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Abstract

Multi-task sparse feature learning aims to improve the generalization performance by exploiting

the shared features among tasks. It has been successfully applied to many applications includ-

ing computer vision and biomedical informatics. Most of the existing multi-task sparse feature

learning algorithms are formulated as a convex sparse regularization problem, which is usually

suboptimal, due to its looseness for approximating an ℓ0-type regularizer. In this paper, we pro-

pose a non-convex formulation for multi-task sparse feature learning based on a novel non-convex

regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task

Feature Learning (MSMTFL) algorithm; we also provide intuitive interpretations, detailed con-

vergence and reproducibility analysis for the proposed algorithm. Moreover, we present a detailed

theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than

the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate

the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature

learning algorithms.

Keywords: multi-task learning, multi-stage, non-convex, sparse learning

1. Introduction

Multi-task learning (MTL) (Caruana, 1997) exploits the relationships among multiple related tasks

to improve the generalization performance. It has been successfully applied to many applications

such as speech classification (Parameswaran and Weinberger, 2010), handwritten character recog-

nition (Obozinski et al., 2006; Quadrianto et al., 2010) and medical diagnosis (Bi et al., 2008). One

common assumption in multi-task learning is that all tasks should share some common structures

c©2013 Pinghua Gong, Jieping Ye and Changshui Zhang.



GONG, YE AND ZHANG

including the prior or parameters of Bayesian models (Schwaighofer et al., 2005; Yu et al., 2005;

Zhang et al., 2006), a similarity metric matrix (Parameswaran and Weinberger, 2010), a classifica-

tion weight vector (Evgeniou and Pontil, 2004), a low rank subspace (Chen et al., 2010; Negahban

and Wainwright, 2011) and a common set of shared features (Argyriou et al., 2008; Gong et al.,

2012; Kim and Xing, 2009; Kolar et al., 2011; Lounici et al., 2009; Liu et al., 2009; Negahban and

Wainwright, 2008; Obozinski et al., 2006; Yang et al., 2009; Zhang et al., 2010).

Multi-task feature learning, which aims to learn a common set of shared features, has received

a lot of interests in machine learning recently, due to the popularity of various sparse learning

formulations and their successful applications in many problems. In this paper, we focus on a

specific multi-task feature learning setting, in which we learn the features specific to each task

as well as the common features shared among tasks. Although many multi-task feature learning

algorithms have been proposed in the past, many of them require the relevant features to be shared

by all tasks. This is too restrictive in real-world applications (Jalali et al., 2010). To overcome this

limitation, Jalali et al. (2010) proposed an ℓ1 + ℓ1,∞ regularized formulation, called “dirty model”,

to leverage the common features shared among tasks. The dirty model allows a certain feature to be

shared by some tasks but not all tasks. Jalali et al. (2010) also presented a theoretical analysis under

the incoherence condition (Donoho et al., 2006; Obozinski et al., 2011) which is more restrictive

than RIP (Candes and Tao, 2005; Zhang, 2012). The ℓ1 + ℓ1,∞ regularizer is a convex relaxation of

an ℓ0-type one, in which a globally optimal solution can be obtained. However, a convex regularizer

is known to be too loose to approximate the ℓ0-type one and often achieves suboptimal performance

(either require restrictive conditions or obtain a suboptimal error bound) (Zou and Li, 2008; Zhang,

2010, 2012; Zhang and Zhang, 2012; Shen et al., 2012; Fan et al., 2012). To remedy the limitation,

a non-convex regularizer can be used instead. However, the non-convex formulation is usually

difficult to solve and a globally optimal solution can not be obtained in most practical problems.

Moreover, the solution of the non-convex formulation heavily depends on the specific optimization

algorithms employed. Even with the same optimization algorithm adopted, different initializations

usually lead to different solutions. Thus, it is often challenging to analyze the theoretical behavior

of a non-convex formulation.

We propose a non-convex formulation, called capped-ℓ1,ℓ1 regularized model for multi-task fea-

ture learning. The proposed model aims to simultaneously learn the features specific to each task

as well as the common features shared among tasks. We propose a Multi-Stage Multi-Task Feature

Learning (MSMTFL) algorithm to solve the non-convex optimization problem. We also provide

intuitive interpretations of the proposed algorithm from several aspects. In addition, we present a

detailed convergence analysis for the proposed algorithm. To address the reproducibility issue of

the non-convex formulation, we show that the solution generated by the MSMTFL algorithm is

unique (i.e., the solution is reproducible) under a mild condition, which facilitates the theoretical

analysis of the MSMTFL algorithm. Although the MSMTFL algorithm may not obtain a globally

optimal solution, we show that this solution achieves good performance. Specifically, we present a

detailed theoretical analysis on the parameter estimation error bound for the MSMTFL algorithm.

Our analysis shows that, under the sparse eigenvalue condition which is weaker than the incoherence

condition used in Jalali et al. (2010), MSMTFL improves the error bound during the multi-stage iter-

ation, that is, the error bound at the current iteration improves the one at the last iteration. Empirical

studies on both synthetic and real-world data sets demonstrate the effectiveness of the MSMTFL

algorithm in comparison with the state of the art algorithms.
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1.1 Notations and Organization

Scalars and vectors are denoted by lower case letters and bold face lower case letters, respectively.

Matrices and sets are denoted by capital letters and calligraphic capital letters, respectively. The ℓ1

norm, Euclidean norm, ℓ∞ norm and Frobenius norm are denoted by ‖ · ‖1, ‖ · ‖, ‖ · ‖∞ and ‖ · ‖F ,

respectively. | · | denotes the absolute value of a scalar or the number of elements in a set, depending

on the context. We define the ℓp,q norm of a matrix X as ‖X‖p,q =
(

∑i

(

(∑ j |xi j|q)1/q
)p
)1/p

. We

define Nn as {1, · · · ,n} and N(µ,σ2) as the normal distribution with mean µ and variance σ2. For

a d ×m matrix W and sets Ii ⊆ Nd ×{i},I ⊆ Nd ×Nd , we let wIi
be the d ×1 vector with the j-th

entry being w ji, if ( j, i) ∈ Ii, and 0, otherwise. We also let WI be a d ×m matrix with the ( j, i)-th
entry being w ji, if ( j, i) ∈ I , and 0, otherwise.

In Section 2, we introduce a non-convex formulation and present the corresponding optimization

algorithm. In Section 3, we discuss the convergence and reproducibility issues of the MSMTFL

algorithm. In Section 4, we present a detailed theoretical analysis on the MSMTFL algorithm, in

terms of the parameter estimation error bound. In Section 5, we provide a sketch of the proof of

the presented theoretical results (the detailed proof is provided in the Appendix). In Section 6, we

report the experimental results and we conclude the paper in Section 7.

2. The Proposed Formulation and Algorithm

In this section, we first propose a non-convex formulation for multi-task feature learning, based

on the capped-ℓ1, ℓ1 regularization. Then, we show how to solve the corresponding non-convex

optimization problem. Finally, we provide intuitive interpretations and discussions for the proposed

algorithm.

2.1 A Non-convex Formulation

Assume we are given m learning tasks associated with training data {(X1,y1), · · · ,(Xm,ym)}, where

Xi ∈ R
ni×d is the data matrix of the i-th task with each row as a sample; yi ∈ R

ni is the response

of the i-th task; d is the data dimensionality; ni is the number of samples for the i-th task. We

consider learning a weight matrix W = [w1, · · · ,wm] ∈ R
d×m (wi ∈ R

d , i ∈ Nm) consisting of the

weight vectors for m linear predictive models: yi ≈ fi(Xi) = Xiwi, i ∈Nm. In this paper, we propose

a non-convex multi-task feature learning formulation to learn these m models simultaneously, based

on the capped-ℓ1,ℓ1 regularization. Specifically, we first impose the ℓ1 penalty on each row of W ,

obtaining a column vector. Then, we impose the capped-ℓ1 penalty (Zhang, 2010, 2012) on that

vector. Formally, we formulate our proposed model as follows:

capped−ℓ1, ℓ1 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

min
(

‖w j‖1,θ
)

}

, (1)

where l(W ) is an empirical loss function of W ; λ (> 0) is a parameter balancing the empirical loss

and the regularization; θ (> 0) is a thresholding parameter; w j is the j-th row of the matrix W . In

this paper, we focus on the following quadratic loss function:

l(W ) =
m

∑
i=1

1

mni

‖Xiwi −yi‖2 . (2)
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Intuitively, due to the capped-ℓ1, ℓ1 penalty, the optimal solution of Equation (1) denoted as

W ⋆ has many zero rows. For a nonzero row (w⋆)k, some entries may be zero, due to the ℓ1-norm

imposed on each row of W . Thus, under the formulation in Equation (1), some features can be

shared by some tasks but not all the tasks. Therefore, the proposed formulation can leverage the

common features shared among tasks.

2.2 Two Relevant Non-convex Formulations

In this subsection, we discuss two relevant non-convex formulations. The first one is the capped-ℓ1

feature learning formulation:

capped−ℓ1 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

m

∑
i=1

min(|w ji|,θ)
}

. (3)

Although the optimal solution of formulation (3) has a similar sparse pattern to that of the proposed

capped-ℓ1, ℓ1 multi-task feature learning (i.e., the optimal solution can have many zero rows and

enable some entries of a non-zero row to be zero), the models for different tasks decouple and thus

formulation (3) is equivalent to the single task feature learning. Thus, the existing analysis for the

single task setting in Zhang (2010, 2012) can be trivially adapted to this setting. The second one is

the capped-ℓ1, ℓ2 multi-task feature learning formulation:

capped−ℓ1, ℓ2 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

min
(

‖w j‖,θ
)

}

. (4)

Due to the use of the capped-ℓ1, ℓ2 penalty, the optimal solution W ⋆ of formulation (4) has many

zero rows. However, any non-zero row of W ⋆ is less likely to contain zero entries because of the

Euclidean norm imposed on the rows of W . In other words, each row of W ⋆ is either a zero vector or

a vector composed of all non-zero entries. Thus, in this setting, some relevant features are required

to be shared by all tasks. This is obviously different from the motivation of the proposed capped-

ℓ1, ℓ1 multi-task feature learning, that is, some features are shared by some tasks but not all the

tasks.

2.3 Optimization Algorithm

The formulation in Equation (1) is non-convex and is difficult to solve. In this paper, we propose

an algorithm called Multi-Stage Multi-Task Feature Learning (MSMTFL) to solve the optimization

problem (see details in Algorithm 1).1 In this algorithm, a key step is how to efficiently solve

Equation (5). Observing that the objective function in Equation (5) can be decomposed into the

sum of a differential loss function and a non-differential regularization term, we employ FISTA

(Beck and Teboulle, 2009) to solve the sub-problem. In the following, we present some intuitive

interpretations of the proposed algorithm from several aspects.

1. We can use MSMTFL-type algorithms to solve the non-convex multi-task feature learning problems in Eqs. (3) and

(4). Please refer to Appendix C for details.
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Algorithm 1: MSMTFL: Multi-Stage Multi-Task Feature Learning

1 Initialize λ
(0)
j = λ;

2 for ℓ= 1,2, · · · do

3 Let Ŵ (ℓ) be a solution of the following problem:

min
W∈Rd×m

{

l(W )+
d

∑
j=1

λ
(ℓ−1)
j ‖w j‖1

}

. (5)

4 Let λ
(ℓ)
j = λI(‖(ŵ(ℓ)) j‖1 < θ) ( j = 1, · · · ,d), where (ŵ(ℓ)) j is the j-th row of Ŵ (ℓ) and

I(·) denotes the {0,1}-valued indicator function.

5 end

2.3.1 LOCALLY LINEAR APPROXIMATION

First, we define two auxiliary functions:

h : Rd×m 7→ R
d
+, h(W ) =

[

‖w1‖1, · · · ,‖wd‖1

]T

,

g : Rd
+ 7→ R+, g(u) =

d

∑
j=1

min(u j,θ).

We note that g(·) is a concave function and we say that a vector s ∈ R
d is a sub-gradient of g at

v ∈ R
d
+, if for all vector u ∈ R

d
+, the following inequality holds:

g(u)≤ g(v)+ 〈s,u−v〉,

where 〈·, ·〉 denotes the inner product. Using the functions defined above, Equation (1) can be

equivalently rewritten as follows:

min
W∈Rd×m

{l(W )+λg(h(W ))} . (6)

Based on the definition of the sub-gradient for a concave function given above, we can obtain an

upper bound of g(h(W )) using a locally linear approximation at h(Ŵ (ℓ)):

g(h(W ))≤ g(h(Ŵ (ℓ)))+
〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉

,

where s(ℓ) is a sub-gradient of g(u) at u = h(Ŵ (ℓ)). Furthermore, we can obtain an upper bound of

the objective function in Equation (6), if the solution Ŵ (ℓ) at the ℓ-th iteration is available:

∀W ∈ R
d×m : l(W )+λg(h(W ))≤ l(W )+λg(h(Ŵ (ℓ)))+λ

〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉

. (7)

It can be shown that a sub-gradient of g(u) at u = h(Ŵ (ℓ)) is

s(ℓ) =
[

I(‖(ŵ(ℓ))1‖1 < θ), · · · , I(‖(ŵ(ℓ))d‖1 < θ)
]T

, (8)
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which is used in Step 4 of Algorithm 1. Since both λ and h(Ŵ (ℓ)) are constant with respect to W ,

we have

Ŵ (ℓ+1) = argmin
W

{

l(W )+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉}

= argmin
W

{

l(W )+λ(s(ℓ))T h(W )
}

,

which, as shown in Step 3 of Algorithm 1, obtains the next iterative solution by minimizing the

upper bound of the objective function in Equation (6). Thus, in the viewpoint of the locally linear

approximation, we can understand Algorithm 1 as follows: The original formulation in Equation (6)

is non-convex and is difficult to solve; the proposed algorithm minimizes an upper bound in each

step, which is convex and can be solved efficiently. It is closely related to the Concave Convex

Procedure (CCCP) (Yuille and Rangarajan, 2003). In addition, we can easily verify that the objective

function value decreases monotonically as follows:

l(Ŵ (ℓ+1))+λg(h(Ŵ (ℓ+1)))≤ l(Ŵ (ℓ+1))+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(Ŵ (ℓ+1))−h(Ŵ (ℓ))
〉

≤ l(Ŵ (ℓ))+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(Ŵ (ℓ))−h(Ŵ (ℓ))
〉

= l(Ŵ (ℓ))+λg(h(Ŵ (ℓ))),

where the first inequality is due to Equation (7) and the second inequality follows from the fact that

Ŵ (ℓ+1) is a minimizer of the right hand side of Equation (7).

An important issue we should mention is that a monotonic decrease of the objective function

value does not guarantee the convergence of the algorithm, even if the objective function is strictly

convex and continuously differentiable (see an example in the book (Bertsekas, 1999, Fig 1.2.6)).

In Section 3.1, we will formally discuss the convergence issue.

2.3.2 BLOCK COORDINATE DESCENT

Recall that g(u) is a concave function. We can define its conjugate function as (Rockafellar, 1970):

g⋆(v) = inf
u
{vT u−g(u)}.

Since g(u) is also a closed function (i.e., the epigraph of g(u) is convex), the conjugate function of

g⋆(v) is the original function g(u) (Bertsekas, 1999, Chap. 5.4), that is:

g(u) = inf
v
{uT v−g⋆(v)}. (9)

Substituting Equation (9) with u = h(W ) into Equation (6), we can reformulate Equation (6) as:

min
W,v

{

f (W,v) = l(W )+λvT h(W )−λg⋆(v)
}

(10)

A straightforward algorithm for optimizing Equation (10) is the block coordinate descent (Grippo

and Sciandrone, 2000; Tseng, 2001) summarized below:
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• Fix W = Ŵ (ℓ):

v̂(ℓ) = argmin
v

{

l(Ŵ (ℓ))+λvT h(Ŵ (ℓ))−λg⋆(v)
}

= argmin
v

{

vT h(Ŵ (ℓ))−g⋆(v)
}

. (11)

Based on Equation (9) and the Danskin’s Theorem (Bertsekas, 1999, Proposition B.25), one

solution of Equation (11) is given by a sub-gradient of g(u) at u = h(Ŵ (ℓ)). That is, we can

choose v̂(ℓ) = s(ℓ) given in Equation (8). Apparently, Equation (11) is equivalent to Step 4 in

Algorithm 1.

• Fix v = v̂(ℓ) =
[

I(‖(ŵ(ℓ))1‖1 < θ), · · · , I(‖(ŵ(ℓ))d‖1 < θ)
]T

:

Ŵ (ℓ+1) = argmin
W

{

l(W )+λ(v̂(ℓ))T h(W )−λg⋆(v̂(ℓ))
}

= argmin
W

{

l(W )+λ(v̂(ℓ))T h(W )
}

, (12)

which corresponds to Step 3 of Algorithm 1.

The block coordinate descent procedure is intuitive, however, it is non-trivial to analyze its conver-

gence behavior. We will present the convergence analysis in Section 3.1.

2.3.3 DISCUSSIONS

If we terminate the algorithm with ℓ= 1, the MSMTFL algorithm is equivalent to the ℓ1 regularized

multi-task feature learning algorithm (Lasso). Thus, the solution obtained by MSMTFL can be

considered as a multi-stage refinement of that of Lasso. Basically, the MSMTFL algorithm solves a

sequence of weighted Lasso problems, where the weights λ j’s are set as the product of the parameter

λ in Equation (1) and a {0,1}-valued indicator function. Specifically, a penalty is imposed in the

current stage if the ℓ1-norm of some row of W in the last stage is smaller than the threshold θ;

otherwise, no penalty is imposed. In other words, MSMTFL in the current stage tends to shrink

the small rows of W and keep the large rows of W in the last stage. However, Lasso (corresponds

to ℓ = 1) penalizes all rows of W in the same way. It may incorrectly keep the irrelevant rows

(which should have been zero rows) or shrink the relevant rows (which should have been large

rows) to be zero vectors. MSMTFL overcomes this limitation by adaptively penalizing the rows

of W according to the solution generated in the last stage. One important question is whether the

MSMTFL algorithm can improve the performance during the multi-stage iteration. In Section 4, we

will theoretically show that the MSMTFL algorithm indeed achieves the stagewise improvement in

terms of the parameter estimation error bound. That is, the error bound in the current stage improves

the one in the last stage. Empirical studies in Section 6 also validate the presented theoretical

analysis.

3. Convergence and Reproducibility Analysis

In this section, we first present the convergence analysis. Then, we discuss the reproducibility issue

for the MSMTFL algorithm.
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3.1 Convergence Analysis

The main convergence result is summarized in the following theorem, which is based on the block

coordinate descent interpretation.

Theorem 1 Let (W ⋆,v⋆) be a limit point of the sequence {Ŵ (ℓ), v̂(ℓ)} generated by the block coor-

dinate descent algorithm. Then W ⋆ is a critical point of Equation (1).

Proof Based on Equation (11) and Equation (12), we have

f (Ŵ (ℓ), v̂(ℓ))≤ f (Ŵ (ℓ),v), ∀v ∈ R
d ,

f (Ŵ (ℓ+1), v̂(ℓ))≤ f (W, v̂(ℓ)), ∀W ∈ R
d×m. (13)

It follows that

f (Ŵ (ℓ+1), v̂(ℓ+1))≤ f (Ŵ (ℓ+1), v̂(ℓ))≤ f (Ŵ (ℓ), v̂(ℓ)),

which indicates that the sequence { f (Ŵ (ℓ), v̂(ℓ))} is monotonically decreasing. Since (W ⋆,v⋆) is a

limit point of {Ŵ (ℓ), v̂(ℓ)}, there exists a subsequence K such that

lim
ℓ∈K →∞

(Ŵ (ℓ), v̂(ℓ)) = (W ⋆,v⋆).

We observe that

f (W,v) = l(W )+λvT h(W )−λg⋆(v)

≥ l(W )+λg(h(W ))≥ 0,

where the first inequality above is due to Equation (9). Thus, { f (Ŵ (ℓ), v̂(ℓ))}ℓ∈K is bounded below.

Together with the fact that { f (Ŵ (ℓ), v̂(ℓ))} is decreasing, limℓ→∞ f (Ŵ (ℓ), v̂(ℓ)) > −∞ exists. Since

f (W,v) is continuous, we have

lim
ℓ→∞

f (Ŵ (ℓ), v̂(ℓ)) = lim
ℓ∈K →∞

f (Ŵ (ℓ), v̂(ℓ)) = f (W ⋆,v⋆).

Taking limits on both sides of Equation (13) with ℓ ∈ K → ∞, we have

f (W ⋆,v⋆)≤ f (W,v⋆), ∀W ∈ R
d×m,

which implies

W ⋆ ∈ argmin
W

f (W,v⋆)

= argmin
W

{

l(W )+λ(v⋆)T h(W )−λg⋆(v⋆)
}

= argmin
W

{

l(W )+λ(v⋆)T h(W )
}

. (14)

Therefore, the zero matrix O must be a sub-gradient of the objective function in Equation (14) at

W =W ⋆ :

O ∈ ∂l(W ⋆)+λ∂
(

(v⋆)T h(W ⋆)
)

= ∂l(W ⋆)+λ
d

∑
j=1

v⋆j∂
(

‖(w⋆) j‖1

)

, (15)
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where ∂l(W ⋆) denotes the sub-differential (which is a set composed of all sub-gradients) of l(W ) at

W =W ⋆. We observe that

v̂(ℓ) ∈ ∂g(u)|u=h(Ŵ (ℓ)),

which implies that ∀x ∈ R
d
+:

g(x)≤ g(h(Ŵ (ℓ)))+
〈

v̂(ℓ),x−h(Ŵ (ℓ))
〉

.

Taking limits on both sides of the above inequality with ℓ ∈ K → ∞, we have:

g(x)≤ g(h(W ⋆))+ 〈v⋆,x−h(W ⋆)〉 ,

which implies that v⋆ is a sub-gradient of g(u) at u = h(W ⋆), that is:

v⋆ ∈ ∂g(u)|u=h(W ⋆). (16)

Note that the objective function of Equation (1) can be written as a difference of two convex func-

tions:

l(W )+λ
d

∑
j=1

min
(

‖w j‖1,θ
)

= (l(W )+λ‖W‖1,1)−λ
d

∑
j=1

max
(

‖w j‖1 −θ,0
)

.

Based on Wright et al. (2009); Toland (1979), we know that W ⋆ is a critical point of Equation (1) if

the following holds:

O ∈ (∇l(W ⋆)+λ∂‖W ⋆‖1,1)−λ
d

∑
j=1

∂max
(

‖(w⋆) j‖1 −θ,0
)

. (17)

Substituting Equation (16) into Equation (15), we can obtain Equation (17). Therefore, W ⋆ is a

critical point of Equation (1). This completes the proof of Theorem 1.

Due to the equivalence between Algorithm 1 and the block coordinate descent algorithm above,

Theorem 1 indicates that any limit point of the sequence {Ŵ (ℓ)} generated by Algorithm 1 is a

critical point of Equation (1). The remaining issue is to analyze the performance of the critical

point. In the sequel, we will conduct analysis in two aspects: reproducibility and the parameter

estimation performance.

3.2 Reproducibility of The Algorithm

In general, it is difficult to analyze the performance of a non-convex formulation, as different solu-

tions can be obtained due to different initializations. One natural question is whether the solution

generated by Algorithm 1 (based on the initialization of λ
(0)
j = λ in Step 1) is reproducible. In other

words, is the solution of Algorithm 1 unique? If we can guarantee that, for any ℓ ≥ 1, the solution

Ŵ (ℓ) of Equation (5) is unique, then the solution generated by Algorithm 1 is unique. That is, the

solution is reproducible. The main result is summarized in the following theorem:
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Theorem 2 If Xi ∈ R
ni×d (i ∈ Nm) has entries drawn from a continuous probability distribution

on Rnid , then, for any ℓ ≥ 1, the optimization problem in Equation (5) has a unique solution with

probability one.

Proof Equation (5) can be decomposed into m independent smaller minimization problems:

ŵ
(ℓ)
i = argmin

wi∈Rd

1

mni

‖Xiwi −yi‖2 +
d

∑
j=1

λ
(ℓ−1)
j |w ji|.

Next, we only need to prove that the solution of the above optimization problem is unique. To sim-

plify the notations, we unclutter the above equation (by ignoring some superscripts and subscripts)

as follows:

ŵ = argmin
w∈Rd

1

mn
‖Xw−y‖2 +

d

∑
j=1

λ j|w j|, (18)

The first order optimal condition is ∀ j ∈ Nd :

2

mn
xT

j (y−Xŵ) = λ jsign(ŵ j),

where sign(ŵ j) = 1, if ŵ j > 0; sign(ŵ j) = −1, if ŵ j < 0; and sign(ŵ j) ∈ [−1,1], otherwise. We

define

E =

{

j ∈ Nd :
2

mn
|xT

j (y−Xŵ)|= λ j

}

,

s = sign

(

2

mn
XT

E (y−Xŵ)

)

,

where XE denotes the matrix composed of the columns of X indexed by E . Then, the optimal

solution ŵ of Equation (18) satisfies

ŵNd\E = 0,

ŵE = argmin
wE∈R|E |

1

mn
‖XE wE −y‖2 + ∑

j∈E

λ j|w j|, (19)

where wE denotes the vector composed of entries of w indexed by E . Since X ∈ R
ni×d is drawn

from the continuous probability distribution, X has columns in general positions with probability

one and hence rank(XE ) = |E | (or equivalently Null(XE ) = {0}), due to Lemma 3, Lemma 4 and

their discussions in Tibshirani (2013). Therefore, the objective function in Equation (19) is strictly

convex. Noticing that Xŵ is unique (Tibshirani, 2013), thus E is unique. This implies that ŵE is

unique. Thus, the optimal solution ŵ of Equation (18) is also unique and so is the optimization

problem in Equation (5) for any ℓ≥ 1. This completes the proof of Theorem 2.

Theorem 2 is important in the sense that it makes the theoretical analysis for the parameter estima-

tion performance of Algorithm 1 possible. Although the solution may not be globally optimal, we

show in the next section that the solution has good performance in terms of the parameter estimation

error bound.
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Remark 3 Zhang (2010, 2012) study the capped-ℓ1 regularized formulation for the single task

setting and propose the multi-stage algorithm for such formulation. However, Zhang (2010, 2012)

neither provide detailed convergence analysis nor discuss the reproducibility issues. The presented

analysis is applicable to the multi-stage algorithm proposed in Zhang (2010, 2012), as it is a special

case of the proposed algorithm with m = 1. To our best knowledge, this is the first work that

discusses the reproducibility issue for multi-stage optimization algorithms.

4. Parameter Estimation Error Bound

In this section, we theoretically analyze the parameter estimation performance of the solution ob-

tained by the MSMTFL algorithm. To simplify the notations in the theoretical analysis, we assume

that the number of samples for all the tasks are the same. However, our theoretical analysis can be

easily extended to the case where the tasks have different sample sizes.

We first present a sub-Gaussian noise assumption which is very common in the analysis of

sparse learning literature (Zhang and Zhang, 2012; Zhang, 2008, 2009, 2010, 2012).

Assumption 1 Let W̄ = [w̄1, · · · , w̄m] ∈ R
d×m be the underlying sparse weight matrix and yi =

Xiw̄i +δi, Eyi = Xiw̄i, where δi ∈ R
n is a random vector with all entries δ ji ( j ∈ Nn, i ∈ Nm) being

independent sub-Gaussians: there exists σ > 0 such that ∀ j ∈ Nn, i ∈ Nm, t ∈ R:

Eδ ji
exp(tδ ji)≤ exp

(

σ2t2

2

)

.

Remark 4 We call the random variable satisfying the condition in Assumption 1 sub-Gaussian,

since its moment generating function is bounded by that of a zero mean Gaussian random variable.

That is, if a normal random variable x ∼ N(0,σ2), then we have:

Eexp(tx) =
∫ ∞

−∞
exp(tx)

1√
2πσ

exp

(

− x2

2σ2

)

dx

= exp(σ2t2/2)
∫ ∞

−∞

1√
2πσ

exp

(

−(x−σ2t)2

2σ2

)

dx

= exp(σ2t2/2).

Remark 5 Based on the Hoeffding’s Lemma, for any random variable x ∈ [a,b] and Ex = 0, we

have E(exp(tx)) ≤ exp
(

t2(b−a)2

8

)

. Therefore, both zero mean Gaussian and zero mean bounded

random variables are sub-Gaussians. Thus, the sub-Gaussian noise assumption is more general

than the Gaussian noise assumption which is commonly used in the multi-task learning literature

(Jalali et al., 2010; Lounici et al., 2009).

We next introduce the following sparse eigenvalue concept which is also common in the analysis

of sparse learning literature (Zhang and Huang, 2008; Zhang and Zhang, 2012; Zhang, 2009, 2010,

2012).

Definition 6 Given 1 ≤ k ≤ d, we define

ρ+
i (k) = sup

w

{‖Xiw‖2

n‖w‖2
: ‖w‖0 ≤ k

}

, ρ+
max(k) = max

i∈Nm

ρ+
i (k),

ρ−
i (k) = inf

w

{‖Xiw‖2

n‖w‖2
: ‖w‖0 ≤ k

}

, ρ−
min(k) = min

i∈Nm

ρ−
i (k).
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Remark 7 ρ+
i (k) (ρ

−
i (k)) is in fact the maximum (minimum) eigenvalue of (Xi)

T
S (Xi)S/n, where S

is a set satisfying |S | ≤ k and (Xi)S is a submatrix composed of the columns of Xi indexed by S . In

the MTL setting, we need to exploit the relations of ρ+
i (k) (ρ

−
i (k)) among multiple tasks.

We present our parameter estimation error bound on MSMTFL in the following theorem:

Theorem 8 Let Assumption 1 hold. Define F̄i = {( j, i) : w̄ ji 6= 0} and F̄ = ∪i∈Nm
F̄i. Denote r̄ as

the number of nonzero rows of W̄ . We assume that

∀( j, i) ∈ F̄ ,‖w̄ j‖1 ≥ 2θ (20)

and
ρ+

i (s)

ρ−
i (2r̄+2s)

≤ 1+
s

2r̄
, (21)

where s is some integer satisfying s ≥ r̄. If we choose λ and θ such that for some s ≥ r̄:

λ ≥ 12σ

√

2ρ+
max(1) ln(2dm/η)

n
, (22)

θ ≥ 11mλ

ρ−
min(2r̄+ s)

, (23)

then the following parameter estimation error bound holds with probability larger than 1−η:

‖Ŵ (ℓ)−W̄‖2,1 ≤ 0.8ℓ/2 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

+
39.5mσ

√

ρ+
max(r̄)(7.4r̄+2.7ln(2/η))/n

ρ−
min(2r̄+ s)

, (24)

where Ŵ (ℓ) is a solution of Equation (5).

Remark 9 Equation (20) assumes that the ℓ1-norm of each nonzero row of W̄ is away from zero.

This requires the true nonzero coefficients should be large enough, in order to distinguish them from

the noise. Equation (21) is called the sparse eigenvalue condition (Zhang, 2012), which requires

the eigenvalue ratio ρ+
i (s)/ρ−

i (s) to grow sub-linearly with respect to s. Such a condition is very

common in the analysis of sparse regularization (Zhang and Huang, 2008; Zhang, 2009) and it is

slightly weaker than the RIP condition (Candes and Tao, 2005; Huang and Zhang, 2010; Zhang,

2012).

Remark 10 When ℓ = 1 (corresponds to Lasso), the first term of the right-hand side of Equa-

tion (24) dominates the error bound in the order of

‖Ŵ Lasso −W̄‖2,1 = O
(

m
√

r̄ ln(dm/η)/n
)

, (25)

since λ satisfies the condition in Equation (22). Note that the first term of the right-hand side of

Equation (24) shrinks exponentially as ℓ increases. When ℓ is sufficiently large in the order of

O(ln(m
√

r̄/n)+ ln ln(dm)), this term tends to zero and we obtain the following parameter estima-

tion error bound:

‖Ŵ (ℓ)−W̄‖2,1 = O
(

m
√

r̄/n+ ln(1/η)/n
)

. (26)
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Jalali et al. (2010) gave an ℓ∞,∞-norm error bound ‖Ŵ Dirty −W̄‖∞,∞ = O
(

√

ln(dm/η)/n
)

as well

as a sign consistency result between Ŵ and W̄ . A direct comparison between these two bounds is

difficult due to the use of different norms. On the other hand, the worst-case estimate of the ℓ2,1-

norm error bound of the algorithm in Jalali et al. (2010) is in the same order with Equation (25),

that is: ‖Ŵ Dirty −W̄‖2,1 = O
(

m
√

r̄ ln(dm/η)/n
)

. When dm is large and the ground truth has a

large number of sparse rows (i.e., r̄ is a small constant), the bound in Equation (26) is significantly

better than the ones for the Lasso and Dirty model.

Remark 11 Jalali et al. (2010) presented an ℓ∞,∞-norm parameter estimation error bound and

hence a sign consistency result can be obtained. The results are derived under the incoherence

condition which is more restrictive than the RIP condition and hence more restrictive than the

sparse eigenvalue condition in Equation (21). From the viewpoint of the parameter estimation

error, our proposed algorithm can achieve a better bound under weaker conditions. Please refer

to (Van De Geer and Bühlmann, 2009; Zhang, 2009, 2012) for more details about the incoherence

condition, the RIP condition, the sparse eigenvalue condition and their relationships.

Remark 12 The capped-ℓ1 regularized formulation in Zhang (2010) is a special case of our formu-

lation when m = 1. However, extending the analysis from the single task to the multi-task setting is

nontrivial. Different from previous work on multi-stage sparse learning which focuses on a single

task (Zhang, 2010, 2012), we study a more general multi-stage framework in the multi-task set-

ting. We need to exploit the relationship among tasks, by using the relations of sparse eigenvalues

ρ+
i (k) (ρ

−
i (k)) and treating the ℓ1-norm on each row of the weight matrix as a whole for consid-

eration. Moreover, we simultaneously exploit the relations of each column and each row of the

matrix.

In addition, we want to emphasize that the support recovery analysis in Zhang (2012) can not be

easily adapted to the proposed capped-ℓ1, ℓ1 multi-task feature learning setting. The key difficulty

is that, in order to achieve a similar support recovery result for the formulation in Equation (1),

we need to assume that each row of the underlying sparse weight matrix W̄ is either a zero vector

or a vector composed of all nonzero entries. However, this is not the case in the proposed multi-

task formulation. Although this assumption holds for the capped-ℓ1, ℓ2 multi-task feature learning

problem in Equation (4), each subproblem involved for solving Equation (4) is a reweighed ℓ2 regu-

larized problem and its first-order optimality condition is quite different from that of the reweighed

ℓ1 regularized problem. Thus, it is also challenging to extend the analysis in Zhang (2012) to the

capped-ℓ1, ℓ2 multi-task feature learning setting.

5. Proof Sketch of Theorem 8

In this section, we present a proof sketch of Theorem 8. We first provide several important lemmas

(detailed proofs are available in the Appendix A) and then complete the proof of Theorem 8 based

on these lemmas.

Lemma 13 Let ϒ̄ = [ǭ1, · · · , ǭm] with ǭi = [ε̄1i, · · · , ε̄di]
T = 1

n
XT

i (Xiw̄i−yi) (i ∈Nm). Define H̄ ⊇ F̄

such that ( j, i) ∈ H̄ (∀i ∈ Nm), provided there exists ( j,g) ∈ F̄ (H̄ is a set consisting of the indices

of all entries in the nonzero rows of W̄ ). Under the conditions of Assumption 1 and the notations of
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Theorem 8, the followings hold with probability larger than 1−η:

‖ϒ̄‖∞,∞ ≤ σ

√

2ρ+
max(1) ln(2dm/η)

n
, (27)

‖ϒ̄H̄ ‖2
F ≤ mσ2ρ+

max(r̄)(7.4r̄+2.7ln(2/η))/n. (28)

Lemma 13 gives bounds on the residual correlation (ϒ̄) with respect to W̄ . We note that Equa-

tion (27) and Equation (28) are closely related to the assumption on λ in Equation (22) and the

second term of the right-hand side of Equation (24) (error bound), respectively. This lemma pro-

vides a fundamental basis for the proof of Theorem 8.

Lemma 14 Use the notations of Lemma 13 and consider Gi ⊆ Nd ×{i} such that F̄i ∩Gi = /0 (i ∈
Nm). Let Ŵ = Ŵ (ℓ) be a solution of Equation (5) and ∆Ŵ = Ŵ − W̄ . Denote λ̂i = λ̂

(ℓ−1)
i =

[λ
(ℓ−1)
1 , · · · ,λ(ℓ−1)

d ]T . Let λ̂Gi
= min( j,i)∈Gi

λ̂ ji, λ̂G = mini∈Gi
λ̂Gi

and λ̂0i = max j λ̂ ji, λ̂0 = maxi λ̂0i.

If 2‖ǭi‖∞ < λ̂Gi
, then the following inequality holds at any stage ℓ≥ 1:

m

∑
i=1

∑
( j,i)∈Gi

|ŵ(ℓ)
ji | ≤

2‖ϒ̄‖∞,∞ + λ̂0

λ̂G −2‖ϒ̄‖∞,∞

m

∑
i=1

∑
( j,i)∈G c

i

|∆ŵ
(ℓ)
ji |.

Denote G = ∪i∈Nm
Gi, F̄ = ∪i∈Nm

F̄i and notice that F̄ ∩G = /0 ⇒ ∆Ŵ
(ℓ)
G = Ŵ

(ℓ)
G . Lemma 14

says that ‖∆Ŵ
(ℓ)
G ‖1,1 = ‖Ŵ

(ℓ)
G ‖1,1 is upper bounded in terms of ‖∆Ŵ

(ℓ)
G c ‖1,1, which indicates that the

error of the estimated coefficients locating outside of F̄ should be small enough. This provides an

intuitive explanation why the parameter estimation error of our algorithm can be small.

Lemma 15 Using the notations of Lemma 14, we denote G = G(ℓ) = H̄ c ∩{( j, i) : λ̂
(ℓ−1)
ji = λ} =

∪i∈Nm
Gi with H̄ being defined as in Lemma 13 and Gi ⊆ Nd ×{i}. Let Ji be the indices of the

largest s coefficients (in absolute value) of ŵGi
, Ii = G c

i ∪ Ji, I = ∪i∈Nm
Ii and F̄ = ∪i∈Nm

F̄i. Then,

the following inequalities hold at any stage ℓ≥ 1:

‖∆Ŵ (ℓ)‖2,1 ≤

(

1+1.5
√

2r̄
s

)

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

, (29)

‖∆Ŵ (ℓ)‖2,1 ≤
9.1mλ

√
r̄

ρ−
min(2r̄+ s)

. (30)

Lemma 15 is established based on Lemma 14, by considering the relationship between Equa-

tion (22) and Equation (27), and the specific definition of G = G(ℓ). Equation (29) provides a

parameter estimation error bound in terms of ℓ2,1-norm by ‖ϒ̄G c
(ℓ)
‖2

F and the regularization param-

eters λ̂
(ℓ−1)
ji (see the definition of λ̂ ji (λ̂

(ℓ−1)
ji ) in Lemma 14). This is the result directly used in the

proof of Theorem 8. Equation (30) states that the error bound is upper bounded in terms of λ, the

right-hand side of which constitutes the shrinkage part of the error bound in Equation (24).

Lemma 16 Let λ̂ ji = λI
(

‖ŵ j‖1 < θ, j ∈ Nd

)

,∀i ∈ Nm with some Ŵ ∈ R
d×m. H̄ ⊇ F̄ is defined in

Lemma 13. Then under the condition of Equation (20), we have:

∑
( j,i)∈F̄

λ̂2
ji ≤ ∑

( j,i)∈H̄

λ̂2
ji ≤ mλ2‖W̄H̄ −ŴH̄ ‖2

2,1/θ2.
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Lemma 16 establishes an upper bound of ∑( j,i)∈F̄ λ̂2
ji by ‖W̄H̄ −ŴH̄ ‖2

2,1, which is critical for

building the recursive relationship between ‖Ŵ (ℓ)−W̄‖2,1 and ‖Ŵ (ℓ−1)−W̄‖2,1 in the proof of The-

orem 8. This recursive relation is crucial for the shrinkage part of the error bound in Equation (24).

5.1 Proof of Theorem 8

We now complete the proof of Theorem 8 based on the lemmas above.

Proof For notational simplicity, we denote the right-hand side of Equation (28) as:

u = mσ2ρ+
max(r̄)(7.4r̄+2.7ln(2/η))/n. (31)

Based on H̄ ⊆ G c
(ℓ), Lemma 13 and Equation (22), the followings hold with probability larger than

1−η:

‖ϒ̄G c
(ℓ)
‖2

F = ‖ϒ̄H̄ ‖2
F +‖ϒ̄G c

(ℓ)\H̄ ‖2
F

≤ u+ |G c
(ℓ) \ H̄ |‖ϒ̄‖2

∞,∞

≤ u+λ2|G c
(ℓ) \ H̄ |/144

≤ u+(1/144)mλ2θ−2‖Ŵ
(ℓ−1)

G c
(ℓ)\H̄

−W̄G c
(ℓ)\H̄ ‖2

2,1, (32)

where the last inequality follows from

∀( j, i) ∈ G c
(ℓ) \ H̄ ,‖(ŵ(ℓ−1)) j‖2

1/θ2 = ‖(ŵ(ℓ−1)) j − w̄ j‖2
1/θ2 ≥ 1

⇒ |G c
(ℓ) \ H̄ | ≤ mθ−2‖Ŵ

(ℓ−1)

G c
(ℓ)\H̄

−W̄G c
(ℓ)\H̄ ‖2

2,1.

According to Equation (29), we have:

‖Ŵ (ℓ)−W̄‖2
2,1 = ‖∆Ŵ (ℓ)‖2

2,1

≤
8m
(

1+1.5
√

2r̄
s

)2(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

(ρ−
min(2r̄+ s))2

≤
78m

(

4u+(37/36)mλ2θ−2
∥

∥Ŵ (ℓ−1)−W̄
∥

∥

2

2,1

)

(ρ−
min(2r̄+ s))2

≤ 312mu

(ρ−
min(2r̄+ s))2

+0.8
∥

∥

∥
Ŵ (ℓ−1)−W̄

∥

∥

∥

2

2,1

≤ ·· · ≤ 0.8ℓ
∥

∥

∥Ŵ
(0)−W̄

∥

∥

∥

2

2,1
+

312mu

(ρ−
min(2r̄+ s))2

1−0.8ℓ

1−0.8

≤ 0.8ℓ
9.12m2λ2r̄

(ρ−
min(2r̄+ s))2

+
1560mu

(ρ−
min(2r̄+ s))2

.

In the above derivation, the first inequality is due to Equation (29); the second inequality is due

to the assumption s ≥ r̄ in Theorem 8, Equation (32) and Lemma 16; the third inequality is due
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to Equation (23); the last inequality follows from Equation (30) and 1− 0.8ℓ ≤ 1 (ℓ ≥ 1). Thus,

following the inequality
√

a+b ≤√
a+

√
b (∀a,b ≥ 0), we obtain:

‖Ŵ (ℓ)−W̄‖2,1 ≤ 0.8ℓ/2 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

+
39.5

√
mu

ρ−
min(2r̄+ s)

.

Substituting Equation (31) into the above inequality, we verify Theorem 8.

Remark 17 The assumption s ≥ r̄ used in the above proof indicates that at each stage, the zero

entries of Ŵ (ℓ) should be greater than mr̄ (see definition of s in Lemma 15). This requires the

solution obtained by Algorithm 1 at each stage is sparse, which is consistent with the sparsity of W̄

in Assumption 1.

6. Experiments

In this section, we present empirical studies on both synthetic and real-world data sets. In the

synthetic data experiments, we present the performance of the MSMTFL algorithm in terms of the

parameter estimation error. In the real-world data experiments, we show the performance of the

MSMTFL algorithm in terms of the prediction error.

6.1 Competing Algorithms

We present the empirical studies by comparing the following six algorithms:

• Lasso: ℓ1-norm regularized feature learning algorithm with λ‖W‖1,1 as the regularizer

• L1,2: ℓ1,2-norm regularized multi-task feature learning algorithm with

λ‖W‖1,2 as the regularizer (Obozinski et al., 2006)

• DirtyMTL: dirty model multi-task feature learning algorithm with

λs‖P‖1,1 +λb‖Q‖1,∞ (W = P+Q) as the regularizer (Jalali et al., 2010)

• CapL1,L1: our proposed multi-task feature learning algorithm with

λ∑d
j=1 min(‖w j‖1,θ) as the regularizer

• CapL1: capped-ℓ1 regularized feature learning algorithm with

λ∑d
j=1 ∑m

i=1 min(|w ji|,θ) as the regularizer

• CapL1,L2: capped-ℓ1, ℓ2 regularized multi-task feature learning algorithm with

λ∑d
j=1 min(‖w j‖,θ) as the regularizer

In the experiments, we employ the quadratic loss function in Equation (2) for all the compared

algorithms. We use MSMTFL-type algorithms (similar to Algorithm 1) to sovle capped-ℓ1 and

capped-ℓ1, ℓ2 regularized feature learning problems (details are provided in Appendix C).
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6.2 Synthetic Data Experiments

We generate synthetic data by setting the number of tasks as m and each task has n samples which

are of dimensionality d; each element of the data matrix Xi ∈ R
n×d (i ∈ Nm) for the i-th task is

sampled i.i.d. from the Gaussian distribution N(0,1) and we then normalize all columns to length

1; each entry of the underlying true weight W̄ ∈R
d×m is sampled i.i.d. from the uniform distribution

in the interval [−10,10]; we randomly set 90% rows of W̄ as zero vectors and 80% elements of the

remaining nonzero entries as zeros; each entry of the noise δi ∈ R
n is sampled i.i.d. from the

Gaussian distribution N(0,σ2); the responses are computed as yi = Xiw̄i +δi (i ∈ Nm).

We first report the averaged parameter estimation error ‖Ŵ − W̄‖2,1 vs. Stage (ℓ) plots for

MSMTFL (Figure 1). We observe that the error decreases as ℓ increases, which shows the advantage

of our proposed algorithm over Lasso. This is consistent with the theoretical result in Theorem 8.

Moreover, the parameter estimation error decreases quickly and converges in a few stages.

We then report the averaged parameter estimation error ‖Ŵ − W̄‖2,1 in comparison with six

algorithms in different parameter settings (Figure 2 and Figure 3). For a fair comparison, we com-

pare the smallest estimation errors of the six algorithms in all the parameter settings as done in

(Zhang, 2009, 2010). We observe that the parameter estimation errors of the capped-ℓ1, ℓ1, capped-

ℓ1 and capped-ℓ1, ℓ2 regularized feature learning formulations solved by MSMTFL-type algorithms

are the smallest among all algorithms. In most cases, CapL1,L1 achieves a slightly smaller error

than CapL1 and CapL1,L2. This empirical result demonstrates the effectiveness of the MSMTFL

algorithm. We also have the following observations: (a) When λ is large enough, all six algorithms

tend to have the same parameter estimation error. This is reasonable, because the solutions Ŵ ’s

obtained by the six algorithms are all zero matrices, when λ is very large. (b) The performance of

the MSMTFL algorithm is similar for different θ’s, when λ exceeds a certain value.

6.3 Real-World Data Experiments

We conduct experiments on two real-world data sets: MRI and Isolet data sets.

The MRI data set is collected from the ANDI database, which contains 675 patients’ MRI data

preprocessed using FreeSurfer.2. The MRI data include 306 features and the response (target) is the

Mini Mental State Examination (MMSE) score coming from 6 different time points: M06, M12,

M18, M24, M36, and M48. We remove the samples which fail the MRI quality controls and have

missing entries. Thus, we have 6 tasks with each task corresponding to a time point and the sample

sizes corresponding to 6 tasks are 648, 642, 293, 569, 389 and 87, respectively.

The Isolet data set3 is collected from 150 speakers who speak the name of each English letter

of the alphabet twice. Thus, there are 52 samples from each speaker. The speakers are grouped

into 5 subsets which respectively include 30 similar speakers, and the subsets are named Isolet1,

Isolet2, Isolet3, Isolet4, and Isolet5. Thus, we naturally have 5 tasks with each task corresponding

to one subset. The 5 tasks respectively have 1560, 1560, 1560, 1558, and 1559 samples,4 where

each sample includes 617 features and the response is the English letter label (1-26).

In the experiments, we treat the MMSE and letter labels as the regression values for the MRI data

set and the Isolet data set, respectively. For both data sets, we randomly extract the training samples

from each task with different training ratios (15%,20% and 25%) and use the rest of samples to

2. FreeSurfer can be found at www.loni.ucla.edu/ADNI/.

3. The data set can be found at www.zjucadcg.cn/dengcai/Data/data.html.

4. Three samples are historically missing.
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Figure 1: Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. Stage (ℓ) plots for MSMTFL on the

synthetic data set (averaged over 10 runs). Here we set λ = α
√

ln(dm)/n, θ = 50mλ.

Note that ℓ= 1 corresponds to Lasso; the results show the stage-wise improvement over

Lasso.

form the test set. We evaluate the six algorithms in terms of the normalized mean squared error

(nMSE) and the averaged means squared error (aMSE), which are commonly used in multi-task

learning problems (Zhang and Yeung, 2010; Zhou et al., 2011; Gong et al., 2012). For each training
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Figure 2: Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. λ plots on the synthetic data set

(averaged over 10 runs). DirtyMTL, CapL1,L1, CapL1, CapL1,L2 have two parameters;

we set λs/λb = 1,0.5,0.2,0.1 for DirtyMTL (1/m≤ λs/λb ≤ 1 was adopted in Jalali et al.

(2010)), θ/λ = 50m,10m,2m,0.4m for CapL1,L1, θ/λ = 50,10,2,0.4 for CapL1 and

θ/λ = 50m0.5,10m0.5,2m0.5,0.4m0.5 for CapL1,L2 (The settings of θ/λ for CapL1,L1,

CapL1 and CapL1,L2 are based on the relationships of ‖w j‖1, |w ji| and ‖w j‖, where

w j ∈ R
1×m and w ji are the j-th row and the ( j, i)-th entry of W , respectively).

ratio, both nMSE and aMSE are averaged over 10 random splittings of training and test sets and the

standard deviation is also shown. All parameters of the six algorithms are tuned via 3-fold cross

validation.
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Figure 3: (continued) Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. λ plots on the synthetic

data set (averaged over 10 runs). DirtyMTL, CapL1,L1, CapL1, CapL1,L2 have two

parameters; we set λs/λb = 1,0.5,0.2,0.1 for DirtyMTL (1/m ≤ λs/λb ≤ 1 was adopted

in Jalali et al. (2010)), θ/λ = 50m,10m,2m,0.4m for CapL1,L1, θ/λ = 50,10,2,0.4 for

CapL1 and θ/λ = 50m0.5,10m0.5,2m0.5,0.4m0.5 for CapL1,L2 (The settings of θ/λ for

CapL1,L1, CapL1 and CapL1,L2 are based on the relationships of ‖w j‖1, |w ji| and ‖w j‖,

where w j ∈ R
1×m and w ji are the j-th row and the ( j, i)-th entry of W , respectively).

Table 1 and Table 2 show the experimental results in terms of the averaged nMSE (aMSE) and

the standard deviation. From these results, we observe that CapL1,L1 and CapL1,L2 outperform

all the other competing feature learning algorithms on both data sets in terms of the regression

errors (nMSE and aMSE). On the MRI data set, CapL1,L1 achieves slightly better performance than

CapL1,L2 and on the Isolet data set, CapL1,L2 achieves slightly better performance than CapL1,L1.

These empirical results demonstrate the effectiveness of the proposed MSMTFL (-type) algorithms.

7. Conclusions

In this paper, we propose a non-convex formulation for multi-task feature learning, which learns

the specific features of each task as well as the common features shared among tasks. The non-

convex formulation adopts the capped-ℓ1,ℓ1 regularizer to better approximate the ℓ0-type one than

the commonly used convex regularizer. To solve the non-convex optimization problem, we propose

a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm and provide intuitive interpreta-

tions from several aspects. We also present a detailed convergence analysis and discuss the repro-

ducibility issue for the proposed algorithm. Specifically, we show that, under a mild condition, the

solution generated by MSMTFL is unique. Although the solution may not be globally optimal, we

theoretically show that it has good performance in terms of the parameter estimation error bound.

Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our
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measure traning ratio Lasso L1,2 DirtyMTL

nMSE

0.15 0.6577(0.0193) 0.6443(0.0326) 0.6150(0.0160)

0.20 0.6294(0.0255) 0.6541(0.0182) 0.6110(0.0122)

0.25 0.6007(0.0120) 0.6407(0.0310) 0.5997(0.0218)

aMSE

0.15 0.0190(0.0008) 0.0184(0.0006) 0.0173(0.0006)

0.20 0.0178(0.0009) 0.0184(0.0005) 0.0170(0.0007)

0.25 0.0173(0.0007) 0.0183(0.0004) 0.0169(0.0007)

measure traning ratio CapL1,L1 CapL1 CapL1,L2

nMSE

0.15 0.5551(0.0082) 0.6448(0.0238) 0.5591(0.0082)

0.20 0.5539(0.0094) 0.6245(0.0396) 0.5612(0.0086)

0.25 0.5513(0.0097) 0.5899(0.0203) 0.5595(0.0063)

aMSE

0.15 0.0163(0.0007) 0.0187(0.0009) 0.0165(0.0007)

0.20 0.0161(0.0006) 0.0177(0.0010) 0.0163(0.0006)

0.25 0.0162(0.0007) 0.0171(0.0009) 0.0164(0.0007)

Table 1: Comparison of six feature learning algorithms on the MRI data set in terms of the averaged

nMSE and aMSE (standard deviation), which are averaged over 10 random splittings. The

two best results are in bold.

measure traning ratio Lasso L1,2 DirtyMTL

nMSE

0.15 0.6798(0.0120) 0.6788(0.0149) 0.6427(0.0172)

0.2 0.6465(0.0105) 0.6778(0.0104) 0.6371(0.0111)

0.25 0.6279(0.0099) 0.6666(0.0110) 0.6304(0.0093)

aMSE

0.15 0.1605(0.0028) 0.1602(0.0033) 0.1517(0.0039)

0.2 0.1522(0.0022) 0.1596(0.0021) 0.1500(0.0023)

0.25 0.1477(0.0024) 0.1568(0.0025) 0.1482(0.0019)

measure traning ratio CapL1,L1 CapL1 CapL1,L2

nMSE

0.15 0.6421(0.0153) 0.6541(0.0122) 0.5819(0.0125)

0.2 0.5847(0.0081) 0.5962(0.0051) 0.5589(0.0056)

0.25 0.5496(0.0106) 0.5569(0.0158) 0.5422(0.0063)

aMSE

0.15 0.1516(0.0035) 0.1544(0.0028) 0.1373(0.0030)

0.2 0.1376(0.0020) 0.1404(0.0012) 0.1316(0.0014)

0.25 0.1293(0.0028) 0.1310(0.0042) 0.1275(0.0013)

Table 2: Comparison of six feature learning algorithms on the Isolet data set in terms of the aver-

aged nMSE and aMSE (standard deviation), which are averaged over 10 random splittings.

The two best results are in bold.

proposed MSMTFL algorithm in comparison with the state of the art multi-task feature learning

algorithms.
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There are several interesting issues that need to be addressed in the future. First, we will ex-

plore the conditions under which a globally optimal solution of the proposed formulation can be

obtained by the MSMTFL algorithm. Second, we plan to explore general theoretical bounds for

multi-task learning settings (involving different loss functions and non-convex regularization terms)

using multi-stage algorithms. Third, we will adapt the GIST algorithm (Gong et al., 2013a,b) to

solve the non-convex multi-task feature learning problem and derive theoretical bounds.

Acknowledgments

We would like to thank the action editor and anonymous reviewers for their constructive comments.

This work is partly supported by 973 Program (2013CB329503), NSFC (Grant No. 91120301,

61075004 and 61021063), NIH (R01 LM010730) and NSF (IIS-0953662, CCF-1025177).

Appendix A. Proofs of Lemmas 13 to 16

In this appendix, we provide detailed proofs for Lemmas 13 to 16. In our proofs, we use several

lemmas (summarized in Appendix B) from Zhang (2010).

We first introduce some notations used in the proof. Define

πi(ki,si) = sup
v∈Rki ,u∈Rsi ,Ii,Ji

vT A
(i)
Ii,Ji

u‖v‖
vT A

(i)
Ii,Ii

v‖u‖∞

,

where si + ki ≤ d with si,ki ≥ 1; Ii and Ji are disjoint subsets of Nd with ki and si elements respec-

tively (with some abuse of notation, we also let Ii be a subset of Nd ×{i}, depending on the context.);

A
(i)
Ii,Ji

is a sub-matrix of Ai = n−1XT
i Xi ∈ R

d×d with rows indexed by Ii and columns indexed by Ji.

We let wIi
be a d×1 vector with the j-th entry being w ji, if ( j, i) ∈ Ii, and 0, otherwise. We also

let WI be a d ×m matrix with ( j, i)-th entry being w ji, if ( j, i) ∈ I , and 0, otherwise.

Proof of Lemma 13 For the j-th entry of ǭi ( j ∈ Nd):

|ε̄ ji|=
1

n

∣

∣

∣

∣

(

x
(i)
j

)T

(Xiw̄i −yi)

∣

∣

∣

∣

=
1

n

∣

∣

∣

∣

(

x
(i)
j

)T

δi

∣

∣

∣

∣

,

where x
(i)
j is the j-th column of Xi. We know that the entries of δi are independent sub-Gaussian

random variables, and ‖1/nx
(i)
j ‖2 = ‖x

(i)
j ‖2/n2 ≤ ρ+

i (1)/n. According to Lemma 18, we have ∀t >
0:

Pr(|ε̄ ji| ≥ t)≤ 2exp(−nt2/(2σ2ρ+
i (1)))≤ 2exp(−nt2/(2σ2ρ+

max(1))).

Thus we obtain:

Pr(‖ϒ̄‖∞,∞ ≤ t)≥ 1−2dmexp(−nt2/(2σ2ρ+
max(1))).

Let η = 2dmexp(−nt2/(2σ2ρ+
max(1))) and we can obtain Equation (27). Equation (28) directly

follows from Lemma 21 and the following fact:

‖xi‖2 ≤ ayi ⇒‖X‖2
F =

m

∑
i=1

‖xi‖2 ≤ mamax
i∈Nm

yi.
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Proof of Lemma 14 The optimality condition of Equation (5) implies that

2

n
XT

i (Xiŵi −yi)+ λ̂i ⊙ sign(ŵi) = 0,

where ⊙ denotes the element-wise product; sign(w) = [sign(w1), · · · ,sign(wd)]
T , where sign(wi) =

1, if wi > 0; sign(wi) = −1, if wi < 0; and sign(wi) ∈ [−1,1], otherwise. We note that Xiŵi −yi =
Xiŵi −Xiw̄i +Xiw̄i −yi and we can rewrite the above equation into the following form:

2Ai∆ŵi =−2ǭi − λ̂i ⊙ sign(ŵi).

Thus, for all v ∈ R
d , we have

2vT Ai∆ŵi =−2vT
ǭi −

d

∑
j=1

λ̂ jiv jsign(ŵ ji). (33)

Letting v = ∆ŵi and noticing that ∆ŵ ji = ŵ ji for ( j, i) /∈ F̄i, i ∈ Nm, we obtain

0 ≤ 2∆ŵT
i Ai∆ŵi =−2∆ŵT

i ǭi −
d

∑
j=1

λ̂ ji∆ŵ jisign(ŵ ji)

≤ 2‖∆ŵi‖1‖ǭi‖∞ − ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)− ∑
( j,i)/∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)/∈F̄i

λ̂ ji|ŵ ji|

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈Gi

λ̂ ji|ŵ ji|

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂0i|∆ŵ ji|− ∑
( j,i)∈Gi

λ̂Gi
|ŵ ji|

= ∑
( j,i)∈Gi

(2‖ǭi‖∞ − λ̂Gi
)|ŵ ji|+ ∑

( j,i)/∈F̄i∪Gi

2‖ǭi‖∞|ŵ ji|+ ∑
( j,i)∈F̄i

(2‖ǭi‖∞ + λ̂0i)|∆ŵ ji|.

The last equality above is due to Nd ×{i} = Gi ∪ (F̄i ∪Gi)
c ∪ F̄i and ∆ŵ ji = ŵ ji,∀( j, i) /∈ F̄i ⊇ Gi.

Rearranging the above inequality and noticing that 2‖ǭi‖∞ < λ̂Gi
≤ λ̂0i, we obtain:

∑
( j,i)∈Gi

|ŵ ji| ≤
2‖ǭi‖∞

λ̂Gi
−2‖ǭi‖∞

∑
( j,i)/∈F̄i∪Gi

|ŵ ji|+
2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

∑
( j,i)∈F̄i

|∆ŵ ji|

≤ 2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖1. (34)

Then Lemma 14 can be obtained from the above inequality and the following two inequalities.

max
i∈Nm

2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

≤ 2‖ϒ̄‖∞,∞ + λ̂0

λ̂G −2‖ϒ̄‖∞,∞

and
m

∑
i=1

xiyi ≤ ‖x‖∞‖y‖1.
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Proof of Lemma 15 According to the definition of G (G(ℓ)), we know that F̄i ∩Gi = /0 (i ∈ Nm)

and ∀( j, i) ∈ G (G(ℓ)), λ̂
(ℓ−1)
ji = λ. Thus, all conditions of Lemma 14 are satisfied, by noticing the

relationship between Equation (22) and Equation (27). Based on the definition of G (G(ℓ)), we

easily obtain ∀ j ∈ Nd :

( j, i) ∈ Gi,∀i ∈ Nm or ( j, i) /∈ Gi,∀i ∈ Nm.

and hence kℓ = |G c
1 |= · · ·= |G c

m| (kℓ is some integer). Now, we assume that at stage ℓ≥ 1:

kℓ = |G c
1 |= · · ·= |G c

m| ≤ 2r̄. (35)

We will show in the second part of this proof that Equation (35) holds for all ℓ. Based on Lemma 19

and Equation (21), we have:

πi (2r̄+ s,s)≤ s1/2

2

√

ρ+
i (s)/ρ−

i (2r̄+2s)−1

≤ s1/2

2

√

1+ s/(2r̄)−1

= 0.5s(2r̄)−1/2,

which indicates that

0.5 ≤ ti = 1−πi(2r̄+ s,s)(2r̄)1/2s−1 ≤ 1.

For all ti ∈ [0.5,1], under the conditions of Equation (22) and Equation (27), we have

2‖ǭi‖∞ +λ

λ−2‖ǭi‖∞
≤ 2‖ϒ̄‖∞,∞ +λ

λ−2‖ϒ̄‖∞,∞
≤ 7

5
≤ 4− ti

4−3ti
≤ 3.

Following Lemma 14, we have

‖ŴG‖1,1 ≤ 3‖∆ŴG c‖1,1 = 3‖∆Ŵ −∆ŴG‖1,1 = 3‖∆Ŵ −ŴG‖1,1.

Therefore

‖∆Ŵ −∆ŴI‖∞,1 = ‖∆ŴG −∆ŴJ ‖∞,1

≤ ‖∆ŴJ ‖1,1/s = (‖∆ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1)/s

≤ s−1(3‖∆Ŵ −ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1),

which implies that

‖∆Ŵ‖2,1 −‖∆ŴI‖2,1 ≤ ‖∆Ŵ −∆ŴI‖2,1

≤ (‖∆Ŵ −∆ŴI‖1,1‖∆Ŵ −∆ŴI‖∞,1)
1/2

≤
(

‖∆Ŵ −∆ŴI‖1,1

)1/2 (
s−1(3‖∆Ŵ −ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1)

)1/2

≤
(

(

3‖∆Ŵ −ŴG‖1,1/2
)2
)1/2

s−1/2

≤ (3/2)s−1/2(2r̄)1/2‖∆Ŵ −ŴG‖2,1

≤ (3/2)(2r̄/s)1/2‖∆ŴI‖2,1.
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In the above derivation, the third inequality is due to a(3b−a)≤ (3b/2)2, and the fourth inequality

follows from Equation (35) and F̄ ∩G = /0 ⇒ ∆ŴG = ŴG . Rearranging the above inequality, we

obtain at stage ℓ:

‖∆Ŵ‖2,1 ≤
(

1+1.5

√

2r̄

s

)

‖∆ŴI‖2,1. (36)

From Lemma 20, we have:

max(0,∆ŵT
Ii

Ai∆ŵi)

≥ ρ−
i (kℓ+ s)(‖∆ŵIi

‖−πi(kℓ+ s,s)‖ŵGi
‖1/s)‖∆ŵIi

‖
≥ ρ−

i (kℓ+ s)[1− (1− ti)(4− ti)/(4−3ti)]‖∆ŵIi
‖2

≥ 0.5tiρ
−
i (kℓ+ s)‖∆ŵIi

‖2

≥ 0.25ρ−
i (2r̄+ s)‖∆ŵIi

‖2

≥ 0.25ρ−
min(2r̄+ s)‖∆ŵIi

‖2,

where the second inequality is due to Equation (34), that is

‖ŵGi
‖1 ≤

2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖1

≤ (2‖ǭi‖∞ + λ̂0i)
√

kℓ

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖

≤ (2‖ǭi‖∞ + λ̂0i)
√

kℓ

λ̂Gi
−2‖ǭi‖∞

‖∆ŵIi
‖

≤ (4− ti)
√

kℓ

4−3ti
‖∆ŵIi

‖;

the third inequality follows from 1− (1− ti)(4− ti)/(4−3ti) ≥ 0.5ti for ti ∈ [0.5,1] and the fourth

inequality follows from the assumption in Equation (35) and ti ≥ 0.5.

If ∆ŵT
Ii

Ai∆ŵi ≤ 0, then ‖∆ŵIi
‖= 0. If ∆ŵT

Ii
Ai∆ŵi > 0, then we have

∆ŵT
Ii

Ai∆ŵi ≥ 0.25ρ−
min(2r̄+ s)‖∆ŵIi

‖2. (37)
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By letting v = ∆ŵIi
, we obtain the following from Equation (33):

2∆ŵT
Ii

Ai∆ŵi =−2∆ŵT
Ii
ǭi − ∑

( j,i)∈Ii

λ̂ ji∆ŵ jisign(ŵ ji)

=−2∆ŵT
Ii
ǭG c

i
−2∆ŵT

Ii
ǭGi

− ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈F̄ c

i ∩G c
i

λ̂ ji|∆ŵ ji|

=−2∆ŵT
Ii
ǭG c

i
−2∆ŵT

Ji
ǭJi

− ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈F̄ c

i ∩G c
i

λ̂ ji|∆ŵ ji|

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+2‖ǭJi

‖∞ ∑
( j,i)∈Ji

|∆ŵ ji|+ ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2

‖∆ŵF̄i
‖

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2

‖∆ŵIi
‖. (38)

In the above derivation, the second equality is due to Ii = Ji ∪ F̄i ∪ (F̄ c
i ∩G c

i ); the third equality is

due to Ii ∩Gi = Ji; the second inequality follows from ∀( j, i) ∈ Ji, λ̂ ji = λ ≥ 2‖ǭi‖∞ ≥ 2‖ǭJi
‖∞ and

the last inequality follows from F̄i ⊆ G c
i ⊆ Ii. Combining Equation (37) and Equation (38), we have

‖∆ŵIi
‖ ≤ 2

ρ−
min(2r̄+ s)






2‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2





.

Notice that

‖xi‖ ≤ a(‖yi‖+‖zi‖)⇒‖X‖2
2,1 ≤ m‖X‖2

F = m∑
i

‖xi‖2 ≤ 2ma2(‖Y‖2
F +‖Z‖2

F).

Thus, we have

‖∆ŴI‖2,1 ≤

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

. (39)
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Therefore, at stage ℓ, Equation (29) in Lemma 15 directly follows from Equation (36) and Equa-

tion (39). Following Equation (29), we have:

‖Ŵ (ℓ)−W̄‖2,1 = ‖∆Ŵ (ℓ)‖2,1

≤

(

1+1.5
√

2r̄
s

)

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

≤
8.83

√
m
√

4‖ϒ‖2
∞,∞|G c

(ℓ)|+ r̄mλ2

ρ−
min(2r̄+ s)

≤
8.83

√
mλ
√

8
144

r̄m+ r̄m

ρ−
min(2r̄+ s)

≤ 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

,

where the first inequality is due to Equation (39); the second inequality is due to s ≥ r̄ (assump-

tion in Theorem 8), λ̂ ji ≤ λ, r̄m = |H̄ | ≥ |F̄ | and the third inequality follows from Equation (35)

and ‖ϒ̄‖2
∞,∞ ≤ (1/144)λ2. Therefore, Equation (30) in Lemma 15 holds at stage ℓ.

Notice that we obtain Lemma 15 at stage ℓ, by assuming that Equation (35) is satisfied. To prove

that Lemma 15 holds for all stages, we next need to prove by induction that Equation (35) holds at

all stages.

When ℓ= 1, we have G c
(1) = H̄ , which implies that Equation (35) holds. Now, we assume that

Equation (35) holds at stage ℓ. Thus, by hypothesis induction, we have:

√

|G c
(ℓ+1) \ H̄ | ≤

√

mθ−2‖Ŵ
(ℓ)

G c
(ℓ+1)\H̄

−W̄G c
(ℓ+1)\H̄ ‖2

2,1

≤
√

mθ−1
∥

∥

∥Ŵ
(ℓ)−W̄

∥

∥

∥

2,1

≤ 9.1m3/2λ
√

r̄θ−1

ρ−
min(2r̄+ s)

≤
√

r̄m,

where θ is the thresholding parameter in Equation (1); the first inequality above follows from the

definition of G(ℓ) in Lemma 15:

∀( j, i) ∈ G c
(ℓ+1) \ H̄ ,‖(ŵ(ℓ)) j‖2

1/θ2 = ‖(ŵ(ℓ)) j − w̄ j‖2
1/θ2 ≥ 1

⇒|G c
(ℓ+1) \ H̄ | ≤ mθ−2‖Ŵ

(ℓ)

G c
(ℓ+1)\H̄

−W̄G c
(ℓ+1)\H̄ ‖2

2,1;

the last inequality is due to Equation (23). Thus, we have:

|G c
(ℓ+1) \ H̄ | ≤ r̄m ⇒ |G c

(ℓ+1)| ≤ 2r̄m ⇒ kℓ+1 ≤ 2r̄.

Therefore, Equation (35) holds at all stages. Thus the two inequalities in Lemma 15 hold at all

stages. This completes the proof of the lemma.

3005



GONG, YE AND ZHANG

Proof of Lemma 16 The first inequality directly follows from H̄ ⊇ F̄ . Next, we focus on the

second inequality. For each ( j, i) ∈ F̄ (H̄ ), if ‖ŵ j‖1 < θ, by considering Equation (20), we have

‖w̄ j − ŵ j‖1 ≥ ‖w̄ j‖1 −‖ŵ j‖1 ≥ 2θ−θ = θ.

Therefore, we have for each ( j, i) ∈ F̄ (H̄ ):

I
(

‖ŵ j‖1 < θ
)

≤ ‖w̄ j − ŵ j‖1/θ.

Thus, the second inequality of Lemma 16 directly follows from the above inequality.

Appendix B. Lemmas from Zhang (2010)

Lemma 18 Let a ∈ R
n be a fixed vector and x ∈ R

n be a random vector which is composed of

independent sub-Gaussian components with parameter σ. Then we have:

Pr(|aT x| ≥ t)≤ 2exp
(

−t2/(2σ2‖a‖2)
)

,∀t > 0.

Lemma 19 The following inequality holds:

πi(ki,si)≤
s

1/2
i

2

√

ρ+
i (si)/ρ−

i (ki + si)−1.

Lemma 20 Let Gi ⊆Nd ×{i} such that |G c
i |= ki, and let Ji be indices of the si largest components

(in absolute values) of wGi
and Ii = G c

i ∪ Ji. Then for any wi ∈ R
d , we have

max(0,wT
Ii

Aiwi)≥ ρ−
i (ki + si)(‖wIi

‖−πi(ki + si,si)‖wGi
‖1/si)‖wIi

‖.

Lemma 21 Let ǭi = [ε̄1i, · · · , ε̄di] =
1
n
XT

i (Xiw̄i −yi) (i ∈Nm), and H̄i ⊆Nd ×{i}. Under the condi-

tions of Assumption 1, the followings hold with probability larger than 1−η:

‖ǭH̄i
‖2 ≤ σ2ρ+

i (|H̄i|)(7.4|H̄i|+2.7ln(2/η))/n.

Appendix C. MSMTFL-type Algorithms

We present the multi-stage (-type) algorithms for the formulations in Equation (3) and Equation (4)

below.
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denotes the {0,1}-valued indicator function.

5 end

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

J. Bi, T. Xiong, S. Yu, M. Dundar, and R. Rao. An improved multi-task learning approach with

applications in medical diagnosis. Machine Learning and Knowledge Discovery in Databases,

pages 117–132, 2008.

E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information

Theory, 51(12):4203–4215, 2005.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and low-rank patterns from multiple tasks. In

SIGKDD, pages 1179–1188, 2010.

D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations

in the presence of noise. IEEE Transactions on Information Theory, 52(1):6–18, 2006.

T. Evgeniou and M. Pontil. Regularized multi–task learning. In SIGKDD, pages 109–117, 2004.

3007



GONG, YE AND ZHANG

J. Fan, L. Xue, and H. Zou. Strong oracle optimality of folded concave penalized estimation. ArXiv

Preprint ArXiv:1210.5992, 2012.

P. Gong, J. Ye, and C. Zhang. Robust multi-task feature learning. In SIGKDD, pages 895–903,

2012.

P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding

algorithm for non-convex regularized optimization problems. In ICML, 2013a.

P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. GIST: General Iterative Shrinkage and Thresholding

for Non-convex Sparse Learning. Tsinghua University, 2013b. URL http://www.public.asu.

edu/˜jye02/Software/GIST.

L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss-seidel method under

convex constraints. Operations Research Letters, 26(3):127–136, 2000.

J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38(4):1978–2004,

2010.

A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In NIPS,

pages 964–972, 2010.

S. Kim and E.P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In

ICML, pages 543–550, 2009.

M. Kolar, J. Lafferty, and L. Wasserman. Union support recovery in multi-task learning. Journal of

Machine Learning Research, 12:2415–2435, 2011.

J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient ℓ2,1-norm minimization. In UAI,

pages 339–348, 2009.

K. Lounici, M. Pontil, A.B. Tsybakov, and S. Van De Geer. Taking advantage of sparsity in multi-

task learning. In COLT, pages 73–82, 2009.

S. Negahban and M.J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits

and perils of ℓ1,∞-regularization. In NIPS, pages 1161–1168, 2008.

S. Negahban and M.J. Wainwright. Estimation of (near) low-rank matrices with noise and high-

dimensional scaling. The Annals of Statistics, 39(2):1069–1097, 2011.

G. Obozinski, B. Taskar, and M.I. Jordan. Multi-task feature selection. Technical report, Statistics

Department, UC Berkeley, 2006.

G. Obozinski, M.J. Wainwright, and M.I. Jordan. Support union recovery in high-dimensional

multivariate regression. Annals of Statistics, 39(1):1–47, 2011.

S. Parameswaran and K. Weinberger. Large margin multi-task metric learning. In NIPS, pages

1867–1875, 2010.

N. Quadrianto, A. Smola, T. Caetano, SVN Vishwanathan, and J. Petterson. Multitask learning

without label correspondences. In NIPS, pages 1957–1965, 2010.

3008



MULTI-STAGE MULTI-TASK FEATURE LEARNING

R.T. Rockafellar. Convex Analysis. Princeton University Press (Princeton, NJ), 1970.

A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels via hierarchical bayes. In

NIPS, pages 1209–1216, 2005.

X. Shen, W. Pan, and Y. Zhu. Likelihood-based selection and sharp parameter estimation. Journal

of the American Statistical Association, 107(497):223–232, 2012.

R. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456–1490,

2013.

J.F. Toland. A duality principle for non-convex optimisation and the calculus of variations. Archive

for Rational Mechanics and Analysis, 71(1):41–61, 1979.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.

Journal of Optimization Theory and Applications, 109(3):475–494, 2001.
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