ‖v‖0 = #{ j : v j 6= 0}. For matrices M, Mi,∗ is the i-th row and

M∗, j the j-th column, MA,B represents the submatrix of M with rows in A and columns in B,

‖M‖q = sup‖v‖q=1 ‖Mv‖q is the ℓq matrix operator norm. In particular, ‖·‖2 is the spectrum norm for

symmetric matrices. Moreover, we may denote the set { j} by j and denote the set {1, . . . , p}\{ j}
by − j in the subscript.

2. Matrix Inversion via Scaled Lasso

Let Σ be a nonnegative-definite data matrix and Θ∗ be a positive-definite target matrix with ΣΘ∗ ≈ I.

In this section, we describe the relationship between positive-definite matrix inversion and linear

regression and propose an estimator for Θ∗ via scaled Lasso, a joint convex minimization for the

estimation of regression coefficients and noise level.

We use the scaled Lasso to estimate Θ∗ column by column. Define σ j > 0 and β ∈ R
p×p by

σ2
j = (Θ∗j j)

−1, β∗, j =−Θ∗∗, jσ
2
j =−Θ∗∗, j(Θ

∗
j j)
−1.

In the matrix form, we have the following relationship

diagΘ∗ = diag(σ−2
j , j = 1, . . . , p), Θ∗ =−β(diagΘ∗). (2)

Let Σ∗=(Θ∗)−1. Since (∂/∂b− j)b
T Σ∗b= 2Σ∗− j,∗b= 0 at b= β∗, j, one may estimate the j-th column

of β by minimizing the ℓ1 penalized quadratic loss. In order to penalize the unknown coefficients

in the same scale, we adjust the ℓ1 penalty with diagonal standardization, leading to the following

penalized quadratic loss:

bT Σb/2+λ
p

∑
k=1

Σ
1/2

kk |bk|. (3)

For Σ = XT X/n and b j =−1, bT Σb = ‖x j−∑k 6= j bkxk‖2
2/n, so that (3) is the penalized loss for the

Lasso in linear regression of x j against {xk,k 6= j}. This is similar to the procedures in Yuan (2010)

and Cai et al. (2011) that use the Dantzig selector to estimate Θ∗∗, j column-by-column. However,

one still needs to choose a penalty level λ and to estimate σ j in order to recover Θ∗ via (2). A

solution to resolve these two issues is the scaled Lasso (Sun and Zhang, 2012):

{β̂∗, j, σ̂ j}= argmin
b,σ

{bT Σb

2σ
+

σ

2
+λ0

p

∑
k=1

Σ
1/2

kk |bk| : b j =−1
}

(4)
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with λ0 ≈
√
(2/n) log p. The scaled Lasso (4) is a solution of joint convex minimization in {b,σ}

(Huber and Ronchetti, 2009; Antoniadis, 2010). Since βT Σ∗β = (diagΘ∗)−1Θ∗(diagΘ∗)−1,

diag
(
βT Σ∗β

)
= (diagΘ∗)−1 = diag(σ2

j , j = 1, . . . , p).

Thus, (4) is expected to yield consistent estimates of σ j = (Θ∗j j)
−1/2.

An iterative algorithm has been provided in Sun and Zhang (2012) to compute the scaled Lasso

estimator (4). We rewrite the algorithm in the form of matrices. For each j ∈ {1, . . . , p}, the Lasso

path is given by the estimates β̂− j, j(λ) satisfying the following Karush-Kuhn-Tucker conditions:

for all k 6= j,

{
Σ
−1/2

kk Σk,∗β̂∗, j(λ) =−λsgn(β̂k, j(λ)), β̂k, j 6= 0,

Σ
−1/2

kk Σk,∗β̂∗, j(λ) ∈ λ[−1,1], β̂k, j = 0,
(5)

where β̂ j j(λ) = −1. Based on the Lasso path β̂∗, j(λ), the scaled Lasso estimator {β̂∗, j, σ̂ j} is

computed iteratively by

σ̂2
j ← β̂

T

∗, jΣβ̂∗, j, λ← σ̂ jλ0, β̂∗, j← β̂∗, j(λ). (6)

Here the penalty level of the Lasso is determined by the data without using cross-validation. We

then simply take advantage of the relationship (2) and compute the coefficients and noise levels by

the scaled Lasso for each column

diagΘ̃ = diag(σ̂−2
j , j = 1, . . . , p), Θ̃ =−β̂(diagΘ̃). (7)

Now we have constructed an estimator for Θ∗. In our primary example of taking Σ as a sample

covariance matrix, the target Θ∗ is the inverse covariance matrix. One may also be interested in

estimating the inverse correlation matrix

Ω∗ = (R∗)−1 =
{

D−1/2Σ∗D−1/2
}−1

= D1/2(Σ∗)−1D1/2, (8)

where D = diag(Σ∗) and R∗ = D−1/2Σ∗D−1/2 is the population correlation matrix. The diagonal

matrix D can be approximated by the diagonal of Σ. Thus, the inverse correlation matrix is estimated

by

Ω̃ = D̂
1/2

Θ̃D̂
1/2

with D̂ = diag(Σ j j, j = 1, . . . , p).

The estimator Ω̃ here is a result of normalizing the precision matrix estimator by the population

variances. Alternatively, we may estimate the inverse correlation matrix by using the population

correlation matrix

R = (diagΣ)−1/2Σ(diagΣ)−1/2 = D̂
−1/2

ΣD̂
−1/2

as data matrix. Let {α̂∗, j, τ̂ j} be the solution of (4) with R in place of Σ. We combine these column

estimators as in (7) to have an alternative estimator for Ω∗ as follows:

diag
(
Ω̃

Alt)
= diag(τ̂−2

j , j = 1, . . . , p), Ω̃
Alt

=−α̂diag
(
Ω̃

Alt)
.
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Since R j j = 1 for all j, it follows from (4) that

α̂∗, j = D̂
1/2

β̂∗, jD̂
−1/2

j j , τ̂ j = σ̂ jD̂
−1/2

j j .

This implies

Ω̃
Alt

=−D̂
1/2

β̂diag(D̂
−1/2

j j σ̂−2
j D̂ j j, j = 1, . . . , p) = D̂

1/2
Θ̃D̂

1/2
= Ω̃.

Thus, in this scaled Lasso approach, the estimator based on the normalized data matrix is exactly the

same as the one based on the original data matrix followed by a normalization step. The scaled Lasso

methodology is scale-free in the noise level, and as a result, the estimator for inverse correlation

matrix is also scale free in diagonal normalization.

It is noticed that a good estimator for Θ∗ or Ω∗ should be a symmetric matrix. However, the

estimators Θ̃ and Ω̃ do not have to be symmetric. We improve them by using a symmetrization step

as in Yuan (2010),

Θ̂ = argmin
M:MT=M

‖M− Θ̃‖1, Ω̂ = argmin
M:MT=M

‖M− Ω̃‖1, (9)

which can be solved by linear programming. It is obvious that Θ̂ and Ω̂ are both symmetric, but

not guaranteed to be positive-definite. It follows from Theorem 1 that Θ̂ and Ω̂ are positive-definite

with large probability. Alternatively, semidefinite programming, which is somewhat more expensive

computationally, can be used to produce a nonnegative-definite Θ̂ and Ω̂ in (9).

According to the definition, the estimators Θ̂ and Ω̂ have the same ℓ1 error rate as Θ̃ and Ω̃

respectively. A nice property of symmetric matrices is that the spectrum norm is bounded by the

ℓ1 matrix norm. The ℓ1 matrix norm can be expressed more explicitly as the maximum ℓ1 norm

of the columns, while the ℓ∞ matrix norm is the maximum ℓ1 norm of the rows. Hence, for any

symmetric matrix, the ℓ1 matrix norm is equivalent to the ℓ∞ matrix norm, and the spectrum norm

can be bounded by either of them. Since our estimators and target matrices are all symmetric, the

error bound based on the spectrum norm could be studied by bounding the ℓ1 error as typically done

in the existing literature. We will study the estimation error of (9) in Section 3.

To sum up, we propose to estimate the matrix inversion by (4), (7) and (9). The iterative algo-

rithm (6) computes (4) based on a Lasso path determined by (5). Then (7) translates the resulting

estimators of (6) to column estimators and thus a preliminary matrix estimator is constructed. Fi-

nally, the symmetrization step (9) produces a symmetric estimate for our target matrix.

3. Theoretical Properties

From now on, we suppose that the data matrix is the sample covariance matrix Σ = XT X/n, where

the rows of X are iid N(0,Σ∗). Let Θ∗ = (Σ∗)−1 be the precision matrix as the inverse of the

population covariance matrix. Let D be the diagonal of Σ∗, R∗ = D−1/2Σ∗D−1/2 the population

correlation matrix, Ω∗ = (R∗)−1 its inverse as in (8). In this section, we study Ω̂ and Θ̂ in (9),

respectively for the estimation of Ω∗ and Θ∗.
We consider a certain capped ℓ1 sparsity for individual columns of the inverse matrix as follows.

For a certain ε0 > 0, a threshold level λ∗,0 > 0 not depending on j and an index set S j ⊂ {1, . . . , p}\
{ j}, the capped ℓ1 sparsity condition measures the complexity of the j-th column of Ω∗ by

|S j|+(1− ε0)
−1 ∑

k 6= j,k 6∈S j

|Ω∗k j|
(Ω∗j j)

1/2λ∗,0
≤ s∗, j. (10)

3390



SPARSE MATRIX INVERSION WITH SCALED LASSO

The condition can be written as

∑
j 6=k

min

{
|Ω∗k j|

(1− ε0)(Ω∗j j)
1/2λ∗,0

,1

}
≤ s∗, j

if we do not care about the choice of S j. In the ℓ0 sparsity case of S j = {k : k 6= j,Ω∗k j 6= 0}, we may

set s∗, j = |S j|+1 as the degree for the j-th node in the graph induced by matrix Ω∗ (or Θ∗). In this

case, d = max j(1+ |S j|) is the maximum degree as in (1).

In addition to the sparsity condition on the inverse matrix, we also require a certain invertibility

condition on R∗. Let S j ⊆ B j ⊆ {1, . . . , p} \ { j}. A simple version of the required invertibility

condition can be written as

inf

{
uT (R∗− j,− j)u

‖uB j
‖2

2

: uB j
6= 0

}
≥ c∗ (11)

with a fixed constant c∗ > 0. This condition requires a certain partial invertibility of the population

correlation matrix. It certainly holds if the smallest eigenvalue of R∗− j,− j is no smaller than c∗ for all

j ≤ p, or the spectrum norm of Ω∗ is no greater than 1/c∗ as assumed in Theorem 1. In the proof of

Theorems 2 and 3, we only use a weaker version of condition (11) in the form of (35) with {Σ∗,Σ}
replaced by {R∗− j,− j,R− j,− j} there.

Theorem 2 Suppose Σ is the sample covariance matrix of n iid N(0,Σ∗) vectors. Let Θ∗ = (Σ∗)−1

and Ω∗ as in (8) be the inverses of the population covariance and correlation matrices. Let Θ̂ and Ω̂

be their scaled Lasso estimators defined in (4), (7) and (9) with a penalty level λ0 = A
√

4(log p)/n,

A > 1. Suppose (10) and (11) hold with ε0 = 0 and max j≤p(1+ s∗, j)λ0 ≤ c0 for a certain constant

c0 > 0 depending on c∗ only. Then, the spectrum norm of the errors are bounded by

‖Θ̂−Θ∗‖2 ≤ ‖Θ̂−Θ∗‖1 ≤C
(

max
j≤p

(
∥∥D−1
− j‖∞Θ∗j j)

1/2s∗, jλ0 +
∥∥Θ∗

∥∥
1
λ0

)
, (12)

‖Ω̂−Ω∗‖2 ≤ ‖Ω̂−Ω∗‖1 ≤C
(

max
j≤p

(Ω∗j j)
1/2s∗, jλ0 +‖Ω∗‖1λ0

)
, (13)

with large probability, where C is a constant depending on {c0,c∗,A} only. Moreover, the term

‖Θ∗‖1λ0 in (12) can be replaced by

max
j≤p
‖Θ∗∗, j‖1s∗, jλ

2
0 + τn(Θ

∗), (14)

where τn(M) = inf{τ : ∑ j exp(−nτ2/‖M∗, j‖2
1)≤ 1/e} for a matrix M.

Theorem 2 implies Theorem 1 due to s∗, j ≤ d−1, 1/D j j ≤ Θ∗j j ≤ ‖Θ∗‖2, ‖Θ∗‖1 ≤ d max j Θ∗j j

and similar inequalities for Ω∗. We note that B j = S j in (11) gives the largest c∗ and thus the sharpest

error bounds in Theorem 2. In Section 7, we give an example to demonstrate the advantage of this

theorem.

In a 2011 arXiv version of this paper (http://arxiv.org/pdf/1202.2723v1.pdf), we are able to

demonstrate good numerical performance of the scaled Lasso estimator with the universal penalty

level λ0 =
√

2(log p)/n, compared with some existing methods, but not the larger penalty level

λ0 >
√

4(log p)/n in Theorems 1 and 2. Since a main advantage of our proposal is automatic

3391



SUN AND ZHANG

selection of the penalty level without resorting to cross validation, a question arises as to whether a

theory can be developed for a smaller penalty level to match the choice in a demonstration of good

performance of the scaled Lasso in our simulation experiments.

We are able to provide an affirmative answer in this version of the paper by proving a higher

concentration of the error of the scaled Lasso at a smaller penalty level as follows. Let Ln(t) be the

N(0,1/n) quantile function satisfying

P
{

N(0,1)> n1/2Ln(t)
}
= t.

Our earlier analysis is based on existing oracle inequalities of the Lasso which holds with probability

1− 2ε when the inner product of design vectors and noise are bounded by their ε/p and 1− ε/p

quantiles. Application of the union bound in p applications of the Lasso requires a threshold level

λ∗,0 = Ln(ε/p2) with a small ε > 0, which matches
√

4(log p)/n with ε≍ 1/
√

log p in Theorems 1

and 2. Our new analysis of the scaled Lasso allows a threshold level

λ∗,0 = Ln−3/2(k/p)

with k ≍ s log(p/s), where s = 1+max j s∗, j. More precisely, we require a penalty level λ0 ≥ Aλ∗,0
with a constant A satisfying

A−1 > A1 ≥max
j

{[ e1/(4n−6)2

4k

m j(L4 +2L2)

]1/2

+
e1/(4n−6)2

L
√

2π

√
ψ j +

L1(ε/p)

L

√
ψ j

}
, (15)

where L = L1(k/p), s∗, j ≤ m j ≤ min(|B j|,C0s∗, j) with the s∗, j and B j in (10) and (11), and ψ j =
κ+(m j;R∗− j,− j)/m j +Ln(5ε/p2) with

κ+(m;Σ) = max
‖u‖0=m,‖u‖2=1

uT Σu. (16)

Theorem 3 Let {Σ,Σ∗,Θ∗,Ω∗} be matrices as in Theorem 2, and Θ̂ and Ω̂ be the scaled Lasso

estimators with a penalty level λ0 ≥ Aλ∗,0 where λ∗,0 = Ln−3/2(k/p). Suppose (10) and (11) hold

with certain {S j,s∗, j,ε0,B j,c∗}, (15) holds with constants {A,A1,C0} and certain integers m j, and

P{(1− ε0)
2 ≤ χ2

n/n≤ (1+ ε0)
2} ≤ ε/p. Then, there exist constants c0 depending on c∗ only and C

depending on {A,A1,C0,c∗,c0} only such that when max j s∗, jλ0 ≤ c0, the conclusions of Theorem

2 hold with at least probability 1−6ε−2k ∑ j(p−1−|B j|)/p.

The condition max j s∗, jλ0 ≤ c0 on (10), which controls the capped ℓ1 sparsity of the inverse

correlation matrix, weakens the ℓ0 sparsity condition d
√
(log p)/n→ 0.

The extra condition on the upper sparse eigenvalue κ+(m;R∗− j,− j) in (15) is mild, since it only

requires a small κ+(m;R∗)/m that is actually decreasing in m.

The invertibility condition (11) is used to regularize the design matrix in linear regression pro-

cedures. As we mentioned earlier, condition (11) holds if the spectrum norm of Ω∗ is bounded by

1/c∗. Since (R∗)−1 = Ω∗ = (diagΣ∗)1/2Θ∗(diagΣ∗)1/2, it suffices to have

‖(R∗)−1‖2 ≤maxΣ∗j j‖Θ∗‖2 ≤ 1/c∗.

To achieve the convergence rate d
√

(log p)/n, both Yuan (2010) and Cai et al. (2011) require con-

ditions ‖Θ∗‖1 = O(1) and maxΣ∗j j = O(1). In comparison, the spectrum norm condition is not only
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weaker than the ℓ1 operator norm condition, but also more natural for the convergence in spectrum

norm.

Our sharper theoretical results are consequences of using the scaled Lasso estimator (4) and its

fast convergence rate in linear regression. In Sun and Zhang (2012), a convergence rate of order

s∗(log p)/n was established for the scaled Lasso estimation of the noise level, compared with an

oracle noise level as the moment estimator based on the noise vector. In the context of the column-

by-column application of the scaled Lasso for precision matrix estimation, the results in Sun and

Zhang (2012) can be written as

∣∣∣
σ∗j
σ̂ j

−1

∣∣∣≤C1s∗, jλ
2
0, ∑

k 6= j

Σ
1/2

kk |β̂k, j−βk, j|
√

Θ∗j j ≤C2s∗, jλ0, (17)

where σ∗j = ‖Xβ∗, j‖2/
√

n. We note that n(σ∗j)
2Θ∗j j is a chi-square variable with n degrees of free-

dom when X has iid N(0,Σ∗) rows. The oracle inequalities in (17) play a crucial role in our analysis

of the proposed estimators for inverse matrices, as the following proposition attests.

Proposition 4 Let Θ∗ be a nonnegative definite target matrix, Σ∗=(Θ∗)−1, and β=−Θ∗(diagΘ∗)−1.

Let Θ̂ and Ω̂ be defined as (7) and (9) based on certain β̂ and σ̂ j satisfying (17). Suppose further

that

|Θ∗j j(σ
∗
j)

2−1| ≤C0λ0, max
j
|(Σ j j/Σ∗j j)

−1/2−1| ≤C0λ0, (18)

and that max{4C0λ0,4λ0,C1s∗, jλ0} ≤ 1. Then, (12) and (13) hold with a constant C depending on

{C0,C2} only. Moreover, if nΘ∗j j(σ
∗
j)

2 ∼ χ2
n, then the term λ0‖Θ∗‖1 in (12) can be replaced by (14)

with large probability.

While the results in Sun and Zhang (2012) requires a penalty level A
√
(2/n) log(p2) to allow

simultaneous application of (17) for all j≤ p via the union bound in proving Theorem 2, Theorem 3

allows a smaller penalty level λ∗,0 = ALn−3/2(k/p) with A> 1 and a potentially large k≍ s log(p/s).
This is based on new theoretical results for the Lasso and scaled Lasso developed in Section 4.

4. Linear Regression Revisited

This section provides certain new error bounds for the Lasso and scaled Lasso in the linear regres-

sion model. Compared with existing error bounds, the new results characterize the concentration of

the estimation and prediction errors at fixed, smaller threshold levels. The new results also allow

high correlation among certain nuisance design vectors.

Consider the linear regression model with standardized design and normal error:

y = Xβ+ ε, ‖x j‖2
2 = n, ε∼ N(0,σ2In).

Let λuniv =
√
(2/n) log p be the universal penalty level (Donoho and Johnstone, 1994). For the

estimation of β and variable selection, existing theoretical results with p≫ n typically require a

penalty level λ = Aσλuniv, with A > 1, to guarantee rate optimality of regularized estimators. This

includes the scaled Lasso with a jointly estimated σ. For the Dantzig selector (Candès and Tao,

2007), performance bounds have been established for A = 1.
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It is well understood that σλuniv in such theorems is a convenient probabilistic upper bound

of ‖XT ε/n‖∞ for controlling the maximum gradient of the squared loss ‖y−Xb‖2
2/(2n) at b = β̂.

For λ < ‖XT ε/n‖∞, variable selection is known to be inconsistent for the Lasso and most other

regularized estimates of β, and the analysis of such procedures become more complicated due to

false selection. However, this does not preclude the possibility that such a smaller λ outperforms

the theoretical λ≥ σλuniv for the estimation of β or prediction.

In addition to theoretical studies, a large volume of numerical comparisons among regularized

estimators exists in the literature. In such numerical studies, the choice of penalty level is typically

delegated to computationally more expensive cross-validation methods. Since cross-validation aims

to optimize prediction performance, it may lead to a smaller penalty level than λ= σλuniv. However,

this gap between λ≥ σλuniv in theoretical studies and the possible choice of λ < σλuniv in numerical

studies is largely ignored in the existing literature.

The purpose of this section is to provide rate optimal oracle inequalities for the Lasso and its

scaled version, which hold with at least probability 1− ε/p for a reasonably small ε, at a fixed

penalty level λ satisfying P{N(0,σ2/n)> λ/A}= k/p, with a given A > 1 and potentially large k,

up to k/(2log(p/k))2 ≍ s∗, where s∗ is a complexity measure of β, for example, s∗ = ‖β‖0.

When the (scaled) Lasso is simultaneously applied to p subproblems as in the case of matrix

estimation, the new oracle inequalities allow the use of the union bound to uniformly control the

estimation error in subproblems at the same penalty level.

Rate optimal oracle inequalities have been established for ℓ1 and concave regularized estimators

in Zhang (2010) and Ye and Zhang (2010) for penalty level λ=Aσ
√

c∗(2/n) log(p/(εs∗)), where c∗

is an upper sparse eigenvalue, A > 1 and 1−ε is the guaranteed probability for the oracle inequality

to hold. The new oracle inequalities remove the factors c∗ and ε from the penalty level, as long as

1/ε is polynomial in p. The penalty level Aσ
√
(2/n) log(p/(εs)) has been considered for models

of size s under ℓ0 regularization (Birge and Massart, 2001, 2007; Bunea et al., 2007; Abramovich

and Grinshtein, 2010).

To bound the effect of the noise when λ < ‖XT ε/n‖∞, we use a certain sparse ℓ2 norm to control

the excess of XT ε/n over a threshold level λ∗. The sparse ℓq norm was used in the analysis of

regularized estimators before (Candès and Tao, 2007; Zhang and Huang, 2008; Zhang, 2009; Cai

et al., 2010; Ye and Zhang, 2010; Zhang, 2010), but it was done without a formal definition of the

quantity to the best of our knowledge. To avoid repeating existing calculation, we define the norm

and its dual here and summarize their properties in a proposition.

For 1≤ q≤ ∞ and t > 0, the sparse ℓq norm and its dual are defined as

‖v‖(q,t) = max
|B|<t+1

‖vB‖q, ‖v‖∗(q,t) = max
‖u‖(q,t)≤1

uT v.

The following proposition describes some of their basic properties.

Proposition 5 Let m≥ 1 be an integer, q′ = q/(q−1) and aq = (1−1/q)/q1/(q−1).

(i) Properties of ‖ · ‖(q,m): ‖v‖(q,m) ↓ q, ‖v‖(q,m)/m1/q ↓ m, ‖v‖(q,m)/m1/q ↑ q,

‖v‖∞ = ‖v‖(q,1) ≤ ‖v‖(q,m) ≤ (‖v‖q)∧ (m1/q‖v‖∞),

and ‖v‖q
q ≤ ‖v‖q

(q,m)+(aq/m)q−1‖v‖q
1.

(ii) Properties of ‖ · ‖∗(q,m): m1/q‖v‖∗(q,m) ↓ q, and

max
(
‖v‖q′ ,m

−1/q‖v‖1

)
≤ ‖v‖∗(q,m) ≤min

(
‖v‖(q′,m/aq)+m−1/q‖v‖1,‖v‖1

)
.
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(iii) Let Σ = XT X/n and κ+(m;M) be the sparse eigenvalue in (16). Then,

‖Σv‖(2,m) ≤min
{

κ
1/2
+ (m;Σ)‖Σ1/2

v‖2,κ+(m;Σ)‖v‖2

}
.

4.1 Lasso with Smaller Penalty: Analytical Bounds

The Lasso path is defined as an R
p-valued function of λ > 0 as

β̂(λ) = argmin
b

{
‖y−Xb‖2

2/(2n)+λ‖b‖1

}
.

For threshold levels λ∗ > 0, we consider β satisfying the following complexity bound,

|S|+ ∑
j 6∈S

|β j|/λ∗ ≤ s∗ (19)

with a certain S ⊂ {1, . . . , p}. This includes the ℓ0 sparsity condition ‖β‖0 = s∗ with S = supp(β)
and allows ‖β‖0 to far exceed s∗ with many small |β j|.

The sparse ℓ2 norm of a soft-thresholded vector v, at threshold level λ∗ in (19), is

ζ(2,m)(v,λ∗) = ‖(|v|−λ∗)+‖(2,m) = max
|J|≤m

{
∑
j∈J

(|v j|−λ∗)
2
+

}1/2

. (20)

Let B⊆ {1, . . . , p} and

z = (z1, . . . ,zp)
T = XT ε/n.

We bound the effect of the excess of the noise over λ∗ under the condition

‖zBc‖∞ ≤ λ∗, ζ(2,m)(zB,λ∗)≤ A1m1/2λ∗, (21)

for some A1 ≥ 0. We prove that when λ≥ Aλ∗ with A > 1+A1 and (21) holds, a scaled version of

β̂(λ)−β belongs to a set U (Σ,S,B;A,A1,m,s∗−|S|), where

U (Σ,S,B;A,A1,m,m1) (22)

=
{

u : uT Σu+(A−1)‖uSc‖1 ≤ (A+1)‖uS‖1 +A1m1/2‖uB‖∗(2,m)+2Am1

}
.

This leads to the definition of

M∗pred = sup
{uT Σu/A2

m1 + |S|
: u ∈U (Σ,S,B;A,A1,m,m1)

}
(23)

as a constant factor for the prediction error of the Lasso and

M∗q = sup
{ ‖u‖q/A

(m1 + |S|)1/q
: u ∈U (Σ,S,B;A,A1,m,m1)

}
(24)

for the ℓq estimation error of the Lasso.

The following theorem provides analytic error bounds for the Lasso prediction and estimation

under the sparse ℓ2 norm condition (21) on the noise. This is different from existing analyses of the

Lasso based on the ℓ∞ noise bound ‖XT ε/n‖∞≤ λ∗. In the case of Gaussian error, (21) allows a fixed

threshold level λ∗=σ
√
(2/n) log(p/m) to uniformly control the error of p applications of the Lasso

for the estimation of a precision matrix. When m ≍ s∗ and σ
√
(2/n) log(p/m)≪ σ

√
(2/n) log p,

using such smaller λ∗ is necessary for achieving error bounds with the sharper rate corresponding

to σ
√
(2/n) log(p/m).
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Theorem 6 Suppose (19) holds with certain {S,s∗,λ∗}. Let A > 1, β̂ = β̂(λ) be the Lasso estimator

with penalty level λ≥ Aλ∗, h = β̂−β, and m1 = s∗−|S|. If (21) holds with A1 ≥ 0, a positive integer

m and B⊆ {1, . . . , p}, then

‖Xh‖2
2/n≤M∗preds∗λ

2, ‖h‖q ≤M∗qs
1/q
∗ λ. (25)

Remark 7 Theorem 6 covers ‖XT ε/n‖∞ ≤ λ∗ as a special case with A1 = 0. In this case, the

set (22) does not depend on {m,B}. For A1 = 0 and |S| = s∗ (m1 = 0), (22) contains all vectors

satisfying a basic inequality uT Σu+(A−1)‖uSc‖1 ≤ (A+1)‖uS‖1 (Bickel et al., 2009; van de Geer

and Bühlmann, 2009; Ye and Zhang, 2010) and Theorem 6 still holds when (22) is replaced by the

smaller

U−(Σ,S,A) =
{

u : ‖ΣS,∗u‖∞ ≤ A+1,u jΣ j,∗u≤−|u j|(A−1) ∀ j 6∈ S
}
.

Thus, in what follows, we always treat U (Σ,S,B;A,0,m,0) as U−(Σ,S,A) when A1 = 0 and |S|= s∗.
This yields smaller constants {M∗pred ,M

∗
q} in (23) and (24).

The purpose of including a choice B in (21) is to achieve bounded {M∗pred ,M
∗
1} in the presence

of some highly correlated design vectors outside S∪B when ΣS∪B,(S∪B)c is small. Since ‖uB‖∗(2,m)

is increasing in B, a larger B leads to a larger set (22) and larger {M∗pred ,M
∗
q}. However, (21)

with smaller B typically requires larger λ∗. Fortunately, the difference in the required λ∗ in (21)

is of smaller order than λ∗ between the largest B = {1, . . . , p} and smaller B with |Bc| ≤ p/m.

We discuss the relationship between {M∗pred ,M
∗
q} and existing conditions on the design in the next

section, along with some simple upper bounds for {M∗pred ,M
∗
1 ,M

∗
2}.

4.2 Scaled Lasso with Smaller Penalty: Analytical Bounds

The scaled Lasso estimator is defined as

{β̂, σ̂}= argmin
b,σ

{
‖y−Xb‖2

2/(2nσ)+λ0‖b‖1 +σ/2
}
, (26)

where λ0 > 0 is a scale-free penalty level. In this section, we describe the implication of Theorem

6 on the scaled Lasso.

A scaled version of (19) is

|S|+ ∑
j 6∈S

|β j|/(σ∗λ∗,0) = s∗,0 ≤ s∗, (27)

where σ∗ = ‖ε‖2/
√

n is an oracle estimate of the noise level and λ∗,0 > 0 is a scaled threshold level.

This holds automatically under (19) when S ⊇ supp(β). When βSc 6= 0, (27) can be viewed as an

event of large probability. When

|S|+(1− ε0)
−1 ∑

j 6∈S

|β j|
σλ∗,0

≤ s∗ (28)

and ε∼ N(0,σIn), P
{

s∗,0 ≤ s∗
}
≥ P

{
χ2

n/n≥ (1− ε0)
2
}
→ 1 for fixed ε0 > 0. Let

M∗σ = sup
u∈U

{
uT Σu

s∗A2
+

2‖u‖1

s∗A2
+

2A1m1/2‖uB‖∗(2,m)

s∗A2

}
(29)
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with U = U (Σ,S,B;A,A1,m,m1) in (22), as in (23) and (24). Set

η∗ = M∗σA2λ2
∗,0s∗, λ0 ≥ Aλ∗,0/

√
(1−η∗)+, η0 = M∗σλ2

0s∗.

Theorem 8 Suppose η0 < 1. Let {β̂, σ̂} be the scaled Lasso estimator in (26), φ1 = 1/
√

1+η0,

φ2 = 1/
√

1−η0, and σ∗ = ‖ε‖2/
√

n. Suppose (21) holds with {zB,λ∗} replaced by {zB/σ∗,λ∗,0}.
(i) Let h∗ = (β̂−β)/σ∗. Suppose (27) holds. Then,

φ1 < σ̂/σ∗ < φ2, ‖Xh∗‖2
2/n < M∗preds∗(φ2λ0)

2, ‖h∗‖q < M∗qs∗φ2λ0. (30)

(ii) Let h = β̂−β. Suppose (28) holds and 1− ε0 ≤ σ∗/σ≤ 1+ ε0. Then,

(1− ε0)φ1 < σ̂/σ < φ2(1+ ε0), (31)

‖Xh‖2
2/n < (1+ ε0)

2M∗preds∗(σφ2λ0)
2,

‖h‖q < (1+ ε0)M
∗
qs∗σφ2λ0.

Compared with Theorem 6, Theorem 8 requires nearly identical conditions on the design X ,

the noise and penalty level under proper scale. It essentially allows the substitution of {y,X ,β} by

{y/σ∗,X ,β/σ∗} when η0 is small.

Theorems 6 and 8 require an upper bound (21) for the sparse ℓ2 norm of the excess noise as well

as upper bounds for the constant factors {M∗pred ,M
∗
q ,M

∗
σ} in (23), (24) and (29). Probabilistic upper

bounds for the noise and consequences of their combination with Theorems 6 and 8 are discussed

in Section 4.3. We use the rest of this subsection to discuss {M∗pred ,M
∗
q ,M

∗
σ}.

Existing analyses of the Lasso and Dantzig selector can be to used find upper bounds for

{M∗pred ,M
∗
q ,M

∗
σ} via the sparse eigenvalues (Candès and Tao, 2005, 2007; Zhang and Huang, 2008;

Zhang, 2009; Cai et al., 2010; Zhang, 2010; Ye and Zhang, 2010). In the simpler case A1 = m1 = 0,

shaper bounds can be obtained using the compatibility factor (van de Geer, 2007; van de Geer and

Bühlmann, 2009), the restricted eigenvalue (Bickel et al., 2009; Koltchinskii, 2009), or the cone in-

vertibility factors (Ye and Zhang, 2010; Zhang and Zhang, 2012). Detailed discussions can be found

in van de Geer and Bühlmann (2009), Ye and Zhang (2010) and Zhang and Zhang (2012) among

others. The main difference here is the possibility of excluding some highly correlated vectors from

B in the case of A1 > 0. The following lemma provide some simple bounds used in our analysis of

the scaled Lasso estimation of the precision matrix.

Lemma 9 Let {M∗pred ,M
∗
q ,M

∗
σ} be as in (23), (24) and (29) with the vector class

U (Σ,S,B;A,A1,m,m1) in (22). Suppose that for a nonnegative-definite matrix Σ, max j ‖Σ j,∗ −
Σ j,∗‖∞ ≤ λ∗ and c∗‖uS∪B‖2

2 ≤ uT Σu for u ∈U (Σ,S,B;A,A1,m,m1). Suppose further that λ∗{(s∗∨
m)/c∗}(2A+A1)

2 ≤ (A−A1−1)2
+/2. Then,

M∗pred +M∗1
(

1− A1 +1

A

)
≤max

{ 4∨ (4m/s∗)
c∗(2+A1/A)−2

,
c∗(1−|S|/s∗)

A2

}
(32)

and

M∗σ ≤
(

1+
2A1

c∗A

)
M∗pred +2(1+A1)

M∗1
A

+
A1m

As∗
+

2A1

A3

(
1− |S|

s∗

)
. (33)

Moreover, if in addition B = {1, . . . , p} then

M∗2 ≤ (2/c∗)M
∗
pred +2(1−|S|/s∗)/(A

2). (34)
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The main condition of Lemma 9,

c∗ ≤ inf

{
uT Σu

‖uS∪B‖2
2

: u ∈U (Σ,S,B;A,A1,m,m1)

}
, (35)

can be viewed as a restricted eigenvalue condition (Bickel et al., 2009) on a population version of

the Gram matrix. However, one may also pick the sample version Σ = Σ with λ∗ = 0. Let {A,A1}
be fixed constants satisfying A1 < A−1. Lemma 9 asserts that the factors {M∗pred ,M

∗
1 ,M

∗
σ} can be

all treated as constants when 1/c∗ and m/s∗ are bounded and λ∗(s∗∨m)/c∗ is smaller than a certain

constant. Moreover, M∗2 can be also treated as a constant when (35) holds for B = {1, . . . , p}.

4.3 Probabilistic Error Bounds

Theorems 6 and 8 provides analytical error bounds based on the size of the excess noise over a

given threshold. Here we provide probabilistic upper bounds for the excess noise and describe their

implications in combination with Theorems 6 and 8. We use the following notation:

Ln(t) = n−1/2Φ−1(1− t), (36)

where Φ−1(t) is the standard normal quantile function.

Proposition 10 Let ζ(2,m)(v,λ∗) be as in (20) and κ+(m) = κ+(m;Σ) as in (16) with Σ = XT X/n.

Suppose ε∼ N(0,σ2In) and ‖x j‖2
2 = n. Let k > 0.

(i) Let z = XT ε/n and λ∗ = σLn(k/p). Then,

P{ζ(2,p)(z,λ∗)> 0} ≤ 2k, and

Eζ2
(2,p)(z,λ∗)≤ 4kλ2

∗/{L4
1(k/p)+2L2

1(k/p)},

P
{

ζ(2,m)(z,λ∗)> Eζ(2,p)(z,λ∗)+σLn(ε)
√

κ+(m)
}
≤ ε. (37)

(ii) Let σ∗= ‖ε‖2/
√

n, z∗= z/σ∗, λ∗,0 = Ln−3/2(k/p) and εn = e1/(4n−6)2−1. Then, P{ζ(2,p)(z∗,λ∗,0)>
0} ≤ (1+ εn)k, Eζ2

(2,p)(z
∗,λ∗,0)≤ (1+ εn)4kλ2

∗,0/{L4
1(k/p)+2L2

1(k/p)}, and

P
{

ζ(2,m)(z
∗,λ∗,0)> µ(2,m)+Ln−3/2(ε)

√
κ+(m)

}
≤ (1+ εn)ε, (38)

where µ(2,m) is the median of ζ(2,m)(z
∗,λ∗,0). Moreover,

µ(2,m) ≤ Eζ(2,p)(z
∗,λ∗,0)+(1+ εn){λ∗,0/L1(k/p)}

√
κ+(m)/(2π). (39)

We describe consequences of combining Proposition 10 with Theorems 6 and 8 in three theo-

rems, respectively using the probability of no excess noise over the threshold, the Markov inequality

with the second moment, and the concentration bound on the excess noise.

Theorem 11 Let 0 < ε < p. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and (36) with A1 = 0 and λ∗ = σLn(ε/p2). If (19) holds,

then (25) holds with at least probability 1−2ε/p.

(ii) Let the notation be as in Theorem 8 and (36) with A1 = 0 and λ∗,0 = Ln−3/2(ε/p2). If (28)

holds with P{(1−ε0)
2 ≤ χ2

n/n≤ (1+ε0)
2} ≤ ε/p, then (30) and (31) hold with at least probability

1−3ε/p.
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For a single application of the Lasso or scaled Lasso, ε/p = o(1) guarantees ‖z‖∞ ≤ λ∗ in

Theorem 11 (i) and ‖z∗‖∞ ≤ λ∗,0 in Theorem 11 (ii) with high probability. The threshold levels

are λ∗/σ ≈ λ∗,0 ≈ λuniv =
√
(2/n) log p, as typically considered in the literature. In numerical

experiments, this often produces nearly optimal results although the threshold level may still be

somewhat higher than optimal for the prediction and estimation of β. However, if we use the union

bound to guarantee the simultaneous validity of the oracle inequalities in p applications of the

scaled Lasso in the estimation of individual columns of a precision matrix, Theorem 11 requires

ε = o(1), or equivalently a significantly higher threshold level λ∗,0 ≈
√
(4/n) log p. This higher

λ∗,0, which does not change the theoretical results by much, may produce clearly suboptimal results

in numerical experiments.

Theorem 12 Let k > 0. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and Proposition 10, λ∗ = σLn(k/p), and A− 1 > A1 ≥√

4k/(εm(L4
1(k/p)+2L2

1(k/p))). If (19) holds, then (25) holds with at least probability 1− ε−
2|Bc|k/p.

(ii) Let the notation be as in Theorem 8 and Proposition 10, λ∗,0 = Ln−3/2(k/p), εn = e1/(4n−6)2 −
1, and A− 1 > A1 ≥

√
(1+ εn)4k/(εm(L4

1(k/p)+2L2
1(k/p))). If (28) holds with P{(1− ε0)

2 ≤
χ2

n/n≤ (1+ ε0)
2} ≤ ε, then (30) and (31) hold with at least probability 1−2ε−2|Bc|k/p.

Theorem 12 uses the upper bounds for Eζ2
(2,p)(z,λ∗) and Eζ2

(2,p)(z
∗,λ∗,0) to verify (21). Since

Ln(k/p) ≈
√
(2/n) log(p/k), it allows smaller threshold levels λ∗ and λ∗,0 as long as

k/(εm(L4
1(k/p) + 2L2

1(k/p))) is small. However, it does not allow ε ≤ 1/p for using the union

bound in p applications of the Lasso in precision matrix estimation.

Theorem 13 Let k > 0. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and Proposition 10, λ∗ = σLn(k/p), and

A−1 > A1 ≥
( 4k/m

L4
1(k/p)+2L2

1(k/p)

)1/2

+
L1(ε/p)

L1(k/p)

(κ+(m)

m

)1/2

.

If (19) holds, then (25) holds with at least probability 1− ε/p−2|Bc|k/p.

(ii) Let the notation be as in Theorem 8 and Proposition 10, λ∗,0 = Ln−3/2(k/p), εn = e1/(4n−6)2−1,

and

A−1 > A1 ≥
( (1+ εn)4k/m

L4
1(k/p)+2L2

1(k/p)

)1/2

+
(L1(ε/p)

L1(k/p)
+

1+ εn

L1(k/p)
√

2π

)(κ+(m)

m

)1/2

.

If (28) holds with P{(1− ε0)
2 ≤ χ2

n/n ≤ (1+ ε0)
2} ≤ ε/p, then (30) and (31) hold with at least

probability 1−2ε/p−2|Bc|k/p.

Theorem 13 uses concentration inequalities (37) and (38) to verify (21). Let B = {1, . . . , p} and

Ln(t) be as in (36). By guaranteeing the validity of the oracle inequalities with 1− ε/p probability,

with a reasonably small ε, Theorem 13 justifies the use of a fixed smaller threshold level λ∗,0 =
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Ln−3/2(k/p) ≈
√
(2/n) log(p/k) in p applications of the scaled Lasso to estimate columns of a

precision matrix.

Since L1(ε/p) ≈ L1(k/p) typically holds, Theorem 13 only requires (k/m)/(L4
1(k/p)+

2L2
1(k/p)) and κ+(m)/m be smaller than a fixed small constant. This condition relies on the

upper sparse eigenvalue only in a mild way since κ+(m)/m is decreasing in m and κ+(m)/m ≤
1/m+(1−1/m)max j 6=k |xT

j xk/n| (Zhang and Huang, 2008).

For k≍m and log(p/k)≍ log(p/(s∗∨1)), Theorem 13 provides prediction and ℓq error bounds

of the orders σ2(s∗ ∨ 1)λ2
∗,0 ≈ σ2((s∗ ∨ 1)/n)2log(p/(s∗ ∨ 1)) and σ(s∗ ∨ 1)1/qλ∗,0 respectively.

For log(p/n)≪ logn, this could be of smaller order than the error bounds with λ∗,0 ≈ λuniv =√
(2/n) log p.

Theorem 13 suggests the use of a penalty level satisfying λ/σ = λ0 = ALn(k/p) ≈
A
√
(2/n) log(p/k) with 1 < A ≤

√
2 and a real solution of k = L4

1(k/p) + 2L2
1(k/p). This is

conservative since the constraint on A in the theorem is valid with a moderate m = O(s∗ + 1).
For p applications of the scaled Lasso in the estimation of precision matrix, this also provides a

more practical penalty level compared with A′Ln(ε/p2)≈ A′
√
(4/n) log(p/ε1/2), A′ > 1 and ε≪ 1,

based on existing results and Theorem 11. In our simulation study, we use λ0 =
√

2Ln(k/p) with

k = L4
1(k/p)+2L2

1(k/p).

4.4 A Lower Performance Bound

It is well understood that in the class of β satisfying the sparsity condition (19), s∗σ2L2
n(s∗/p) and

s
1/q
∗ σLn(s∗/p) are respectively lower bounds for the rates of minimax prediction and ℓq estimation

error (Ye and Zhang, 2010; Raskutti et al., 2011). This can be achieved by the Lasso with λ∗ =
σLn(m/p), m ≍ s∗, or scaled Lasso with λ∗,0 = Ln−3/2(m/p). The following proposition asserts

that for each fixed β, the minimax error rate cannot be achieved by regularizing the gradient with a

threshold level of smaller order.

Proposition 14 Let y = Xβ+ ε, β̃(λ) satisfy ‖XT (y−X β̃(λ))/n‖∞ ≤ λ, and h̃(λ) = β̃(λ)−β. Let

Σ = XT X/n and κ+(m; ·) be as in (16).

(i) If ‖XT ε/n‖(2,k) ≥ k1/2λ∗ > 0, then for all A > 1

inf
λ≤λ∗/A

min
{‖Xh̃(λ)‖2/n

κ−1
+ (k;Σ)

,
‖h̃(λ)‖2

2

κ−2
+ (k;Σ)

}
≥ (1−1/A)2kλ2

∗. (40)

(ii) Let σ∗ = ‖ε‖2/
√

n and Nk = #{ j : |xT
j ε|/(nσ∗)≥ L̃n(k/p)} with L̃n(t) = Ln(t)−n−1/2. Suppose

X has iid N(0,Σ) rows, diag(Σ) = Ip, and 2k− 4‖Σ‖2 ≥
(√

k−1+
√

2‖Σ‖2 log(1/ε)
)2

. Then,

P{Nk ≥ k} ≥ 1− ε and

P
{
‖XT ε/n‖(q,k) ≥ σ∗k1/qσL̃n(k/p)

}
≥ 1− ε. (41)

Consequently, there exist numerical constants c1 and c2 such that

P
{

inf
λ≤c1σLn(k/p)

min
(‖Xh̃(λ)‖2/n

κ−1
+ (k;Σ)

,
‖h̃(λ)‖2

2

κ−2
+ (k;Σ)

)
≥ c2σ2kL2

n(k/p)
}
≥ 1− ε− e−n/9.

It follows from Proposition 14 (ii) that the prediction and ℓ2 estimation error is of no smaller or-

der than kσ2L2
n(k/p) for all λ≤ c1σLn(k/p). This rate is suboptimal when k log(p/k)≫ s∗ log(p/s∗).
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5. Estimation after Model Selection

We have presented theoretical properties of the scaled Lasso for linear regression and precision

matrix estimation. After model selection, the least squares estimator is often used to remove bias of

regularized estimators. The usefulness of this technique after the scaled Lasso was demonstrated in

Sun and Zhang (2012), along with its theoretical justification. In this section, we extend the theory

to smaller threshold level and to the estimation of precision matrix.

In linear regression, the least squares estimator β and the corresponding estimate of σ in the

model selected by a regularized estimator β̂ are given by

β = argmin
b

{
‖y−Xb‖2

2 : supp(b)⊆ Ŝ
}
, σ =

∥∥y−Xβ
∥∥

2

/√
n, (42)

where Ŝ = supp(β̂). To study the performance of (42), we define sparse eigenvalues relative to a

support set S as follows:

κ∗−(m
∗,S;Σ) = min

J⊇S,|J\S|≤m∗
min
‖uJ‖2=1

uT
J ΣJ,JuJ,

κ∗+(m
∗,S;Σ) = min

J∩S= /0,|J|≤m∗
max
‖uJ‖2=1

uT
J ΣJ,JuJ.

It is proved in Sun and Zhang (2012) that {β,σ} satisfies prediction and estimation error bounds of

the same order as those for the scaled Lasso (26) under some extra conditions on κ∗±(m
∗,S;Σ). The

extra condition on κ∗+(m
∗,S;Σ) is used to derive an upper bound for the false positive |Ŝ \ S|, and

then the extra condition on κ∗−(m
∗,S;Σ) is used to invert X

S∪Ŝ
. The following theorem extends the

result to the smaller threshold level λ∗,0 = Ln−3/2(k/p) in Theorem 13 (ii). Let

M∗lse =

[{
|S|+

(√
m∗+

√
2m∗ log(ep/m∗)

)2}1/2
+L1(ε/p)

]2

s∗ log(p/s∗)
.

Theorem 15 Let (β̂, σ̂) be the scaled lasso estimator in (26) and (β,σ) be the least squares estima-

tor (42) in the selected model Ŝ = supp(β̂). Let the notation be as in Theorem 13 (ii) and m∗ > m

be an integer satisfying s∗M∗pred/{(1−ξ1)(1−1/A)}2 ≤ m∗/κ∗+(m
∗,S). Suppose βSc = 0 and (21)

holds with {zB,λ∗} replaced by {z∗B,λ∗,0}. Then,

|Ŝ\S| ≤ m∗ (43)

with at least probability 1−2ε/p−2|Bc|k/p. Moreover,

(σ∗)2−σ2M∗lse(s∗/n) log(p/s∗)
≤ σ2

≤ σ̂2,
κ∗−(m

∗−1,S)‖h‖2
2 (44)

≤ ‖Xh‖2
2/n

≤ (1+ ε0)
2M∗preds∗(σφ2λ0)

2 +σ2M∗lse(s∗/n) log(p/s∗),

with at least probability 1−3ε/p−2|Bc|k/p, where h = β−β.
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Theorem 15 asserts that when k∨m∗ ≍ s∗, the least squares estimator {β,σ} after the scaled

Lasso selection enjoys estimation and prediction properties comparable to that of the scaled Lasso:

λ−2
0

{∣∣σ/σ∗−1
∣∣+

∥∥β−β
∥∥2

2
+
∥∥Xβ−Xβ

∥∥2

2
/n
}
+‖β‖0 = OP(1)s∗.

Now we apply this method for precision matrix estimation. Let β̂ be as in (4) and define β and

σ as follows:

β∗, j = argmin
b

{
‖Xb‖2

2 : b j =−1,supp(b)⊆ supp(β̂∗, j)
}
,

σ j =
∥∥Xβ∗, j

∥∥
2

/√
n. (45)

We define Θ̃
LSE

and Θ̂
LSE

as in (7) and (9) with β and σ in place of β̂ and σ̂.

Under an additional condition on the upper sparse eigenvalue, Theorem 15 is parallel to Theo-

rem 8 (ii), and the theoretical results in Sun and Zhang (2012) are parallel to Theorem 6 (ii). These

results can be used to verify the condition (17), so that Proposition 4 also applies to (45) with the

extra upper sparse eigenvalue condition on the population correlation matrix R∗. We formally state

this result as a corollary.

Corollary 16 Under the additional condition ‖R∗‖2 = O(1) on the population correlation matrix

R∗, Theorems 2 and 3 are applicable to the estimator Θ̂
LSE

and the corresponding estimator for

Ω∗ = (R∗)−1 with possibly different numerical constants.

6. Numerical Study

In this section, we present some numerical comparison between the proposed and existing methods.

In addition to the proposed estimator (7) and (9) based on the scaled Lasso (4) and the least squares

estimation after the scale Lasso (45), the graphical Lasso and CLIME are considered. The following

three models are considered. Models 1 and 2 have been considered in Cai et al. (2011), while Model

2 in Rothman et al. (2008).

• Model 1: Θi j = 0.6|i− j|.

• Model 2: Let Θ = B+δI, where each off-diagonal entry in B is generated independently and

equals to 0.5 with probability 0.1 or 0 with probability 0.9. The constant δ is chosen such that

the condition number of Θ∗ is p. Finally, we rescale the matrix Θ∗ to the unit in diagonal.

• Model 3: The diagonal of the target matrix has unequal values. Θ = D1/2ΩD1/2, where

Ωi j = 0.6|i− j| and D is a diagonal matrix with diagonal elements dii = (4i+ p−5)/{5(p−1)}.

Among the three models, Model 2 is the densest. For p = 1000, the capped ℓ1 sparsity s∗ is 8.84,

24.63, and 8.80 for three models respectively.

In each model, we generate a training sample of size 100 from a multivariate normal distribution

with mean zero and covariance matrix Σ = Θ−1 and an independent sample of size 100 from the

same distribution for validating the tuning parameter λ for the graphical Lasso and CLIME. The

GLasso and CLIME estimators are computed based on training data with various λ’s and we choose

λ by minimizing likelihood loss {trace(ΣΘ̂)− logdet(Θ̂)} on the validation sample. The scaled
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Lasso estimators are computed based on the training sample alone with penalty level λ0 =ALn(k/p),
where A=

√
2 and k is the solution of k = L4

1(k/p)+2L2
1(k/p). The symmetrization step in Cai et al.

(2011) is applied. We consider six different dimensions p = 30,60,90,150,300,1000 and replicate

100 times in each setting. The CLIME estimators for p = 300 and p = 1000 are not computed due

to computational costs.

Table 1 presents the mean and standard deviation of estimation errors based on 100 replications.

The estimation error is measured by three matrix norms: the spectrum norm, the matrix ℓ1 norm

and the Frobenius norm. The scaled Lasso estimator, labeled as SLasso, outperforms the graphical

Lasso (GLasso) in all cases except for the smaller p ∈ {30,60,90} in the Frobenius loss in the

denser Model 2. It also outperforms the CLIME in most cases, except for smaller p in sparser

models (p = 30 in Model 1 and p ∈ {30,60} in Model 3). The least squares estimator after the

scaled Lasso selection outperforms all estimators by large margin in the spectrum and Frobenius

losses in Models 1 and 3, but in general underperforms in the ℓ1 operator norm and in Model 2.

It seems that post processing by the least squares method is a somewhat aggressive procedure for

bias correction. It performs well in sparse models, where variable selection is easier, but may not

perform very well in denser models.

Both the scaled Lasso and the CLIME are resulting from sparse linear regression solutions. A

main advantage of the scaled Lasso over the CLIME is adaptive choice of the penalty level for the

estimation of each column of the precision matrix. The CLIME uses cross-validation to choose

a common penalty level for all p columns. When p is large, it is computationally difficult. In

fact, this prevented us from completing the simulation experiment for the CLIME for the larger

p ∈ {300,1000}.

7. Discussion

Since the scaled Lasso choose penalty levels adaptively in the estimation of each column of the

precision matrix, it is expected to outperform methods using a fixed penalty level for all columns in

the presence of heterogeneity of the diagonal of the precision matrix. Let Θ̃(λ) be an estimator with

columns

Θ̃∗ j(λ) = argmin
v∈Rp

{∥∥v
∥∥

1
:
∥∥Σv− e j

∥∥
∞
≤ λ

}
, j = 1, . . . , p. (46)

The CLIME is a symmetrization of this estimator Θ̃(λ) with fixed penalty level for all columns.

In the following example, the scaled Lasso estimator has a faster convergence rate than (46). The

example also demonstrates the possibility of achieving the rate dλ0 in Theorem 2 with unbounded

‖Θ∗‖2 ≥ d2, when Theorem 1 is not applicable.

Example 1 Let p > n2 + 3 + m with (m,m4(log p)/n) → (∞,0) and 4m2 ≤ log p. Let Ln(t) ≈√
(2/n) log(1/t) be as in (36). Let {J1,J2,J3} be a partition of {1, . . . , p} with J1 = {1,2} and J2 =

{3, . . . ,3+m}. Let ρ1 =
√

1−1/m2, v= (v1, . . . ,vm)
T ∈Rm with v2

j = 1/m, ρ2 = c0m3/2Ln(m/p) =
o(1), and

Σ∗ =




Σ∗J1,J1
0 0

0 Σ∗J2,J2
0

0 0 Ip−m−3


 , Σ∗J1,J1

=

(
1 ρ1

ρ1 1

)
, Σ∗J2,J2

=

(
1 ρ2vT

ρ2v Im

)
.
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The eigenvalues of Σ∗J1,J1
are 1±ρ1, those of Σ∗J2,J2

are 1±ρ2,1, . . . ,1, and

(Σ∗J1,J1
)−1 = m2

(
1 −ρ1

−ρ1 1

)
, (Σ∗J2,J2

)−1 =
1

1−ρ2
2

(
1 −ρ2vT

−ρ2v (1−ρ2
2)Im +ρ2

2vvT

)
.

We note that diag(Σ∗) = Ip, d = m+ 1 is the maximum degree, ‖Θ∗‖2 = 1/(1− ρ1) ≈ 2d2, and

‖Θ∗‖1 ≈ 2d2. The following statements are proved in the Appendix.

(i) Let Θ̂ be the scaled Lasso estimator of Θ∗ = (Σ∗)−1 with penalty level λ0 = A
√
(4/n) log p,

A > 1, as in Theorem 2. Then, there exists a constant M∗1 such that

P
{
‖Θ̂−Θ∗‖2 ≤ ‖Θ̂−Θ∗‖1 ≤M∗1mLn(m/p)

}
→ 1.

(ii) If ρ2 = c0m3/2Ln(m/p) with a sufficiently small constant c0 > 0, then

P
{

inf
λ>0
‖Θ̃(λ)−Θ∗‖2 ≥ c0m3/2Ln(m/p)/

√
1+1/m

}
→ 1.

Thus, the order of the ℓ1 and spectrum norms of the error of (46) for the best data dependent penalty

level λ is larger than that of the scaled Lasso by a factor
√

m.
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Appendix A.

We provide all proofs in this appendix. We first prove the results in Section 4 since they are used to

prove the results in Section 3.

A.1 Proof of Proposition 5

Lemma 20 in Ye and Zhang (2010) gives ‖v‖q
q ≤ ‖v‖q

(q,m) + (aq/m)q−1‖v‖q
1. The rest of part

(i) follows directly from definition. Lemma 20 in Ye and Zhang (2010) also gives ‖v‖∗(q,m) ≤
‖v‖(q′,m/aq)+m−1/q‖v‖1. The rest of part (ii) is dual to the corresponding parts of part (i). Since

‖Σv‖(2,m) = max‖u‖0=m,‖u‖2=1 uT Σv and ‖uT Σ
q‖2 ≤ κ

q
+(m;Σ) for q ∈ {1/2,1}, part (iii) follows. �

A.2 Proof of Theorem 6

By the Karush-Kuhn-Tucker conditions,

(XT X/n)h = z−λg, sgn(β̂ j)g j ∈ {0,1}, ‖g‖∞ ≤ 1. (47)

Since ζ(2,m)(zB,λ∗) is the ‖ · ‖(2,m) norm of (|zB|−λ∗)+, (21) implies

|hT z| ≤ λ∗‖h‖1 + ∑
j∈B

|h j|(|z j|−λ∗)+
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≤ λ∗‖h‖1 +A1λ∗m
1/2‖hB‖∗(2,m). (48)

Since −h jsgn(β̂ j)≤ |β j|− |β̂ j| ≤min(|h j|,−|h j|+2|β j|) ∀ j ∈ Sc, (19) and (47) yield

−λhT g ≤ λ‖hS‖1−λ‖hSc‖1 +2λ‖βSc‖1

≤ λ‖hS‖1−λ‖hSc‖1 +2λλ∗(s∗−|S|).

By applying the above bounds to the inner product of h and (47), we find

‖Xh‖2
2/n ≤ A1λ∗m

1/2‖hB‖∗(2,m)+(λ∗−λ)‖hSc‖1

+(λ+λ∗)‖hS‖1 +2λλ∗(s∗−|S|).

Let u = (A/λ)h. It follows that when Aλ∗ ≤ λ,

‖Xu‖2
2

n
≤ A1m1/2‖uB‖∗(2,m)− (A−1)‖uSc‖1 +(A+1)‖uS‖1 +2A(s∗−|S|).

Since XT X/n=Σ, u∈U (Σ,S,B;A,A1,m,m1) with m1 = s∗−|S|. Since h= λu/A and s∗=m1+ |S|,
the conclusion follows from (23) and (24). �

A.3 Proof of Theorem 8

It follows from the scale equivariance of (26) that

{β̂/σ∗, σ̂/σ∗}= {b̂, φ̂}= argmin
b,φ

{
‖y∗−Xb‖2

2/(2nφ)+λ0‖b‖1 +φ/2
}
, (49)

where y∗ = y/σ∗ = Xb∗+ ε∗ with b∗ = β/σ∗ and ε∗ = ε/σ∗. Our objective is to bound ‖X(b̂−
b∗)‖2

2/n and ‖b̂−b∗‖q from the above and σ̂/σ∗ from both sides. To this end, we apply Theorem 6

to the Lasso estimator

b̂(λ) = argmin
b

{
‖y∗−Xb‖2

2/(2n)+λ‖b‖1

}
.

Let z∗ = z/σ∗ and h∗(λ) = b̂(λ)−b∗. Since ‖y∗−Xb∗‖2
2/n = ‖ε∗‖2

2/n = 1,

1−‖y∗−Xb̂(λ)‖2
2/n = h∗(λ)T XT (y∗−Xb̂(λ))/n+h∗(λ)T z∗

= 2h∗(λ)T z∗−‖Xh∗(λ)‖2
2/n.

Consider λ≥ Aλ∗,0. Since (21) holds with {z,λ∗} replaced by {z∗,λ∗,0}, we find as in the proof of

Theorem 6 that

u(λ) = h∗(λ)A/λ ∈U (Σ,S,B;A,A1,m,m1).

In particular, (48) gives

|h∗(λ)T z∗| ≤ λ∗,0‖h∗(λ)‖1 +A1λ∗,0m1/2‖h∗B(λ)‖∗(2,m)

≤ (λ2/A2)
{
‖u(λ)‖1 +A1m1/2‖uB(λ)‖∗(2,m)

}
.
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Thus, the definition of M∗σ in (29) gives

|2h∗(λ)T z∗−‖Xh∗(λ)‖2
2/n|< M∗σs∗λ

2.

We summarize the calculation in this paragraph with the following statement:

λ≥ Aλ∗,0 ⇒
∣∣1−‖y−Xb̂(λ)‖2

2/n
∣∣< M∗σs∗λ

2. (50)

As in Sun and Zhang (2012), the convexity of the joint loss function in (49) implies

(φ− φ̂)(φ2−‖y−Xb̂(φλ0)‖2
2/n)≥ 0,

so that φ̂ can be bounded by testing the sign of φ2−‖y−Xb̂(φλ0)‖2
2/n. For (φ,λ) = (φ1,φ1λ0), we

have

λ2 =
λ2

0

1+λ2
0M∗σs∗

≥
A2λ2

∗,0
1−η∗+A2λ2

∗,0M∗σs∗
= A2λ2

∗,0,

which implies ‖y−Xb̂(φ1λ0)‖2
2/n > 1− φ2

1η0 = φ2
1 by (50) and the definition of φ1. This yields

φ̂ > φ1. Similarly, φ̂ < φ2. The error bounds for the prediction and the estimation β̂ follow from

Theorem 6 due to Aλ∗,0 ≤ φ1λ0 < φ̂λ0 < φ2λ0. �

A.4 Proof of Lemma 9

By Proposition 5, m1/2‖uB‖∗(2,m) ≤ ‖uB‖1 +m1/2‖uB‖(2,4m), so that for u ∈U (Σ,S,B;A,A1,m,m1),

uT Σu+(A−A1−1)‖u‖1 ≤ 2A‖uS‖1 +A1m1/2‖uB‖2 +2Am1.

Let ξ = A/(A−A1−1) and ξ1 = A1/(A−A1−1). It follows that

(ξ/A)uT Σu+‖u‖1

≤ 2ξ‖uS‖1 +ξ1m1/2‖uB‖2 +2ξm1

≤ (2ξ|S|+ξ1m+2ξm1)
1/2{(2ξ+ξ1)‖uS∪B‖2

2 +2ξm1}1/2

≤ {(2ξs∗+ξ1m)/c∗}1/2{(2ξ+ξ1)u
T Σu+2ξc∗m1}1/2

≤ {(s∗∨m)/c∗}1/2(2ξ+ξ1)(u
T Σu+ c∗m1)

1/2 (51)

due to s∗ = |S|+m1 and c∗‖uS∪B‖2
2 ≤ uT Σu. In terms of {ξ,ξ1}, the condition of the Lemma can be

stated as λ∗{(s∗∨m)/c∗}(2ξ+ξ1)
2 ≤ 1/2. Thus,

uT Σu−uT Σu≤ λ∗‖u‖2
1 ≤ uT Σu/2+ c∗m1/2. (52)

Inserting this inequality back into (51), we find that

(ξ/A)uT Σu+‖u‖1 ≤ {(s∗∨m)/c∗}1/2(2ξ+ξ1)(2uT Σu+2c∗m1)
1/2.

If (ξ/A)uT Σu+‖u‖1 ≥ (ξ/A)(2uT Σu+2c∗m1)/4, we have

(ξ/A)uT Σu+‖u‖1 ≤ {(s∗∨m)/c∗}(2ξ+ξ1)
2(4A/ξ).
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Otherwise, we have (ξ/A)uT Σu+2‖u‖1 ≤ (ξ/A)c∗m1. Consequently,

(ξ/A)uT Σu+‖u‖1 ≤max
{
{(s∗∨m)/c∗}(2ξ+ξ1)

2(4A/ξ),(ξ/A)c∗(s∗−|S|)
}
.

This and the definition of {M∗pred ,M
∗
1} yield (32) via

ξM∗pred +M∗1 ≤max
{(

1∨ (m/s∗))(2ξ+ξ1)
2 4

ξc∗
,ξc∗(1−|S|/s∗)/A2

}
.

Moreover, (52) gives c∗‖uS∪B‖2
2 ≤ uT Σu≤ 2uT Σu+2c∗m1, so that M∗σ can be bounded via

uT Σu/(s∗A
2)+2

(
‖u‖1 +A1m1/2‖uB‖∗(2,m)

)
/(s∗A

2)

≤ M∗pred +2(1+A1)‖u‖1/(s∗A
2)+(A1/A)

{
m/s∗+‖uB‖2

2/(s∗A
2)
}

≤ M∗pred +2(1+A1)M
∗
1/A+(A1/A)

(
m/s∗+(2/c∗)M

∗
pred +2(1−|S|/s∗)/A2

)
.

This gives (33). If in addition B = {1, . . . , p}, then it yields (34)

M∗2 = sup
u∈U

‖u‖2
2/(s∗A

2)≤ (2/c∗)M
∗
pred +2(1−|S|/s∗)/A2.

This completes the proof. �

The tail probability bound for ζ∗(z∗,λ∗,m)/σ∗ in part (ii) of Proposition 10 uses the following

version of the Lévy concentration inequality in the sphere.

Lemma 17 Let ε̃m =
√

2/(m−1/2)Γ(m/2+1/2)/Γ(m/2)−1, U = (U1, . . . ,Um+1)
T be a uniform

random vector in Sm = {u ∈ R
m+1 : ‖u‖2 = 1}, f (u) a unit Lipschitz function in Sm, and m f the

median of f (U). Then,

P{U1 > x} ≤ (1+ ε̃m)P
{

N(0,1/(m−1/2))>
√
− log(1− x2)

}
, (53)

1 < 1+ ε̃m < exp
(
1/(4m−2)2

)
, and

P{ f (U)> m f + x} ≤ P
{

U1 > x

√
1− (x/2)2

}

≤ (1+ ε̃m)P{N(0,1/(m−1/2))> x}. (54)

PROOF. Since U2
1 follows the beta(1/2,m/2) distribution,

P
{

U1 > x
}
=

Γ(m/2+1/2)/2

Γ(m/2)Γ(1/2)

∫ 1

x2
t−1/2(1− t)m/2−1dt.

Let y =
√
−(m−1/2) log(1− t). We observe that −t−1 log(1− t) ≤ (1− t)−1/2 by inspecting the

infinite series expansions of the two functions. This gives

e−y2/2dy

t−1/2(1− t)m/2−1dt
=

t1/2e−y2/2(m−1/2)1/2

2(− log(1− t))1/2(1− t)m/2
≥ 2−1

√
m−1/2.
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Since y =
√
−(m−1/2) log(1− x2) when t = x2, it follows that

P
{

U1 > x
}
≤ (1+ ε̃m)

∫ ∞

√
−(m−1/2) log(1−x2)

(2π)−1/2e−y2/2dt.

Let Ã = {u ∈ Sm : f (u) ≤ m f }, H = {u : u1 ≤ 0}, and Ax = ∪v∈A{u ∈ Sm : ‖u− v‖2 ≤ x} for all

A ⊂ Sm. Since u ∈ Ãx implies f (u) ≤ m f + x and P{U ∈ Ã} ≥ P{U ∈ H}, the Lévy concentration

inequality gives

P{ f (U)> m f + x} ≤ P{U 6∈ Hx}= P
{

U1 > x

√
1− (x/2)2

}
.

The second inequality of (54) then follows from (d/dx){− log{1−(x2−x4/4)}−x2}≥ 0 for x2≤ 2

and ‖U1‖∞ ≤ 1.

It remains to bound 1+ ε̃m. Let x = m+1/2. Since

1+ ε̃m

1+ ε̃m+2

=
(m/2)

√
m+3/2

(m/2+1/2)
√

m−1/2
=

(x−1/2)
√

x+1

(x+1/2)
√

x−1
,

the infinite series expansion of its logarithm is bounded by

log
( 1+ ε̃m

1+ ε̃m+2

)
=

1

2
log

(1+1/x

1−1/x

)
+ log

(1−1/(2x)

1+1/(2x)

)
≤ x−3

4
+

x−5

5
+ · · ·

Since {(x−1)−2− (x+1)−2}/2 = 2x−3 +4x−5 + · · · by Newton’s binomial formula,

log
( 1+ ε̃m

1+ ε̃m+2

)
≤ {(x−1)−2− (x+1)−2}/16.

This gives log(1+ ε̃m)≤ 1/{16(x−1)2}. �

A.5 Proof of Proposition 10

(i) Let L= L1(k/p). Since P{N(0,σ2/n)> λ∗}= k/p, λ∗=σL/
√

n. Since z j = xT
j ε/n∼N(0,σ2/n),

P{ζ(2,p)(z,λ∗)> 0} ≤ 2k and

Eζ2
(2,p)(z,λ∗) = p(σ2/n)E(|N(0,1)|−L)2

+

= 2p(σ2/n)
∫ ∞

L
(x−L)2ϕ(x)dx.

Let Jk(t) =
∫ ∞

0 xke−x−x2/(2t2)dx. By definition

t2
∫ ∞

t (x− t)2ϕ(x)dx

Φ(−t)
=

t2
∫ ∞

0 x2e−tx−x2/2dx∫ ∞
0 e−tx−x2/2dx

=

∫ ∞
0 u2e−u−u2/(2t2)du∫ ∞

0 e−u−u2/(2t2)du
=

J2(t)

J0(t)
.

Since Jk+1 + Jk+2/t2 =−∫ ∞
0 xk+1de−x−x2/(2t2) = (k+1)Jk(t), we find

J2(t)

J0(t)
=

J2(t)

{J2(t)+ J3(t)/t2}/2+ J2(t)/t2
≤ 1

1/2+1/t2
.
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Thus, Eζ2
(2,p)(z,λ∗) = 2p(σ2/n)(k/p)L−2J2(L)/J0(L)≤ 2kλ2

∗L
−4/(1/2+1/L2).

Since z j = xT
j ε/n,

(
∑ j∈B(|z j| −λ∗)2

+

)1/2
is a function of ε with the Lipschitz norm ‖XB/n‖2.

Thus, ζ(2,m)(z,λ∗) is a function of ε with the Lipschitz norm max|B|=m ‖XB/n‖2 =
√

κ+(m)/n. In

addition, since ζ(2,m)(z,λ∗) is an increasing convex function of (|z j| − λ∗)+ and (|z j| − λ∗)+ are

convex in ε, ζ(2,m)(z,λ∗) is a convex function of ε. The mean of ζ(2,m)(z,λ∗) is no smaller than its

median. This gives (37) by the Gaussian concentration inequality (Borell, 1975).

(ii) The scaled version of the proof uses Lemma 17 with m = n−1 there. Let U = ε/‖ε‖2, z∗j =
xT

j ε/(nσ∗)= (x j/
√

n)TU and z∗=XT ε/(nσ∗). Since z∗j ∼U1, (53) yields the bound P{ζ(2,p)(z∗,λ∗,0)>
0} ≤ (1+ εn)2k and

Eζ2
(2,p)(z

∗,λ∗,0) = pE(|U1|−λ∗)
2
+ ≤ (1+ εn)pE(|N(0,1)|−L)2

+/(n−3/2).

The bound for Eζ2
(2,p)(z

∗,λ∗,0) is then derived as in (i). Lemma 17 also gives

P
{
± (ζ(2,m)(z

∗,λ∗,0)−µ(2,m))> x
√

κ+(m)
}

≤ (1+ εn)P{|N(0,1/(n−3/2))|> x}

and

|Eζ(2,m)(z
∗,λ∗,0)−µ(2,m)| ≤ (1+ εn)

√
κ+(m)/(n−3/2)E

(
N(0,1)

)
+

= (1+ εn)
√

κ+(m)/{2π(n−3/2)}.

The above two inequalities yield (38) and (39). �

A.6 Proof of Theorems 11, 12 and 13

The conclusions follow from Theorems 6 and 8 once (21) is proved to hold with the given probabil-

ity. In Theorem 11, the tail probability bounds for ζ(0,p) in Proposition 10 yield (21) with A1 = 0.

In Theorem 12, the moment bounds for ζ(0,p) in Proposition 10 controls the excess noise in (21). In

Theorem 13 (i), we need A1λ∗m1/2 ≥ Eζ(0,p)(z,λ∗)+σLn(ε/p)
√

κ+(m) by (37), so that the given

lower bound of A1 suffices due to Ln(ε)/Ln(k/p) = L1(ε/p)/L1(k/p). The proof of Theorem 13

(ii) is nearly identical, with (38) and (39) in place of (38). We omit the details. �

A.7 Proof of Proposition 14

(i) By the ℓ∞ constraint,

‖XT (ε−Xh̃(λ))/n‖(2,k) = ‖XT (y−X β̃(λ))/n‖(2,k) ≤ λ
√

k.

Thus, when λ
√

k ≤ ‖XT ε/n‖(2,k)/A,

‖XT ε/n‖(2,k)(1−1/A)≤ ‖XT ε/n‖(2,k)−λ
√

k ≤ ‖XT Xh̃(λ)/n‖(2,k).

Thus, Proposition 5 (iii) gives (40).

(ii) Let f (x) = (x− L̃1(k/p))+∧1 and z∗ = XT ε/‖ε‖2. Since z∗ ∼N(0,Σ) and ‖ f (z∗)‖2 has unit

Lipschitz norm, the Gaussian concentration theorem gives

P
{

E f (z∗)− f (z∗)≥
√

2‖Σ‖2 log(1/ε)
}
≤ ε.
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This implies Var( f (z∗))≤ 4‖Σ‖2. Since E f 2(z∗)≥ pP{|N(0,1)| ≥ L1(k/p)}= 2k,

E f (z∗)−
√

2‖Σ‖2 log(1/ε)≥
√

2k−4‖Σ‖2−
√

2‖Σ‖2 log(1/ε)≥
√

k−1.

This gives P{Nk ≥ k} ≥ P{ f (z∗) >
√

k−1} ≥ 1− ε due to Nk ≥ f 2(z∗). Thus, (41) follows from

‖XT ε/n‖(q,k) ≥ σ∗k1/qL̃n(k/p) when Nk ≥ k. The final conclusion follows from part (i) and large

deviation for (σ∗/σ)2 ∼ χ2
n/n. �

Lemma 18 Let χ2
m, j be χ2 distributed variables with m degrees of freedom. Then,

E max
1≤ j≤t

χ2
m, j ≤

(√
m+

√
2log t

)2
, t ≥ 1.

PROOF. Let f (t) = 2log t− ∫ ∞
0 min

(
1, tP{N(0,1)> x}

)
dx2. We first proof f (t) ≥ 0 for t ≥ 2.

Let L1(x) =−Φ−1(x). We have f (2)≥ 2log2−1 > 0 and

f ′(t) = 2/t−2

∫ ∞

L1(1/t)
P
{

N(0,1)> x
}

xdx≥ 2/t−2

∫ ∞

L1(1/t)
ϕ(x)dx = 0.

The conclusion follows from P{χm, j >
√

m+ x} ≤ P{N(0,1)> x} for x > 0. �

A.8 Proof of Theorem 15

Let h = β̂−β and λ̂ = σ̂λ0. Consider J ⊆ Ŝ \ S with m ≤ |J| ≤ m∗. For any j ∈ Ŝ, it follows from

the KKT conditions that |xT
j Xh/n|= |xT

j (y−X β̂−ε)| ≥ λ̂−|z j|. By the definition of κ∗+(m
∗,S) and

(25),

∑
j∈J

(̂λ−|z j|)2
+ ≤ ∑

j∈J

|xT
j Xh/n|2

= (XT
J Xh/n)T (XT

J Xh/n)
≤ κ∗+(m

∗,S)‖Xh‖2
2/n

≤ κ∗+(m
∗,S)M∗preds∗λ̂

2. (55)

Since ζ(2,k)(z
∗
B,λ∗,0)/k1/2 ↓ k by Proposition 5 (i), the {z∗,λ0,∗} version of (21) gives ζ(2,|J|)(z

∗,λ∗,0)/|J|1/2≤
ζ(2,m)(z

∗
B,λ∗,0)/m1/2 ≤ ξ1(A−1)λ∗,0. Thus, with z∗j = z j/σ∗,

∑
j∈J

(̂λ−|z j|)2
+ ≥ ∑

j∈J

{
λ̂−σ∗λ∗,0−σ∗(|z∗j |−λ∗,0)+

}2

+

≥
{
|J|1/2(̂λ−σ∗λ∗,0)−σ∗ζ(2,|J|)(z

∗
B,λ∗,0)

}2

+

≥ |J|
{

λ̂−σ∗λ∗,0−σ∗ξ1(A−1)λ∗,0
}2

+

Since λ2
∗,0/(λ0φ1)

2 =(λ∗,0/λ0)
2(1+η0)≤ (1−η∗)/A2+η∗/A2 = 1/A2, we have λ∗,0σ∗< λ∗,0σ̂/φ1≤

λ̂/A. The above inequalities and (55) yield

|J| ≤
κ∗+(m

∗,S)M∗preds∗λ̂2

{
λ̂−σ∗λ∗,0−σ∗ξ1(A−1)λ∗,0

}2

+

<
κ∗+(m

∗,S)M∗preds∗
{

1−1/A−ξ1(1−1/A)
}2

+

≤ m∗.
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Since Ŝ \S does not have a subset of size m∗, we have |Ŝ \S| < m∗ as stated in (43). Let PB be the

projection to the linear span of {x j, j ∈ B}. We have

σ̂2 ≥ ‖P⊥
Ŝ

y‖2
2/n = σ2 ≥ ‖P⊥

S∪Ŝ
y‖2

2/n = (σ∗)2−‖P
S∪Ŝ

ε‖2
2/n,

‖Xh‖2
2/n = ‖P

Ŝ
y−Xβ‖2

2/n = ‖P
Ŝ
ε‖2

2/n+‖P⊥
Ŝ

Xβ‖2
2/n. (56)

Let N =
(

p
m∗
)
. We have logN ≤ m∗ log(ep/m∗) by Stirling. By Lemma 18,

E‖P
S∪Ŝ

ε‖2
2/σ2 ≤ E max

|B|=m∗
‖PS∪Bε‖2

2/σ2 ≤ |S|+(
√

m∗+
√

2logN)2.

Since max|B|=m ‖PS∪Bε‖2 is a unit Lipschitz function,

‖P
S∪Ŝ

ε‖2/σ ≤
{
|S|+

(√
m∗+

√
2m∗ log(ep/m∗)

)2}1/2
+L1(ε/p)

≤
√

M∗lses∗ log(p/s∗)

with probability ε/p. In addition, Theorem 8 gives ‖P⊥
Ŝ

Xβ‖2
2 ≤ ‖X β̂ − Xβ‖2

2 ≤
(1+ ε0)

2M∗preds∗(σφ2λ0)
2. Inserting these bounds into (56) yields (44). �

Lemma 19 Suppose that the rows of X ∈ R
n×p are iid N(0,Σ) random vectors.

(i) Let Y = trace(AX ′X/n) and σ2 = trace{(A+A′)Σ(A+A′)Σ}/2 with a deterministic matrix A.

Then, EY = µ = trace(AΣ), Var(Y ) = σ2/n and

E exp
{

t(Y −µ)
}
≤ exp

{
− tσ√

2
− n

2
log(1−

√
2tσ/n)

}
.

Consequently, for 0 < x≤ 1,

P
{
(Y −µ)/σ > x

}
≤ exp

{
− n

2

(√
2x− log(1+

√
2x)

)}
≤ e−nx2/4.

(ii) Let R∗ and R be the population and sample correlation matrices of X. Then,

P
{
|R jk−R∗jk|> x

√
1− (R∗jk)

2
}
≤ 2P

{
|tn|> n1/2x

}

where tn has the t-distribution with n degrees of freedom. In particular, for n≥ 4,

P
{
|R jk−R∗jk|>

√
2x
}
≤ 2e1/(4n−2)2

P
{
|N(0,1/n)|> x

}
, 0≤ x≤ 1.

PROOF. (i) This part can be proved by computing the moment generating function with tσ/n =
x/(1+

√
2x). We omit details. For 0 < x < 1,

f (x) =

√
2x− log(1+

√
2x)

x2
=

∫ √2x

0

udu

x2(1+u)
=

∫ √2

0

udu

1+ xu
≥ f (1)> 1/2.

(ii) Conditionally on Σkk, Σ jk/Σkk ∼ N(Σ jk/Σkk,(1− (R∗jk)
2)Σ j j/(nΣkk)). Thus,

z jk =
( nΣkk

(1− (R∗jk)
2)Σ j j

)1/2(Σ jk

Σkk

− Σ jk

Σkk

)
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=
( n

1− (R∗jk)
2

)1/2(
R jk

Σ
1/2

j j

Σ
1/2
j j

−R jk

Σ
1/2

kk

Σ
1/2

kk

)

is a N(0,1) variable independent of Σkk. Consequently,

n1/2|R jk−R jk|
(1− (R∗jk)

2)1/2
=

|z jk + zk j|
Σ

1/2

j j /Σ
1/2
j j +Σ

1/2

kk /Σ
1/2

kk

≤ |t jk|∨ |tk j|

with t jk = z jkΣ
1/2

kk /Σ
1/2

kk ∼ tn. Let U1 be a uniformly distributed variable in the unit sphere of Rn+1.

Since t2
n/n∼U2

1 /(1−U2
1 ), Lemma 17 provides

P
{

t2
n/n > ex2−1

}
= P

{
U2

1 > 1− e−x2}≤ 2e1/(4n−2)2

P
{

N(0,1/(n−1/2))> x
}
.

The conclusion follows from ex2n/(n−1/2)−1≤ 2x2 for 0 < x≤ 1. �

A.9 Proof of Proposition 4

Since Θ̃ j j = 1/σ̂2
j and max{C0λ0,C1s∗, jλ2

0} ≤ 1/4, (17) and the condition on σ∗j implies

|Θ̃ j j/Θ∗j j| ≤ (5/4)3 ≤ 2, |Θ̃ j j/Θ∗j j−1| ≤ {(5/4)2C0 +5/4+1}λ0.

It follows from (7), (17) and the condition on D = diag(Σ j j, j ≤ p) that

∥∥Θ̃∗, j−Θ∗∗, j
∥∥

1
=
∥∥− β̂∗, jΘ̃ j j−Θ∗∗, j

∥∥
1

≤
∥∥(β̂− j, j−β− j, j)Θ̃ j j

∥∥
1
+
∥∥Θ∗∗, j(Θ̃ j j/Θ∗j j−1)

∥∥
1

≤
∥∥D̂
−1/2

− j

∥∥
∞

∥∥D̂
1/2

− j (β̂− j, j−β− j, j)
∥∥

1
Θ̃ j j +

∥∥Θ∗∗, j
∥∥

1

∣∣Θ̃ j j/Θ∗j j−1
∣∣

≤ (5/2)Θ∗j j

∥∥D
−1/2
− j

∥∥
∞
(Θ∗j j)

−1/2C2s∗, jλ0 +
∥∥Θ∗, j

∥∥
1
{(3/2)C0 +5/2}λ0

≤C
{
(
∥∥D−1
− j

∥∥
∞

Θ∗j j)
1/2s∗, jλ0 +

∥∥Θ∗, j
∥∥

1
λ0

}

with C = max(5C2/2,3C0/2+5/2). This gives (12) due to ‖Θ̂−Θ∗‖1 ≤ 2‖Θ̃−Θ∗‖1 by (9). Simi-

larly,

∥∥Ω̃∗, j−Ω∗∗, j
∥∥

1
=

∥∥− D̂
1/2

− j β̂∗, jΘ̃ j jD̂
1/2
j j −Ω∗∗, j

∥∥
1

≤
∥∥D̂

1/2

− j (β̂− j, j−β− j, j)
∥∥

1
Θ̃ j jD̂

1/2
j j

+
∥∥D̂

1/2

− j D
−1/2
− j Ω∗∗, j(Θ̃ j j/Θ∗j j)(D̂ j j/D j)

1/2−Ω∗∗, j
∥∥

1

≤ C
{
(Θ∗j j)

−1/2s∗, jλ0Θ∗j jD
1/2
j j +

∥∥Ω∗, j
∥∥

1
λ0

}

This gives (13) due to D j jΘ
∗
j j = Ω∗j j. We omit an explicit calculation of C.

Let χ2
n, j = nΘ∗j j(σ

∗
j)

2. When χ2
n, j ∼ χ2

n, we have

|Θ̃ j j/Θ∗j j−1| ≤ {(5/4)2 +5/4}C1s∗, jλ
2
0 +(4/3)|χ2

n, j/n−1|
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It follows from Lemma 19 that P{|χ2
n, j/n−1|>

√
2x} ≤ 2e−nx2/4 for x ≤ 1. Let a j = ‖Θ∗, j‖1, t =

max{M max j a j/
√

n,τn(Θ
∗)} and B0 = { j : a j≤

√
8t}. By definition t ≤Mτn(Θ

∗) and nt2/a2
j ≥M2.

It follows that

P
{

max
j
|χ2

n, j/n−1|a j > 4t
}
≤ |B0|e−n/4 + ∑

j 6∈B0

exp(−2nt2/a2
j)

≤ pe−n/4 + e−M2

∑
j 6∈B0

exp
(
−nτ2(Θ∗)/a2

j

)
.

≤ pe−n/4 + e−M2

.

Thus, max j |Θ̃ j j/Θ∗j j−1|a j = OP

(
τn(Θ

∗)+max j s∗, ja jλ
2
0). �

A.10 Proof of Theorem 2

We need to verify conditions (17) and (18) in order to apply Proposition 4. Since Θ∗j j(σ
∗
j)

2 ∼
Σ j j/Σ∗j j ∼ χ2

n/n, (18) follows from Lemma 19 (i) with λ0 ≍
√
(log p)/n. Moreover, the condition

P{(1− ε0)
2 ≤ χ2

n/n ≤ (1+ ε0)
2} ≤ ε/p holds with small ε0 and ε since

√
(log p)/n = λ0/(2A) is

assumed to be sufficiently small. We take ε0 = 0 in (10) since its value does not change the order of

s∗, j.

If we treat Σ
1/2

kk βk as the regression coefficient in (4) for the standardized design vector Σ
−1/2

kk xk,

k 6= j, Theorem 11 (ii) asserts that the conclusions of Theorem 8 hold with probability 1−3ε/p for

each j, with λ0 = A
√

4(log p)/n, A1 = 0 and ε≍ 1/
√

log p. By the union bound, the conclusions of

Theorem 8 holds simultaneously for all j with probability 1−3ε. Moreover, (17) is included in the

conclusions of Theorem 8 when M∗σ and M∗1 are uniformly bounded in the p regression problems

with large probability. Thus, it suffices to verify the uniform boundedness of these quantities.

We use Lemma 9 to verify the uniform boundedness of M∗σ and M∗1 with A1 = 0, B j = S j, m j = 0

and {Σ,Σ∗} replaced by {R− j,− j,R
∗
− j,− j}. Note that the Gram matrix for the regression problem in

(4) is R− j,− j, which is random and dependent on j, so that M∗σ and M∗1 are random and dependent

on j with the random design. It follows from Lemma 19 (ii) that

max
k 6= j
‖Rk,− j−R∗k,− j‖∞ ≤max

j,k
|Rk, j−Rk, j| ≤ Ln(5ε/p2)

with probability 1− ε. We may take Ln(5ε/p2) = 2
√
(log p)/n with ε ≍ 1/

√
log p. This yields

the first condition of Lemma 9 with λ∗ = 2
√
(log p)/n ≍ λ0. The second condition c∗‖uS‖2

2 ≤
uT R∗− j,− ju follows from (11). The third condition translates to max j≤p λ0s∗, j ≤ c0, which is imposed

in Theorem 2. Thus, all conditions of Lemma 9 hold simultaneously for all j with large probability.

The proof is complete since the conclusions of Lemma 9 with m = m j = 0 guarantee the uniform

boundedness of M∗σ and M∗1 . �

A.11 Proof of Theorem 3

The proof is parallel to that of Theorem 2. Since the smaller λ∗,0 = Ln−3/2(k/p) is used, we need to

apply Theorem 13 (ii) with A1 > 0, m = m j > 0 and typically much larger B j than S j. Since the con-

dition m j ≤C0s∗, j is impose in (15), the conclusions of Lemma 9 still guarantee the uniform bound-

edness of M∗σ and M∗1 . The verification of the conditions of Lemma 9 is identical to the case of larger

λ∗,0 in Theorem 2. The only difference is the need to verify that condition (15) uniformly guarantees
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the condition on A1 in Theorem 13 (ii), where κ+/m has the interpretation of κ+(m j;R− j,− j)/m j,

which depends on j and random R. Anyway, it suffices to verify κ+(m j;R− j,− j)/m j ≤ ψ j simulta-

neously for all j with large probability.

We verify κ+(m j;R− j,− j)/m j ≤ ψ j with the same argument as in Lemma 9. For any vector u

with ‖u‖0 = m j and ‖u‖2 = 1, it holds with probability 1− ε that

∣∣∣uT (R− j,− j−R− j,− j)u
∣∣∣≤max

j,k
|Rk, j−Rk, j|∑

j,k

|u juk| ≤ Ln(5ε/p2)m j.

Thus, it follows from the definition of κ+(m;Σ) in (16) that κ+(m j;R− j,− j)/m j ≤
κ+(m j;R− j,− j)/m j +Ln(5ε/p2) = ψ j for all j. This completes the proof. �

A.12 Proof of Example 1

(i) Let s∗, j = d j = #{k : Θ∗jk 6= 0} ≤ m + 1. We have max j(1 + s∗, j)λ0 ≤ (m + 2)λ0 → 0. Let

B j = {k 6= j : Θ∗k j 6= 0}. Since B j = J1 \{ j} for j ∈ J1, (11) holds with

inf
{

uT (R∗− j,− j)u/‖uB j
‖2

2 : uB j
6= 0

}
≥ 1−ρ2→ 1.

Thus, Theorem 2 is directly applicable to this example.

Next, we calculate the error bound in (12) and (14). Since d j(Θ
∗
j j)

1/2 = 2/(1−ρ2
1)

1/2 = 2m for

j ∈ J1 and d j(Θ
∗
j j)

1/2 ≤ (m+1)/(1−ρ2
2)

1/2 ≤ 2m for j ∈ J2,

(
∥∥D−1
− j‖∞Θ∗j j)

1/2s∗, jλ0 = (Θ∗j j)
1/2s∗, jλ0 ≤ 2mλ0.

In addition, ‖Θ∗, j‖1 ≤ 2m2 for j ∈ J1 and ‖Θ∗, j‖1 ≤ (1+ρ2‖v‖1)/(1−ρ2
2)≤ 3/2+o(1) for j ∈ J2,

so that for t =
√
(2/n) log p,

∑
j

exp(−nt2/‖Θ∗, j‖2
1)≤ 2exp

(
− 2log p

4m2

)
+ pexp

(
− 2log p

3/2+o(1)

)
→ 0.

It follows that the quantities in (14) are bounded by

max
j≤p

s∗, j‖Θ∗∗, j‖1λ2
0 ≤ 2(mλ0)

2, τn(Θ
∗)≤

√
(2/n) log p≤ λ0/(A

√
2).

Since mλ0 → 0, the error for the scaled Lasso is of the order mλ0 by Theorem 2. The conclusion

follows since Ln(m/p) = (1+o(1))
√
(2/n) log p when 4m2 ≤ log p.

(ii)Let λ̃ = max j ‖Σ∗, j−Σ∗∗, j‖∞ and λ̃∗ = ρ2/
√

m+ λ̃. Since diag(Σ∗) = In,

λ̃ . Ln(1/p)≪ ρ2/
√

m, λ̃∗ = (1+o(1))ρ2/
√

m = (1+o(1))c0mLn(m/p).

For λ ≥ λ̃∗, e3 is feasible for (46) with j = 3 ∈ J2, so that ‖Θ̃∗ j(λ)‖1 ≤ 1. Since ‖Θ∗J2,3‖1 ≥ 1+

m1/2ρ2,

m1/2ρ2 ≤ inf
λ≥λ̃∗
‖Θ̃J2,3(λ)−Θ∗J2,3(λ)‖1 ≤ (m+1)1/2 inf

λ≥λ̃∗
‖Θ̃J2,3(λ)−Θ∗J2,3(λ)‖2.
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It follows that for λ≥ λ̃∗, Θ̃(λ) is suboptimal in the sense of

inf
λ≥λ̃∗
‖Θ̃(λ)−Θ∗(λ)‖2 ≥

√
m/(1+m)ρ2 = c0m3/2Ln(m/p)/

√
1+1/m.

Consider λ≤ λ̃∗. Let β− j, j =−Θ∗− j, j/Θ∗j j, β̃− j, j(λ) =−Θ̃− j, j(λ)/Θ̃ j j(λ), σ j = (Θ∗j, j)
−1/2, and

h̃ j(λ) = β̃− j, j(λ)−β− j, j. By (46), ‖XT
− j(x j−X− jβ̃(λ))/n‖∞ ≤ λ/Θ̃ j j(λ). Since m(log p)/n→ 0

and ‖Σ∗‖2 ≤ 2, P{κ+(m;Σ) ≤ 3} → 1. Thus, by Proposition 14, there exist positive constants

{c1,c2} such that

min
j

P
{

inf
λ/Θ̃ j j(λ)≤c1σ jLn(m/p)

‖h̃ j(λ)‖2 ≥ c2σ j

√
mLn(m/p)

}
→ 1.

For Θ̃ j j(λ)≥Θ∗j j/2,

‖h̃ j(λ)‖2 = ‖Θ̃− j, j (̃λ)/Θ̃ j j(λ)−Θ∗− j, j/Θ∗j j‖2

≤ ‖Θ̃− j, j (̃λ)−Θ∗− j, j‖2/Θ̃ j j(λ)+‖β− j, j‖2|Θ̃ j j(λ)−Θ∗j j|/Θ̃ j j(λ)

≤ ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2(1+‖β− j, j‖2)/(Θ
∗
j j/2).

For j = 1, Θ∗j j = m2 and ‖β− j, j‖2 = ρ1, so that ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2 ≥ m2‖h̃ j(λ)‖2/4 when Θ̃ j j(λ)≥
Θ∗j j/2. Since ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2 ≥ m2/2 when Θ̃ j j(λ)≤Θ∗j j/2,

inf
λ≤λ̃∗
‖Θ̃(λ)−Θ∗‖2 ≥min

(
m2‖h̃1(λ)‖2/4,m2/2

)
.

Pick 0 < c0 < min(c1/2,c2/4). Since σ1 = (Θ∗11)
−1/2 = 1/m,

P
{

inf
λ≤λ̃∗
‖Θ̃(λ)−Θ∗‖2 ≤min

(
m2/2,(c2/4)m3/2Ln(m/p)

)}

≤ P
{

λ̃∗ > (m2/2)(c1/m)Ln(m/p)
}
+o(1) = o(1).

Since Ln(m/p)→ 0 implies min
(
m2/2,(c2/4)m3/2Ln(m/p)

)
≥ c0m3/2Ln(m/p), the conclusion fol-

lows. �
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