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Abstract

This paper considers probabilistic multinomial probit classification using Gaussian process (GP)

priors. Challenges with multiclass GP classification are the integration over the non-Gaussian pos-

terior distribution, and the increase of the number of unknown latent variables as the number of

target classes grows. Expectation propagation (EP) has proven to be a very accurate method for

approximate inference but the existing EP approaches for the multinomial probit GP classification

rely on numerical quadratures, or independence assumptions between the latent values associated

with different classes, to facilitate the computations. In this paper we propose a novel nested EP

approach which does not require numerical quadratures, and approximates accurately all between-

class posterior dependencies of the latent values, but still scales linearly in the number of classes.

The predictive accuracy of the nested EP approach is compared to Laplace, variational Bayes, and

Markov chain Monte Carlo (MCMC) approximations with various benchmark data sets. In the ex-

periments nested EP was the most consistent method compared to MCMC sampling, but in terms

of classification accuracy the differences between all the methods were small from a practical point

of view.

Keywords: Gaussian process, multiclass classification, multinomial probit, approximate infer-

ence, expectation propagation

1. Introduction

Gaussian process (GP) priors enable flexible model specification for Bayesian classification. In mul-

ticlass GP classification, the posterior inference is challenging because each target class increases

the number of unknown latent variables by the number of observations n. Typically, independent

GP priors are set for the latent values for each class and this is assumed throughout this paper.

Since all the latent values depend on each other through the likelihood, they become a posteriori

dependent, which can rapidly lead to computationally unfavorable scaling as the number of classes

c grows. A cubic scaling in c is prohibitive, and from a practical point of view, a desired complexity

is O(cn3) which is typical for the most existing approaches for multiclass GP classification. The

cubic scaling with respect to the number of data points is standard for full GP priors, and to reduce

this n3 complexity, sparse approximations can be used, but these are not considered in this paper.
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As an additional challenge, the posterior inference is analytically intractable because the likelihood

term related to each observation is non-Gaussian and depends on multiple latent values (one for

each class).

A Markov chain Monte Carlo (MCMC) approach for multiclass GP classification with a softmax

likelihood (also called a multinomial logistic likelihood) was described by Neal (1998). Sampling

of the latent values with the softmax model is challenging because the dimensionality is often high

and standard methods such as the Metropolis-Hastings and Hamiltonian Monte Carlo algorithms

require tuning of the step size parameters. Later Girolami and Rogers (2006) proposed an alternative

approach based on the multinomial probit likelihood which can be augmented with auxiliary latent

variables. This enables a convenient Gibbs sampling framework in which the latent function values

are conditionally independent between classes and normally distributed. If the hyperparameters

are sampled, one MCMC iteration scales as O(cn3) which can become computationally expensive

for large n because thousands of posterior draws may be required to obtain uncorrelated posterior

samples, and strong dependency between the hyperparameters and latent values can cause slow

mixing of the chains.

To speed up the inference, Williams and Barber (1998) used the Laplace approximation (LA)

to approximate the non-Gaussian posterior distribution of the latent function values with a tractable

Gaussian distribution. Conveniently the LA approximation with the softmax likelihood leads to an

efficient representation of the approximative posterior covariance scaling as O((c+ 1)n3), which

facilitates considerably the predictions and gradient-based type-II maximum a posteriori (MAP) es-

timation of the covariance function hyperparameters. Later Girolami and Rogers (2006) proposed

a factorized variational Bayes approximation (VB) for the augmented multinomial probit model.

Assuming the latent values and the auxiliary variables a posteriori independent, a computation-

ally efficient posterior approximation scheme is obtained. If the latent processes related to each

class share the same fixed hyperparameters, VB requires only one O(n3) matrix inversion per iter-

ation step compared to LA in which c+ 1 such inverses are required in each iteration. Recently,

Chai (2012) proposed an alternative variational bounding approximation for the multinomial lo-

gistic likelihood, which results in O(c3n3) base scaling. To reduce the computational complexity,

sparse approximations were determined by active inducing set selection.

Expectation propagation (EP) is the method of choice in binary GP classification where it has

been found very accurate with a reasonable computational cost (Kuss and Rasmussen, 2005; Nick-

isch and Rasmussen, 2008). Two types of EP approximations have been considered for the mul-

ticlass setting; the first assuming the latent values from different classes a posteriori independent

(IEP) and the second assuming them fully correlated (Seeger and Jordan, 2004; Seeger et al., 2006;

Girolami and Zhong, 2007). Incorporating the full posterior couplings requires evaluating the non-

analytical moments of c-dimensional tilted distributions which Girolami and Zhong (2007) approx-

imated with Laplace’s method resulting in an approximation scheme known as Laplace propagation

described by Smola et al. (2004). Earlier Seeger and Jordan (2004) proposed an alternative approach

where the full posterior dependencies were approximated by enforcing a similar structure for the

posterior covariance as in LA using the softmax likelihood. This enables a posterior representa-

tion scaling as O((c+ 1)n3) but the proposed implementation requires a c-dimensional numerical

quadrature and double-loop optimization to obtain a restricted-form site covariance approximation

for each likelihood term (Seeger and Jordan, 2004).1 To reduce the computational demand of EP,

1. Seeger and Jordan (2004) achieve also a linear scaling in the number of training points but we omit sparse approaches

here.
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factorized posterior approximations were proposed by both Seeger et al. (2006) and Girolami and

Zhong (2007). Both approaches omit the between-class posterior dependencies of the latent values

which results in a posterior representation scaling as O(cn3). The approaches rely on numerical

two-dimensional quadratures for evaluating the moments of the tilted distributions with the main

difference being that Seeger et al. (2006) used fewer two-dimensional quadratures for computa-

tional speed-up.

A different EP approach for the multiclass setting was described by Kim and Ghahramani (2006)

who adopted the threshold function as an observation model. Each threshold likelihood term fac-

torizes into c−1 terms dependent on only two latent values. This property can be used to transform

the inference onto an equivalent non-redundant model which includes n(c−1) unknown latent val-

ues with a Gaussian prior and a likelihood consisting of n(c − 1) factorizing terms. It follows

that standard EP methodology for binary GP classification (Rasmussen and Williams, 2006) can

be applied for posterior inference but a straightforward implementation results in a posterior repre-

sentation scaling as O((c−1)3n3) and means to improve the scaling are not discussed by Kim and

Ghahramani (2006). Contrary to the usual EP approach of maximizing the marginal likelihood ap-

proximation, Kim and Ghahramani (2006) determined the hyperparameters by maximizing a lower

bound on the log marginal likelihood in a similar way as is done in the expectation maximization

(EM) algorithm. Recently Hernández-Lobato et al. (2011) introduced a robust generalization of

the multiclass GP classifier with a threshold likelihood by incorporating n additional binary indica-

tor variables for modeling possible labeling errors. Efficiently scaling EP inference is obtained by

making the IEP assumption.

In this paper, we focus on the multinomial probit model and describe an efficient quadrature-

free nested EP approach for multiclass GP classification that scales as O((c+1)n3). The proposed

EP method takes into account all the posterior covariances between the latent variables, and the

posterior computations scale as efficiently as in the LA approximation. We validate the proposed

nested EP algorithm with several experiments. First, we compare the nested EP algorithm to various

quadrature-based EP methods with respect to the approximate marginal distributions of the latent

values and class probabilities with fixed hyperparameter values, and show that nested EP achieves

similar accuracy in a computationally efficient manner. Using the nested EP algorithm, we study

visually the utility of the full EP approximation over IEP, and compare their convergence proper-

ties. Second, we compare nested EP and IEP to other Gaussian approximations (LA and VB). We

visualize the accuracy of the approximate marginal distributions with respect to MCMC, illustrate

the suitability of the respective marginal likelihood approximations for type-II MAP estimation of

the covariance function hyperparameters, and discuss their computational complexities. Finally, we

compare the predictive performance of all these methods with estimation of the hyperparameters

using several real-world data sets. Since LA is known to be fast, we also test whether the predic-

tive probability estimates of LA can be further improved using Laplace’s method as described by

Tierney and Kadane (1986).

2. Gaussian Processes for Multiclass Classification

We consider a classification problem consisting of d-dimensional input vectors xi associated with

target class labels yi ∈ {1, . . . ,c}, where c > 2, for i = 1, . . . ,n. All the class labels are collected in

the n× 1 target vector y, and all the covariate vectors are collected in the matrix X = [x1, . . . ,xn]
T

of size n× d. Given the latent function values fi =
[

f 1
i , f 2

i , . . . , f c
i

]T
= f(xi) at the observed input
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locations xi, the observations yi are assumed independently and identically distributed as defined

by the observation model p(yi|fi). The latent vectors related to all the observations are denoted by

f =
[

f 1
1 , . . . , f 1

n , f 2
1 , . . . , f 2

n , . . . , f c
1 , . . . , f c

n

]T
.

Our goal is to predict the class membership for a new input vector x∗ given the observed data

D = {X ,y}, which is why we need to make some assumptions on the unknown function f (x).
We set a priori independent zero-mean Gaussian process priors on the latent values related to each

class, which is the usual assumption in multiclass GP classification (see, for example, Williams

and Barber, 1998; Seeger and Jordan, 2004; Rasmussen and Williams, 2006; Girolami and Zhong,

2007). This specification results in the following zero-mean Gaussian prior for f:

p(f|X) = N (f|0,K),

where K is a cn× cn block-diagonal covariance matrix with matrices K1,K2, . . . ,Kc (each of size

n × n) on its diagonal. Element Kk
i, j of the k’th covariance matrix defines the prior covariance

between the function values f k
i and f k

j , which is defined by the covariance function κ(xi,x j), that

is, Kk
i, j = κ(xi,x j) = Cov

[

f k
i , f k

j

]

for the latent values related to class k. A common choice for the

covariance function is the squared exponential

κse(xi,x j|θ) = σ2 exp

(

−
1

2

d

∑
k=1

l−2
k (xi,k − x j,k)

2

)

,

where xi,k is the k’th component of xi, and θ = {σ2, l1, . . . , ld} collects the hyperparameters gov-

erning the smoothness properties of latent functions. The magnitude parameter σ2 controls the

overall variance of the unknown function values, and the lengthscale parameters l1, . . . , ld control

the smoothness of the latent function by defining how fast the correlation decreases in each input

dimension. The framework allows separate covariance functions or hyperparameters for different

classes but throughout this work, for simplicity, we use the squared exponential covariance function

with the same θ for all classes.

In this paper, we consider two different observation models: the softmax model

p(yi|fi) =
exp( f

yi

i )

∑c
j=1 exp( f

j
i )
, (1)

and the multinomial probit model

p(yi|fi) = Ep(ui)

{

c

∏
j=1, j 6=yi

Φ(ui + f
yi

i − f
j

i )

}

, (2)

where the auxiliary variable ui is distributed as p(ui) = N (ui|0,1), and Φ(x) denotes the cumulative

density function of the standard normal distribution. The softmax and multinomial probit models

are multiclass generalizations of the logistic and the probit models respectively.

By applying Bayes’ theorem, the conditional posterior distribution of the latent values can be

written as

p(f|D,θ) =
1

Z
p(f|X ,θ)

n

∏
i=1

p(yi|fi), (3)
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where Z = p(y|X ,θ) =
∫

p(f|X ,θ)∏n
i=1 p(yi|fi)df is known as the marginal likelihood of θ. Both

observation models result in an analytically intractable posterior distribution and therefore approx-

imate methods are needed for integration over the latent variables. Different approximate methods

are more suitable for a particular likelihood function because of the convenience of implementation:

the softmax is preferable for LA because of the efficient structure and computability of the partial

derivatives (Williams and Barber, 1998), while the multinomial probit is preferable for VB, EP and

Gibbs sampling because of the convenient auxiliary variable representations (Girolami and Rogers,

2006; Girolami and Zhong, 2007).

3. Approximate Inference Using Expectation Propagation

In this section, we first give a general description of EP for multiclass GP classification and review

some existing approaches. Then we present a novel nested EP approach for the multinomial probit

model.

3.1 Expectation Propagation for Multiclass GP Classification

Expectation propagation is an iterative algorithm for approximating integrals over functions that fac-

tor into simple terms (Minka, 2001b). Using EP the posterior distribution (3) can be approximated

with

qEP(f|D,θ) =
1

ZEP
p(f|X ,θ)

n

∏
i=1

t̃i(fi|Z̃i, µ̃i, Σ̃i), (4)

where t̃i(fi|Z̃i, µ̃i, Σ̃i) = Z̃iN (fi|µ̃i, Σ̃i) are local likelihood term approximations parameterized with

scalar normalization terms Z̃i, c× 1 site location vectors µ̃i, and c× c site covariances Σ̃i. In the

algorithm, first the site approximations are initialized, and then each site is updated in turns. The

update for the i’th site is done by first removing the site term from the marginal posterior which

gives the cavity distribution

q−i(fi) = N (fi|µ−i,Σ−i) ∝ q(fi|D,θ)t̃(fi)
−1.

The cavity distribution is then combined with the exact i’th likelihood term p(yi|fi) to form the

non-Gaussian tilted distribution

p̂(fi) = Ẑ−1
i q−i(fi)p(yi|fi), (5)

which is assumed to encompass more information about the true marginal distribution. Next a

Gaussian approximation q̂(fi) is determined for p̂(fi) by minimizing the Kullback-Leibler (KL)

divergence KL( p̂(fi)||q̂(fi)), which for a Gaussian q̂(fi) is equivalent to matching the first and second

moments of q̂(fi) with the corresponding moments of p̂(fi). Finally, the parameters of the i’th site

are updated so that the mean and covariance of q(fi) are consistent with q̂(fi). After updating the

site parameters, the posterior distribution (4) is updated. This can be done either in a sequential way,

where immediately after each site update the posterior is refreshed using a rank-c update, or in a

parallel way (see, for example, van Gerven et al., 2009), where the posterior is refreshed only after

all the site approximations have been updated once. This procedure is repeated until convergence,

that is, until all the marginal distributions q(fi) are consistent with p̂(fi).
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In binary GP classification, determining the moments of the tilted distribution requires solv-

ing only one-dimensional integrals, and assuming the probit likelihood function, these univariate

integrals can be computed efficiently without numerical quadratures. In the multiclass setting, the

problem is how to evaluate the multi-dimensional integrals which are required to determine the

moments of the tilted distributions (5). Girolami and Zhong (2007) approximated these moments

using the Laplace approximation which results in an algorithm called Laplace propagation (Smola

et al., 2004). The problem with the LA approach is that the mean is replaced with the mode of the

distribution and the covariance with the inverse Hessian of the log density at the mode. Because of

the skewness of the tilted distribution caused by the likelihood function, the LA method can lead to

inaccurate mean and covariance estimates in which case the resulting posterior approximation does

not correspond to the full EP solution. Seeger and Jordan (2004) estimated the tilted moments using

multi-dimensional quadratures, but this becomes computationally demanding when c increases, and

to achieve a posterior representation scaling linearly in c, they do an additional optimization step to

obtain a constrained site precision matrix for each likelihood term approximation.

Computations can be facilitated by using the IEP approximation where explicit between-class

posterior dependencies are omitted. This simplification enables posterior computations scaling lin-

early in c. The existing approaches for the multinomial probit rely on multiple numerical quadra-

tures for each site update; the implementation of Girolami and Zhong (2007) requires a total of

2c+1 two-dimensional numerical quadratures for each likelihood term, whereas Seeger et al. (2006)

described an alternative approach where only two two-dimensional and 2c − 1 one-dimensional

quadratures are needed. Later, we will demonstrate that compared to the full EP approximation,

IEP underestimates the uncertainty on the latent values and in practice it may require more iterations

than full EP for convergence especially if the hyperparameter setting results in strong between-class

posterior couplings.

3.2 Efficiently Scaling Quadrature-Free Implementation

In this section, we present a novel nested EP approach for multinomial probit classification that does

not require numerical quadratures or sampling for estimation of the tilted moments and predictive

probabilities. The method also leads simultaneously to low-rank site approximations which retain

all posterior couplings but results in linear computational scaling with respect to the number of

target classes c. Using the proposed nested EP approach a quadrature-free IEP approximation can

also be formed with similar computational complexity as the full EP approximation.

3.2.1 QUADRATURE-FREE NESTED EXPECTATION PROPAGATION

Here we use the multinomial probit as the likelihood function because its product form consisting

of cumulative Gaussian factors is computationally more suitable for EP than the sum of exponential

terms in the softmax likelihood. Given the mean µ−i and the covariance Σ−i of the cavity distribu-

tion, we need to determine the normalization factor Ẑi, mean vector µ̂i, and covariance matrix Σ̂i of

the tilted distribution

p̂(fi) = Ẑ−1
i N (fi|µ−i,Σ−i)

∫
N (ui|0,1)

(

c

∏
j=1, j 6=yi

Φ(ui + f
yi

i − f
j

i )

)

dui, (6)

which requires solving non-analytical (c+1)-dimensional integrals over fi and ui. Instead of quadra-

ture methods (Seeger and Jordan, 2004; Seeger et al., 2006; Girolami and Zhong, 2007), we use EP
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to approximate these integrals. At first, this approach may seem computationally very demanding

since individual EP approximations are required for each of the n sites. However, it turns out that

these inner EP approximations can be updated incrementally between the outer EP loops. This

scheme also leads naturally to an efficiently scaling representation for the site precisions Σ̃−1
i .

To form a computationally efficient EP algorithm for approximating the tilted moments, it is

helpful to consider the joint distribution of fi and the auxiliary variable ui arising from (6). Defining

wi = [fT
i ,ui]

T and removing the marginalization over ui results in the following augmented tilted

distribution:

p̂(wi) = Ẑ−1
i N (wi|µwi

,Σwi
)

c

∏
j=1, j 6=yi

Φ(wT
i b̃i, j), (7)

where µwi
= [µT

−i,0]
T and Σwi

is a block-diagonal matrix formed from Σ−i and 1. Denoting the j’th

unit vector of the c-dimensional standard basis by e j, the auxiliary vectors b̃i, j can be written as

b̃i, j = [(eyi
− e j)

T ,1]T . The normalization term Ẑi is the same for p̂(fi) and p̂(wi), and it is defined

by Ẑi =
∫

N (wi|µwi
,Σwi

)∏ j 6=yi
Φ(wT

i b̃i, j)dwi. The other quantities of interest, µ̂i and Σ̂i, are equal

to the marginal mean and covariance of the first c components of wi with respect to p̂(wi).
The augmented distribution (7) is of similar functional form as the posterior distribution result-

ing from a linear binary classifier with a multivariate Gaussian prior on the weights wi and a probit

likelihood function. Therefore, the moments of (7) can be approximated with EP similarly as in

linear classification (see, for example, Qi et al., 2004) or by applying the general EP formulation

for latent Gaussian models described by Cseke and Heskes (2011, Appendix C). For clarity, we

have summarized a computationally efficient implementation of the algorithm in Appendix A. The

augmented tilted distribution (7) is approximated with

q̂(wi) = Z−1
q̂i

N (wi|µwi
,Σwi

)
c

∏
j=1, j 6=yi

Z̃q̂i, jN (wT
i b̃i, j|α̃

−1
i, j β̃i, j, α̃

−1
i, j )dwi, (8)

where the cumulative Gaussian functions are approximated with scaled Gaussian site functions and

the normalization constant Ẑi is approximated with Zq̂i
. From now on the site parameters of q̂(wi)

in their natural exponential form are denoted by α̃i = [α̃i, j]
T
j 6=yi

and β̃i = [β̃i, j]
T
j 6=yi

.

Note that the probit terms in Equation (7) depend on the unknown latents fi only through the

linear transformation gi = B̃T
i wi, where B̃i = [b̃i, j] j 6=yi

, that is g
j
i = f

yi

i − f
j

i +ui. This relation implies

that the likelihood of fi increases as the latent value associated with the correct class yi increases

compared to the latents associated with the other classes. Integration over the auxiliary variable

ui results from the conic truncation of the latent variable representation of the multinomial probit

model (see, for example, Girolami and Rogers, 2006). This relationship between wi and gi has two

important computational consequences. First, the fully-coupled nested EP solution can be computed

by propagating scalar moments of g
j
i which requires solving only one-dimensional integrals because

each probit factor in the augmented tilted distribution depends only on the scalar g
j
i (see Appendix

A and references therein). Second, it can be shown that the exact mean and covariance of wi ∼
p̂(wi) can be solved from the respective moments of gi whose distribution is obtained by gi =
B̃T

i wi on Equation (7). Because the dimension of gi is c− 1 we can form computationally cheaper

quadrature-based estimates of the tilted moments as described in Section 3.3. We will also use the

approximate marginal moments of gi to visualize differences in the predictive accuracy of EP and

IEP approximations in Section 5.2.
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3.2.2 EFFICIENTLY SCALING REPRESENTATION

In this section we show that the approximation (8) leads to matrix computations scaling as O((c+
1)n3) in the evaluation of the moments of the approximate posterior (4). The idea is to show that the

site precision matrix Σ̃−1
i resulting from the EP update step with Σ̂i derived from (8) has a similar

structure with the Hessian matrix of log p(yi|fi) in the Laplace approximation (Williams and Barber,

1998; Seeger and Jordan, 2004; Rasmussen and Williams, 2006).

The approximate marginal covariance of fi derived from (8) is given by

Σ̂i = HT
(

Σ−1
wi

+ B̃iT̃iB̃
T
i

)−1
H, (9)

where the matrix T̃i = diag(α̃i) is diagonal,2 and HT =
[

Ic 0
]

picks up the desired components

of wi, that is, fi = HT wi. Using the matrix inversion lemma and denoting Bi = HT B̃i = eyi
1T −E−yi

,

where E−yi
= [e j] j 6=yi

and 1 is a (c−1)×1 vector of ones, we can write the tilted covariance as

Σ̂i = Σ−i −Σ−iBi(T̃
−1

i +11T +BT
i Σ−iBi)

−1BT
i Σ−i

= (Σ−1
−i +Bi(T̃

−1
i +11T )−1BT

i )
−1. (10)

Because in the moment matching step of the EP algorithm the site precision matrix is updated as

Σ̃−1
i = Σ̂−1

i −Σ−1
−i , we can write

Σ̃−1
i = Bi(T̃

−1
i +11T )−1BT

i = Bi(T̃i − α̃i(1+1T α̃i)
−1α̃T

i )B
T
i . (11)

Since Bi is a c×(c−1) matrix, we see that Σ̃−1
i is of rank c−1 and therefore a straightforward imple-

mentation based on (11) would result into O((c−1)3n3) scaling in the posterior update. However,

a more efficient representation can be obtained by simplifying (11) further. Writing Bi = −AiE−yi
,

where Ai = [Ic − eyi
1T

c ] and 1c is a c×1 vector of ones, we get

Σ̃−1
i = Ai

(

E−yi
T̃iE

T
−yi

−πi(1
T
c πi)

−1πT
i

)

AT
i ,

where we have defined πi = E−yi
α̃i + eyi

and used Biα̃i =−Aiπi. Since Aieyi
= 0 we can add eyi

eT
yi

to the first term inside the brackets to obtain

Σ̃−1
i = AiΠiA

T
i = Πi, where Πi = diag(πi)− (1T

c πi)
−1πiπ

T
i . (12)

The second equality can be explained as follows. Matrix Πi is of similar form with the precision

contribution of the i’th likelihood term, Wi = −∇2
fi

log p(yi|fi), in the Laplace algorithm (Williams

and Barber, 1998), and it has one eigenvector, 1c, with zero eigenvalue: Πi1c = 0. It follows that

AiΠi = (Ic − eyi
1T

c )Πi = Πi − eyi
0T = Πi and therefore Σ̃−1

i = Πi. Matrix Πi is also precisely of the

same form as the a priori constrained site precision block that Seeger and Jordan (2004) determined

by double-loop optimization of KL(q̂(fi)||q(fi)).
In a similar fashion, we can determine a simple formula for the natural location parameter

ν̃i = Σ̃−1
i µ̃i as a function of α̃i and β̃i. The marginal mean of fi with respect to q̂(wi) is given by

µ̂i = HT
i

(

Σ−1
wi

+ B̃iT̃iB̃
T
i

)−1 (
Σ−1

wi
µwi

+ B̃iβ̃i

)

, (13)

2. We use the following notation: diag(a) with a vector argument is a square matrix with a on the main diagonal, and

diag(A) with a matrix argument is a column vector containing the diagonal elements of the matrix A.
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which we can write using the matrix inversion lemma as

µ̂i = Σ̂iΣ
−1
−i µ−i +Σ−iBi(T̃

−1
i +11T +BT

i Σ−iBi)
−1T̃−1

i β̃i. (14)

Using the update formula ν̃i = Σ̂−1
i µ̂i −Σ−1

−i µ−i resulting from the EP moment matching step and

simplifying further with the matrix inversion lemma, the site location ν̃i can be written as

ν̃i = Bi

(

β̃i − α̃iai

)

= aiπi −E−yi
β̃i, (15)

where ai = (1T β̃i)/(1
T
c πi). The site precision vector ν̃i is orthogonal with 1c, that is, 1T

c ν̃i = 0,

which is congruent with (12). Note that with results (12) and (15), the mean and covariance of

the approximate posterior (4) can be evaluated using only α̃i and β̃i. It follows that the posterior

(predictive) means and covariances as well as the marginal likelihood can be evaluated with similar

computational complexity as with the Laplace approximation (Williams and Barber, 1998; Ras-

mussen and Williams, 2006). For clarity the main components are summarized in Appendix B. The

IEP approximation in our implementation is formed by matching the i’th marginal covariance with

diag(diag(Σ̂i)), and the corresponding mean with µ̂i.

3.2.3 EFFICIENT IMPLEMENTATION

Approximating the tilted moments using inner EP for each site may appear too slow for larger

problems because typically several iterations are required to achieve convergence. However, the

number of inner-loop iterations can be reduced by storing the site parameters α̃i and β̃i after each

inner EP run and continuing from the previous values in the next run. This framework where the

inner site parameters α̃i and β̃i are updated iteratively instead of µ̃i and Σ̃i, can be justified by

writing the posterior approximation (4) using the approximative site terms from (8):

q(f|D,θ) ∝ p(f|X ,θ)
n

∏
i=1

∫
N (ui|0,1)

c

∏
j=1, j 6=yi

Z̃q̂i, jN (ui + f
yi

i − f
j

i |α̃
−1
i, j β̃i, j, α̃

−1
i, j )dui. (16)

Calculating the Gaussian integral over ui leads to the same results for µ̃i and Σ̃i as derived earlier

(Equations 12 and 15). Apart from the integration over the auxiliary variables ui, Equation (16)

resembles an EP approximation where n(c− 1) probit terms of the form Φ(ui + f
yi

i − f
j

i ) are ap-

proximated with Gaussian site functions. In accordance with the standard EP framework we form

the cavity distribution q−i(fi) by removing c− 1 sites from (16) and subsequently refine α̃i and β̃i

using the mean and covariance of the tilted distribution (6). If we alternatively expand only the i’th

site approximation with respect to ui and write the corresponding marginal approximation as

q(fi|D,θ) ∝ q−i(fi)
∫

N (ui|0,1)
c

∏
j=1, j 6=yi

Z̃q̂i, jN (ui + f
yi

i − f
j

i |α̃
−1
i, j β̃i, j, α̃

−1
i, j )dui, (17)

we can consider updating only one of the approximative terms in (17) at a time. This is equiva-

lent to starting the inner EP iterations with the values of α̃i and β̃i from the previous outer-loop

iteration instead of a zero initialization which is customary to standard EP implementations. In our

experiments, only one inner-loop iteration per site was found sufficient for convergence with com-

parable number of outer-loop iterations, which results in significant computational savings in the

tilted moment evaluations.
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The previous interpretation of the algorithm is also useful for defining damping (Minka and Laf-

ferty, 2002), which is commonly used to improve the numerical stability and convergence of EP. In

damping the site parameters in their natural exponential forms are updated to a convex combination

of the old and new values. Damping cannot be directly applied on the site precision matrix Πi = Σ̃−1
i

because the constrained form of the site precision (12) is lost. Instead we damp the updates on α̃i

and β̃i which preserves the desired structure. This can be justified with the same arguments as in

the previous paragraph where we considered updating only one of the approximative terms in (17)

at a time. Convergence of the nested EP algorithm with full posterior couplings using this scheme

is illustrated with different damping levels in Section 5.4.

3.3 Quadrature-Based Full EP Implementation

A challenge in forming the fully-coupled EP approximation using numerical quadratures is how to

obtain a site precision structure, which results in efficiently scaling posterior computations. Seeger

and Jordan (2004) used c-dimensional Gauss-Hermite rules and determined a similar site preci-

sion matrix as in Equation (12) by optimizing KL( p̂i(fi)||q(fi)). In this section, we use the ideas

from Section 3.2 to form a simpler fully-coupled EP algorithm that uses similar approximate site

precision structures determined directly using (c− 1)-dimensional quadratures instead of separate

optimizations.

We use the previously defined transformation gi = B̃T
i wi, where wi ∼ p̂(wi), and denote the tilted

mean vector and covariance matrix of wi with µ̂wi
and Σ̂wi

. Analogously, we denote the correspond-

ing moments of gi resulting from the transformation with µ̂gi
and Σ̂gi

. Making the transformation

on (7) and differentiating twice with respect to µwi
, it can be shown that the following relation holds

between the exact covariance matrices of the random vectors wi and gi:

Σ̂gi
= B̃T

i Σ̂wi
B̃i = B̃T

i (Σ
−1
wi

+ B̃iΛiB̃
T
i )

−1B̃i, (18)

where Σwi
is the cavity covariance of wi. Solving Λi from (18) gives

Λi = Σ̂−1
gi

−Σ−1
gi
, (19)

where Σgi
= BT

i Σ−iBi + 11T , and Σ̂gi
can be estimated with a (c− 1)-dimensional quadrature rule.

The marginal tilted covariance of fi can be computed from Σ̂wi
similarly as in Equations (9) and

(10), and the corresponding site precision matrix Σ̃−1
i can be computed as in Equation (11) with Λi

now in place of T̃i. This gives the following site precision structure

Σ̃−1
i = Bi(Λ

−1
i +11T )−1BT

i ,

which depends only on Λi. The form of the site precision is similar to nested EP, except that now Λi

is a full matrix, which would result in the unfavorable O((c− 1)3n3) posterior scaling. Therefore,

we approximate Λi with its diagonal to get the same structure as in Equation (12), where now

Λ̃i = diag(diag(Λi)) is used instead of T̃i. This results in posterior computations scaling linearly in

c similarly as with the full nested EP approach.

To estimate the site location parameter ν̃i using quadratures, we proceed in the same way as for

the site precision. Making the transformation on (7) and differentiating once with respect to µwi
, it

can be shown that the tilted means of wi and gi are related according to

µ̂gi
= B̃T

i µ̂wi
= B̃T

i (Σ
−1
wi

+ B̃iΛiB̃
T
i )

−1(Σ−1
wi
µwi

+ B̃iξi), (20)
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where µ̂wi
has similar form as in Equation (13). The vector ξi corresponds to β̃i in nested EP, and

we can solve it from (20), which results in

ξi = Σ̂−1
gi
µ̂gi

−Σ−1
gi
µgi

, (21)

where µgi
= BT

i µ−i, and µ̂gi
can be estimated using a (c− 1)-dimensional quadrature. If Λi is

approximated with its diagonal, we have to substitute Σ̂−1
gi

= Λ̃i+Σ−1
gi

in Equation (21), which results

from the diagonal approximation of Λi made in Equation (19). In the same way as in Equations

(13)-(15), we get the following expression for the site location

ν̃i = Bi(ξi − Λ̃i1(1+1T Λ̃i1)
−11Tξi),

which depends only on ξi and Λ̃i. This site location structure is similar to nested EP (15) with ξi

in place of β̃i. Using these results, a quadrature-based full EP algorithm can be implemented in the

same way as the outer-loop of nested EP. Later in Section 5.1, we validate this approximate (c−1)-
dimensional quadrature approach by comparing the tilted moments to those of a more expensive

straightforward (c+1)-dimensional full quadrature solution.

4. Other Approximations for Bayesian Inference

In this section we discuss all the other approximations considered in this paper for multiclass GP

classification. First we give a short description of the LA method. Then we show how it can

be improved upon by computing corrections to the marginal predictive densities using Laplace’s

method as described by Tierney and Kadane (1986). Finally, we briefly summarize the MCMC and

VB approximations.

4.1 Laplace Approximation

In the Laplace approximation a second order Taylor expansion of log p(f|D,θ) is made around the

posterior mode f̂ which can be determined using Newton’s method as described by Williams and

Barber (1998) and Rasmussen and Williams (2006). This results in the posterior approximation

qLA(f|D,θ) = N
(

f|f̂,(K−1 +W )−1
)

,

where W =−∇2
f log p(y|f)|f=f̂ and in which p(y|f) = ∏n

i=1 p(yi|fi). With the softmax likelihood (1),

the submatrix of W related to each observation will have a similar structure with Πi in (12), which

enables efficient posterior computations that scale linearly in c as already discussed in the case of

EP.

4.1.1 IMPROVING MARGINAL POSTERIOR DISTRIBUTIONS

In Gaussian process classification, the LA and EP methods can be used to efficiently form a mul-

tivariate Gaussian approximation for the posterior distribution of the latent values. Recently, mo-

tivated by the earlier ideas of Tierney and Kadane (1986), two methods have been proposed for

improving the marginal posterior distributions in latent Gaussian models; one based on subsequent

use of Laplace’s method (Rue et al., 2009), and one based on EP (Cseke and Heskes, 2011). Be-

cause in classification the focus is not on the predictive distributions of the latent values but on the

predictive probabilities related to a test input x∗, applying these methods would require additional
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numerical integration over the improved posterior approximation of the corresponding latent value

f∗ = f(x∗). In the multiclass setting integration over a multi-dimensional space is required which

becomes computationally demanding to perform, for example, in a grid if c is large. To avoid this

integration, we test computing the corrections directly for the predictive class probabilities follow-

ing another approach presented by Tierney and Kadane (1986). A related idea for approximating

the predictive distribution of linear model coefficients directly with a deterministic approximation

has been discussed by Snelson and Ghahramani (2005).

The posterior mean of a smooth and positive function h( f ) is given by

E[h( f )] =

∫
h( f )p(y| f )p( f )d f∫

p(y| f )p( f )d f
, (22)

where p(y| f ) is the likelihood function and p( f ) is the prior distribution. Tierney and Kadane

(1986) proposed to approximate both integrals in (22) separately with Laplace’s method. This

approach can be readily applied for approximating the posterior predictive probabilities p(y∗|x∗) of

class memberships y∗ ∈ {1, ...,c} which are given by

p(y∗|x∗,D) =
1

Z

∫∫
p(y∗|f∗)p(f∗|f,x∗,X)p(f|X)p(y|f)dfdf∗, (23)

where Z =
∫∫

p(f∗|f,x∗,X)p(f|X)p(y|f)dfdf∗ =
∫

p(f|X)p(y|f)df is the marginal likelihood. With a

fixed class label y∗ the integrals can be approximated by a straightforward application of either LA

or EP, which is already done for the marginal likelihood Z in the standard approximations. The LA

method can be used for smooth and positive functions such as the softmax whereas EP is applicable

for a wider range of models.

The integral on the right side of (23) is equivalent to the marginal likelihood resulting from a

classification problem with one additional training point y∗. To compute the predictive probabilities

for all classes, we evaluate this extended marginal likelihood consisting of n+1 observations with

y∗ fixed to one of the c possible class labels at a time. This is computationally demanding because

several marginal likelihood evaluations are required for each test input. Additional modifications,

for example, initializing the latent values to their predictive mean implied by standard LA, could be

done to speed up the computations. Since further approximations can only be expected to reduce

the accuracy of the predictions, we do not consider them in this paper, and focus only on the naive

implementation due to its ease of use. Since LA is known to be fast, we test the goodness of the

improved predictive probability estimates using only LA, and refer to the method as LA-TKP as an

extension to the naming used by Cseke and Heskes (2011).

4.2 Markov Chain Monte Carlo

Because MCMC estimates become exact in the limit of infinite sample size, we use MCMC as a gold

standard for measuring the performance of the other approximations. Depending on the likelihood,

we use two different sampling techniques; scaled Metropolis-Hastings sampling for the softmax

function, and Gibbs sampling for the multinomial probit function.

4.2.1 SCALED METROPOLIS-HASTINGS SAMPLING FOR SOFTMAX

To obtain samples from the posterior with the softmax likelihood, the following two steps are alter-

nated. Given the hyperparameter values, the latent values are drawn from the conditional posterior
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p(f|D,θ) using the scaled Metropolis-Hastings sampling (Neal, 1998). Then, the hyperparameters

can be drawn from the conditional posterior p(θ|f,D), for example, using the Hamiltonian Monte

Carlo (HMC) (Duane et al., 1987; Neal, 1996).

4.2.2 GIBBS SAMPLING FOR MULTINOMIAL PROBIT

Girolami and Rogers (2006) described how to draw samples from the joint posterior using the Gibbs

sampler. The multinomial probit likelihood (2) can be written in the form

p(yi|fi) =
∫

ψ(vyi

i > vk
i ∀k 6= yi)

c

∏
j=1

N (v
j
i | f

j
i ,1)dvi, (24)

where vi = [v1
i , ...,v

c
i ]

T is a vector of auxiliary variables, and ψ is the indicator function whose value

is one if the argument is true and zero otherwise. Gibbs sampling can then be employed by drawing

samples alternately for all i from p(vi|fi,yi) which is a conic truncation of the multivariate Gaussian

distribution, and from p(f|v,θ) which is a multivariate Gaussian distribution. Given v and f the

hyperparameters can be drawn, for example, using HMC.

4.3 Factorized Variational Approximation

A computationally convenient variational Bayesian approximation for p(f|D,θ) can be formed by

employing the auxiliary variable representation (24) of the multinomial probit likelihood. As shown

by Girolami and Rogers (2006), assuming f a posteriori independent of v (which contains all vi)

leads to the following approximation

qVB(v, f|D,θ) = q(v)q(f) =
n

∏
i=1

q(vi)
c

∏
j=1

q(f j),

where the latent values associated with the j’th class, f j, are independent. The posterior approxima-

tion q(f j) will be a multivariate Gaussian distribution, and q(vi) a conic truncation of the multivari-

ate Gaussian distribution (Girolami and Rogers, 2006). Given the hyperparameters, the parameters

of q(v) and q(f) can be determined iteratively by maximizing a variational lower bound on the

marginal likelihood. Each iteration step requires determining the expectations of vi with respect to

q(vi) which can be obtained by either one-dimensional numerical quadratures or sampling methods.

In our implementation, the hyperparameters θ are determined by maximizing the variational lower

bound with fixed q(v) and q(f) similarly as in the maximization step of the EM algorithm.

5. Experiments

This section is divided into five parts. In Section 5.1 we compare nested EP to quadrature-based

EP in cost and quality. In Section 5.2, we illustrate the differences of the nested EP and IEP ap-

proximations in a simple synthetic classification problem. In Section 5.3, we compare visually the

quality of the approximate marginal distributions of f, the marginal likelihood approximations and

the predictive class probabilities between EP, IEP, VB and LA using a three-class real-world data

set. In Section 5.4, we discuss the computational complexities of the different approximate meth-

ods, and in Section 5.5, we evaluate them in terms of predictive performance with estimation of the

hyperparameters using several benchmark data sets.
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5.1 Comparing Nested EP to Numerical Quadrature

In this section we first validate the accuracy of the inner EP approximation and the full quadrature

method described in Section 3.3 for estimation of the tilted moments. Then we compare the accuracy

and numerical cost of the nested EP approximation to several quadrature-based EP implementations.

In the comparisons, we use two different types of classification data: the Glass data set from the UCI

Machine Learning Repository (Frank and Asuncion, 2010), and the USPS 3 vs. 5 vs. 7 data set from

the US Postal Service (USPS) database (Hull, 1994). The USPS 3 vs. 5 vs. 7 data set is defined

as a three class sub-problem from the USPS repartitioned handwritten digits data by considering

classification of 3’s vs. 5’s vs. 7’s.3 The Glass data has six (c = 6) target classes but only a small

number of observations (n = 214), whereas the USPS 3 vs. 5 vs. 7 data has only three (c = 3) target

classes but a larger number of training points (n = 1157). See also Table 3.

In the first experiment, we examine the tilted moments after two parallel EP outer-loop iter-

ations when the parameters of the cavity distributions are clearly different from their initialized

values for all site terms. We fixed the hyperparameters of the squared exponential covariance func-

tion to log(σ2) = 1 and log(l) = 1, where the small value of the magnitude parameter leads to a

close-to-Gaussian posterior as will be discussed more in Section 5.3. The main reason for not us-

ing more difficult hyperparameter values (larger magnitude) in this experiment, was that we had

stability problems in the actual EP algorithm using quadratures. Stability could be improved by

increasing the number of quadrature points, but this became computationally too expensive with a

larger number of classes.

As a baseline approximation, we compute the normalization factors Ẑi, the mean vectors µ̂i,

and the covariance matrices Σ̂i of the tilted distribution (6) for all i = 1, . . . ,n using a (c + 1)-
dimensional Gauss-Hermite product rule with ten quadrature points in each dimension. We call

this quadrature method QF10. This provides us a reference by which inner EP and the following

four (c− 1)-dimensional Gauss-Hermite quadrature methods (see Section 3.3 for further details)

are assessed: Q5 using five and Q10 using ten quadrature points in each dimension with the full

matrix Λi, and QD5 using five and QD10 using ten quadrature points in each dimension with the

diagonal approximation Λ̃i. Note that implementing an EP algorithm using QF10, Q5 or Q10, we

would lose the linear posterior scaling in c. Figure 1 shows the pairwise differences of log Ẑi, and

all the entries of µ̂i and Σ̂i with respect to QF10. The mean values and the 95% intervals of the

differences are illustrated. The normalization, mean and covariance are well calibrated for all the

quadrature methods. Inner EP matches the mean and covariance accurately, but there is a small

bias in the normalization term, probably due to the skewed tilted distributions. Variations of the

pairwise differences are small with inner EP and the (c− 1)-dimensional quadratures as long as

there are enough quadrature points. Because QD10 agrees well with QF10, from now on, we use it

to compute the tilted moments in the full quadrature solution, and refer to this algorithm as QEP.

In the second experiment, we compare the nested and quadrature EP algorithms in accuracy and

computational cost. We use Gibbs sampling as a reference method by which nested EP and IEP,

QEP, and quadrature-based IEP (QIEP) are measured. Both nested EP algorithms are implemented

incrementally, so that only one inner-loop iteration per site is done at each outer-loop iteration step,

which results in computational savings (see Section 3.2.3). For QIEP we use the implementation

proposed by Seeger et al. (2006) with ten quadrature points for integration over the latent value

from each class. We compare the absolute differences of class probabilities and latent means and

3. We use the same data partition as discussed by Rasmussen and Williams (2006).
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EP Q5 Q10 QD5 QD10

−0.02

0

0.02

(b) Glass, µ̂i

EP Q5 Q10 QD5 QD10
−0.01

−0.005

0

0.005

0.01

(c) Glass, Σ̂i

EP Q5 Q10 QD5 QD10

−0.05

0

0.05

(d) USPS 3-5-7, log Ẑi
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Figure 1: A comparison of tilted moments after two parallel EP outer-loop iterations using the

Glass and USPS 3 vs. 5 vs. 7 data sets. Using a (c+ 1)-dimensional Gauss-Hermite

product rule with ten quadrature points in each dimension (QF10) as a baseline result,

we compare inner EP and the following (c− 1)-dimensional Gauss-Hermite quadrature

methods: five- and ten-dimensional product rules with full Λi (Q5 and Q10) and diagonal

Λ̃i (QD5 and QD10). The mean values and the 95% intervals of the pairwise differences

of Ẑi, and all the entries of µ̂i and Σ̂i with respect to QF10 are shown. See the text for

further details.

variances using the Glass and USPS 3 vs. 5 vs. 7 data sets with the same fixed hyperparameters

as earlier. We split the Glass data set randomly into training and test parts, and use the predefined

training and test parts for the USPS 3 vs. 5 vs. 7 data set. Table 1 reports the mean and maximum

values of the element-wise differences with respect to Gibbs sampling after 30 outer-loop iterations

of EP. Table 1 shows also the relative CPU times for training. From the table it can be seen that

the differences in accuracy between the methods are small. For the Glass data the fully-coupled EP

algorithms give slightly more accurate estimates for the mean and variances of the latents than the

IEP algorithms do, but the class probabilities are in practice the same across all the methods. The

main observation with the Glass data is that the CPU times of EP, IEP and QIEP are similar for

practical purposes, but QEP is clearly slower due to the unfavorable scaling in c. We acknowledge

that the performance differences in the relative CPU time are approximate and depend much on

the implementation, but to reduce these effects the same outer-loop implementation was used for

both nested and quadrature EP with the same fixed number of iterations. It is also worth to notice

that QEP and EP have practically the same CPU times with the USPS 3 vs. 5 vs. 7 data where

the number of target classes c is only three, but both of them are slower than the IEP algorithms

due to larger n and the additional n× n inversion needed in the posterior update with the fully-

coupled solutions (see also Section 5.4). We conclude that because the accuracy of nested and

quadrature EP are similar, and we experienced some stability problems with the quadrature solutions

in more difficult hyperparameter settings (larger values for the magnitude hyperparameter) and a
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Glass
Training Test

EP QEP IEP QIEP EP QEP IEP QIEP

Latent means
mean 0.048 0.047 0.058 0.067 0.043 0.043 0.055 0.058

max 0.181 0.186 0.190 0.217 0.176 0.177 0.193 0.181

Latent variances
mean 0.084 0.085 0.325 0.325 0.097 0.097 0.314 0.314

max 0.553 0.560 0.656 0.667 0.571 0.572 0.643 0.655

Class probabilities
mean 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

max 0.025 0.026 0.021 0.021 0.021 0.022 0.024 0.024

Relative CPU time 1.245 132.300 1.000 1.175

USPS 3 vs. 5 vs. 7
Training Test

EP QEP IEP QIEP EP QEP IEP QIEP

Latent means
mean 0.065 0.065 0.065 0.065 0.006 0.006 0.006 0.006

max 0.266 0.288 0.266 0.266 0.203 0.202 0.199 0.199

Latent variances
mean 0.167 0.167 0.167 0.167 0.215 0.215 0.216 0.215

max 0.724 0.724 0.723 0.731 1.021 1.021 1.021 1.021

Class probabilities
mean 0.008 0.008 0.013 0.013 0.001 0.001 0.001 0.001

max 0.040 0.043 0.059 0.058 0.022 0.024 0.035 0.035

Relative CPU time 2.542 2.602 1.000 1.001

Table 1: A comparison of nested and quadrature-based EP in terms of accuracy and cost using

the Glass and USPS 3 vs. 5 vs. 7 data sets. The table shows the element-wise mean and

maximum absolute differences of the latent means and variances and the class probabilities

for EP, QEP, IEP, and QIEP with respect to Gibbs sampling. See the text for further details.

small number of quadrature points (for example less than ten), from now on, we use nested EP and

IEP implementations due to their stability and good computational scaling.

5.2 Illustrative Comparison of EP and IEP with Synthetic Data

In this section, we study the properties of the proposed nested EP and IEP approximations in a

synthetic three-class classification problem with scalar inputs shown in Figure 2. The symbols x

(class 1), + (class 2), and o (class 3) indicate the positions of n = 15 training inputs generated

from three normal distributions with means -1, 2, and 3, and standard deviations 1, 0.5, and 0.5,

respectively. The left-most observations from class 1 can be better separated from the others but the

observations from classes 2 and 3 overlap more in the input space. We fixed the hyperparameters of

the squared exponential covariance function at the corresponding MCMC means: log(σ2) = 4.62

and log(l) = 0.26.

Figure 2(a) shows the predictive probabilities of all tree classes estimated with EP, IEP and

MCMC as a function of the input x. At the class boundaries, the methods give similar predictions

but elsewhere MCMC is the most confident while IEP seems more conservative. The performance

of EP is somewhere between MCMC and IEP, although the differences are small. To explain why
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Figure 2: A synthetic one-dimensional example of a three class classification problem, where the

MCMC, EP and IEP approximations are compared. The symbols x (class 1), + (class 2),

and o (class 3) in the bottom of the plots indicate the positions of n = 15 observations.

Plot (a) shows the predicted class probabilities, and (b) shows the predicted latent mean

values for all three classes. The symbols xi and x j indicate two example positions, where

the marginal distributions between the latent function values are illustrated in Figures 3

and 4. See the text for explanation.

the predictions differ, we look at the quality of the approximations made for the underlying f. Figure

2(b) shows the approximated latent mean values which are similar at all input locations.

To illustrate the approximate posterior uncertainties of f, we visualize two exemplary marginal

distributions at locations xi and x j marked in Figure 2. The MCMC samples of f 1
i and f 2

i (the

latents associated with classes 1 and 2 related to xi) together with a smoothed density estimate are

shown in Figure 3(a). The marginal distribution is non-Gaussian, and the latent values are more

likely larger for class 1 than for class 2 indicating a larger predictive probability for class 1. The

corresponding EP and IEP approximations are shown in Figures 3(b)-(c). EP captures the shape of

the true marginal posterior distribution better than IEP. To illustrate the effect of these differences

on the predictive probabilities, we show the unnormalized tilted distributions

p̂(gi|D,xi) = q(gi|D,xi)
c

∏
k=1,k 6=yi

Φ(gk
i ), (25)

where the random vector gi is defined in Section 3.2.1, and q(gi|D,xi) is the approximate marginal

obtained from q(fi|D,xi) by a linear transformation. Note that the marginal predictive probability

for class label yi with the multinomial probit model (2) can be obtained by appropriately forming

the transformation Bi and calculating the integral over gi in (25). Figures 3(d)-(f) show the contours

of the different approximations of p̂(gi|D,xi) for k ∈ {2,3}, which for MCMC are obtained using a

smoothed estimate of q(gi|D,xi) determined from transformed samples. The distributions are heav-

ily skewed by the probit factors elsewhere than the upper-right quadrant. Compared to the MCMC

estimate, IEP places more probability mass to the other quadrants, and therefore underestimates the

predictive probability for class 1 more than EP. The approximate predictive probabilities are 0.95

for MCMC, 0.88 for EP, and 0.82 for IEP.
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Figure 3: An example of a non-Gaussian marginal posterior distribution for the latent values related

to the input xi in the synthetic example shown in Figure 2. The first row shows the

distribution for the latents f 1
i and f 2

i . Plot (a) shows a scatter-plot of MCMC samples

drawn from the posterior and estimated density contour levels which correspond to the

areas that include approximately 95%, 90% 75%, 50%, and 25% of the probability mass.

Plots (b) and (c) show the equivalent contour levels of the EP and IEP approximations

(bold black lines) and the contour levels of the MCMC approximation (gray lines) for

comparison. Plots (d)-(f) show contours of p̂(gi|D,xi) for g2
i and g3

i . The probability for

class 1 is obtained by calculating the integral over gi, which results in approximately 0.95

for MCMC, 0.88 for EP, and 0.82 for IEP. See the text for explanation.

The second location x j is near the class boundary, where all the methods give similar predictive

probabilities, although the latent approximations can differ notably as shown in Figures 4(a)-(c),

which visualize the marginal approximations for f 2
j and f 3

j . EP is consistent with the MCMC

estimate but due to the independence constraint IEP underestimates the uncertainty of this close-to-

Gaussian but non-isotropic marginal distribution. Although Figures 4(d)-(f) show that IEP is more

inaccurate than EP, the integral over the tilted distribution of g j is in practice the same, since equal

amount of probability mass is distributed on both sides of the diagonal in Figure 4(c). The predictive

probability for class 2 is approximately 0.47 for all the methods.

5.3 Approximate Marginal Densities with Digit Classification Data

In this section, we compare the predictive performances and marginal likelihood approximations of

EP, IEP, VB and LA using the USPS 3 vs. 5 vs. 7 data set, which consists of 1157 training points
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Figure 4: An example of a close-to-Gaussian but non-isotropic marginal posterior distribution for

the latent values related to the input x j in the synthetic example shown in Figure 2. The

first row shows the distribution for the latents f 2
j and f 3

j . Plot (a) shows a scatter-plot

of MCMC samples drawn from the posterior and estimated density contour levels which

correspond to the areas that include approximately 95%, 90% 75%, 50%, and 25% of the

probability mass. Plots (b) and (c) show the equivalent contour levels of the EP and IEP

approximations (bold black lines) and the contour levels of the MCMC approximation

(gray lines) for comparison. Plots (d)-(f) show contours of p̂(g j|D,x j) for g1
j and g3

j . The

probability for class 2 is obtained by calculating the integral over g j, which results in

approximately 0.47 for all the methods. See the text for explanation.

and 1175 test points with 256 covariates. We fixed the hyperparameter values at log(σ2) = 4 and

log(l) = 2 which leads to skewed non-Gaussian marginal posterior distributions as will be illustrated

shortly.

Figure 5 shows the predictive probabilities of the true class labels for all the approximate meth-

ods plotted against the MCMC estimate. The first row shows the training and the second row the

test cases. Overall, EP gives the most accurate estimates while IEP slightly underestimates the prob-

abilities for the training cases but performs well for the test cases. Both VB and LA underestimate

the predictive probabilities for the test cases, but LA-TKP with the marginal corrections clearly

improves the estimates of the LA approximation. Note that the LA methods use a different obser-

vation model, and therefore they are compared to the scaled Metropolis-Hastings sampling with the

softmax model.

Figure 6 shows an example of the latent marginal posterior distributions for one training point

with the correct class label being 2. For each method, the latent pairs ( f 1
i , f 2

i ), ( f 1
i , f 3

i ), and ( f 2
i , f 3

i ),
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Figure 5: Class probabilities on the USPS 3 vs. 5 vs. 7 data. The MCMC estimates are shown

on the x-axis and EP, IEP, VB, LA, and LA-TKP on the y-axis. The first row shows

the predictive probabilities of the true class labels for the training points and the second

row for the test points. The symbols (x, +, o) corresponds to the handwritten digit target

classes 3, 5, and 7. The hyperparameters of the squared exponential covariance function

were fixed at log(σ2) = 4 and log(l) = 2.

are shown. The EP approximation agrees reasonably well with the MCMC samples. IEP under-

estimates the latent uncertainty, especially near the training inputs because of the skewing effect

of the likelihood. This seems to affect more the predictive probabilities of the training points in

Figure 5(b), which effect can also be seen in the previous example of Figure 2(a) further away from

the decision boundary near the input xi. Figure 6 shows that the VB method underestimates the

latent uncertainty. The independence assumption of VB leads to an isotropic approximate distribu-

tion, and although the predictive probabilities for the training cases are somewhat consistent with

MCMC, the predictions on the test data are less accurate (plots (c) and (h) in Figure 5). Note that

the specific hyperparameter values are not optimal for VB, and these values are not supported by

the marginal likelihood approximation of VB either, as will be visualized later in this section. The

LA approximation captures some of the dependencies between the latent variables associated with

different classes, but the joint mode of f is a poor estimate for the true mean, which causes inaccu-

rate predictive probabilities (plots (d) and (i) in Figure 5). The VB mean estimate is also closer to

LA than MCMC, although LA uses a different observation model.

Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008) discussed how a large value of

the magnitude hyperparameter σ2 can lead to a skewed posterior distribution in binary classification.

In the multiclass setting, similar behavior can be seen in the marginal distributions as illustrated in

Figures 3 and 6. A large σ2 leads to a more widely distributed prior which in turn is skewed more

strongly by the likelihood where it disagrees with the target class. In the previous comparison,

the hyperparameter values were chosen to produce non-Gaussian marginal posterior distributions
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Figure 6: Marginal posterior distributions for one training point with the true class label being 2

on the USPS 3 vs. 5 vs. 7 data. Each row corresponds to one of the latent pairs ( f 1
i , f 2

i ),

( f 1
i , f 3

i ), and ( f 2
i , f 3

i ). The first column shows a scatter-plot of MCMC samples drawn from

the posterior and estimated density contour levels which correspond to the areas that in-

clude approximately 95%, 90% 75%, 50%, and 25% of the probability mass. The rest of

the columns show the equivalent contour levels of the EP, IEP, VB, and LA approxima-

tions (bold black lines) and the contour levels of the MCMC approximation (gray lines)

for comparison. Note that the last column visualizes a different marginal distribution be-

cause LA uses the softmax likelihood. The hyperparameters of the squared exponential

covariance function were fixed at log(σ2) = 4 and log(l) = 2 to obtain a non-Gaussian

posterior distribution.

for demonstration purposes. However, usually the hyperparameters are estimated by maximizing

the marginal likelihood. Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008) studied

the suitability of the marginal likelihood approximations for selecting hyperparameters in binary

classification. They compared the calibration of predictive performance and the marginal likelihood

estimates on a grid of hyperparameter values. In the following, we extend these comparisons to

multiple classes with the USPS data set, for which similar considerations were done by Rasmussen

and Williams (2006) with the LA method.

The upper row of Figure 7 shows the log marginal likelihood approximations for EP, IEP, and

LA, and the lower bound on evidence for VB as a function of the log-lengthscale log(l) and log-

magnitude log(σ2) using the USPS 3 vs. 5 vs. 7 data. The middle row shows the log predictive

densities evaluated on the test set, and the bottom row shows the corresponding classification accu-
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Figure 7: Marginal likelihood approximations and predictive performances as a function of the log-

lengthscale log(l) and log-magnitude log(σ2) for EP, IEP, VB, and LA on the USPS 3

vs. 5 vs. 7 data. The first row shows the log marginal likelihood approximations, the

second row shows the log predictive densities in a test set, and the third row shows the

classification accuracies in a test set.

racies. The marginal likelihood approximations and predictive densities for EP and IEP appear to be

similar, but the maximum contour of the log marginal likelihood for IEP (the contour labeled with

-166 in plot (b) of Figure 7) does not coincide with the maximum contour of the predictive density

(the contour labeled with -76.5 in plot (f) of Figure 7), which is why a small bias can occur if the

approximate marginal likelihood is used for selecting the hyperparameter values. With EP there is

a good agreement between the maximum values in plots (a) and (e), and overall, the log predictive

densities are higher than with the other approximations. The log predictive densities of VB and LA

are small where log(σ2) is large (regions where q(f|D,θ) is likely to be non-Gaussian), but on the

other hand, also the marginal likelihood approximations favor the areas of smaller log(σ2) values.

There is a reasonable agreement with the marginal likelihood approximations and classification

accuracies with EP and IEP, although the maximum accuracies are slightly lower than with VB and

LA. The maximum accuracies are very high with VB, but the region of the highest accuracy does not

agree with the region of the highest estimate of the marginal likelihood. With LA the marginal like-
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lihood estimate is better calibrated in terms of classification accuracy, but the performance worsens

when the posterior distribution is skewed with large values of log(σ2).

5.4 Computational Complexity and Convergence

In this section we consider the computational complexities of the approximate methods for one

iteration with fixed hyperparameter values. Note that the following discussion is only approximate,

and that the practical efficiency of the algorithms depends much on implementations and the choices

of convergence criteria.

Table 2 summarizes the approximate scaling of the number of computations as a function of n

and c. EP and IEP refer to the fully-coupled and class-independent approximations, respectively, de-

termined with the proposed nested EP algorithm. QEP refers to the quadrature-based fully-coupled

solution using the diagonal approximation Λ̃i (see Section 3.3), QIEP refers to the quadrature-based

class-independent approximation proposed by Seeger et al. (2006), and MCMC refers to Gibbs sam-

pling with the multinomial probit model. The column Posterior complexity of Table 2 describes the

overall scaling of the mean and covariance calculations related to the approximate conditional pos-

terior of f. The base computational cost resulting from the full GP prior scales as O(n3) due to the

n× n matrix inversion (in practice computed using Cholesky decomposition), which is required c

times for IEP, QIEP and MCMC, and one additional time for EP, QEP and LA due to incorporation

of the between-class correlations. If the same prior covariance structure is used for all classes, VB

has the lowest cost, because only one matrix inversion is required per iteration.

The column Likelihood complexity of Table 2 approximates the scaling of the number of calcu-

lations that are required besides the posterior mean and covariance evaluations (mainly likelihood

related computations for one iteration). For both EP and IEP, this column describes the scaling

of the computations needed for the tilted moment approximations done with the inner EP algo-

rithm. For QEP the column summarizes the cost associated with a (c− 1)-dimensional quadrature

rule (denoted by nc−1
q ) required for the tilted moment evaluations, and for QIEP the cost of one-

and two-dimensional quadratures (denoted by nq and n2
q respectively) required under the indepen-

dence assumption. For LA the column shows the number of calculations required for evaluating

the first and second order derivatives of the softmax likelihood. Each VB iteration requires evalu-

ating the expectations of the auxiliary variables either by a quadrature or sampling, and the cost of

one such operation is denoted by nq (for example, the number of quadrature design points). Gibbs

sampling with the multinomial probit likelihood requires drawing from the conic truncation of a

c-dimensional normal distribution for each observation, and the cost of one draw is denoted by ns.

QEP scales inefficiently in c, and is therefore limited to cases with a moderate number of target

classes. The QIEP solution can be implemented efficiently because the same function evaluations

can be used in all of the 2c− 1 one-dimensional quadratures and the number of two-dimensional

quadratures does not depend on c. The cubic scaling in c−1 of the tilted moment evaluations in the

nested EP and IEP algorithms can be alleviated by reducing the number of inner-loop iterations nin

as discussed in Section 3.2.3.

Using the USPS 3 vs. 5 vs. 7 data set, we measured the CPU time required for the posterior

inference on f given nine different preselected hyperparameter values from the grid of Figure 7. With

our implementations, LA was the fastest, and EP and VB were about three times more expensive

than LA. Because of the efficient scaling (Table 2), VB should be much faster, and probably closer

to the running time of LA. One reason for the slow performance may be our implementation based
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Algorithm Posterior complexity Likelihood complexity

EP (c+1)n3 nnin(c−1)3

QEP (c+1)n3 nnc−1
q

IEP cn3 nnin(c−1)3

QIEP cn3 n((2c−1)nq +2n2
q)

VB n3 n(c−1)2nq

LA (c+1)n3 nc

MCMC (Gibbs sampling) cn3 ncns

Table 2: Approximate computational complexities of the various methods as a function of n and

c for one iteration with fixed hyperparameters. The column Posterior complexity sum-

marizes the scaling of the mean and covariance calculations related to the approximate

conditional posterior of f. The column Likelihood complexity approximates the scaling of

the number of calculations required for additional likelihood related computations. The

parameter nin refers to the number of inner EP iterations in nested EP, nc
q to the cost of a

c-dimensional numerical quadrature, and ns to the cost of sampling from a conic truncation

of a c-variate Gaussian distribution.

on importance sampling steps, which may result in slower convergence due to fluctuations. The

MCMC and LA-TKP approaches were overall very slow compared to LA. One iteration of MCMC

is relatively cheap, but in our experiments thousands of posterior samples were required to obtain

chains of sufficiently uncorrelated samples which is why MCMC was over hundred times slower

than LA. LA-TKP requires roughly c+1 times the CPU time of LA for computing the predictions

for each test input. Therefore, the computational cost of LA-TKP becomes quickly prohibitive as

the number of test points increases.

In the CPU time comparisons across the range of hyperparameter values producing variety of

skewed and non-isotropic posterior distributions, fully-coupled nested EP converged in fewer outer-

loop iterations than nested IEP if the same convergence criteria were used. Figure 8 illustrates the

difference in convergence with the USPS 3 vs. 5 vs. 7 and Glass data sets. We fixed the hyper-

parameters at log(σ2) = 8 and log(l) = 2.5 which results in good predictive performances on the

independent test data set with both methods for the USPS 3 vs. 5 vs. 7 data (see Figure 7). For both

methods, the negative log marginal likelihood approximation − logZEP and the mean log predic-

tive density (mlpd) in the test data set are shown after each iteration. Note that the converged EP

approximation satisfying the moment matching conditions between p̂(fi) and q(fi) corresponds to

stationary points of an objective function similar to − logZEP (Minka, 2001b; Opper and Winther,

2005). The convergence is illustrated with a small amount of damping (damping factor δ = 0.8) and

with a larger amount of damping (δ= 0.5). With the fully-coupled nested EP algorithm the damping

is applied on the inner-EP site parameters α̃i and β̃i, whereas with IEP the damping is applied on

the natural exponential site parameters ν̃i and Σ̃−1
i . In the columns denoted Standard in Figure 8,

the inner-loops of the nested EP and IEP algorithms are run until convergence at each outer-loop

iteration, whereas in the rest of the columns (Incremental) only one inner-loop iteration per site is

done at each outer-loop iteration. Recall from the previous discussion and from Table 2 that the
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Figure 8: A convergence comparison between EP and IEP using parallel updates in the outer EP

loop with the USPS 3 vs. 5 vs. 7 data (columns 1-3), and with the Glass data (columns

4-6). The first two rows show the negative log marginal likelihood estimates − logZEP

as a function of iterations for two different damping factors δ, and the bottom two rows

show the corresponding mean log predictive density (mlpd) evaluated using a separate

test data set. In the columns denoted Standard the inner-loops of the nested EP and IEP

algorithms are run until convergence at each outer-loop iteration, whereas in the rest of

the columns (Incremental) only one inner-loop iteration per site is done at each outer-loop

iteration. The hyperparameters of the squared exponential covariance function were fixed

at log(σ2) = 8 and log(l) = 2.5 which results in a non-Gaussian posterior distribution.

incremental updates (nin = 1) reduce the computational burden of the inner-loop of the nested EP

algorithm which scales as O(nin(c−1)3).

From Figure 8 it can be seen that the incremental updates require more damping than standard

updates, but both update schemes seem to converge into the same solution. There is a clear dif-

ference in the amplitude of oscillations between the nested EP and IEP algorithms with the same

damping level but this may be partly caused by the different parameterization. Compared to fully-

coupled EP, there is a slow drift in − logZEP and in the mlpd score even after 20 iterations with

IEP, and the drift is more visible with the Glass data. One explanation for this behavior can be that

the fully-coupled Gaussian distribution is more suitable approximating family for the true poste-

rior (Minka, 2005), which is strongly non-Gaussian because of the large magnitude hyperparameter

value, and has stronger between-class posterior dependencies induced through the likelihood terms

because of the relatively large lengthscale.

5.5 Predictive Performance Across Data Sets with Hyperparameter Estimation

In this section we assess the predictive performances with estimation of the hyperparameters. We

compare the performances of nested EP and IEP, VB, LA, LA-TKP, and Gibbs sampling with the

multinomial probit model (MCMC) on various benchmark data sets. All the methods are compared
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Data Set ntrain ntest Classes (c) Covariates (d) ARD

New-thyroid 215 215 (Ten-fold CV) 3 5 yes

Teaching 151 151 (Ten-fold CV) 3 5 yes

Glass 214 214 (Ten-fold CV) 6 9 yes

Wine 178 178 (Ten-fold CV) 3 13 yes

Image segmentation 210 2100 7 18 no

USPS 3 vs. 5 vs. 7 1157 1175 3 256 no

USPS 10-class 4649 4649 10 256 no

Table 3: Data sets used in the experiments.

using the USPS 3 vs. 5 vs. 7 data, and the following five UCI Machine Learning Repository (Frank

and Asuncion, 2010) data sets: New-thyroid, Teaching, Glass, Wine, and Image segmentation. The

comparisons are also done using the USPS 10-class data set, but only for EP, IEP, VB, and LA due

to the large n. The main characteristics of the data sets are summarized in Table 3.

For all the data sets, we standardize the covariates to zero mean and unit variance, and use the

squared exponential covariance function with the same hyperparameters for all classes. For the Im-

age segmentation and USPS data sets we use a common lengthscale parameter for all dimensions.

For other data sets we set individual lengthscale parameters for each input dimension (Automatic

Relevance Determination, ARD, see, for example, Rasmussen and Williams, 2006). To avoid un-

necessarily large hyperparameter values, we place a weakly informative prior on the lengthscale and

magnitude parameters by choosing a half Student-t distribution with four degrees of freedom and

variance equal to one hundred. With MCMC we sample the hyperparameters, and with the other

methods, we use gradient-based type-II MAP estimation to select the hyperparameter values. The

predictive performance is measured using a ten-fold cross-validation (CV) with four of the data sets,

and using predetermined training and test sets with three of the data sets (see Table 3).

The first and third column in Figure 9 visualize the mean log predictive densities and their ap-

proximate 95% central credible intervals for six data sets estimated using the Bayesian bootstrap

method as described by Vehtari and Lampinen (2002). To highlight the differences between the

methods more clearly, we compute the pairwise differences of the log posterior predictive densities

with respect to EP. The second and fourth column in Figure 9 show the mean values and the approx-

imate 95% central credible intervals of the pairwise differences. The comparisons reveal that EP

performs well when compared to MCMC; only in the Teaching and Image segmentation data sets

MCMC is significantly better. IEP performs worse than EP in all the data sets except Teaching and

Glass. The predictive densities of VB and LA are overall worse than EP, IEP or MCMC. LA-TKP

improves the performance of LA with all the data sets except Teaching.

The first and third column in Figure 10 visualize the mean classification accuracies and their

approximate 95% central credible intervals. The second and fourth column in Figure 10 show the

pairwise mean differences of the classification accuracies together with the approximate 95% central

credible intervals with respect to EP. Because the difference of the classification outcomes for each

observation is a discrete variable with three possible values (worse, same, or better than EP), we use

a multinomial model with a non-informative Dirichlet prior distribution for the comparison test. In

a case where the method has exactly the same predictions as EP, a small circle is plotted at the mean

value. The differences between all the methods are small. In the Teaching data set, where the overall
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Figure 9: The first and third column: The mean log predictive densities and their approximate 95%

credible intervals for six data sets (see Table 3) using EP, IEP, VB, LA, LA-TKP, and

MCMC with Gibbs sampling. The second and fourth column: The pairwise differences

of the log predictive densities with respect to EP (mean + approximate 95% credible

intervals). Values above zero indicate that a method is performing better than EP.

accuracy is the lowest, the MCMC estimate is significantly better than any other method. There is

no statistically significant difference between EP and IEP; IEP performs slightly better in the Wine

data set, but EP has a better accuracy in the Glass and Image segmentation data sets, which both

have more than three target classes, and in which the overall classification accuracies are among the

lowest. LA has a good classification accuracy, and performs better than EP in Image segmentation.

A possible explanation for this is the different shape of the softmax likelihood function used by LA.

If the classification accuracy is the only criterion, the LA-TKP correction seems unnecessary. VB

has the lowest classification performance and is significantly worse than the other methods in the

Image segmentation and USPS 3 vs. 5 vs. 7 data sets, which is probably caused by a worse estimate

of the hyperparameter values.

Finally, we summarize the mlpd scores and classification accuracies of EP, IEP, VB, and LA with

the USPS 10-class data set in Figure 11. Both EP approaches are significantly better than VB or

LA with both measures. Considering the EP approaches, fully-coupled EP achieves a slightly better
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Figure 10: The first and third column: The classification accuracies and their approximate 95%

credible intervals for six data sets (see Table 3) using EP, IEP, VB, LA, LA-TKP, and

MCMC with Gibbs sampling. The second and fourth column: The pairwise differences

of the classification accuracies with respect to EP (mean + approximate 95% credible

intervals). Values above zero indicate that a method is performing better than EP. A

small circle is plotted at the mean value if the predictions are exactly the same as with

EP.

mlpd score, whereas IEP is slightly better in terms of classification accuracy, but the differences are

not statistically significant.

6. Conclusions and Further Research

EP approaches for GP classification with the multinomial probit model have already been proposed

by Seeger et al. (2006) and Girolami and Zhong (2007). In this paper, we have complemented

their work with a novel quadrature-free nested EP algorithm that maintains all between-class pos-

terior dependencies but still scales linearly in the number of classes. Our comparisons with fixed

hyperparameters show that compared to quadrature-based EP algorithms, nested EP achieves sim-

ilar accuracy, and its computational cost is comparable with a class-independent approximation

whereas with full posterior couplings nested EP scales more efficiently. When the hyperparame-

102



GAUSSIAN PROCESS CLASSIFICATION WITH A MULTINOMIAL PROBIT LIKELIHOOD

EP IEP VB LA
−0.5

−0.4

−0.3

−0.2

−0.1

(a) USPS

EP IEP VB LA

−0.3

−0.2

−0.1

0

(b) USPS, pairwise

EP IEP VB LA
0.94

0.95

0.96

0.97

0.98

(c) USPS

EP IEP VB LA

−0.02

−0.01

0

0.01

(d) USPS, pairwise

Figure 11: The mean log predictive densities (a) and classification accuracies (c) for the USPS 10-

class data set (see Table 3) using EP, IEP, VB, and LA. The pairwise differences of the

log predictive densities and the classification accuracies with respect to EP are shown

in plots (b) and (d), respectively. In plots (b) and (d) values above zero indicate that

a method is performing better than EP. In each plot, the mean values and approximate

95% central credible intervals are shown.

ters are determined by optimizing the marginal likelihood, nested EP is a consistent approximate

method compared to full MCMC. In terms of predictive density, nested EP is close to MCMC, and

more accurate compared to VB and LA, but if only the classification accuracy is concerned, all the

approximations perform similarly. LA-TKP improves the predictive density estimates of LA but the

computational cost becomes increasingly demanding if a larger number of predictions are needed.

In our comparisons the predictive accuracies of the full EP and IEP solutions obtained using

the nested EP algorithm are similar for practical purposes. However, our visualizations show that

the approximate marginal posterior distributions of the latent values provided by full EP are clearly

more accurate, although the full nested EP solution can be calculated with similar computational

burden as nested IEP. Because there is no convergence guarantee for the standard EP algorithm,

it is worth to notice the differences in the convergence properties of full EP and IEP observed in

our experiments. With the same hyperparameter values, nested IEP converged more slowly and

required more damping than full nested EP. This can be due to slower propagation of information

caused by the independence assumptions, and this behavior can get worse as the between-class

posterior couplings get stronger with certain hyperparameter values. Given all these observations,

we prefer full EP to IEP.

Models in which each likelihood term related to a certain observation depends on multiple

latent values, such as the multinomial probit, are challenging for EP because a straightforward

quadrature-based implementation may become computationally infeasible unless independence as-

sumptions between the latent values or some other simplifications are made. In the presented nested

EP approach, we have applied inner EP approximations for each likelihood term within an outer

EP framework in a computationally efficient manner. This approach could be applicable also for

other similar multi-latent models which involve integral representations consisting of simple factor-

ized functions each depending on linear transformations of the latent variables. For example, one

straightforward extension would be linear multinomial probit regression with Gaussian priors on

the weights.

A drawback with GP classifiers is the fundamental computational scaling O(n3) resulting from

the prior structure. To speed up the inference in multiclass GP classification, sparse approximations
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such as the informative vector machine (IVM) have been proposed (Seeger and Jordan, 2004; Giro-

lami and Rogers, 2006; Seeger et al., 2006). IVM uses the information provided by all observations

to form an active subset which is then used to form the posterior mean and covariance approxi-

mations. The presented EP approach could be extended to IVM in a similar fashion as described

by Seeger and Jordan (2004). The accurate marginal approximations of full EP could be useful in

determining the relative entropy measures used as a scoring criterion to select the active set. To

speed up the computations, the inner EP site parameters could be updated iteratively even for the

observations not in the active set in a similar fashion as described in Section 3.2. Recently, a similar

approach to IVM called predictive active set selection (PASS-GP) has been proposed by Henao and

Winther (2010) to lower the computational complexity in binary GP classification. PASS-GP uses

the approximate cavity and cavity predictive distributions of EP to determine a representative active

set. The proposed EP approach could prove useful when extending PASS-GP to multiple classes,

because it provides accurate marginal predictive density estimates.

The presented fully-coupled nested EP approach for approximate inference with Gaussian pro-

cess models is implemented in the free GPstuff software package and the code will be made avail-

able at http://becs.aalto.fi/en/research/bayes/gpstuff/.
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Appendix A. Approximating Tilted Moments Using EP

For convenience, we summarize the inner EP algorithm for approximating the tilted moments result-

ing from a multinomial probit likelihood. Essentially the same algorithm was presented by Minka

(2001a) for classification with the Bayes point machine and later by Qi et al. (2004) for the binary

probit classifier. To facilitate a computationally efficient implementation, the following algorithm

description is written with an emphasis to reduce the number of vector and matrix operations in a

similar fashion as in the general EP formulation presented by Cseke and Heskes (2011, Appendix

C).

We want to approximate the normalization, mean and covariance of the tilted distribution

p̂(wi) = Ẑ−1
i N (wi|µwi

,Σwi
)

c

∏
j=1, j 6=yi

Φ(wT
i b̃i, j).

This is done using the EP algorithm which results in the following Gaussian approximation

q̂(wi) = Z−1
q̂i

N (wi|µwi
,Σwi

)
c

∏
j=1, j 6=yi

Z̃ jN (wT
i b̃i, j|β̃i, jα̃

−1
i, j , α̃

−1
i, j ) = N (wi|µq̂i

,Σq̂i
),

where we have used the natural parameters α̃i, j (precision) and β̃i, j (location) for the site approxi-

mations. The index i denotes the i’th observation, and to clarify the notation below, we leave out

this index from the inner EP terms. In the first outer-loop, the site parameters α̃ and β̃ are initialized

to zero, µq̂i
to µwi

, and Σq̂i
to Σwi

. After the first outer-loop, these parameters are initialized to their
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last values from the previous outer-loop iteration for speed-up. The following steps are repeated for

all j = {1, . . . ,c| j 6= yi} until convergence.

1. Cavity evaluations:

v− j = (v−1
j − α̃ j)

−1,

m− j = v− j(v
−1
j m j − β̃ j),

where scalars v j = b̃T
i, jΣq̂i

b̃i, j and m j = b̃T
i, jµq̂i

correspond to the marginal distribution of latent

g
j
i = wT

i b̃i, j.

2. Tilted moments for g
j
i :

Ẑ j = Φ(z j),

m̂ j = ρ jv− j +m− j,

v̂ j = v− j − v2
− jγ j,

where z j = m− j(1+ v− j)
−1/2, ρ j =

N (z j|0,1)
Φ(z j)

(1+ v− j)
−1/2 and γ j = ρ2

j + z jρ j(1+ v− j)
−1/2.

3. Site updates with damping:

∆α̃ j = δ(v̂−1
j − v−1

j ),

∆β̃ j = δ(v̂−1
j m̂ j − v−1

j m j),

where δ ∈ (0,1] is the damping factor.

4. Rank-1 covariance update:

Σnew
q̂i

= Σq̂i
−φ j(1+∆α̃ jv j)

−1∆α̃ jφ
T
j ,

µnew
q̂i

= µq̂i
+φ j(1+∆α̃ jv j)

−1(∆β̃ j −∆α̃ jm j),

where φ j = Σq̂i
b̃i, j.

Alternatively, the rank-1 updates of step 4 could be replaced by only one parallel covariance update

after each sweep over the sites indexed by j.

After convergence, we evaluate the normalization Zq̂i
of the tilted distribution as

logZq̂i
=

1

2
µT

q̂i
Σ−1

q̂i
µq̂i

+
1

2
log |Σq̂i

|−
1

2
µT

wi
Σ−1

wi
µwi

−
1

2
log |Σwi

|+
c

∑
j=1, j 6=yi

log Ẑ j

+
1

2

c

∑
j=1, j 6=yi

(

m2
− jv

−1
− j + logv− j

)

−
1

2

c

∑
j=1, j 6=yi

(

m2
jv

−1
j + logv j

)

.
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Appendix B. Details of Posterior Computations

The site covariance can be written as T̃ = D−DR(RT DR)−1RT D, where D is a cn× cn diagonal

matrix D = diag
[

π1
1, . . . ,π

1
n,π

2
1, . . . ,π

2
n, . . . ,π

c
1, . . . ,π

c
n

]T
, and R is a cn×n matrix consisting of iden-

tity matrices In stacked c times vertically. To compute predictions related to a test point x∗, we need

to first evaluate the mean and covariance of f∗ =
[

f 1
∗ , f 2

∗ , . . . , f c
∗

]T
as

E[f∗] = K∗ν̃−K∗MKν̃, (26)

Cov[f∗] = K∗,∗−K∗MKT
∗ , (27)

where ν̃ contains all ν̃i in the same order with f, M = T̃ (Icn +KT̃ )−1, K∗ is a c× cn covariance

matrix between the test point and the training points, and K∗,∗ is a c× c covariance matrix for the

test point. The matrix M in Equations (26) and (27) can be evaluated using

M = B−BRP−1RT B,

where B = D1/2A−1D1/2, P = RT BR, and A = Icn +D1/2KD1/2. To evaluate expressions involving

M, we compute the Cholesky decompositions of P and the c diagonal blocks of A, which results in

the scaling O((c+ 1)n3). The predictive mean and covariance can be computed using the block-

diagonal structure of B and the sparse structure of K∗. Given E[f∗] and Cov[f∗], the integration over

the posterior uncertainty of f∗ required to compute the predictive class probabilities, is equivalent to

the tilted moment evaluation, and can be approximated using the algorithm described in Appendix

A.

To compute the marginal mean µi (a vector of length c) and covariance Σi (a matrix of size

c× c) of the training latent fi for all i during the posterior update step in the outer-loop iteration,

we replace K∗ and K∗,∗ with K in Equations (26) and (27), and compute only the required blocks

of the full posterior covariance matrix. After convergence of the outer EP algorithm, the marginal

likelihood approximation of EP can be computed as

logZEP =
1

2
ν̃Tµ−

1

2
log |Icn +KT̃ |+

n

∑
i=1

logZq̂i
+

1

2

n

∑
i=1

(

µT
−iΣ

−1
−i µ−i + log |Σ−i|

)

−
1

2

n

∑
i=1

(

µT
i Σ−1

i µi + log |Σi|
)

, (28)

where µ−i and Σ−i are the i’th cavity mean and covariance, and the posterior mean µ contains all

µi. The normalization terms Zq̂i
are obtained from the inner EP algorithm described in Appendix

A. Finally, the determinant term in (28) can be evaluated as

|Icn +KT̃ |= |A||RT DR|−1|P|.

The gradients of the log marginal likelihood with respect to θ can be obtained by calculating

only the explicit derivatives of the first two terms of (28). The implicit derivatives with respect

to the site parameters and cavity parameters (in their natural exponential forms) of the outer EP

cancel each other out in the convergence (Opper and Winther, 2005; Seeger, 2005). Since the

likelihood does not depend on any hyperparameters, the explicit derivatives of logZq̂i
are zero. Also

the implicit derivatives of logZq̂i
with respect to the inner EP parameters cancel out because these

terms are formed as marginal likelihood approximations with the inner EP, which also satisfies the

same cancellation property of the EP algorithm.
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RIIHIMÄKI, JYLÄNKI AND VEHTARI

Thomas P. Minka and John Lafferty. Expectation-propagation for the generative aspect model. In

Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 352–359.

Morgan Kaufmann, San Francisco, CA, 2002.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Radford M. Neal. Regression and classification using Gaussian process priors (with discussion). In

Bayesian Statistics 6, pages 475–501. Oxford University Press, 1998.

Hannes Nickisch and Carl E. Rasmussen. Approximations for binary Gaussian process classifica-

tion. Journal of Machine Learning Research, 9:2035–2078, 2008.

Manfred Opper and Ole Winther. Expectation consistent approximate inference. Journal of Machine

Learning Research, 6:2177–2204, 2005.

Yuan Qi, Thomas P. Minka, Rosalind W. Picard, and Zoubin Ghahramani. Predictive automatic

relevance determination by expectation propagation. In Proceedings of the 21st International

Conference on Machine Learning, pages 671–678, 2004.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The

MIT Press, 2006.
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