
Journal of Machine Learning Research 14 (2013) 243-280 Submitted 1/11; Revised 1/12; Published 1/13

Sparse Single-Index Model

Pierre Alquier PIERRE.ALQUIER@UCD.IE

School of Mathematical Sciences

University College Dublin

James Joyce Library, Belfield

Dublin 4, Ireland

Gérard Biau∗
GERARD.BIAU@UPMC.FR

LSTA, LPMA and Institut universitaire de France
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Abstract

Let (X,Y ) be a random pair taking values in R
p ×R. In the so-called single-index model, one has

Y = f ⋆(θ⋆T X)+W , where f ⋆ is an unknown univariate measurable function, θ⋆ is an unknown vec-

tor in R
d , and W denotes a random noise satisfying E[W |X] = 0. The single-index model is known

to offer a flexible way to model a variety of high-dimensional real-world phenomena. However, de-

spite its relative simplicity, this dimension reduction scheme is faced with severe complications as

soon as the underlying dimension becomes larger than the number of observations (“p larger than

n” paradigm). To circumvent this difficulty, we consider the single-index model estimation prob-

lem from a sparsity perspective using a PAC-Bayesian approach. On the theoretical side, we offer

a sharp oracle inequality, which is more powerful than the best known oracle inequalities for other

common procedures of single-index recovery. The proposed method is implemented by means of

the reversible jump Markov chain Monte Carlo technique and its performance is compared with

that of standard procedures.

Keywords: single-index model, sparsity, regression estimation, PAC-Bayesian, oracle inequality,

reversible jump Markov chain Monte Carlo method

1. Introduction

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be a collection of independent observations, distributed as a generic

independent pair (X,Y ) taking values in R
p ×R and satisfying EY 2 < ∞. Throughout, we let P be

the distribution of (X,Y ), so that the sample Dn is distributed according to P⊗n. In the regres-

sion function estimation problem, the goal is to use the data Dn in order to construct an estimate

rn : Rp → R of the regression function r(x) = E[Y |X = x]. In the classical parametric linear model,

one assumes

Y = θ⋆T X+W,
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where θ⋆ = (θ⋆
1, . . . ,θ

⋆
p)

T ∈ R
p and E[W |X] = 0. Here

r(x) = θ⋆T x =
p

∑
j=1

θ⋆
jx j

is a linear function of the components of x = (x1, . . . ,xp)
T . More generally, we may define

Y = f ⋆(θ⋆T X)+W, (1)

where f ⋆ is an unknown univariate measurable function. This is the celebrated single-index model,

which is recognized as a particularly useful variation of the linear formulation and can easily be

interpreted: The model changes only in the direction θ⋆, and the way it changes in this direction

is described by the function f ⋆. This model has applications to a variety of fields, such as discrete

choice analysis in econometrics and dose-response models in biometrics, where high-dimensional

regression models are often employed. There are too many references to be included here, but the

monographs of McCullagh and Nelder (1983) and Horowitz (1998) together with the references

Härdle et al. (1993), Ichimura (1993), Delecroix et al. (2006), Dalalyan et al. (2008) and Lopez

(2009) will provide the reader with good introductions to the general subject area.

One of the main advantages of the single-index model is its supposed ability to deal with the

problem of high dimension (Bellman, 1961). It is known that estimating the regression function is

especially difficult whenever the dimension p of X becomes large. As a matter of fact, the optimal

mean square convergence rate n−2k/(2k+p) for the estimation of a k-times differentiable regression

function converges to zero dramatically slowly if the dimension p is large compared to k. This

leads to an unsatisfactory accuracy of estimation for moderate sample sizes, and one possibility to

circumvent this problem is to impose additional assumptions on the regression function. Thus, in

particular, if r(x) = f ⋆(θ⋆T x) holds for every x∈R
p, then the underlying structural dimension of the

model is 1 (instead of p) and the estimation of r can hopefully be performed easier. In this regard,

it is shown in Gaı̈ffas and Lecué (2007) that the optimal rate of convergence over the single-index

model class is n−2k/(2k+1) (instead of n−2k/(2k+p)), thereby answering a conjecture of Stone (1982).

Nevertheless, practical estimation of the link function f ⋆ and the index θ⋆ still requires a de-

gree of statistical smoothing. Perhaps the most common approach to reach this goal is to use a

nonparametric smoother (for instance, a kernel or a local polynomial method) to construct an ap-

proximation f̂n of f ⋆, then substitute f̂n into an empirical version Rn(θ) of the mean square error

R(θ) = E[Y − f (θT X)]2, and finally choose θ̂n to minimize Rn(θ) (see, e.g., Härdle et al., 1993;

Delecroix et al., 2006, where the procedure is discussed in detail). The rationale behind this type of

two-stage approach, which is asymptotic in spirit, is that it produces a
√

n-consistent estimate of θ,

thereby devolving the difficulty to the simpler problem of computing a good estimate for the one-

dimensional function f ⋆. However, the relative simplicity of this strategy is accompanied by severe

difficulties (overfitting) when the dimension p becomes larger than the number of observations n.

Estimation in this setting (called “p larger than n” paradigm) is generally acknowledged as an im-

portant challenge in contemporary statistics, see, for example, the recent monograph of Bühlmann

and van de Geer (2011). In fact, this drawback considerably reduces the ability of the single-index

model to behave as an effective dimension reduction technique.

On the other hand, there is empirical evidence that many signals in high-dimensional spaces ad-

mit a sparse representation. As an example, wavelet coefficients of images often exhibit exponential

decay, and a relatively small subset of all wavelet coefficients allow for a good approximation of
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the original image. Such signals have few nonzero coefficients and can therefore be described as

sparse in the signal domain (see, for instance, Bruckstein et al., 2009). Similarly, recent advances

in high-throughput technologies—such as array comparative genomic hybridization—indicate that,

despite the huge dimensionality of problems, only a small number of genes may play a role in deter-

mining the outcome and be required to create good predictors (van’t Veer et al., 2002, for instance).

Sparse estimation is playing an increasingly important role in the statistics and machine learning

communities, and several methods have recently been developed in both fields, which rely upon the

notion of sparsity (e.g., penalty methods like the Lasso and Dantzig selector, see Tibshirani, 1996;

Candès and Tao, 2005; Bunea et al., 2007; Bickel et al., 2009, and the references therein).

In the present document, we consider the single-index model (1) from a sparsity perspective,

that is, we assume that θ⋆ has only a few coordinates different from 0. In the dimension reduction

scenario we have in mind, the ambient dimension p can be very large, much larger than the sample

size n, but we believe that the representation is sparse, that is, that very few coordinates of θ⋆ are

nonzero. This assumption is helpful at least for two reasons: If p is large and the number of nonzero

coordinates is small enough, then the model is easier to interpret and its efficient estimation becomes

possible. Our setting is close in spirit of the approach of Cohen et al. (2012), who study approxi-

mation from queries of functions of the form f (θT x), where θ is approximately sparse (in the sense

that it belongs to a weak-ℓp space). However, these authors do not provide any statistical study of

their model. Our modus operandi will rather rely on the so-called PAC-Bayesian approach, origi-

nally developed in the classification context by Shawe-Taylor and Williamson (1997), McAllester

(1998) and Catoni (2004, 2007). This strategy was further investigated for regression by Audibert

(2004) and Alquier (2008) and, more recently, worked out in the sparsity framework by Dalalyan

and Tsybakov (2008, 2012) and Alquier and Lounici (2011). The main message of Dalalyan and

Tsybakov (2008, 2012) and Alquier and Lounici (2011) is that aggregation with a properly chosen

prior is able to deal nicely with the sparsity issue. Contrary to procedures such as the Lasso, the

Dantzig selector and other penalized least square methods, which achieve fast rates under rather

restrictive assumptions on the Gram matrix associated to the predictors, PAC-Bayesian aggregation

requires only minimal assumptions on the model. Besides, it is computationally feasible even for a

large p and exhibits good statistical performance.

The paper is organized as follows. In Section 2, we first set out some notation and introduce

the single-index estimation procedure. Then we state our main result (Theorem 2), which offers a

sparsity oracle inequality more powerful than the best known oracle inequalities for other common

procedures of single-index recovery. Section 3 is devoted to the practical implementation of the

estimate via a reversible jump Markov chain Monte Carlo (MCMC) algorithm, and to numerical

experiments on both simulated and real-life data sets. In order to preserve clarity, proofs have been

postponed to Section 4 and the description of the MCMC method in its full length is given in the

Appendix Section 5.

Note finally that our techniques extend to the case of multiple-index models, of the form

Y = f ⋆(θ⋆T
1 X, . . . ,θ⋆T

m X)+W,

where the underlying structural dimension m is supposed to be larger than 1 but substantially smaller

than p. However, to keep things simple, we let m = 1 and leave the reader the opportunity to adapt

the results to the more general situation m ≥ 1.
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2. Sparse Single-index Estimation

We start this section with some notation and basic requirements.

2.1 Notation

Throughout the document, we suppose that the recorded data Dn is generated according to the

single-index model (1). More precisely, for each i = 1, . . . ,n,

Yi = f ⋆(θ⋆T Xi)+Wi,

where f ⋆ is a univariate measurable function, θ⋆ is a p-variate vector, and W1, . . . ,Wn are inde-

pendent copies of W . We emphasize that it is implicitly assumed that the observations are drawn

according to the true model under study.

Recall that, in model (1), E[W |X] = 0 and, consequently, that EW = 0. However, the distribution

of W (in particular, the variance) may depend on X. We shall not precisely specify this dependence,

and will rather require the following condition on the distribution of W .

Assumption N. There exist two positive constants σ and L such that, for all integers k ≥ 2,

E

[

|W |k |X
]

≤ k!

2
σ2Lk−2.

Observe that Assumption N holds in particular if W = Φ(X)ε, where ε is a standard Gaussian

random variable independent of X and Φ(X) is almost surely bounded.

Let ‖θ‖1 denote the ℓ1-norm of the vector θ = (θ1, . . . ,θp)
T , that is, ‖θ‖1 = ∑

p
j=1 |θ j|. Without

loss of generality, it will be assumed throughout the document that the index θ⋆ belongs to S p
1,+,

where S p
1,+ is the set of all θ ∈ R

p such that ‖θ‖1 = 1 and the first nonzero coordinate of θ is

positive.

Denoting by ‖X‖∞ the supremum norm of X, we will also require that the random variable

‖X‖∞ is almost surely bounded by a constant which, without loss of generality, can be taken equal

to 1. Moreover, it will also be assumed that the link function f ⋆ is bounded by some known positive

constant C. Thus, letting ‖ f ⋆‖∞ be the functional supremum norm of f ⋆ over [−1,1], we set:

Assumption B. The condition ‖X‖∞ ≤ 1 holds almost surely and there exists a positive constant C

larger than 1 such that ‖ f ⋆‖∞ ≤C.

Remark 1 To keep a sufficient degree of clarity, no attempt was made to optimize the constants.

In particular, the requirement C ≥ 1 is purely technical. It is always satisfied by taking C =
max(‖ f ⋆‖∞,1).

In order to approximate the link function f ⋆, we shall use the vector space F spanned by a given

countable dictionary of measurable functions {ϕ j}∞
j=1. Put differently, the approximation space F

is the set of (finite) linear combinations of functions of the dictionary. Each ϕ j of the collection is

assumed to be defined on [−1,1] and to take values in [−1,1]. To avoid getting into too much tech-

nicalities, we will also assume that each ϕ j is differentiable and such that, for some positive constant

ℓ, ‖ϕ′
j‖∞ ≤ ℓ× j. This assumption is satisfied by the (non-normalized) trigonometric system

ϕ1(t) = 1, ϕ2 j(t) = cos(π jt), ϕ2 j+1(t) = sin(π jt), j = 1,2, . . .
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Finally, for any measurable f : Rp → R and θ ∈ S p
1,+, we let

R(θ, f ) = E

[

(

Y − f (θT X)
)2
]

and denote by

Rn(θ, f ) =
1

n

n

∑
i=1

(

Yi − f (θT Xi)
)2

the empirical counterpart of R(θ, f ) based on the sample Dn.

2.2 Estimation Procedure

We are now in a position to describe our estimation procedure. The method which is presented here

is inspired by the approach developed by Catoni (2004, 2007). It strongly relies on the choice of

a probability measure π on S p
1,+×F , called the prior, which in our framework should enforce the

sparsity properties of the target regression function. With this objective in mind, we first let

dπ(θ, f ) = dµ(θ)dν( f ),

that is, we assume that the distribution over the indexes is independent of the distribution over the

link functions. With respect to the parameter θ, we put

dµ(θ) =

p

∑
i=1

10−i ∑
I⊂{1,...,p},|I|=i

(

p

i

)−1

dµI(θ)

1− ( 1
10
)p

, (2)

where |I| denotes the cardinality of I and dµI(θ) is the uniform probability measure on the set

S p
1,+(I) = {θ = (θ1, . . . ,θp) ∈ S p

1,+ : θ j = 0 if and only if j /∈ I}.

We see that S p
1,+(I) may be interpreted as the set of “active” coordinates in the single-index re-

gression of Y on X, and note that the prior on S p
1,+ is a convex combination of uniform probability

measures on the subsets S p
1,+(I). The weights of this combination depend only on the size of the

active coordinate subset I. As such, the value |I| characterizes the sparsity of the model: The smaller

|I|, the smaller the number of variables involved in the model. The factor 10−i penalizes models of

high dimension, in accordance with the sparsity idea.

The choice of the prior ν on F is more involved. To begin with, we define, for any positive

integer M ≤ n and all Λ > 0,

BM(Λ) =

{

(β1, . . . ,βM) ∈ R
M :

M

∑
j=1

j|β j| ≤ Λ and βM 6= 0

}

.

Next, we let FM(Λ)⊂ F be the image of BM(Λ) by the map

ΦM : RM → F
(β1, . . . ,βM) 7→ ∑M

j=1 β jϕ j.
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It is worth pointing out that, roughly, Sobolev spaces are well approximated by FM(Λ) as M grows

(more on this in Section 2.3). Finally, we define νM(d f ) on the set FM(C+ 1) as the image of the

uniform measure on BM(C+1) induced by the map ΦM, and take

dν( f ) =

n

∑
M=1

10−MdνM( f )

1− ( 1
10
)n

. (3)

Some comments are in order here. First, we note that the prior π is defined on S p
1,+×Fn(C + 1)

endowed with its canonical Borel σ-field. The choice of C+ 1 instead of C in the definition of the

prior support is essentially technical. This bound ensures that when the target f ⋆ belongs to Fn(C),
then a small ball around it is contained in Fn(C+ 1). It could be safely replaced by C+ un, where

{un}∞
n=1 is any positive sequence vanishing sufficiently slowly as n → ∞. Next, the integer M should

be interpreted as a measure of the “dimension” of the function f —the larger M, the more complex

the function—and the prior ν adapts again to the sparsity idea by penalizing large-dimensional

functions f . The coefficients 10−i and 10−M which appear in (2) and (3) show that more complex

models have a geometrically decreasing influence. Note however that the value 10, which has been

chosen because of its good practical results, is somehow arbitrary. It could be, in all generality,

replaced by a more general coefficient α at the price of a more technical analysis (and with no

consequences on the rates of convergence). Finally, we observe that, for each f = ∑M
j=1 β jϕ j ∈

FM(C+1),

‖ f‖∞ ≤
M

∑
j=1

|β j| ≤C+1.

Now, let λ be a positive real number, called the inverse temperature parameter hereafter. The

estimates θ̂λ and f̂λ of θ⋆ and f ⋆, respectively, are simply obtained by randomly drawing

(θ̂λ, f̂λ)∼ ρ̂λ,

where ρ̂λ is the so-called Gibbs posterior distribution over S p
1,+×Fn(C+1), defined by the proba-

bility density
dρ̂λ

dπ
(θ, f ) =

exp [−λRn(θ, f )]∫
exp [−λRn(θ, f )]dπ(θ, f )

.

[The notation dρ̂λ/dπ means the density of ρ̂λ with respect to π.] The estimate (θ̂λ, f̂λ) has a simple

interpretation. Firstly, the level of significance of each pair (θ, f ) is assessed via its least square error

performance on the data Dn. Secondly, a Gibbs distribution with respect to the prior π enforcing

those pairs (θ, f ) with the most empirical significance is assigned on the space S p
1,+×Fn(C+ 1).

Finally, the resulting estimate is just a random realization (conditional to the data) of this Gibbs

posterior distribution.

2.3 Sparsity Oracle Inequality

For any I ⊂ {1, . . . , p} and any positive integer M ≤ n, we set

(

θ⋆
I,M, f ⋆I,M

)

∈ arg min
(θ, f )∈S p

1,+(I)×FM(C)
R(θ, f ).
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At this stage, it is very important to note that, for each M, the infimum f ⋆I,M is defined on FM(C),
whereas the prior charges a slightly bigger set, namely FM(C+1).

The main result of the paper is the following theorem. Here and everywhere, the wording

“with probability 1−δ” means the probability evaluated with respect to the distribution P⊗n of the

data Dn and the conditional probability measure ρ̂λ. Recall that ℓ is a positive constant such that

‖ϕ′
j‖∞ ≤ ℓ× j.

Theorem 2 Assume that Assumption N and Assumption B hold. Set

w = 8(2C+1)max[L,2C+1]

and take

λ =
n

w+2 [(2C+1)2 +4σ2]
. (4)

Then, for all δ ∈ ]0,1[, with probability at least 1−δ we have

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(Cn)+ |I| log(pn)+ log

(

2
δ

)

n

}

,

where Ξ is a positive constant, depending on L, C, σ and ℓ only.

Remark 3 Interestingly enough, analysis of the estimate (θ̂λ, f̂λ) is still possible when Assumption

N is not satisfied. Indeed, even if Bernstein’s inequality (see Lemma 5) is not valid, a recent pa-

per by Seldin et al. (2011) provides us with a nice alternative inequality assuming less restrictive

assumptions. However, we would then suffer a loss in the upper bound of Theorem 2. It is also in-

teresting to note that recent results by Audibert and Catoni (2011) allow the study of PAC-Bayesian

estimates without Assumption N. However, the results of these authors are valid for linear models

only, and it is therefore not clear to what extent their technique can be transposed to our setting.

Theorem 2 can be given a simple interpretation. Indeed, we see that if there is a “small” I and

a “small” M such that R(θ⋆
I,M, f ⋆I,M) is close to R(θ⋆, f ⋆), then R(θ̂λ, f̂λ) is also close to R(θ⋆, f ⋆)

up to terms of order 1/n. However, if no such I or M exists, then one of the terms M log(Cn)/n

and |I| log(pn)/n starts to dominate, thereby deteriorating the general quality of the bound. A good

approximation with a “small” I is typically possible when θ⋆ is sparse or, at least, when it can be

approximated by a sparse parameter. On the other hand, a good approximation with a “small” M is

possible if f ⋆ has a sufficient degree of regularity.

To illustrate the latter remark, assume for instance that {ϕ j}∞
j=1 is the (non-normalized) trigono-

metric system and suppose that the target f ⋆ belongs to the Sobolev ellipsoid, defined by

W

(

k,
6C2

π2

)

=

{

f ∈ L2([−1,1]) : f =
∞

∑
j=1

β jϕ j and
∞

∑
j=1

j2kβ2
j ≤

6C2

π2

}

for some unknown regularity parameter k ≥ 2 (see, e.g., Tsybakov, 2009). Observe that, in this

context, the approximation sets FM(C+1) take the form

FM(C+1) =

{

f ∈ L2([−1,1]) : f =
M

∑
j=1

β jϕ j,
M

∑
j=1

j|β j| ≤C+1 and βM 6= 0

}

.
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It is important to note that the regularity parameter k is assumed to be unknown, and this casts our

results in the so-called adaptive setting. The following additional assumption will be needed:

Assumption D. The random variable θ⋆T X has a probability density on [−1,1], bounded from

above by a positive constant B.

Last, we let I⋆ be the set I such that θ⋆ ∈ S p
1,+(I) and set ‖θ⋆‖0 = |I⋆|.

Corollary 4 Assume that Assumption N, Assumption B and Assumption D hold. Suppose also that

f ⋆ belongs to the Sobolev ellipsoid W (k,6C2/π2), where the real number k ≥ 2 is an (unknown)

regularity parameter. Set w = 8(2C+1)max[L,2C+1] and take λ as in (4). Then, for all δ ∈ ]0,1[,
with probability at least 1−δ we have

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ′
{

(

log(Cn)

n

) 2k
2k+1

+
‖θ⋆‖0 log(pn)

n
+

log
(

2
δ

)

n

}

, (5)

where Ξ′ is a positive constant, depending on L, C, σ, ℓ and B only.

As far as we are aware, all existing methods achieving rates of convergence similar to the ones

provided by Corollary 4 are valid in an asymptotic setting only (p fixed and n → ∞). The strength

of Corollary 4 is to provide a finite sample bound and to show that our estimate still behaves well in

a nonasymptotic situation if the intrinsic dimension (i.e., the sparsity) is small with respect to n. To

understand this remark, just assume that p is a function of n such that p → ∞ as n → ∞. Whereas

a classical asymptotic approach cannot say anything useful about this situation, our bounds still

provide some information, provided the model is sparse enough (i.e., ‖θ⋆‖0 is sufficiently small

with respect to n).

We see that, asymptotically (p fixed and n → ∞), the leading term on the right-hand side of

inequality (5) is (log(n)/n)
2k

2k+1 . This is the minimax rate of convergence over a Sobolev class, up

to a log(n) factor. However, when n is “small” and θ⋆ is not sparse (i.e., ‖θ⋆‖0 is not “small”), the

term ‖θ⋆‖0 log(pn)/n starts to emerge and cannot be neglected. Put differently, in large dimension,

the estimation of θ⋆ itself is a problem—this phenomenon is not taken into account by asymptotic

studies.

It is worth mentioning that the approach developed in the present article does not offer any guar-

antee on the point of view of variable (feature) selection. To reach this objective, an interesting route

to follow is the sufficient dimension reduction (SDR) method proposed by Chen et al. (2010), which

can be applied to the single-index model to estimate consistently the parameter θ⋆ and perform vari-

able selection in a sparsity framework. Note however that such results require strong assumptions

on the distribution of the data.

Finally, it should be stressed that the choice of λ in Theorem 2 and Corollary 4 is not the best

possible and may eventually be improved, at the price of a more technical analysis however.

3. Implementation and Numerical Results

A series of experiments was conducted, both on simulated and real-life data sets, in order to assess

the practical capabilities of the proposed method and compare its performance with that of standard

procedures. Prior to analysis, we first need to discuss its concrete implementation, which has been

carried out via a Markov Chain Monte Carlo (MCMC) method.
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3.1 Implementation via Reversible Jump MCMC

The use of MCMC methods has become a popular way to compute Bayesian estimates. For an

introduction to the domain, one should refer to the comprehensive monograph of Marin and Robert

(2007) and the references therein. Importantly, in this computational framework, an adaptation of

the well-known Hastings-Metropolis algorithm to the case where the posterior distribution gives

mass to several models of different dimensions was proposed by Green (1995) under the name Re-

versible Jump MCMC (RJMCMC) method. In the PAC-Bayesian setting, MCMC procedures were

first considered by Catoni (2004), whereas Dalalyan and Tsybakov (2008, 2012) and Alquier and

Lounici (2011) explore their practical implementation in the sparse context using Langevin Monte

Carlo and RJMCMC, respectively. Regarding the single-index model, MCMC algorithms were used

to compute Bayesian estimates by Antoniadis et al. (2004) and, more recently, by Wang (2009), who

develop a fully Bayesian method to analyze the single-index model. Our implementation technique

is close in spirit to the one of Wang (2009).

As a starting point for the approximate computation of our estimate, we used the RJMCMC

method of Green (1995), which is in fact an adaptation of the Hastings-Metropolis algorithm to

the case where the objective posterior probability distribution (here, ρ̂λ) assigns mass to several

different models. The idea is to start from an initial given pair (θ(0), f (0)) ∈ S p
1,+×Fn(C+ 1) and

then, at each step, to iteratively compute (θ(t+1), f (t+1)) from (θ(t), f (t)) via the following chain of

rules:

• Sample a random pair (τ(t),h(t)) according to some proposal conditional density

kt( . |(θ(t), f (t))) with respect to the prior π;

• Take

(θ(t+1), f (t+1)) =

{

(τ(t),h(t)) with probability αt

(θ(t), f (t)) with probability 1−αt ,

where

αt = min

(

1,

dρ̂λ

dπ
(τ(t),h(t))× kt

(

(θ(t), f (t))|(τ(t),h(t))
)

dρ̂λ

dπ
(θ(t), f (t))× kt

(

(τ(t),h(t))|(θ(t), f (t))
)

)

.

This protocol ensures that the sequence {(θ(t), f (t))}∞
t=0 is a Markov chain with invariant probability

distribution ρ̂λ (see, e.g., Marin and Robert, 2007). A usual choice is to take kt ≡ k, so that the

Markov chain is homogeneous. However, in our context, it is more convenient to let kt = k1 if t

is odd and kt = k2 if t is even. Roughly, the effect of k1 is to modify the index θ(t) while k2 will

essentially act on the link function f (t). While the ideas underlying the proposal densities k1 and k2

are quite simple, a precise description in its full length turns out to be more technical. Thus, in order

to preserve the readability of the paper, the explicit construction of k1 and k2 has been postponed to

the Appendix Section 5.

From a theoretical point of view, it is clear that the implementation of our method requires

knowledge of the constant C (the upper bound on ‖ f ⋆‖∞). A too small C will result in a smaller

model, which is unable to perform a good approximation. On the other hand, a larger C induces

a poor bound in Theorem 2.1. In practice, however, the influence of C turns out to be secondary

compared to the impact of the parameter λ. Indeed, it was found empirically that a very large

choice of C (e.g., C = 10100) does not deteriorate the overall quality of the results, as soon as λ is

appropriately chosen. This is the approach that was followed in the experimental testing process.
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Besides, the time for the Markov chains to converge depends strongly on the ambient dimension

p and the starting point of the simulations. When the dimension is small (typically, p ≤ 10), the

chains converge fast and any value may be chosen as a starting point. In this case, we let the

MCMC run 1000 steps and obtained satisfying results. On the other hand, when the dimension is

larger (typically, p > 10), the convergence is very slow, in the sense that Rn(θ
(t), f (t)) takes a very

long time to stabilize. However, using as a starting point for the chains the preliminary estimate

θ̂HHI (see below) significantly reduces the number of steps needed to reach convergence—we let

the chains run 5000 steps in this context. Nevertheless, as a general rule, we encourage the users to

inspect the convergence of the chains by checking if Rn(θ
(t), f (t)) is stabilized, and to run several

chains starting from different points to avoid their attraction into local minima.

3.2 Simulation Study

In this subsection, we illustrate the finite sample performance of the presented estimation method on

three synthetic data sets and compare its predictive capabilities with those of three standard statis-

tical procedures. In all our experiments, we took as dictionary the (non-normalized) trigonometric

system {ϕ j}∞
j=1 and denote accordingly the resulting regression function estimate defined in Section

2 by F̂Fourier. In accordance with the order of magnitude indicated by the theoretical results, we set

λ = 4n. This choice can undoubtedly be improved a bit but, as the numerical results show, it seems

sufficient for our procedure to be fairly competitive.

The tested competing methods are the Lasso (Tibshirani, 1996), the standard regression kernel

estimate (Nadaraya, 1964, 1970; Watson, 1964; Tsybakov, 2009), and the estimation strategy dis-

cussed in Härdle et al. (1993). While the procedure of Härdle et al. (1993) is specifically tailored

for single-index models, the Lasso is designed to deal with the estimation of sparse linear models.

On the other hand, the nonparametric kernel method is one of the best options when no obvious

assumption (such as the single-index one) can be made on the shape of the targeted regression

function.

We briefly recall that, for a linear model of the form Y = θ⋆T X+W , the Lasso estimate takes

the form F̂Lasso(x) = θ̂T
Lassox, where

θ̂Lasso ∈ arg min
θ∈Rp

{

1

n

n

∑
i=1

(

Yi −θT Xi

)2
+ξ

p

∑
j=1

|θ j|
}

and ξ > 0 is a regularization parameter. Theoretical results (see, e.g., Bunea et al., 2007) indicate

that ξ should be of the order ξ⋆ = σ
√

log(p)/n. Throughout, σ is assumed to be known, and we let

ξ = ξ⋆/3, since this choice is known to give good practical results. The Nadaraya-Watson kernel

estimate will be denoted by F̂NW. It is defined by

F̂NW(x) =
∑n

i=1YiKh(x−Xi)

∑n
i=1 Kh(x−Xi)

for some nonnegative kernel K on R
p and Kh(z) = K(z/h)/h. In the experiments, we let K be the

Gaussian kernel K(z) = exp(−zT z) and chose the smoothing parameter h via a classical leave-one-

out procedure on the grid G = {0.75k,k = 0, . . . ,⌊log(n)⌋}, see, for example, Györfi et al. (2002)

(notation ⌊.⌋ stands for the floor function). Finally, the estimation procedure advocated in Härdle
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et al. (1993) takes the form

F̂HHI(x) =
∑n

i=1YiGĥ

(

θ̂T
HHI(x−Xi)

)

∑n
i=1 Gĥ

(

θ̂T
HHI(x−Xi)

)

for some kernel G on R, with Gh(z) = G(z/h)/h and

(

ĥ, θ̂HHI

)

∈ arg min
h>0,θ∈Rp

n

∑
i=1

[

Yi −
∑ j 6=iYjGh

(

θT (X j −Xi)
)

∑ j 6=i Gh (θT (X j −Xi))

]2

.

All calculations were performed with the Gaussian kernel. We used the grid G for the optimiza-

tion with respect to h, whereas the best search for θ was implemented via a pathwise coordinate

optimization.

The various methods were tested for the general regression model

Yi = F(Xi)+Wi, i = 1, . . . ,n,

for three different choices of F (single-index or not) and two values of n, namely n= 50 and n= 100.

In each of these models, the observations Xi take values in R
p, with p = 10 and p = 50, and

have independent components uniformly distributed on [−1,1]. The noise variables W1, . . . ,Wn are

independently distributed according to a Gaussian N (0,σ2), with σ = 0.2. It is worth pointing

out that for n = 50 and p = 50, p and n are of the same order, which means that the setting is

nonasymptotic. It is essentially in this case that the use of estimates tailored to sparsity, which

reduce the variance, is expected to improve the performance over generalist methods. On the other

hand, the situation n = 100 and p = 10 is less difficult and mimics the asymptotic setting.

The three examined functions F(x), for x = (x1, . . . ,xp), were the following ones:

[Model 1] A linear model FLinear(x) = 2θ⋆T x.

[Model 2] A single-index function FSI(x) = 2(θ⋆T x)2 +θ⋆T x.

[Model 3] A purely nonparametric model FNP(x) = 2|x2|
√

|x1|− x3
3,

where, in the first and second model, θ⋆ = (0.5,0.5,0, . . . ,0)T . Thus, in [Model 1] and [Model 2],

even if the ambient dimension is large, the intrinsic dimension of the model is in fact equal to 2.

For each experiment, a learning set of size n was generated to compute the estimates and their

performance, in terms of mean square prevision error, was evaluated on a separate test set of the

same size. The results are shown in Table 1 (p = 10) and Table 2 (p = 50). As each experiment

was repeated 20 times, these tables report the median, the mean and the standard deviation (s.d.) of

the prevision error of each procedure.

Some comments are in order. First, we note without surprise that:

1. The Lasso performs well in the linear setting [Model 1].

2. The single-index methods F̂Fourier and F̂HHI are the best ones when the targeted regression

function really involves a single-index model [Model 2].

3. The kernel method gives good results in the purely nonparametric setting [Model 3].
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n = 50 p = 10 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.061 0.063 0.046 0.293

mean 0.061 0.063 0.047 0.290

s.d. 0.016 0.014 0.011 0.063

FSI median 0.050 0.067 0.307 0.198

mean 0.069 0.080 0.338 0.208

s.d. 0.081 0.057 0.082 0.072

FNP median 0.375 0.405 0.830 0.354

mean 0.402 0.407 0.890 0.336

s.d. 0.166 0.110 0.176 0.006

n = 100 p = 10 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.053 0.051 0.042 0.227

mean 0.056 0.050 0.043 0.237

s.d. 0.011 0.006 0.004 0.044

FSI median 0.047 0.052 0.332 0.209

mean 0.049 0.053 0.337 0.218

s.d. 0.009 0.012 0.063 0.045

FNP median 0.305 0.343 0.793 0.333

mean 0.321 0.338 0.833 0.324

s.d. 0.092 0.042 0.145 0.041

Table 1: Numerical results for the simulated data, with n = 50 and n = 100, p = 10. The characters

in bold indicate the best performance.

Interestingly, F̂Fourier provides slightly better results than the single-index-tailored estimate F̂HHI,

especially for p = 50. This observation can be easily explained by the fact that F̂HHI does not

integrate any sparsity information regarding the parameter θ⋆, whereas F̂Fourier tries to focus on the

dimension of the active coordinates, which is equal to 2 in this simulation. As a general finding, we

retain that F̂Fourier is the most robust of all the tested procedures.

3.3 Real Data

The real-life data sets used in this second series of experiments are from two different sources. The

first one, called AIR-QUALITY data (n = 111, p = 3), has been first used by Chambers et al.

(1983) and has been later considered as a benchmark in the study and comparison of single-index

models (see, for example, Antoniadis et al., 2004; Wang, 2009, , among others). This data set

originated from an environmental study relating n = 111 ozone concentration measures at p = 3

meteorological variables, namely wind speed, temperature and radiation. The data is available as

a package in the software R (R Development Core Team, 2008), which we employed in all the

numerical experiments. The programs are available upon request from the authors.

The second category of data arises from the UC Irvine Machine Learning Repository

http://archive.ics.uci.edu/ml, where the following packages have been downloaded from:

• AUTO-MPG (Quinlan, 1993, n = 392, p = 7).
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n = 50 p = 50 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.057 1.156 0.060 0.507

mean 0.095 1.124 0.066 0.533

s.d. 0.143 0.241 0.026 0.081

FSI median 0.050 0.502 0.795 0.308

mean 0.051 0.539 0.776 0.326

s.d. 0.011 0.200 0.208 0.109

FNP median 0.358 0.788 1.910 0.374

mean 0.504 0.771 1.931 0.391

s.d. 0.320 0.168 0.468 0.101

n = 100 p = 50 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.053 0.092 0.050 0.519

mean 0.054 0.100 0.050 0.508

s.d. 0.007 0.026 0.006 0.026

FSI median 0.047 0.242 0.503 0.329

mean 0.070 0.267 0.502 0.339

s.d. 0.099 0.111 0.106 0.073

FNP median 0.361 0.736 1.968 0.418

mean 0.557 0.765 2.045 0.406

s.d. 0.519 0.226 0.546 0.076

Table 2: Numerical results for the simulated data, with n = 50 and n = 100, p = 50. The characters

in bold indicate the best performance.

• CONCRETE (Yeh, 1998, n = 1030, p = 8).

• HOUSING (Harrison and Rubinfeld, 1978, n = 508, p = 13).

• SLUMP-1, SLUMP-2 and SLUMP-3, which correspond to the concrete slump test data

introduced by Yeh (2007) (n = 51, p = 7). Since there are 3 different output variables Y in

the original data set, we created a single experiment for each of these variables (1 refers to the

output “slump”, 2 to the output “flow” and 3 to the output “28-day Compressive Strength”).

• WINE-RED and WINE-WHITE (Cortez et al., 2009, n = 1599, n = 4898, p = 11).

We refer to the above-mentioned references for a precise description of the meaning of the variables

involved in these data sets. For homogeneity reasons, all data were normalized to force the input

variables to lie in [−1,1]—in accordance with the setting of our method—and to ensure that all

output variables have standard deviation 0.5. In two data sets (AIR-QUALITY and AUTO-MPG)

there were some missing values and the corresponding observations were simply removed.

For each method and each of the nine data sets, we randomly split the observations in a learning

and a test set of equal sizes, computed the estimate on the learning set, evaluated the prediction error

on the test set, and repeated this protocol 20 times. The results are summarized in Table 3.

We see that all the tested methods provide reasonable results on most data sets. The Lasso is

very competitive, especially in the nonasymptotic framework. The estimation procedure F̂Fourier
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Data set F̂Fourier F̂HHI F̂Lasso F̂NW

AIR QUALITY median 0.117 0.099 0.107 0.129

n = 111 mean 0.128 0.096 0.113 0.130

p = 3 s.d. 0.044 0.029 0.029 0.035

AUTO-MPG median 0.044 0.049 0.070 0.068

n = 392 mean 0.051 0.050 0.072 0.069

p = 7 s.d. 0.017 0.006 0.011 0.009

CONCRETE median 0.089 0.087 0.106 0.094

n = 1030 mean 0.091 0.087 0.107 0.094

p = 8 s.d. 0.008 0.003 0.005 0.004

HOUSING median 0.074 0.059 0.086 0.086

n = 508 mean 0.076 0.061 0.085 0.088

p = 11 s.d. 0.015 0.013 0.012 0.016

SLUMP-1 median 0.289 0.171 0.201 0.208

n = 51 mean 0.244 0.187 0.213 0.226

p = 7 s.d. 0.062 0.050 0.049 0.047

SLUMP-2 median 0.219 0.196 0.172 0.215

n = 51 mean 0.216 0.194 0.171 0.213

p = 7 s.d. 0.053 0.025 0.019 0.022

SLUMP-3 median 0.065 0.070 0.053 0.116

n = 51 mean 0.073 0.079 0.052 0.126

p = 7 s.d. 0.033 0.027 0.010 0.026

WINE-RED median 0.173 0.171 0.183 0.171

n = 1599 mean 0.174 0.170 0.174 0.183

p = 11 s.d. 0.009 0.008 0.007 0.010

WINE-WHITE median 0.191 0.187 0.185 0.184

n = 4898 mean 0.202 0.188 0.186 0.185

p = 11 s.d. 0.045 0.003 0.004 0.004

Table 3: Numerical results for the real-life data sets. The characters in bold indicate the best per-

formance.

offers outcomes which are similar to the ones of F̂HHI, with a slight advantage for the latter method

however. Altogether, F̂Fourier and F̂HHI provide the best performance in terms of prediction error in

6 out of 9 experiments. Besides, when it is not the best, the method F̂Fourier is close to the best one,

as for example in SLUMP-3 and WINE-RED. As an illustrative example, the plot of the resulting

fit of our procedure to the data set AUTO-MPG is shown in Figure 1.

Clearly, all data sets under study have a dimension p which is small compared to n. To correct

this situation, we ran the same series of experiments by adding some additional irrelevant dimen-

sions to the data. Specifically, the observations were embedded into a space of dimension p×4 by

letting the new fake coordinates follow independent uniform [0,1] random variables. The results

are shown in Table 4. In this nonasymptotic framework, the method F̂HHI—which is not designed
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Figure 1: AUTO-MPG example: Estimated link function by the method F̂Fourier.

for sparsity—collapses, whereas F̂Fourier takes a clear advantage over its competitors. In fact, it

provides the best results in 3 out of 9 experiments (AUTO-MPG, CONCRETE and HOUSING).

Besides, when it is not the best, the method F̂Fourier is very close to the best one, as for example in

SLUMP-3 and WINE-RED.

Thus, as a general conclusion to this experimental section, we may say that our PAC-Bayesian

oriented procedure has an excellent predictive ability, even in nonasymptotic/high-dimensional situ-

ations. It is fast, robust, and exhibits performance at the level of the gold standard Lasso. Moreover,

as seen in the artificial data analysis, it is expected to perform better than the Lasso if the data cannot

be explained approximately by a linear model.

4. Proofs

We start with some preliminary results that will play an important role throughout this section.

4.1 Preliminary Results

Throughout this section, we let π be the prior probability measure on R
p×Fn(C+1) equipped with

its canonical Borel σ-field. Recall that Fn(C+ 1) ⊂ F and that, for each f ∈ Fn(C+ 1), we have

‖ f‖∞ ≤C+1.
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Augmented data set F̂Fourier F̂HHI F̂Lasso F̂NW

AIR QUALITY median 0.172 0.272 0.164 0.281

n = 111 mean 0.244 0.291 0.163 0.291

p = 12 s.d. 0.163 0.116 0.038 0.046

AUTO-MPG median 0.043 0.062 0.085 0.202

n = 392 mean 0.044 0.072 0.086 0.203

p = 28 s.d. 0.009 0.018 0.008 0.014

CONCRETE median 0.087 0.093 0.113 0.245

n = 1030 mean 0.087 0.094 0.112 0.094

p = 32 s.d. 0.007 0.008 0.005 0.009

HOUSING median 0.071 0.199 0.092 0.226

n = 508 mean 0.075 0.181 0.095 0.227

p = 44 s.d. 0.023 0.084 0.013 0.018

SLUMP-1 median 0.270 0.426 0.276 0.271

n = 51 mean 0.290 0.409 0.274 0.262

p = 28 s.d. 0.101 0.079 0.055 0.042

SLUMP-2 median 0.276 0.332 0.195 0.253

n = 51 mean 0.285 0.349 0.198 0.254

p = 28 s.d. 0.075 0.063 0.043 0.034

SLUMP-3 median 0.079 0.371 0.061 0.372

n = 51 mean 0.082 0.361 0.058 0.279

p = 28 s.d. 0.025 0.079 0.013 0.031

WINE-RED median 0.178 0.222 0.172 0.245

n = 1599 mean 0.176 0.226 0.174 0.246

p = 44 s.d. 0.085 0.033 0.006 0.029

WINE-WHITE median 0.199 0.239 0.187 0.252

n = 4898 mean 0.204 0.256 0.188 0.260

p = 44 s.d. 0.091 0.041 0.005 0.019

Table 4: Numerical results for the real-life data sets augmented with noise variables. The characters

in bold indicate the best performance.

Besides, since E[Y |X] = f ⋆(θ⋆T X) almost surely, we note once and for all that for all (θ, f ) ∈
S p

1,+×Fn(C+1),

R(θ, f )−R(θ⋆, f ⋆) = E
[

Y − f (θT X)
]2 −E

[

Y − f ⋆(θ⋆T X)
]2

= E
[

f (θT X)− f ⋆(θ⋆T X)
]2

(Pythagora’s theorem). We start with four technical lemmas. Lemma 5 is a version of Bernstein’s

inequality, whose proof can be found in Massart (2007, Chapter 2, inequality (2.21)). Lemma 6 is

a classical result, whose proof can be found, for example, in Catoni (2007, page 4). For a random

variable Z, the notation (Z)+ means the positive part of Z.
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Lemma 5 Let T1, . . . ,Tn be independent real-valued random variables. Assume that there exist two

positive constants v and w such that, for all integers k ≥ 2,

n

∑
i=1

E

[

(Ti)
k
+

]

≤ k!

2
vwk−2.

Then, for any ζ ∈ ]0,1/w[,

E

[

exp

(

ζ
n

∑
i=1

[Ti −ETi]

)]

≤ exp

(

vζ2

2(1−wζ)

)

.

Given a measurable space (E,E) and two probability measures µ1 and µ2 on (E,E), we denote

by K (µ1,µ2) the Kullback-Leibler divergence of µ1 with respect to µ2, defined by

K (µ1,µ2) =







∫
log

(

dµ1

dµ2

)

dµ1 if µ1 ≪ µ2,

∞ otherwise.

(Notation µ1 ≪ µ2 means “µ1 is absolutely continuous with respect to µ2”.) In the next lemma,

notation ◦ stands for the function composition operator.

Lemma 6 Let (E,E) be a measurable space. For any probability measure µ on (E,E) and any

measurable function h : E → R such that
∫
(exp◦h)dµ < ∞, we have

log

∫
(exp◦h)dµ = sup

m

(∫
hdm−K (m,µ)

)

, (6)

where the supremum is taken over all probability measures on (E,E) and, by convention, ∞−∞ =
−∞. Moreover, as soon as h is bounded from above on the support of µ, the supremum with respect

to m on the right-hand side of (6) is reached for the Gibbs distribution g given by

dg

dµ
(e) =

exp [h(e)]∫
(exp◦h)dµ

, e ∈ E.

Lemma 7 Assume that Assumption N holds. Set w = 8(2C+1)max[L,2C+1] and take

λ ∈
]

0,
n

w+[(2C+1)2 +4σ2]

[

.

Then, for all δ ∈ ]0,1[ and any data-dependent probability measure ρ̂ absolutely continuous with

respect to π we have, with probability at least 1−δ,

R(θ̂, f̂ )−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)+

log
(

dρ̂
dπ(θ̂, f̂ )

)

+ log
(

1
δ

)

λ

)

,

where the pair (θ̂, f̂ ) is distributed according to ρ̂.
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Proof Fix θ ∈ S p
1,+ and f ∈ Fn(C + 1). The proof starts with an application of Lemma 5 to the

random variables

Ti =−
(

Yi − f (θT Xi)
)2

+
(

Yi − f ⋆(θ⋆T Xi)
)2
, i = 1, . . . ,n.

Note that these random variables are independent, identically distributed, and that

n

∑
i=1

ET 2
i =

n

∑
i=1

E

{

[

2Yi − f (θT Xi)− f ⋆(θ⋆T Xi)
]2 [

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

=
n

∑
i=1

E

{

[

2Wi + f ⋆(θ⋆T Xi)− f (θT Xi)
]2 [

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

≤
n

∑
i=1

E

{

[

4W 2
i +(2C+1)2

][

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

(since E[Wi|Xi] = 0).

Thus, by Assumption N,

n

∑
i=1

ET 2
i ≤

[

(2C+1)2 +4σ2
]

n

∑
i=1

E
[

f (θT Xi)− f ⋆(θ⋆T Xi)
]2

≤ v,

where we set

v = 2n[(2C+1)2 +4σ2] [R(θ, f )−R(θ⋆, f ⋆)] . (7)

More generally, for all integers k ≥ 3,

n

∑
i=1

E

[

(Ti)
k
+

]

≤
n

∑
i=1

E

{

∣

∣2Yi − f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k ∣
∣ f (θT Xi)− f ⋆(θ⋆T Xi)

∣

∣

k
}

=
n

∑
i=1

E

{

∣

∣2Wi + f ⋆(θ⋆T Xi)− f (θT Xi)
∣

∣

k ∣
∣ f (θT Xi)− f ⋆(θ⋆T Xi)

∣

∣

k
}

≤ 2k−1
n

∑
i=1

E

{[

2k|Wi|k +(2C+1)k
]

(2C+1)k−2
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2
}

.

In the last inequality, we used the fact that |a+b|k ≤ 2k−1(|a|k + |b|k) together with

∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k
=
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k−2 ×
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2

≤ (2C+1)k−2
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2
.
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Therefore, by Assumption N,

n

∑
i=1

E

[

(Ti)
k
+

]

≤
n

∑
i=1

[

22k−2k!σ2Lk−2 +2k−1(2C+1)k
]

(2C+1)k−2 [R(θ, f )−R(θ⋆, f ⋆)]

= v×
[

22k−2k!σ2Lk−2 +2k−1(2C+1)k
]

(2C+1)k−2

[(2C+1)2 +4σ2]

≤ v× 8k−2k!max
[

Lk−2,(2C+1)k−2
]

(2C+1)k−2

2

=
k!

2
vwk−2,

with w = 8(2C+1)max[L,2C+1].

Thus, for any inverse temperature parameter λ ∈ ]0,n/w[, taking ζ = λ/n, we may write by

Lemma 5

E

{

exp [λ(R(θ, f )−R(θ⋆, f ⋆)−Rn(θ, f )+Rn(θ
⋆, f ⋆))]

}

≤ exp

(

vλ2

2n2(1− wλ
n
)

)

.

Therefore, using the definition of v, we obtain

E

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

≤ δ.

Next, we use a standard PAC-Bayesian approach (Catoni, 2004, 2007; Audibert, 2004; Alquier,

2008). Let us remind the reader that π is a prior probability measure on the set S p
1,+×Fn(C+ 1).

We have

∫
E

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

dπ(θ, f )≤ δ

and consequently, using Fubini’s theorem,

E

{∫
exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]

dπ(θ, f )

}

≤ δ.
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Therefore, for any data-dependent posterior probability measure ρ̂ absolutely continuous with re-

spect to π, adopting the convention ∞×0 = 0,

E

{∫
exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

≤ δ.

Recalling that P⊗n stands for the distribution of the sample Dn, the latter inequality can be more

conveniently written as

EDn∼P⊗nE(θ̂, f̂ )∼ρ̂

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ̂, f̂ )−R(θ⋆, f ⋆)
)

+λ
(

−Rn(θ̂, f̂ )+Rn(θ
⋆, f ⋆)

)

− log

(

dρ̂

dπ
(θ̂, f̂ )

)

− log

(

1

δ

)

]}

≤ δ.

Thus, using the elementary inequality exp(λx)≥ 1R+(x) we obtain, with probability at most δ,

(

1− λ
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ̂, f̂ )−R(θ⋆, f ⋆)
)

≥ Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)

+
log
(

dρ̂

dπ
(θ̂, f̂ )

)

+ log
(

1
δ

)

λ
,

where the probability is evaluated with respect to the distribution P⊗n of the data Dn and the condi-

tional probability measure ρ̂. Put differently, letting

λ ∈
]

0,
n

w+[(2C+1)2 +4σ2]

[

,

we have, with probability at least 1−δ,

R(θ̂, f̂ )−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)+

log
(

dρ̂

dπ
(θ̂, f̂ )

)

+ log
(

1
δ

)

λ

)

.

This concludes the proof of Lemma 7.

262



SPARSE SINGLE-INDEX MODEL

Lemma 8 Under the conditions of Lemma 7 we have, with probability at least 1−δ,
∫

Rn(θ, f )dρ̂(θ, f )−Rn(θ
⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.

Proof The beginning of the proof is similar to the one of Lemma 7. More precisely, we apply

Lemma 5 with Ti = (Yi − f (θT Xi))
2 − (Yi − f ⋆(θ⋆T Xi))

2 and obtain, for any inverse temperature

parameter λ ∈ ]0,n/w[,

E

{

exp [λ(R(θ⋆, f ⋆)−R(θ, f )−Rn(θ
⋆, f ⋆)+Rn(θ, f ))]

}

≤ exp

(

vλ2

2n2(1− wλ
n
)

)

(see (7) for the definition of v). Thus, using the definition of v,

E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

≤ δ.

Integrating with respect to π leads to

∫
E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

dπ(θ, f )≤ δ

whence, by Fubini’s theorem,

E

{∫
exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]

dπ(θ, f )

}

≤ δ.

Thus, for any data-dependent posterior probability measure ρ̂ absolutely continuous with respect to

π,

E

{∫
exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

≤ δ.
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Therefore, by Jensen’s inequality,

E

{

exp

∫ [(
λ+

λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

= E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ⋆, f ⋆)−
∫

R(θ, f )dρ̂(θ, f )

)

+λ

(∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

)

−K (ρ̂,π)− log

(

1

δ

)

]}

≤ δ.

Consequently, by the elementary inequality exp(λx) ≥ 1R+(x), we obtain, with probability at most

δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≥
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.

Equivalently, with probability at least 1−δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.
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4.2 Proof of Theorem 2

The proof starts with an application of Lemma 7 with ρ̂ = ρ̂λ (the Gibbs distribution) as posterior

distribution. More precisely, we know that, with probability larger than 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂λ, f̂λ)−Rn(θ
⋆, f ⋆)

+
log
(

dρ̂λ

dπ
(θ̂λ, f̂λ)

)

+ log
(

1
δ

)

λ

)

,

where the probability is evaluated with respect to the distribution P⊗n of the data Dn and the condi-

tional probability measure ρ̂λ. Observe that

log

(

dρ̂λ

dπ
(θ̂λ, f̂λ)

)

= log







exp
[

−λRn(θ̂λ, f̂λ)
]

∫
exp [−λRn(θ, f )]dπ(θ, f )







=−λRn(θ̂λ, f̂λ)− log

∫
exp [−λRn(θ, f )]dπ(θ, f ).

Consequently, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

λ
(

1− λ[(2C+1)2+4σ2]
n−wλ

)

(

− log

∫
exp [−λRn(θ, f )]dπ(θ, f )

−λRn(θ
⋆, f ⋆)+ log

(

1

δ

)

)

.

Next, using Lemma 6 we deduce that, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
ρ̂

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+
K (ρ̂,π)+ log

(

1
δ

)

λ

}

,

where the infimum is taken over all probability measures on S p
1,+×Fn(C+1). In particular, letting

M (I,M) be the set of all probability measures on S p
1,+(I)×FM(C+1), we have, with probability at

least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+
K (ρ̂,π)+ log

(

1
δ

)

λ

}

.
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Next, observe that, for ρ̂ ∈ M (I,M),

K (ρ̂,π) = K (ρ̂,µ⊗ν) = K (ρ̂,µI ⊗νM)+ log





(

1−
(

1
10

)p
)(

1−
(

1
10

)n
)

(

p
|I|
)

10−|I|−M





≤ K (ρ̂,µI ⊗νM)+ log

[ (

p
|I|
)

10−|I|−M

]

. (8)

Therefore, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (9)

By Lemma 8 and inequality (8), for any data-dependent distribution ρ̂ ∈ M (I,M), with probability

at least 1−δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ
. (10)

Thus, combining inequalities (9) and (10), we may write, with probability at least 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{

(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+2

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (11)

For any subset I of {1, . . . , p}, any positive integer M ≤ n and any η,γ ∈ ]0,1/n], let the probability

measure ρI,M,η,γ be defined by

dρI,M,η,γ(θ, f ) = dρ1
I,M,η(θ)dρ2

I,M,γ( f ),
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with
dρ1

I,M,η

dµI

(θ) ∝ 1[‖θ−θ⋆I,M‖1≤η]

and
dρ2

I,M,γ

dνM

( f ) ∝ 1[‖ f− f ⋆I,M‖M≤γ]

where, for f = ∑M
j=1 β jϕ j ∈ FM(C+1), we put

‖ f‖M =
M

∑
j=1

j|β j|.

With this notation, inequality (11) leads to

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
η,γ>0

{

(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)(∫
R(θ, f )dρI,M,η,γ(θ, f )−R(θ⋆, f ⋆)

)

+2

K (ρI,M,η,γ,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (12)

To finish the proof, we have to control the different terms in (12). Note first that

log

(

p

|I|

)

≤ |I| log

(

pe

|I|

)

and, consequently,

log

[ (

p
|I|
)

10−|I|−M

]

≤ |I| log

(

pe

|I|

)

+(|I|+M) log10. (13)

Next,

K (ρI,M,η,γ,µI ⊗νM) = K (ρ1
I,M,η ⊗ρ2

I,M,γ,µI ⊗νM)

= K (ρ1
I,M,η,µI)+K (ρ2

I,M,γ,νM).

By technical Lemma 9, we know that

K (ρ1
I,M,η,µI)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Similarly, by technical Lemma 10,

K (ρ2
I,M,γ,νM) = M log

(

C+1

γ

)

.
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Putting all the pieces together, we are led to

K (ρI,M,η,γ,µI ⊗νM)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

+M log

(

C+1

γ

)

. (14)

Finally, it remains to control the term

∫
R(θ, f )dρI,M,η,γ(θ, f ).

To this aim, we write

∫
R(θ, f )dρI,M,η,γ(θ, f )

=
∫

E

[

(

Y − f (θT X)
)2
]

dρI,M,η,γ(θ, f )

=
∫

E
[(

Y − f ⋆I,M(θ⋆T
I,MX)+ f ⋆I,M(θ⋆T

I,MX)− f (θ⋆T
I,MX)

+ f (θ⋆T
I,MX)− f (θT X)

)2]
dρI,M,η,γ(θ, f )

= R(θ⋆
I,M, f ⋆I,M)

+
∫

E

[

(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)2

+
(

f (θ⋆T
I,MX)− f (θT X)

)2

+2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

+2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f (θ⋆T
I,MX)− f (θT X)

)

+2
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)(

f (θ⋆T
I,MX)− f (θT X)

)

]

dρI,M,η,γ(θ, f )

:= R(θ⋆
I,M, f ⋆I,M)+A+B+C+D+E.

4.2.1 COMPUTATION OF C

By Fubini’s theorem,

C = E

[∫
2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρI,M,η,γ(θ, f )

]

= E

{∫ [
2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)

×
∫
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρ2
I,M,γ( f )

]

dρ1
I,M,η(θ)

}

.

By the triangle inequality, for f = ∑M
j=1 β jϕ j and f ⋆I,M = ∑M

j=1(β
⋆
I,M) jϕ j, it holds

M

∑
j=1

j|β j| ≤
M

∑
j=1

j
∣

∣β j − (β⋆
I,M) j

∣

∣+
M

∑
j=1

j
∣

∣(β⋆
I,M) j

∣

∣ .
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Since f ⋆I,M ∈ FM(C), we have ∑M
j=1 j|(β⋆

I,M) j| ≤ C, so that ∑M
j=1 j|β j| ≤ C + 1 as soon as ‖ f −

f ⋆I,M‖M ≤ 1. This shows that the set

{

f =
M

∑
j=1

β jϕ j : ‖ f − f ⋆I,M‖M ≤ γ

}

is contained in the support of νM. In particular, this implies that ρ2
I,M,γ is centered at f ⋆I,M and,

consequently,

∫
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρ2
I,M,γ( f ) = 0.

This proves that C = 0.

4.2.2 CONTROL OF A

Clearly,

A ≤
∫

sup
y∈R

(

( f ⋆I,M(y)− f (y)
)2

dρ2
I,M,γ( f )≤ γ2.

4.2.3 CONTROL OF B

We have

B =
∫

E

[

(

f (θ⋆T
I,MX)− f (θT X)

)2
]

dρI,M,η,γ(θ, f )

≤
∫

E

[

(

ℓ(C+1)(θ⋆T
I,M −θT )X

)2
]

dρ1
I,M,η(θ)

(by the mean value theorem)

≤ ℓ2(C+1)2
E
[

‖X‖2
∞

]

∫
‖θ⋆

I,M −θ‖2
1dρ1

I,M,η(θ)

≤ ℓ2(C+1)2η2

(by Assumption D).
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4.2.4 CONTROL OF E

Write

|E| ≤ 2

∫
E

[

∣

∣ f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
∣

∣

×
∣

∣ f (θ⋆T
I,MX)− f (θT X)

∣

∣

]

dρI,M,η,γ(θ, f )

≤ 2

∫
E

[

∣

∣ f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
∣

∣

× ℓ(C+1)
∣

∣(θ⋆T
I,M −θT )X

∣

∣

]

dρI,M,η,γ(θ, f )

≤ 2

(∫
E

[

(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)2
]

dρI,M,η,γ(θ, f )

) 1
2

(∫
E

[

(

ℓ(C+1)(θ⋆T
I,M −θT )X

)2
]

dρI,M,η,γ(θ, f )

) 1
2

(by the Cauchy-Schwarz inequality)

≤ 2
(

γ2
)

1
2
(

ℓ2(C+1)2η2
)

1
2

= 2ℓ(C+1)γη.

4.2.5 CONTROL OF D

Finally,

D = 2

∫
E
[(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f (θ⋆T
I,MX)− f (θT X)

)]

dρI,M,η,γ(θ, f )

= 2

∫
E
[(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)]

dρ1
I,M,η(θ)

(since

∫
f dρ2

I,M,γ( f ) = f ⋆I,M)

= 2E

[

(

Y − f ⋆I,M(θ⋆T
I,MX)

)

∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]

≤ 2

√

E

[

(

Y − f ⋆I,M(θ⋆T
I,MX)

)2
]

×

√

E

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

(by the Cauchy-Schwarz inequality)

= 2
√

R(θ⋆
I,M, f ⋆I,M)

√

E

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

.

The inequality
∣

∣ f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

∣

∣≤ ℓ(C+1)
∣

∣(θ⋆T
I,M −θT )X

∣

∣

≤ ℓ(C+1)‖θ⋆
I,M −θ‖1
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leads to

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

≤ ℓ2(C+1)2

[∫
‖θ⋆

I,M −θ‖1dρ1
I,M,η(θ)

]2

.

Consequently,

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

≤ ℓ2(C+1)2η2,

and therefore

D ≤ 2ℓ(C+1)η
√

R(0,0)/2

≤
√

2ℓ(C+1)η
√

C2 +σ2.

Thus, taking η = γ = 1/n and putting all the pieces together, we obtain

A+B+C+D+E ≤ Ξ1

n
,

where Ξ1 is a positive constant, depending on C, σ and ℓ. Combining this inequality with (12)-(14)

yields, with probability larger than 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)(

R(θ⋆
I,M, f ⋆I,M)

−R(θ⋆, f ⋆)+
Ξ1

n

)

+2
M log(10(C+1)n)+ |I| log(40epn)+ log

(

1
δ

)

λ

}

.

Choosing finally

λ =
n

w+2 [(2C+1)2 +4σ2]
,

we obtain that there exists a positive constant Ξ2, function of L, C, σ and ℓ such that, with probability

at least 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ2 inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(10Cn)+ |I| log(40epn)+ log

(

1
δ

)

n

}

.

This concludes the proof of Theorem 2.
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4.3 Proof of Corollary 4

We already know, by Theorem 2, that with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(Cn)+ |I| log(pn)+ log

(

2
δ

)

n

}

.

By definition, for all (θ, f ) ∈ S p
1,+(I)×FM(C),

R(θ⋆
I,M, f ⋆I,M)≤ R(θ, f ).

In particular, if I⋆ is such that θ⋆ ∈ S p
1,+(I

⋆), then

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
1 ≤ M ≤ n

f ∈ FM(C)

{

R(θ⋆, f )−R(θ⋆, f ⋆)

+
M log(Cn)+ |I⋆| log(pn)+ log

(

2
δ

)

n

}

. (15)

Observe that, for any f ∈ FM(C),

R(θ⋆, f )−R(θ⋆, f ⋆) =
∫
Rp

[

f
(

θ⋆T x
)

− f ⋆
(

θ⋆T x
)]2

dP(x,y)

≤ B2

∫ 1

−1
[ f (t)− f ⋆ (t)]2 dt.

Since f ⋆ ∈ L2 ([−1,1]), we may write

f ⋆ =
∞

∑
j=1

β⋆
jϕ j

and apply (15) with

f =
M

∑
j=1

β⋆
jϕ j.

In order to do so, we just need to check that f ∈ FM(C), that is

M

∑
j=1

j|β⋆
j | ≤C.

But, by the Cauchy-Schwarz inequality,

M

∑
j=1

j|β⋆
j |=

M

∑
j=1

jk|β⋆
j | j1−k

≤

√

√

√

√

M

∑
j=1

j2k(β⋆
j)

2

√

√

√

√

M

∑
j=1

j2−2k.
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Thus,

M

∑
j=1

j|β⋆
j | ≤

π√
6

√

√

√

√

M

∑
j=1

j2k(β⋆
j)

2

(since, by assumption, k ≥ 2)

≤C

(since f ⋆ ∈ W (k,6C2/π2)).

Next, with this choice of f , ∫ 1

−1
[ f (t)− f ⋆ (t)]2 dt ≤ ΛM−2k

for some positive constant Λ depending only on k and C (see, for instance, Tsybakov, 2009). There-

fore, inequality (15) leads to

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
1≤M≤n

{

ΛM−2k +
M log(Cn)+ |I⋆| log(pn)+ log

(

2
δ

)

n

}

. (16)

Letting ⌈.⌉ be the ceiling function and choosing M = ⌈(n/ log(Cn))
1

2β+1 ⌉ in (16) concludes the proof.

4.4 Some Technical Lemmas

Lemma 9 For any subset I of {1, . . . , p}, any positive integer M ≤ n and any η ∈ ]0,1/n], let the

probability measure ρ1
I,M,η be defined by

dρ1
I,M,η

dµI

(θ) ∝ 1[‖θ−θ⋆I,M‖1≤η].

Then

K (ρ1
I,M,η,µI)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Proof For simplicity, we assume that I = {1, . . . , |I|}. Up to a permutation of the coordinates, the

proof remains valid for any subset I of {1, . . . , p}. Still for simplicity, we let θ̃ denote θ⋆
I,M. By a

symmetry argument, it can be assumed that θ̃ has nonnegative coordinates—this just means that θ̃

is arbitrarily fixed in one of the 2|I|−1 faces of S p
1,+(I). We denote by F A this face and note that

F A =

{

θ ∈ (R+)
|I|×{0}p−|I| :

|I|

∑
j=1

θ j = 1

}

.

Finally, without loss of generality, we suppose that the largest coordinate in θ̃ is θ̃1, and let χ be the

uniform probability measure on F A , defined by

dχ

dµI

(θ) = 2|I|−11[θ∈F A ].
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Set u = min(1/|I|,η/2), and let

T2 = (θ̃1 −u, θ̃2 +u, θ̃3, . . . , θ̃|I|,0, . . . ,0),
T3 = (θ̃1 −u, θ̃2, θ̃3 +u, . . . , θ̃|I|,0, . . . ,0),
...

...

T|I| = (θ̃1 −u, θ̃2, θ̃3, . . . , θ̃|I|+u,0, . . . ,0).

Note that u ≤ 1/|I| ≤ θ̃1. Therefore, for each j, all the coordinates of Tj are nonnegative. Obviously

‖Tj‖1 = 1, so that, for all j, Tj ∈ F A . Denoting by K the convex hull of the set {θ̃,T2, . . . ,T|I|}, we

also have K ⊂ F A . Next, observe that ‖Tj − θ̃‖1 = 2u ≤ η, which implies K ⊂ {θ ∈R
p : ‖θ− θ̃‖1 ≤

η}.

Clearly,

K (ρ1
I,M,η,µI) = log







1∫
1[‖θ−θ⋆I,M‖1≤η]dµI(θ)







≤ log







1∫
1[θ∈F A ]1[‖θ−θ⋆I,M‖1≤η]dµI(θ)






.

Thus,

K (ρ1
I,M,η,µI)≤ log







2|I|−1∫
1[‖θ−θ⋆I,M‖1≤η]dχ(θ)







≤ log







2|I|−1∫
1[θ∈K]dχ(θ)






.

Observe that K is homothetic to F A , by a factor of u. This means that
∫

1[θ∈K]dχ(θ) = u|I|−1.

Consequently, we obtain

K (ρ1
I,M,η,µI)≤ log

(

(

2

u

)|I|−1
)

≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Lemma 10 For any subset I of {1, . . . , p}, any positive integer M ≤ n and any γ ∈ ]0,1/n], let the

probability measure ρ2
I,M,γ be defined by

dρ2
I,M,γ

dνM

( f ) ∝ 1[‖ f− f ⋆I,M‖M≤γ]
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where, for f = ∑M
j=1 β jϕ j ∈ FM(C+1), we put

‖ f‖M =
M

∑
j=1

j|β j|.

Then

K (ρ2
I,M,γ,νM) = M log

(

C+1

γ

)

.

Proof Observe that

K (ρ2
I,M,γ,νM) =

∫
log

(

dρ2
I,M,γ

dνM

( f )

)

dρ2
I,M,γ( f ).

Now,
dρ2

I,M,γ

dνM

( f ) =
1[‖ f− f ⋆I,M‖M≤γ]( f )

ζ
,

where ζ =
∫

1[‖ f− f ⋆I,M‖M≤γ]( f )dνM( f ). It easily follows, using the fact that the support of ρ2
I,M,γ is

included in the set { f ∈ FM(C+1) : ‖ f − f ⋆I,M‖ ≤ γ}, that

K (ρ2
I,M,γ,νM) = log(1/ζ).

Note that

ζ =
∫

1[‖ f− f ⋆I,M‖M≤γ]( f )dνM( f )

=

∫
1[∑M

j=1 j|β j−(β⋆
I,M) j|≤γ](β)1[∑M

j=1 j|β j|≤C+1](β)dβ
∫

1[∑M
j=1 j|β j|≤C+1](β)dβ

,

where the second equality is true since νM is (the image of) the uniform probability measure on

{β ∈ R
M : ∑M

j=1 j|β j| ≤C+1}. This implies

K (ρ2
I,M,γ,νM) = log







∫
1[∑M

j=1 j|β j|≤C+1](β)dβ
∫

1[∑M
j=1 j|β j−(β⋆

I,M) j|≤γ](β)1[∑M
j=1 j|β j|≤C+1](β)dβ






.

By the triangle inequality,

M

∑
j=1

j|β j| ≤
M

∑
j=1

j
∣

∣β j − (β⋆
I,M) j

∣

∣+
M

∑
j=1

j
∣

∣(β⋆
I,M) j

∣

∣ .

Since f ⋆I,M ∈ FM(C), we have ∑M
j=1 j|(β⋆

I,M) j| ≤C, so that

1[∑M
j=1 j|β j|≤C+1] ≥ 1[∑M

j=1 j|β j−(β⋆
I,M) j|≤γ]

as soon as γ ≤ 1. We conclude that

K (ρ2
I,M,γ,νM) = log







∫
1[∑M

j=1 j|β j|≤C+1]dβ
∫

1[∑M
j=1 j|β j−(β⋆

I,M) j|≤γ]dβ






= M log

(

C+1

γ

)

.
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5. Annex: Description of the MCMC Algorithm

This annex is intended to make thoroughly clear the specification of the proposal conditional densi-

ties k1 and k2 introduced in Section 3.

5.1 Notation

In order to provide explicit formulas for the conditional densities k1((τ,h)|(θ, f )) and k2((τ,h)|(θ, f )),
we first set

f =
m f

∑
j=1

β f , jϕ j and h =
mh

∑
j=1

βh, jϕ j,

where it is recalled that {ϕ j}∞
j=1 denotes the (non-normalized) trigonometric system. We let I

(respectively, J) be the set of nonzero coordinates of the vector θ (respectively, τ), and denote

finally by θI (respectively, τJ) the vector of dimension |I| (respectively, |J|) which contains the

nonzero coordinates of θ (respectively, |τ|). Recall that all densities are defined with respect to the

prior π, which is made explicit in Section 2.2.

For a generic h ∈ Fmh
(C+ 1), given τ ∈ S p

1,+ and s > 0, we let the density denss(h|τ,mh) with

respect to π be defined by

denss(h|τ,mh) ∝ exp

[

− 1

2s2

mh

∑
j=1

(

βh, j − β̃ j(τ,mh)
)2

]

1

[

mh

∑
j=1

j|βh, j| ≤C+1

]

,

where the β̃ j(τ,mh) are the empirical least square coefficients given by

{

β̃ j(τ,mh)
}

j=1,...,mh

∈ arg min
b∈Rmh

n

∑
i=1

(

Yi −
mh

∑
j=1

b jϕ j(τ
T Xi)

)2

.

In the experiments, we fixed s = 0.1. Note that simulating with respect to denss(h|τ,mh) is an

easy task, since one just needs to compute a least square estimate and then draw from a truncated

Gaussian distribution.

5.2 Description of k1

We take

k1 (·|(θ, f )) =
2k1,= (·|(θ, f ))+ k1,+ (·|(θ, f ))

3
1[|I|=1]

+
k1,− (·|(θ, f ))+2k1,= (·|(θ, f ))+ k1,+ (·|(θ, f ))

4
1[1<|I|<p]

+
k1,− (·|(θ, f ))+2k1,= (·|(θ, f ))

3
1[|I|=p].

Roughly, the idea is that k1,− tries to remove one component in θ, k1,= keeps the same number of

components, whereas k1,+ adds one component. The density k1,= takes the form

k1,= ((τ,h)|(θ, f )) = k1,=(τ|θ)denss(h|τ,m f ).
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The density k1,=(.|θ) is the density of τ when J = I and

τI =
θI +E

‖θI +E‖1

sgn
(

(θI +E) j(θI+E)

)

,

where E = (E1, . . . ,E|I|) and the Ei are independent random variables uniformly distributed in

[−δ,δ]. Throughout, the value of δ was fixed at 0.5. It is noteworthy that when we change the

parameter from θ to τ, then we also change the function from f to h. Thus, with this procedure, the

link function h is more “adapted” to τ and the subsequent move is more likely to be accepted in the

Hastings-Metropolis algorithm.

In the case where we are to remove one component, k1,− is given by

k1,− ((τ,h)|(θ, f )) = ∑
j∈I

c j1[τ=θ− j]denss(h|τ,m f ),

where θ− j is just obtained from θ by setting the j-th component to 0 and by renormalizing the

parameter in order to have ‖θ− j‖1 = 1. We set

c j =
exp(−|θ j|)1[|θ j|<δ]

∑ℓ∈I exp(−|θℓ|)1[|θℓ|<δ]
.

The idea is that smaller components are more likely to be removed than larger ones. Finally, the

density k1,+ takes the form

k1,+ ((τ,h)|(θ, f )) = ∑
j/∈I

c′j1[τ− j=θ]

1[|τ j|<δ]

2δ
denss(h|τ,m f ).

We set

c′j =
exp
(∣

∣∑n
i=1

(

Yi − f (θT Xi)
)

(Xi) j

∣

∣

)

∑ℓ/∈I exp(|∑n
i=1 (Yi − f (θT Xi))(Xi)ℓ|)

where (Xi) j denotes the j-th component of Xi. In words, the idea is that a new nonzero coordinate

in θ is more likely to be interesting in the model if the corresponding feature is correlated with the

current residual.

5.3 Description of k2

In the same spirit, we let the conditional density k2 be defined by

k2 (·|(θ, f )) =
2k2,= (·|(θ, f ))+ k2,+ (·|(θ, f ))

3
1[m f=1]

+
k2,− (·|(θ, f ))+2k2,= (·|(θ, f ))+ k2,+ (·|(θ, f ))

4
1[1<m f<n]

+
k2,− (·|(θ, f ))+2k2,= (·|(θ, f ))

3
1[m f=n].

We choose

k2,= ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f )

and

k2,+ ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f +1).
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With this choice, mh = m f +1, which means that the proposal density tries to add one coefficient in

the expansion of h, while leaving θ unchanged. Finally

k2,− ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f −1),

and the proposal tries to remove one coefficient in h.
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P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data. Springer, New York, 2011.

F. Bunea, A. Tsybakov, and M. Wegkamp. Sparsity oracle inequalities for the Lasso. Electronic

Journal of Statistics, 1:169–194, 2007.

E.J. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n.

The Annals of Statistics, 35:2313–2351, 2005.

278



SPARSE SINGLE-INDEX MODEL

O. Catoni. Statistical Learning Theory and Stochastic Optimization. Springer, 2004.

O. Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning,

volume 56 of Lecture Notes-Monograph Series. IMS, 2007.

J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A. Tukey. Graphical Methods for Data Analysis.

Wadsworth & Brooks, Belmont, 1983.

X. Chen, C. Zou, and R.D. Cook. Coordinate-independent sparse sufficient dimension reduction

and variable selection. The Annals of Statistics, 38:3696–3723, 2010.

A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard. Capturing ridge functions

in high dimension from point queries. Constructive Approximation, 35:225–243, 2012.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data mining

from physicochemical properties. Decision Support Systems, 47:547–553, 2009.

A.S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting, sharp PAC-Bayesian

bounds and sparsity. Machine Learning, 72:39–61, 2008.

A.S. Dalalyan and A.B. Tsybakov. Sparse regression learning by aggregation and Langevin Monte-

Carlo. Journal of Computer and System Sciences, 78:1423–1443, 2012.

A.S. Dalalyan, A. Juditsky, and V. Spokoiny. A new algorithm for estimating the effective

dimension-reduction subspace. Journal of Machine Learning Research, 9:1647–1678, 2008.

M. Delecroix, M. Hristache, and V. Patilea. On semiparametric M-estimation in single-index re-

gression. Journal of Statistical Planning and Inference, 136:730–769, 2006.
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