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Abstract

Differential privacy is a rigorous cryptographically-motivated characterization of data privacy which

may be applied when releasing summaries of a database. Previous work has focused mainly on

methods for which the output is a finite dimensional vector, or an element of some discrete set.

We develop methods for releasing functions while preserving differential privacy. Specifically, we

show that adding an appropriate Gaussian process to the function of interest yields differential pri-

vacy. When the functions lie in the reproducing kernel Hilbert space (RKHS) generated by the

covariance kernel of the Gaussian process, then the correct noise level is established by measur-

ing the “sensitivity” of the function in the RKHS norm. As examples we consider kernel density

estimation, kernel support vector machines, and functions in RKHSs.

Keywords: differential privacy, density estimation, Gaussian processes, reproducing kernel Hilbert

space

1. Introduction

Suppose we have database D which consists of measurements of a set of individuals. We want to

release a summary of D without compromising the privacy of those individuals in the database.

One framework for defining privacy rigorously in such problems is differential privacy (Dwork

et al., 2006b; Dwork, 2006). The basic idea is to produce an output via random noise addition.

An algorithm which does this may be thought of as inducing a distribution PD on the output space

(where the randomness is due to internal “coin flips” of the algorithm), for every input data set D.

Differential privacy, defined in Section 2, requires that PD not depend too strongly on any single

element of the database D.

The literature on differential privacy is vast. Algorithms that preserve differential privacy have

been developed for boosting, parameter estimation, clustering, logistic regression, SVM learning

and many other learning tasks. See, for example, Dwork et al. (2010), Chaudhuri and Monteleoni

(2008), Smith (2011), Chaudhuri and Monteleoni (2011), Nissim et al. (2007), Kasiviswanathan

et al. (2008), Barak et al. (2007), and references therein. In all these cases, the data (both the input

and output) are assumed to be real numbers or vectors. In this paper we are concerned with a setting

in which the output, and possibly the input data set, consist of functions.
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A concept that has been important in differential privacy is the “sensitivity” of the output (Dwork

et al., 2006b). In the case of vector valued output the sensitivity is typically measured in the Eu-

clidean norm or the ℓ1-norm. We find that when the output is a function the sensitivity may be

measured in terms of an RKHS norm. To establish privacy a Gaussian process may be added to the

function with noise level calibrated to the “RKHS sensitivity” of the output.

The motivation for considering function valued data is two-fold. First, in some problems the

data are naturally function valued, that is, each data point is a function. For example, growth

curves, temperature profiles, and economic indicators are often of this form. This has given rise to

a subfield of statistics known as functional data analysis (see, for instance, Ramsay and Silverman,

1997). Second, even if the data are not functions, we may want to release a data summary that is a

function. For example, if the data d1, . . . ,dn ∈ R
d are a sample from a distribution with density f

then we can estimate the density with the kernel density estimator

f̂ (x) =
1

n

n

∑
i=1

W

( ||x−di||
h

)
, x ∈ R

d ,

where W is a kernel (see, for instance, Wasserman, 2006) and h> 0 is the bandwidth parameter. The

density estimator is useful for may tasks such as clustering and classification. We may then want

to release a “version” of the density estimator f̂ in a way which fulfills the criteria of differential

privacy. The utility of such a procedure goes beyond merely estimating the underlying density.

In fact, suppose the goal is to release a privatized database. With a differentially private density

estimator in hand, a large sample of data may be drawn from that density. The release of such a

sample would inherit the differential privacy properties of the density estimator: see, in particular,

Wasserman and Zhou (2010) and Machanavajjhala et al. (2008). This is a very attractive proposition,

since a differentially private sample of data could be used as the basis for any number of statistical

analyses which may have been brought to bear against the original data (for instance, exploratory

data analysis, model fitting, etc).

Histograms are an example of a density estimator that has been “privatized” in previous litera-

ture (Wasserman and Zhou, 2010; Chawla et al., 2005). However, as density estimators, histograms

are suboptimal because they are not smooth. Specifically, they do converge at the minimax rate un-

der the assumption that the true density is smooth. The preferred method for density estimation in

statistics is kernel density estimation. The methods developed in this paper lead to a private kernel

density estimator.

In addition to kernel density estimation, there are a myriad of other scenarios in which the result

of a statistical analysis is a function. For example, the regression function or classification function

from a supervised learning task. We demonstrate how the theory we develop may be applied in

these contexts as well.

Since a function over a real valued domain is characterized by an infinite number of points

it is not feasible to output the function directly. We give methods which in essence permit the

user to request the evaluation of the private function at arbitrarily many input points. These points

may be specified a-priori, or after the construction of the function, or even adaptively based on the

outputs given, it makes no difference to the privacy guarantee. However we note that in the case

when the points are specified a-priori (for example, a grid over the domain) that the release of the

function values corresponds to the release of a finite dimensional vector. In this case we may regard

this work as providing a conceptually clean way to determine the sensitivity of this vector so that

standard finite dimensional privacy techniques may be applied.
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Outline. After putting our contribution in the context of some related work, we introduce some

notation and review the definition of differential privacy in Section 2. We also give a demonstra-

tion of a technique to achieve the differential privacy for a vector valued output. The theory for

demonstrating differentially privacy of functions is established in Section 3. In Section 4 we apply

the theory to the problems of kernel density estimation and kernel SVM learning. We also demon-

strate how the theory may apply to a broad class of functions (a Sobolev space). Section 5 discusses

possible algorithms for outputting functions.

1.1 Related Work

There are a few lines of research in the differential privacy literature that are related to this work. In

addition to the foundational papers mentioned above there has already been interest in the differen-

tially private release of functions such as support vector machines. Independently Rubinstein et al.

(2010) and Chaudhuri and Monteleoni (2011) demonstrated that a private approximation to a non-

private kernel support vector machine could be made by considering a certain finite dimensional

projection of the original function. In essence they construct a finite dimensional feature space so

that the classification function may be characterized by a finite dimensional vector of coefficients,

at which point standard techniques may be brought to bear to ensure privacy. Here we give an alter-

nate method for the release of the classification function (or regression function) which avoids this

approximation, although we do so by employing a weaker type of differential privacy. Our method

in essence results in an infinite dimensional private function which is not necessarily characterized

by any finite dimensional vector. Rather we can permit the user to query the value of the function at

any arbitrary number of input points.

There has also been research in the literature regarding the generation of synthetic data sets. For

example, Barak et al. (2007) and more recently Hardt et al. (2010) give techniques which output a

differentially private contingency table. A recent summary of related methods is in Charest (2012).

These contingency tables may be subjected to whatever statistical analysis is required, while still

maintaining privacy. In the case that the original data is not categorical (for example, containing real

valued measurements) there are two immediate options, the first is to divide the range of the vari-

ables up into bins and to essentially make the data categorical then to apply these techniques. This is

conceptually simple however the resulting density estimator fails to achieve the correct convergence

rate under the usual regularity conditions Wasserman (2006) (namely the histogram density estima-

tor achieves the rate of n−2/(2+d) whereas the kernel density estimate achieves the rate n−4/(4+d) in

d dimensions). The second approach is to perform some other kind of density estimation on the

input data in a way which admits the differential privacy, and then to sample that density to generate

synthetic data. So far differentially private density estimation is considered in Smith (2011) for

parametric models and Wasserman and Zhou (2010) for non-parametric estimation. In this work

we give a technique which is useful for the differentially private estimation of a density in arbi-

trary dimension, and which achieves the same convergence rate (up to constants) as the non-private

estimator.

It is worth noting that the availability of a differentially private synthetic data set allows the

recipient to compute whatever function he wishes on the data. For example he may compute his own

support vector machine using that data. This may seem to obviate the need for methods to compute

private kernel machines and other functions. However we note that the techniques mentioned above

for releasing a data set involved computing a density estimator as a first step (be it discrete or
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otherwise) and so the quality of the released data (which will ultimately dictate the quality of the

learned function) depends on the convergence rate of these estimators—which are typically slow

in high dimensions. On the other hand a kernel support vector machine learned on the original

data may converge to a good classifier with a relatively small number of samples, and so building

a private version of that directly may lead to better classification performance. Therefore although

private synthetic data may be seen as a panacea for differential privacy, it is important to remember

that it in essence taints all analyses with the curse of dimensionality.

2. Differential Privacy

Here we recall the definition of differential privacy and introduce some notation.

Let D = (d1, . . . ,dn) ∈ D be an input database in which di represents a row or an individual, and

where D is the space of all such databases of n elements. For two databases D,D′, we say they are

“adjacent” or “neighboring” and write D ∼ D′ whenever both have the same number of elements,

but differ in one element. In other words, there exists a permutation of D having Hamming distance

of 2 to D′. In some other works databases are called “adjacent” whenever one database contains the

other together with exactly one additional element.

We may characterize a non-private algorithm in terms of the function it outputs, for example

by, θ : D → R
d . Thus we write θD = θ(D) to mean the output when the input database is D.

Thus, a computer program which outputs a vector may be characterized as a family of vectors

{θD : D ∈ D}, one for every possible input database. Likewise a randomized computer program

may be characterized by the distributions {PD : D ∈ D} it induces on the output space (for example,

R
d) when the input is D. In the literature such a set of distributions is sometimes referred to as a

“mechanism.” We consider randomized algorithms where the input is a database in D and the output

takes values in a measurable space Ω endowed with the σ-field A . Thus, to each such algorithm

there correspond the set of distributions {PD : D ∈ D} on (Ω,A) indexed by databases. We phrase

the definition of differential privacy using this characterization of randomized algorithms.

Definition 1 (Differential Privacy) A set of distributions {PD : D∈D} is called (α,β)-differentially

private, or said to “achieve (α,β)-DP” whenever for all D ∼ D′ ∈ D we have:

PD(A)≤ eαPD′(A)+β, ∀A ∈ A , (1)

where α,β ≥ 0 are parameters, and A is the finest σ-field on which all PD are defined.

Typically the above definition is called “approximate differential privacy” whenever β > 0, and

“(α,0)-differential privacy” is shortened to “α-differential privacy.” It is important to note that

the relation D ∼ D′ is symmetric, and so the inequality (1) is required to hold when D and D′

are swapped. Throughout this paper we take α ≤ 1, since this simplifies some proofs. We note

that an alternate notion of adjacency for databases also appears in some of the differential privacy

literature. There databases are called adjacent whenever one is a strict subset of the other and

contains exactly one less entry. We remark that the techniques we present can be reformulated

under this definition, but we use the above definition of adjacency since it leads to slightly simpler

forms for the sensitivity.

The σ-field A is rarely mentioned in the literature on differential privacy but is actually quite

important. For example if we were to take A = {Ω, /0} then the condition (1) is trivially satisfied by
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any randomized algorithm. To make the definition as strong as possible we insist that A be the finest

available σ-field on which the PD are defined. Therefore when Ω is discrete the typical σ-field is

A = 2Ω (the class of all subsets of Ω), and when Ω is a space with a topology it is typical to use the

completion of the Borel σ-field (the smallest σ-field containing all open sets). We raise this point

since when Ω is a space of functions, the choice of σ-field is more delicate.

2.1 Differential Privacy of Finite Dimensional Vectors

Dwork et al. (2006a) give a technique to achieve approximate differential privacy for general vector

valued outputs in which the “sensitivity” may be bounded. We review this below, since the result is

important in the demonstration of the privacy of our methods which output functions. What follows

in this section is a mild alteration to the technique developed by Dwork et al. (2006a) and McSherry

and Mironov (2009), in that the “sensitivity” of the class of vectors is measured in the Mahalanobis

distance rather than the usual Euclidean distance.

In demonstrating the differential privacy, we make use of the following lemma which is simply

an explicit statement of an argument used in a proof by Dwork et al. (2006a).

Lemma 2 Suppose that, for all D ∼ D′, there exists a set A⋆
D,D′ ∈ A such that, for all S ∈ A ,

S ⊆ A⋆
D,D′ ⇒ PD(S)≤ eαPD′(S) (2)

and

PD(A
⋆
D,D′)≥ 1−β. (3)

Then the family {PD} achieves the (α,β)-DP.

Proof Let S ∈ A . Then,

PD(S) = PD(S∩A⋆)+PD(S∩A⋆C)≤ PD(S∩A⋆)+β

≤ eαPD′(S∩A⋆)+β ≤ eαPD′(S)+β.

The first inequality is due to (3), the second is due to (2) and the third is due to the subadditivity of

measures.

The above result shows that, so long as there is a large enough (in terms of the measure PD) set on

which the (α,0)-DP condition holds, then the approximate (α,β)-DP is achieved.

Remark 1 If (Ω,A) has a σ-finite dominating measure λ, then for (2) to hold a sufficient condition

is that the ratio of the densities be bounded on some set A⋆
D,D′:

∀a ∈ A⋆
D,D′ :

dPD

dλ
(a)≤ eα dPD′

dλ
(a). (4)

This follows from the inequality

PD(S) =
∫

S

dPD

dλ
(a) dλ(a)≤

∫
S

eα dPD′

dλ
(a) dλ(a) = eαPD′(S).
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In our next result we show that approximate differential privacy is achieved via (4) when the

output is a real vector, say vD = v(D)∈R
d , whose dimension does not depend on the database D. An

example is when the database elements di ∈R
d and the output is the mean vector v(D) = n−1 ∑n

i=1 di.

We note that this is basically a re-statement of the well-known fact that the addition of appropriate

Gaussian noise to a vector valued output will lead to approximate differential privacy.

Proposition 3 Suppose that, for a positive definite symmetric matrix M ∈ R
d×d , the family of vec-

tors {vD : D ∈ D} ⊂ R
d satisfies

sup
D∼D′

‖M−1/2(vD − vD′)‖2 ≤ ∆. (5)

Then the randomized algorithm which, for input database D outputs

ṽD = vD +
c(β)∆

α
Z, Z ∼ Nd(0,M)

achieves (α,β)-DP whenever

c(β)≥
√

2log
2

β
. (6)

Proof Since the Gaussian measure on R
d admits the Lebesgue measure λ as a σ-finite dominating

measure we consider the ratio of the densities

dPD(x)/dλ

dPD′(x)/dλ
= exp

{
α2

2c(β)2∆2

[
(x− vD′)M−1(x− vD′)− (x− vD)

T M−1(x− vD)
]}

.

This ratio exceeds eα only when

2xT M−1(vD − vD′)+ vT
D′M

−1vD′ − vT
DM−1vD ≥ 2

c(β)2∆2

α
.

We consider the probability of this set under PD, in which case we have x = vD + c(β)∆
α M1/2z, where

z is an isotropic normal with unit variance. We have

c(β)∆

α
zT M−1/2(vD − vD′)≥ c(β)2∆2

α2
− 1

2
(vD − vD′)T M−1(vD − vD′).

Multiplying by α
c(β)∆ and using (5) gives

zT M−1/2(vD − vD′)≥ c(β)∆

α
− α∆

2c(β)
.

Note that the left side is a normal random variable with mean zero and variance smaller than ∆2.

The probability of this set is increasing with the variance of said variable, and so we examine the

probability when the variance equals ∆2. We also restrict to α ≤ 1, and let y ∼ N (0,1), yielding

P

(
zT M−1/2(vD − vD′)≥ c(β)∆

α
− α∆

2c(β)

)
≤ P

(
∆y ≥ c(β)∆

α
− α∆

2c(β)

)

≤ P

(
y ≥ c(β)− 1

2c(β)

)

≤ β,
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where c(β) is as defined in (6) and the final inequality is proved in Dwork (2006). Thus lemma 2

gives the differential privacy.

Remark 2 The quantity (5) is a mild modification of the usual notion of “sensitivity” or “global

sensitivity” (Dwork et al., 2006b). It is nothing more than the sensitivity measured in the Maha-

lanobis distance corresponding to the matrix M. The case M = I corresponds to the usual Euclidean

distance, a setting that has been studied previously by McSherry and Mironov (2009), among others.

The use of this matrix allows for smaller noise magnitudes in the case when the difference of vectors

on neighboring data sets are elements of some ellipsoid rather than a sphere. A simple case when

this is advantageous is when the released function is an affine transformation of a sample mean of

input vectors.

2.2 The Implications of Approximate Differential Privacy

The above definitions provide a strong privacy guarantee in the sense that they aim to protect against

an adversary having almost complete knowledge of the private database. Specifically, an adversary

knowing all but one of the data elements and having observed the output of a private procedure,

will remain unable to determine the identity of the data element which is unknown to him. To see

this, we provide an analog of theorem 2.4 of Wasserman and Zhou (2010), who consider the case of

α-differential privacy.

Let the adversary’s database be denoted by DA = (d1, . . . ,dn−1), and the private database by

D = (d1, . . . ,dn). First note that before observing the output of the private algorithm, the adversary

could determine that the private database D lay in the set {(d1, . . . ,dn−1,d) ∈ D} . Thus, the private

database comprises his data with one more element. Since all other databases may be excluded from

consideration by the adversary we concentrate on those in the above set. In particular, we obtain the

following analog of theorem 2.4 of Wasserman and Zhou (2010).

Proposition 4 Let X ∼ PD where the family PD achieves the (α,β)-approximate DP. Any level γ test

of: H : D = D0 vs V : D 6= D0 has power bounded above by γeα +β.

The above result follows immediately from noting that the rejection region of the test is a measurable

set in the space and so obeys the constraint of the differential privacy. The implication of the above

proposition is that the power of the test will be bounded close to its size. When α,β are small, this

means that the test is close to being “trivial” in the sense that it is no more likely to correctly reject

a false hypothesis than it is to incorrectly reject the true one.

3. Approximate Differential Privacy for Functions

The goal of the release a function raises a number of questions. First what does it mean for a

computer program to output a function? Second, how can the differential privacy be demonstrated?

In this section we continue to treat randomized algorithms as measures, however now they are

measures over function spaces. In section 5 we demonstrate concrete algorithms, which in essence

output the function on any arbitrary countable set of points.

We cannot expect the techniques for finite dimensional vectors to apply directly when dealing

with functions. The reason is that σ-finite dominating measures of the space of functions do not
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exist, and, therefore, neither do densities. However, there exist probability measures on the spaces

of functions. Below, we demonstrate the approximate differential privacy of measures on function

spaces, by considering random variables which correspond to evaluating the random function on a

finite set of points.

We consider the family of functions over T = R
d (where appropriate we may restrict to a com-

pact subset such as the unit cube in d-dimensions):

{ fD : D ∈ D} ⊂ R
T .

A before, we consider randomized algorithms which on input D, output some f̃D ∼ PD where

PD is a measure on R
T corresponding to D. The nature of the σ-field on this space will be described

below.

3.1 Differential Privacy on the Field of Cylinders

We define the “cylinder sets” of functions (see Billingsley, 1995) for all finite subsets S=(x1, . . . ,xn)
of T , and Borel sets B of Rn

CS,B =
{

f ∈ R
T : ( f (x1), . . . , f (xn)) ∈ B

}
.

These are just those functions which take values in prescribed sets, at those points in S. The family

of sets: CS = {CS,B : B ∈ B(Rn)} forms a σ-field for each fixed S, since it is the preimage of B(Rn)
under the operation of evaluation on the fixed finite set S. Taking the union over all finite sets S

yields the collection

F0 =
⋃

S:|S|<∞

CS.

This is a field (see Billingsley, 1995 page 508) although not a σ-field, since it does not have the

requisite closure under countable intersections (namely it does not contain cylinder sets for which

S is countably infinite). We focus on the creation of algorithms for which the differential privacy

holds over the field of cylinder sets, in the sense that, for all D ∼ D′ ∈ D ,

P( f̃D ∈ A)≤ eαP( f̃D′ ∈ A)+β, ∀A ∈ F0. (7)

This statement appears to be prima facie unlike the definition (1), since F0 is not a σ-field on

R
T . However, we give a limiting argument which demonstrates that to satisfy (7) is to achieve the

approximate (α,β)-DP throughout the generated σ-field. First we note that satisfying (7) implies

that the release of any finite evaluation of the function achieves the differential privacy. Since for

any finite S ⊂ T , we have that CS ⊂ F0, we readily obtain the following result.

Proposition 5 Let x1, . . . ,xn be any finite set of points in T chosen a-priori. Then whenever (7)

holds, the release of the vector (
f̃D(x1), . . . , f̃D(xn)

)

satisfies the (α,β)-DP.

Proof We have that

PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ A
)
= PD( f̃ ∈C{x1,...,xn},A).

710



DIFFERENTIAL PRIVACY FOR FUNCTIONS

The claimed privacy guarantee follows from (7).

We now give a limiting argument to extend (7) to the generated σ-field (or, equivalently, the

σ-field generated by the cylinders of dimension 1)

F
def
= σ(F0) =

⋃
S

CS

where the union extends over all the countable subsets S of T . The second equality above is due to

Billingsley (1995) theorem 36.3 part ii.

Note that, for countable S, the cylinder sets take the form

CS,B =
{

f ∈ R
T : f (xi) ∈ Bi, i = 1,2, . . .

}
=

∞⋂
i=1

C{xi},Bi
,

where Bi’s are Borel sets of R.

Proposition 6 Let (7) hold. Then, the family {PD : D ∈ D} on (RT ,F ) satisfies for all D ∼ D′ ∈ D:

PD(A)≤ eαPD′(A)+β, ∀A ∈ F .

Proof Define CS,B,n =
⋂n

i=1C{ti},Bi
. Then, the sets CS,B,n form a sequence of sets which decreases

towards CS,B and CS,B = limn→∞CS,B,n. Since the sequence of sets is decreasing and the measure in

question is a probability (hence bounded above by 1), we have

PD(CS,B) = PD( lim
n→∞

CS,B,n) = lim
n→∞

PD(CS,B,n).

Therefore, for each pair D ∼ D′ and for every ε > 0, there exists an n0 so that for all n ≥ n0

|PD(CS,B)−PD(CS,B,n)| ≤ ε, |PD′(CS,B)−PD′(CS,B,n)| ≤ ε.

The number n0 depends on whichever is the slowest sequence to converge. Finally we obtain

PD(CS,B)≤ PD(CS,B,n0
)+ ε

≤ eαPD′(CS,B,n0
)+β+ ε

≤ eαPD′(CS,B)+β+(1+ eα)ε

≤ eαPD′(CS,B)+β+3ε.

Since this holds for all ε > 0 we conclude that PD(CS,B)≤ eαPD′(CS,B)+β.

In principle, if it were possible for a computer to release a complete description of the function

f̃D then this result would demonstrate the privacy guarantee achieved by our algorithm. In practice

a computer algorithm which runs in a finite amount of time may only output a finite set of points,

hence this result is mainly of theoretical interest. However, in the case in which the functions to be

output are continuous, and the restriction is made that PD are measures over C[0,1] (the continuous

functions on the unit interval), another description of the σ-field becomes available. Namely, the
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restriction of F to the elements of C[0,1] corresponds to the Borel σ-field over C[0,1] with the

topology induced by the uniform norm (‖ f‖∞ = supt | f (t)|). Therefore in the case of continuous

functions, differential privacy over F0 hence leads to differential privacy throughout the Borel σ-

field.

In summary, we find that if every finite dimensional projection of the released function sat-

isfies differential privacy, then so does every countable-dimensional projection. We now explore

techniques which achieve the differential privacy over these σ-fields.

3.2 Differential Privacy via the Exponential Mechanism

A straightforward means to output a function in a way which achieves the differential privacy is to

make use of the so-called “exponential mechanism” of McSherry and Talwar (2007). This approach

entails the construction of a suitable finite set of functions G = {gi, . . . ,gm} ∈ R
T , in which every

fD has a reasonable approximation, under some distance function d. Then, when the input is D, a

function is chosen to output by sampling the set of G with probabilities given by

PD(gi) ∝ exp

{−α

2s
d(gi, fD)

}
, s

def
= sup

D∼D′
d( fD, fD′).

McSherry and Talwar (2007) demonstrate that such a technique achieves the α-differential privacy,

which is strictly stronger than the (α,β)-differential privacy we consider here. Although this tech-

nique is conceptually appealing for its simplicity, it remains challenging to use in practice since the

set of functions G may need to be very large in order to ensure the utility of the released function

(in the sense of expected error). Since the algorithm which outputs from PD must obtain the nor-

malization constant to the distribution above, it must evidently compute the probabilities for each

gi, which may be extremely time consuming. Note that techniques such as importance sampling are

also difficult to bring to bear against this problem when it is important to maintain utility.

The technique given above can be interpreted as outputting a discrete random variable, and

fulfilling privacy definition with respect to the σ-field consisting of the powerset of G. This implies

the privacy with respect to the cylinder sets, since the restriction of each cylinder set to the elements

of G corresponds some subset of G.

We note that the exponential mechanism above essentially corresponded to a discretization of

the function space R
T . An alternative is to discretize the input space T , and to approximate the

function by a piecewise constant function where the pieces correspond to the discretization of T .

Thereupon the approximation may be regarded as a real valued vector, with one entry for the value

of each piece of the function. This is conceptually appealing but it remains to be seen whether

the sensitivity of such a vector valued output could be bounded. In the next section we describe a

method which may be regarded as similar to the above, and which has the nice property that the

choice of discretization is immaterial to the method and to the determination of sensitivity.

3.3 Differential Privacy via Gaussian Process Noise

We propose to use measures PD over functions, which are Gaussian processes. The reason is that

there is a strong connection between these measures over the infinite dimensional function space,

and the Gaussian measures over finite dimensional vector spaces such as those used in Proposition 3.

Therefore, with some additional technical machinery which we will illustrate next, it is possible to

move from differentially private measures over vectors to those over functions.
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A Gaussian process indexed by T is a collection of random variables {Xt : t ∈ T}, for which

each finite subset is distributed as a multivariate Gaussian (see, for instance, Adler, 1990; Adler

and Taylor, 2007). A sample from a Gaussian process may be considered as a function T → R, by

examining the so-called “sample path” t → Xt . The Gaussian process is determined by the mean

and covariance functions, defined on T and T 2 respectively, as

m(t) = EXt , K(s, t) = Cov(Xs,Xt).

For any finite subset S ⊂ T , the random vector {Xt : t ∈ S} has a normal distribution with the means,

variances, and covariances given by the above functions. Such a “finite dimensional distribution”

may be regarded as a projection of the Gaussian process. Below we propose particular mean and

covariance functions for which Proposition 3 will hold for all finite dimensional distributions. These

will require some smoothness properties of the family of functions { fD}. We first demonstrate the

technical machinery which allows us to move from finite dimensional distributions to distributions

on the function space, and then we give differentially private measures on function spaces of one

dimension. Finally, we extend our results to multiple dimensions.

Proposition 7 Let G be a sample path of a Gaussian process having mean zero and covariance

function K. Let M denote the Gram matrix

M(x1, . . . ,xn) =




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)


 .

Let { fD : D ∈ D} be a family of functions indexed by databases. Then the release of

f̃D = fD +
∆c(β)

α
G

is (α,β)-differentially private (with respect to the cylinder σ-field F ) whenever

sup
D∼D′

sup
n<∞

sup
(x1,...,xn)∈T n

∥∥∥∥∥∥∥
M−1/2(x1, . . . ,xn)




fD(x1)− fD′(x1)
...

fD(xn)− fD′(xn)




∥∥∥∥∥∥∥
2

≤ ∆. (8)

Proof For any finite set (x1, . . . ,xn) ∈ T n, the vector (G(x1), . . . ,G(xn)) follows a multivariate nor-

mal distribution having mean zero and covariance matrix specified by Cov(G(xi),G(x j))=K(xi,x j).

Thus for the vector obtained by evaluation of f̃ at those points, differential privacy is demon-

strated by Proposition 3 since (8) implies the sensitivity bound (5). Thus, for any n < ∞ and any

(x1, . . . ,xn) ∈ T n we have B ∈ B(Rn)

PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
≤ eαPD′

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
+β

Finally note that for any A ∈ F0, we may write A = CXn,B for some finite n, some vector Xn =
(x1, . . . ,xn) ∈ T n and some Borel set B. Then

PD( f̃ ∈ A) = PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
.

Combining this with the above gives the requisite privacy statement for all A ∈ F0. Proposition 6

carries this to F .
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3.4 Functions in a Reproducing Kernel Hilbert Space

When the family of functions lies in the reproducing kernel Hilbert space (RKHS) which corre-

sponds to the covariance kernel of the Gaussian process, then establishing upper bounds of the form

(8) is simple. Below, we give some basic definitions for RKHSs, and refer the reader to Bertinet

and Agnan (2004) for a more detailed account. We first recall that the RKHS is generated from the

closure of those functions which can be represented as finite linear combinations of the kernel,

H0 =

{
n

∑
i=1

ξiKxi

}

for some finite n and sequence ξi ∈ R, xi ∈ T , and where Kx = K(x, ·). For two functions f =

∑n
i=1 θiKxi

and g = ∑m
j=1 ξ jKy j

the inner product is given by

〈 f ,g〉H =
n

∑
i=1

∑
j=1m

θiξ jK(xi,y j),

and the corresponding norm of f is ‖ f‖H =
√
〈 f , f 〉H . This gives rise to the “reproducing” nature

of the Hilbert space, namely, 〈Kx,Ky〉H = K(x,y). Furthermore, the functionals 〈Kx, ·〉H correspond

to point evaluation,

〈Kx, f 〉H =
n

∑
i=1

θiK(xi,x) = f (x).

The RKHS H is then the closure of H0 with respect to the RKHS norm. We now present the main

theorem which suggests an upper bound of the form required in Proposition 7.

Proposition 8 For f ∈ H , where H is the RKHS corresponding to the kernel K, and for any finite

sequence x1, . . . ,xn of distinct points in T , we have:

∥∥∥∥∥∥∥∥




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)




−1/2


f (x1)
...

f (xn)




∥∥∥∥∥∥∥∥
2

≤ ‖ f‖H .

The proof is in the appendix. Together with Proposition 7, this result implies the following.

Corollary 9 For { fD : D ∈ D} ⊆ H , the release of

f̃D = fD +
∆c(β)

α
G

is (α,β)-differentially private (with respect to the cylinder σ-field) whenever

∆ ≥ sup
D∼D′

‖ fD − fD′‖H .

and when G is the sample path of a Gaussian process having mean zero and covariance function K,

given by the reproducing kernel of H .
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4. Examples

We now give some examples in which the above technique may be used to construct private versions

of functions in an RKHS.

4.1 Kernel Density Estimation

Let fD be the kernel density estimator, where D is regarded as a sequence of points xi ∈ T as

i = 1, . . . ,n drawn from a distribution with density f . Let h denote the bandwidth. Assuming a

Gaussian kernel, the estimator is

fD(x) =
1

n(2πh2)d/2

n

∑
i=1

exp

{−‖x− xi‖2
2

2h2

}
, x ∈ T.

Let D ∼ D′ so that D′ = x1, . . . ,xn−1,x
′
n (no loss of generality is incurred by demanding that the

data sequences differ in their last element). Then,

( fD − fD′)(x) =
1

n(2πh2)d/2

(
exp

{
−‖x− xn‖2

2

2h2

}
− exp

{
−‖x− x′n‖2

2

2h2

})
.

If we use the Gaussian kernel as the covariance function for the Gaussian process then upper

bounding the RKHS norm of this function is trivial. Thus, let K(x,y) = exp
{
− ‖x−y‖2

2

2h2

}
. Then

fD − fD′ = 1

n(2πh2)d/2

(
Kxn

−Kx′n

)
and

‖ fD − fD′‖2
H =

(
1

n(2πh2)d/2

)2 (
K(xn,xn)+K(x′n,x

′
n)−2K(xn,x

′
n)
)

≤ 2

(
1

n(2πh2)d/2

)2

.

If we release

f̃D = fD +
c(β)

√
2

αn(2πh2)d/2
G

where G is a sample path of a Gaussian process having mean zero and covariance K, then differential

privacy is demonstrated by corollary 9. We may compare the utility of the released estimator to that

of the non-private version. Under standard smoothness assumptions on f , it is well-known (see

Wasserman, 2006) that the risk is

R = E

∫
( fD(x)− f (x))2dx = c1h4 +

c2

nhd
,

for some constants c1 and c2. The optimal bandwidth is h ≍ (1/n)1/(4+d) in which case R =

O(n−
4

4+d ).
For the differentially private function it is easy to see that

E

∫
( f̃D(x)− f (x))2dx = O

(
h4 +

c2

nhd

)
.

Therefore, at least in terms of rates, no accuracy has been lost.
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Figure 1: An example of a kernel density estimator (the solid curve) and the released version (the

dashed curve). This uses the method developed in Section 4.1. Here we sampled n = 100

points from a mixture of two normals centered at 0.3 and 0.7 respectively. We use h = 0.1
and have α = 1 and β = 0.1. The Gaussian Process is evaluated on an evenly spaced grid

of 1000 points between 0 and 1. Note that gross features of the original kernel density

estimator remain, namely the two peaks.

4.1.1 NON-ISOTROPIC KERNELS

The above demonstration of privacy also holds when the kernel is replaced by a non-isotropic Gaus-

sian kernel. In this case the kernel density estimate may take the form

fD(x) =
1

n(2π)d/2|H|1/2

n

∑
i=1

exp

{
−1

2
(x− xi)

T H−1(x− xi)

}
, x ∈ T,

where H is a positive definite matrix and |H| is the determinant. For example it may be required to

employ a different choice of bandwidth for each coordinate of the space, in which case H would be
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a diagonal matrix having non-equal entries on the diagonal. So long as H is fixed a-priori, privacy

may be established by adding a Gaussian process having mean zero and covariance given by

K(x,y) = exp

{
−1

2
(x− y)T H−1(x− y)

}
.

As above, the sensitivity is upper bounded, as

‖ fD − fD′‖2
H ≤ 2

(
1

n(2π)d/2|H|1/2

)2

.

Therefore it satisfies the (α,β)-DP to release

f̃D = fD +
c(β)

√
2

αn(2π)d/2|H|1/2
G,

where G is a sample path of a Gaussian process having mean zero and covariance K.

4.1.2 PRIVATE CHOICE OF BANDWIDTH

Note that the above assumed that h (or H) was fixed a-priori by the user. In usual statistical settings

h is a parameter that is tuned depending on the data (not simply set to the correct order of growth

as a function of n). Thus rather than fixed h the user would use ĥ which depends on the data itself.

In order to do this it is necessary to find a differentially private version of ĥ and then to employ the

composition property of differential privacy.

The typical way that the bandwidth is selected is by employing the leave-one-out cross valida-

tion. This consists of choosing a grid of candidate values for h, evaluating the leave one out log

likelihood for each value, and then choosing whichever is the maximizer. This technique may be

amenable to private analysis via the “exponential mechanism,” however it would evidently require

that T be a compact set which is known a-priori. An alternative is to use a “rule of thumb” (see

Scott, 1992) for determining the bandwidth which is given by

ĥ j =

(
4

(d +1)n

) 1
d+4 IQR j

1.34

In which IQR j is the observed interquartile range of the data along the jth coordinate. Thus this

method gives a diagonal matrix H as in the above section. To make a private version h̃ j we may use

the technique of Dwork and Lei (2009) in which a differentially private algorithm for the interquar-

tile range was developed.

4.2 Functions in a Sobolev Space

The above technique worked easily since we chose a particular RKHS in which we knew the kernel

density estimator to live. What’s more, since the functions themselves lay in the generating set of

functions for that space, the determination of the norm of the difference fD − fD′ was extremely

simple. In general we may not be so lucky that the family of functions is amenable to such analysis.

In this section we demonstrate a more broadly applicable technique which may be used whenever

the functions are sufficiently smooth. Consider the Sobolev space

H1[0,1] =

{
f ∈C[0,1] :

∫ 1

0
(∂ f (x))2 dλ(x)< ∞

}
.
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This is a RKHS with the kernel K(x,y) = exp{−γ |x− y|} for positive constant γ. The norm in this

space is given by

‖ f‖2
H =

1

2

(
f (0)2 + f (1))2

)
+

1

2γ

∫ 1

0
(∂ f (x))2 + γ2 f (t)2 dλ(t). (9)

See Bertinet and Agnan (2004) (p. 316) and Parzen (1961) for details. Thus for a family of functions

in one dimension which lay in the Sobolev space H1, we may determine a noise level necessary to

achieve the differential privacy by bounding the above quantity for the difference of two functions.

For functions over higher dimensional domains (as [0,1]d for some d > 1) we may construct an

RKHS by taking the d-fold tensor product of the above RKHS (see, in particular, Parzen, 1963;

Aronszajn, 1950, for details of the construction). The resulting space has the reproducing kernel

K(x,y) = exp{−γ‖x− y‖1} ,

and is the completion of the set of functions

G0 =
{

f : [0,1]d → R : f (x1, . . . ,xd) = f1(x1) · · · fd(xd), fi ∈ H1[0,1]
}
.

The norm over this set of functions is given by:

‖ f‖2
G0

=
d

∏
j=1

‖ fi‖2
H . (10)

The norm over the completed space agrees with the above on G0. The explicit form is obtained

by substituting (9) into the right hand side of (10) and replacing all instances of ∏d
j=1 f j(x j) with

f (x1, . . . ,x j). Thus the norm in the completed space is defined for all f possessing all first partial

derivatives which are all in L2.

We revisit the example of a kernel density estimator (with an isotropic Gaussian kernel). We

note that this isotropic kernel function is in the set G0 defined above, as

φµ,h(x) =
1

(2πh2)d/2
exp

{
−‖x−µ‖2

2

2h2

}
=

d

∏
j=1

1√
2πh

exp

{
−(x j −µ j)

2

2h2

}
=

d

∏
j=1

φµ j,h(x j).

Where φµ,h is the isotropic Gaussian kernel on R
d with mean vector µ and φµ j,h is the Gaussian

kernel in one dimension with mean µ j. We obtain the norm of the latter one dimensional function

by bounding the elements of the sum in (9) ad follows:

∫ 1

0
(∂φµ j,h(x))

2 dλ(x) ≤
∫ ∞

−∞

(
∂

1√
2πh

e−(x−µ j)
2/2h2

)2

dλ(x) =
1

4
√

πh3
,

and

∫ 1

0
φµ j,h(x)

2 dλ(x) ≤
∫ ∞

−∞

1

2πh2
e−(x−µ j)

2/h2

dλ(x) =
1

2
√

2πh
,
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where we have used the fact that

φµ j,h(x)
2 ≤ 1

2πh
, ∀x ∈ R

d .

Therefore, choosing γ = 1/h leads to

‖φµ j,h‖2
H ≤ 1

2πh2
+

1

8
√

πh2
+

1

4
√

2πh2
≤ 1√

2πh2
,

and

‖φµ,h‖2
H ≤ 1

(2π)d/2h2d
.

Finally,

‖ fD − fD′‖H = n−1‖φxn,h −φx′n,h‖H ≤ 2

(2π)d/4nhd

Therefore, we observe a technique which attains higher generality than the ad-hoc analysis of

the preceding section. However this is at the expense of the noise level, which grows at a higher rate

as d increases. An example of the technique applied to the same kernel density estimation problem

as above is given in Figure 2.

4.3 Minimizers of Regularized Functionals in an RKHS

The construction of the following section is due to Bousquet and Elisseeff (2002), who were inter-

ested in determining the sensitivity of certain kernel machines (among other algorithms) with the

aim of bounding the generalization error of the output classifiers. Rubinstein et al. (2010) noted that

these bounds are useful for establishing the noise level required for differential privacy of support

vector machines. They are also useful for our approach to privacy in a function space.

We consider classification and regression schemes in which the data sets D = {z1, . . . ,zn} with

zi = (xi,yi), where xi ∈ [0,1]d are some covariates, and yi is some kind of label, either taking values

on {−1,+1} in the case of classification or some taking values in some interval when the goal

is regression. Thus the output functions are from [0,1]d to a subset of R. The functions we are

interested in take the form

fD = argmin
g∈H

1

n
∑

zi∈D

ℓ(g,zi)+λ‖g‖2
H (11)

where H is some RKHS to be determined, and ℓ is the so-called “loss function.” We now recall a

definition from Bousquet and Elisseeff (2002) (using M in place of their σ to prevent confusion):

Definition 10 (M-admissible loss function: see Bousquet and Elisseeff, 2002) A loss function:

ℓ(g,z) = c(g(x),y) is called M-admissible whenever c it is convex in its first argument and Lips-

chitz with constant M in its first argument.

We will now demonstrate that for (11), whenever the loss function is admissible, the minimiz-

ers on adjacent data sets may be bounded close together in RKHS norm. Denote the part of the

optimization due to the loss function:

LD( f ) =
1

n
∑

zi∈D

ℓ( f ,zi).
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Figure 2: An example of a kernel density estimator (the solid curve) and the released version (the

dashed curve). The setup is the same as in Figure 1, but the privacy mechanism devel-

oped in Section 4.2 was used instead. Note that the released function does not have the

desirable smoothness of released function from Figure 1.

Using the technique from the proof of lemma 20 of Bousquet and Elisseeff (2002) we find that since

ℓ is convex in its first argument we have

LD( fD +ηδD′,D)−LD( fD)≤ η(LD( fD′)−LD( fD)),

where η ∈ [0,1] and we use δD′,D = fD′ − fD. This also holds when fD and fD′ swap places. Sum-

ming the resulting inequality with the above and rearranging yields

LD( fD′ −ηδD′,D)−LD( fD′)≤ LD( fD)−LD( fD +ηδD′,D).

Due to the definition of fD, fD′ as the minimizers of their respective functionals we have

LD( fD)+λ‖ fD‖2
H ≤ LD( fD +ηδD′,D)+λ‖ fD +ηδD′,D‖2

H

LD′( fD′)+λ‖ fD′‖2
H ≤ LD′( fD′ −ηδD′,D)+λ‖ fD′ −ηδD′,D‖2

H .
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This leads to the inequalities

0 ≥ λ
(
‖ fD‖2

H −‖ fD +ηδD′,D‖2
H +‖ fD′‖2

H −‖ fD′ −ηδD′,D‖2
H

)

+LD( fD)−LD( fD +ηδD′,D +LD′( fD′)−LD′( fD′ −ηδD′,D)

≥ 2λ‖ηδD′,D‖2
H −LD( fD′)+LD( fD′ −ηδD′,D)+LD′( fD′)−LD′( fD′ −ηδD′,D)

= 2λ‖ηδD′,D‖2
H +

1

n

(
ℓ(z, fD′)− ℓ(z, fD′ −ηδD′,D)+ ℓ(z′, fD′)− ℓ(z′, fD′ −ηδD′,D)

)
.

Moving the loss function term to the other side and using the Lipschitz property we finally obtain

that

‖ fD − fD′‖2
H ≤ M

λn
‖ fD − fD′‖∞.

What’s more, the reproducing property together with Cauchy-Schwarz inequality yields

| fD(x)− fD′(x)|= | 〈 fD − fD′ ,Kx〉H | ≤ ‖ fD − fD′‖H

√
K(x,x).

Combining with the previous result gives

‖ fD − fD′‖2
H ≤ M

λn
‖ fD − fD′‖H

√
sup

x

K(x,x),

which, in turn, leads to

‖ fD − fD′‖H ≤ M

λn

√
sup

x

K(x,x).

For a soft-margin kernel SVM we have the loss function: ℓ(g,z) = (1− yg(x))+, which means the

positive part of the term in parentheses. Since the label y takes on either plus or minus one, we find

this to be 1-admissible. An example of a kernel SVM in T = R
2 is shown in Figure 3.

5. Algorithms

There are two main modes in which functions fD could be released by the holder of the data D to the

outside parties. The first is a “batch” setting in which the parties designate some finite collection of

points x1 . . . ,xn ∈ T . The database owner computes f̃D(xi) for each i and return the vector of results.

At this point the entire transaction would end with only the collection of pairs (xi, f̃D(xi)) being

known to the outsiders. An alternative is the “online” setting in which outside users repeatedly

specify points in xi ∈ T , the database owner replies with f̃D(xi), but unlike the former setting he

remains available to respond to more requests for function evaluations. We name these settings

“batch” and “online” for their resemblance of the batch and online settings typically considered in

machine learning algorithms.

The batch method is nothing more than sampling a multivariate Gaussian, since the set

x1, . . . ,xn ∈ T specifies the finite dimensional distribution of the Gaussian process from which to

sample. The released vector is simply




f̃D(x1)
...

f̃D(xn)


∼ N







fD(x1)
...

fD(xn)


 ,

c(β)∆

α




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)





 .
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Figure 3: An example of a kernel support vector machine. In the top image are the data points,

with the colors representing the two class labels (also points are used for one class and

crosses for the other). The background color corresponds to the class predicted by the

learned kernel svm. In the bottom image are the same data points, with the predictions of

the private kernel svm. This example uses the Gaussian kernel for classification.

In the online setting, the data owner upon receiving a request for evaluation at xi would sample the

Gaussian process conditioned on the samples already produced at x1, . . . ,xi−1. Let

Ci =




K(x1,x1) · · · K(x1,xi−1)
...

. . .
...

K(xi−1,x1) · · · K(xi−1,xi−1)


 ,
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Gi =




f̃D(x1)
...

f̃D(xi−1)


 , Vi =




K(x1,xi)
...

K(xi−1,xi)


 .

Then,

f̃D(xi)∼ N
(
V T

i C−1
i Gi, K(xi,xi)−V T

i C−1
i Vi

)
.

The database owner may track the inverse matrix C−1
i and after each request update it into C−1

i+1 by

making use of Schurs Complements combined with the matrix inversion lemma. Nevertheless we

note that as i increases the computational complexity of answering the request will in general grow.

In the very least, the construction of Vi takes time proportional to i. This may make this approach

problematic to implement in practice. However we note that when using the covariance kernel

K(x,y) = exp{−γ |x− y|1}

that a more efficient algorithm presents itself. This is the kernel considered in section 4.2. Due to

the above form of K, we find that for x < y < z we have: K(x,z) = K(x,y)K(y,z). Therefore in

using the above algorithm we would find that Vi is always contained in the span of at most two rows

of Ci. This is most evident when, for instance, xi < min j<i x j. In this case let m = argmin j<i x j

Vi = K(xi,xm)Ci(m), in which Ci(m) means the mth row of Ci. Therefore C−1
i Vi will be a sparse

vector with exactly one non-zero entry (taking value K(x,xm)) in the mth position. Similar algebra

applies whenever xi falls between two previous points, in which case Vi lays in the span of the two

rows corresponding to the closest point on the left and the closest on the right. Using the above

kernel with some choice of γ let

ρ(x,y) = eγ|x−y|− e−γ|x−y|.

Let ξ(xi) = f̃D(xi)− fD(xi) represent the noise process. We find that the conditional distribution of

ξ(xi) to be Normal with mean and variance given by:

Eξ(xi) =





K(xi,x(1))ξ(x(1)) xi < x(1)

K(xi,x(i−1))ξ(x(i−1)) xi > x(i−1)
ρ(x( j+1),xi)

ρ(x( j),x( j+1))
ξ(x( j))+

ρ(x( j),xi)

ρ(x( j),x( j+1))
ξ(x( j+1)) x( j) < xi < x( j+1),

and

Var[ f̃D(xi)] =





1−K(x,x(1))
2 xi < x(1)

1−K(x,x(i−1))
2 xi > x(i−1)

1−K(x,x( j))
ρ(x( j+1),xi)

ρ(x( j),x( j+1))
−K(x,x( j+1))

ρ(x( j),xi)

ρ(x( j),x( j+1))
x( j) < xi < x( j+1),

where x(1) < x(2) < · · ·< x(i−1) are the points x1, . . . ,xi−1 after being sorted into increasing order. In

using the above algorithm it is only necessary for the data owner to store the values xi and f̃D(xi).
When using the proper data structures, for example a sorted doubly linked list for the xi it is possible

to determine the mean and variance using the above technique in time proportional to log(i) which

is a significant improvement over the general linear time scheme above (note that the linked list is

suggested since then it is possible to update the list in constant time).
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6. Conclusion

We have shown how to add random noise to a function in such a way that differential privacy is

preserved. It would be interesting to study this method in the many applications of functional data

analysis (Ramsay and Silverman, 1997).

Interesting future work will be to address the issue of lower bounds for private functions. Specif-

ically, we can ask: Given that we want to release a differentially private function, what is the least

amount of noise that must necessarily be added in order to preserve differential privacy? This

question has been addressed in detail for real-valued, count-valued and vector-valued data (see, for

example, Hardt and Talwar, 2010). However, those techniques apply to the case of β = 0 where-

upon the family {PD} are all mutually absolutely continuous. In the case of β> 0 which we consider

this no longer applies and so the determination of lower bounds is complicated (for example, since

quantities such as the KL divergence are no longer bounded). Some work in this direction is in

McGregor et al. (2010) and Chaudhuri and Hsu (2012).
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Appendix A.

Proof of Proposition 8. Note that invertibility of the matrix is safely assumed due to Mercer’s

theorem. Denote the matrix by M−1. Denote by P the operator H → H defined by

P =
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

, ·
〉

H

We find this operator to be idempotent in the sense that P = P2:

P2 =
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

,
n

∑
k=1

Kxk

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

〉

H

=
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

n

∑
k=1

〈
Kx j

,Kxk

〉
H

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

=
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

n

∑
k=1

M j,k

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

=
n

∑
i=1

Kxi

n

∑
l=1

(M−1)i,l 〈Kxl
, ·〉H

= P.
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P is also self-adjoint due to the symmetry of M,

〈P f ,g〉H =

〈
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

, f
〉

H
,g

〉

H

=

〈
n

∑
i=1

〈Kxi
,g〉H

n

∑
j=1

(M−1)i, jKx j
, f

〉

H

=

〈
n

∑
j=1

Kx j

n

∑
i=1

(M−1)i, j 〈Kxi
,g〉H , f

〉

H

=

〈
n

∑
j=1

Kx j

n

∑
i=1

(M−1) j,i 〈Kxi
,g〉H , f

〉

H

= 〈Pg, f 〉H .

Therefore,

‖ f‖2
H = 〈 f , f 〉H

= 〈P f +( f −P f ),P f +( f −P f )〉H

= 〈P f ,P f 〉H +2〈P f , f −P f 〉H + 〈 f −P f , f −P f 〉H

= 〈P f ,P f 〉H +2
〈

f ,P f −P2 f
〉

H
+ 〈 f −P f , f −P f 〉H

= 〈P f ,P f 〉H + 〈 f −P f , f −P f 〉H

≥ 〈P f ,P f 〉H

= 〈 f ,P f 〉H .

The latter term is nothing more than the left hand side in the statement. In summary the quantity in

the statement of the theorem is just the square RKHS norm in the restriction of H to the subspace

spanned by the functions Kxi
. �
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