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Abstract

We consider the problem of parsing human poses and recagrizeir actions in static images
with part-based models. Most previous work in part-basedetsoonly considers rigid parts (e.g.,
torso, head, half limbs) guided by human anatomy. We argatettiis representation of parts is not
necessarily appropriate. In this paper, we introduce tibieal poselets—a new representation for
modeling the pose configuration of human bodies. Hieraatipioselets can be rigid parts, but they
can also be parts that cover large portions of human bodigs {erso + left arm). In the extreme
case, they can be the whole bodies. The hierarchical pessietorganized in a hierarchical way
via a structured model. Human parsing can be achieved byrimdethe optimal labeling of this
hierarchical model. The pose information captured by thésanchical model can also be used as a
intermediate representation for other high-level tasks.démonstrate it in action recognition from
static images.

Keywords: human parsing, action recognition, part-based modelsatuleical poselets, max-
margin structured learning

1. Introduction

Modeling human bodies (or articulated objects in general) in images is a lomgglasoblem in
computer vision. Compared with rigid objects (e.g., faces and cars) whicheeeasonably mod-
eled using several prototypical templates, human bodies are much monaliffimodel due to the
wide variety of possible pose configurations.

A promising solution for dealing with the pose variations is to use part-basedlsmdrart-based
representations, such as cardboard people (Ju et al., 1996) oigbistarcture (Felzenszwalb and
Huttenlocher, 2005), provide an elegant framework for modeling artediabjects, such as human
bodies. A part-based model represents the human body as a consteliatiet of rigid parts (e.g.,
torso, head, half limbs) constrained in some fashion. The typical cortstteiad are tree-structured
kinematic constraints between adjacent body parts, for example, topss-iglf-limb connection,
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or upper-lower half-limb connection. Part-based models consist of twortangiccomponents: (1)
part appearances specifying what each body part should look likeeimthage; (2) configuration
priors specifying how parts should be arranged relative to each &bagrbased models have been
used extensively in various computer vision applications involving humaok,asihuman parsing
(Felzenszwalb and Huttenlocher, 2005; Ramanan, 2006), kinematioigg&amanan et al., 2005),
action recognition (Yang et al., 2010) and human-object interaction (Wdd-ai-Fei, 2010).

Considerable progress has been made to improve part-based modetxafgie, there has
been a line of work on using better appearance models in part-based nodgbsesentative exam-
ple is the work by Ramanan (2006), who learns color histograms of panséhn initial edge-based
model. Ferrari et al. (2008) and Eichner and Ferrari (2009) fuithprove the part appearance
models by reducing the search space using various tricks, for exangple|ative locations of part
locations with respect to a person detection and the relationship betweenenifpart appearances
(e.g., upper-arm and torso tend to have the same color), Andriluka @08R) build better edge-
based appearance models using the HOG descriptors (Dalal and 20§g8, Sapp et al. (2010Db)
develop efficient inference algorithm to allow the use of more expens&eifes. There is also
work (Johnson and Everingham, 2009; Mori et al., 2004; Mori, 2@¥ivasan and Shi, 2007)
on using segmentation as a pre-processing step to provide better sgapiaitsar computing part
appearances.

Another line of work is on improving configuration priors in part-based nsddost of them
focus on developing representations and fast inference algorithmbythss the limitations of
kinematic tree-structured spatial priors in standard pictorial structure Imoé&amples include
common-factor models (Lan and Huttenlocher, 2005), loopy graphsg(aiath Martin, 2008; Ren
et al., 2005; Tian and Sclaroff, 2010; Tran and Forsyth, 2010), n&gtof trees (Wang and Mori,
2008). There is also work on building spatial priors that adapt to testingeea (Sapp et al.,
2010a).

Most of the previous work on part-based models use rigid parts thahateraically meaning-
ful, for example, torso, head, half limbs. Those rigid parts are usuallesepted as rectangles
(e.g., Andriluka et al. 2009; Felzenszwalb and Huttenlocher 2005; Ran2@t6; Ren et al. 2005;
Sigal and Black 2006; Wang and Mori 2008) or parallel lines (e.g., Rah 2005). However, as
pointed out by some recent work (Bourdev and Malik, 2009; Bourdey. £2010), rigid parts are
not necessarily the best representation since rectangles and parafieddeinherently difficult to
detect in natural images.

In this paper, we introduce a presentation of parts inspired by the earkyafd/arr (1982).
The work in Marr (1982) recursively represents objects as genedatiylinders in a coarse-to-fine
hierarchical fashion. In this paper, we extend Marr’s idea for twdlems in the general area of
“looking at people”. The first problem is human parsing, also knowruasam pose estimation. The
goal is to find the location of each body part (torso, head, limbs) of apénsa static image. We
use a part-based approach for human parsing. The novelty of oldrisvibrat our notion of “parts”
can range from basic rigid parts (e.g., torso, head, half-limb), to largepief bodies covering
more than one rigid part (e.g., torso + left arm). In the extreme case, vee'pasts” corresponding
to the whole body. We propose a new representation called “hierarqgiosalets” to capture this
hierarchy of parts. We infer the human pose using this hierarchicageptation.

The hierarchical poselet also provides rich information about bodgstsat can be used in
other applications. To demonstrate this, we apply it to recognize human actgtatic images.
In this application, we use hierarchical poselets to capture various plosmation of the human
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body, this information is further used as some intermediate representatioeitéhiefaction of the
person.

A preliminary version of this work appeared in Wang et al. (2011). Wewize the rest of the
paper as follows. Section 2 reviews previous work in human parsingdiwh aecognition. Section
3 introduces hierarchical poselet, a new representation for modelingrhboaty configurations.
Section 4 describes how to use hierarchical poselets for human passictipn 5 develops variants
of hierarchical poselets for recognizing human action in static images. ¥¢emrexperimental
results on human parsing and action recognition in Section 6 and concludetinrsy.

2. Previous Work

Finding and understanding people from images is a very active area inutemyision. In this
section, we briefly review previous work in human parsing and actiongréton that is most
related to our work.

Human parsing:Early work related to finding people from images is in the setting of detecting
and tracking people with kinematic models in both 2D and 3D. Forsyth et al6j3ff@vide an
extensive survey of this line of work.

Recent work has examined the problem in static images. Some of thesedmgsrage exemplar-
based. For example, Toyama and Blake (2001) track people using 2opkxs. Mori and Malik
(2002) and Sullivan and Carlsson (2002) estimate human poses by mapchistpred 2D tem-
plates with marked ground-truth 2D joint locations. Shakhnarovich et@3Ruse local sensitive
hashing to allow efficient matching when the number of exemplars is large.

Part-based models are becoming increasingly popular in human parsirng.week includes
the cardboard people (Ju et al., 1996) and the pictorial structure (iBelzalb and Huttenlocher,
2005). Tree-structured models are commonly used due to its efficientyh&e are also methods
that try to alleviate the limitation of tree-structured models, include common-factdelsigLan
and Huttenlocher, 2005), loopy graphs (Jiang and Martin, 2008; Ran 2005; Tian and Sclaroff,
2010; Tran and Forsyth, 2010), mixtures of trees (Wang and MorBR00

Many part-based models use discriminative learning to train the model paramgétamples
include the conditional random fields (Ramanan and Sminchisescu, 208&naa, 2006), max-
margin learning (Kumar et al., 2009; Wang et al., 2011; Yang and Rama0ad) and boosting
(Andriluka et al., 2009; Sapp et al., 2010b; Singh et al., 2010). Predpproaches have also ex-
plored various features, including image segments (superpixels) @lolansl Everingham, 2009;
Mori et al., 2004; Mori, 2005; Sapp et al., 2010a,b; Srinivasan and2807), color features (Ra-
manan, 2006; Ferrari et al., 2008), gradient features (Andrilukd ,€2009; Johnson and Evering-
ham, 2010; Wang et al., 2011; Yang and Ramanan, 2011).

Human action recognitionMost of the previous work on human action recognition focuses on
videos. Some work (Efros et al., 2003) uses global template for actiogméon. A lot of recent
work (Dollar et al., 2005; Laptev et al., 2008; Niebles et al., 2006) uses bagiafswnodels. There
is also work (Ke et al., 2007; Niebles and Fei-Fei, 2007) using parthaselels.

Compared with videos, human action recognition from static images is a reldégshgtudied
area. Wang et al. (2006) provide one of the earliest examples of aetogmition in static images.
Recently, template models (Ikizler-Cinbis et al., 2009), bag-of-words m¢Delsitre et al., 2010),
part-based models (Delaitre et al., 2010; Yang et al., 2010) have allgvepased for static-image
action recognition. There is also a line of work on using contexts for acdoagnition in static
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images, including human-object context (Desai et al., 2010; Gupta e08b; Xao and Fei-Fei,
2010) and group context (Lan et al., 2010; Maiji et al., 2011).

3. Hierarchical Poselets

Our pose representation is based on the concept of “poselet” intrddaddourdev and Malik
(2009). In a nutshell, poselets refer to pieces of human poses that htlg tifystered in both
appearance and configuration spaces. Poselets have been sheneffertive at person detection
(Bourdev and Malik, 2009; Bourdev et al., 2010).

In this paper, we propose a new representation caliedrchical poseletsHierarchical pose-
lets extend the original poselets in several important directions to make theenapyropriate for
human parsing. We start by highlighting the important properties of oueseptation.

Beyond rigid “parts”: Most of the previous work in part-based human modeling are based on
the notion that the human body can be modeled as a set of rigid parts cahimesziene way. Almost
all of them use a natural definition of parts (e.qg., torso, head, upper/lonas) corresponding to
body segments, and model those parts as rectangles, parallel linessropritfitive shapes.

As pointed out by Bourdev and Malik (2009), this natural definition ofrtgéfails to acknowl-
edge the fact that rigid parts are not necessarily the most salient fe&urgsual recognition. For
example, rectangles and parallel lines can be found as limbs, but theyscapeaeasily confused
with windows, buildings, and other objects in the background. So it is imtigrdifficult to build
reliable detectors for those parts. On the other hand, certain visualnsatt@rering large portions
of human bodies, for example, “a torso with the left arm raising up” or “iedateral pose”, are
much more visually distinctive and easier to identify. This phenomenon was\aaseven prior to
the work of poselet and was exploited to detect stylized human poses éahdjgpearance models
for kinematic tracking (Ramanan et al., 2005).

Multiscale hierarchy of “parts”: Another important property of our representation is that we
define “parts” at different levels of hierarchy to cover pieces of hup@ses at various granularity,
ranging from the configuration of the whole body, to small rigid parts. hmiqdar, we define 20
parts to represent the human pose and organize them in a hierarchy shBigure 1. To avoid
terminological confusion, we will use “part” to denote one of the 20 partsiguré 1 and use
“primitive part” to denote rigid body parts (i.e., torso, head, half limbs) fraw on.

In this paper, we choose the 20 parts and the hierarchical structureureFignanually. Of
course, it is possible to define parts corresponding to other combinatidstedp segments, for
example, left part of the whole body. It may also be possible to learn theectiwity of parts au-
tomatically from data, for example, using structure learning methods (KoleFaadman, 2009).
We would like to leave these issues as future work.

We use a procedure similar to Yang et al. (2010) to select poselets fopastc First, we cluster
the joints on each part into several clusters based on their relatiney coordinates with respect
to some reference joint of that part. For example, for the part “torse’choose the middle-top
joint as the reference and compute the relative coordinates of all thejolitiesron the torso with
respect to this reference joint. The concatenation of all those coorsiwétée the vector used for
clustering. We run K-means clustering on the vectors collected from alirigaimages and remove
clusters that are too small. Similarly, we obtain the clusters for all the other. partise end, we
obtain 5 to 20 clusters for each part. Based on the clustering, we cropittesjgonding patches
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Figure 1: An illustration of the hierarchical pose representation. Théledges indicate the con-
nectivity among different parts.

from the images and form a set of poselets for that part. Figure 2 shamspdes of two different
poselets for the part “legs”.

Our focus is the new representation, so we use standard HOG desc(iptdal and Triggs,
2005) to keep the feature engineering to the minimum. For each poselet, steucdtHOG fea-
tures from patches in the corresponding cluster and from randontiveegatches. Inspired by the
success of multiscale HOG features (Felzenszwalb et al., 2010), wefiggerd cell sizes when
computing HOG features for different parts. For example, we use cellg »fl2 pixel regions for
poselets of the whole body, and cells 0k2 for poselets of the upper/lower arm. This is moti-
vated by the fact that large body parts (e.g., whole body) are typicallyreptesented by coarse
shape information, while small body parts (e.g., half limb) are better repgezsby more detailed
information. We then train a linear SVM classifier for detecting the preseheaah poselet. The
learned SVM weights can be thought as a template for the poselet. Examplgad HOG tem-
plates for the “legs” poselets are shown as the last columns of Figurea?nites of poselets and
their corresponding HOG templates for other body parts are shown ineFsgur

A poselet of a primitive part contains two endpoints. For example, for elpbasf upper-left leg,
one endpoint corresponds to the joint between torso and upper-lethkegther one corresponds
to the joint between upper/lower left leg. We record the mean location (wilect$o the center
of the poselet image patch) of each endpoint. This information will be usaghivah parsing when
we need to infer the endpoints of a primitive part for a test image.

4. Human Parsing

In this section, we describe how to use hierarchical poselets in humangarée first develop an
undirected graphical model to represent the configuration of the huosn(Bection 4.1). We then
develop the inference algorithm for finding the best pose configuratitdmeimodel (Section 4.2)
and the algorithm for learning model parameters (Section 4.3) from traiitsg d

4.1 Model Formulation

We denote the complete configuration of a human pose-agl; } ;, wherekK is the total number
of parts (i.e.K =20 in our case). The configuration of each paid parametrized bl = (X, Vi, z).
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Figure 2: Examples of two poselets for the part “legs”. Each row cpomrds to a poselet. We

show several patches from the poselet cluster. The last column sheWOIB template
of the poselet.

X

whole body

rigid parts

Figure 3: Visualization of some poselets learned from different bodg parthe UIUC people data
set, including whole body, large parts (top to bottom: torso+left arm, legso-ttiead,
left arm), and rigid parts (top to bottom: upper/lower left arm, torso, uppeefideft leg,

head). For each poselet, we show two image patches from the cordasgpatuster and
the learned SVM HOG template.
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Here (x;,y;) defines the image location, amdis the index of the corresponding poselet for this
part, thatisz € {1,2,..., B}, where? is the number of poselets for tixh part. In this paper, we
assume the scale of the person is fixed and do not search over multipke staestraightforward
to augment; with other information, for example, scale and foreshortening.

The complete posk can be represented by a gragh= {7, £}, where a vertexc 7’ denotes
a part and an edgg@, j) € £ captures the constraint between parésd j. The structure ofj is
shown in Figure 1. We define the score of labeling an imagih the posd. as:

Z(pllil + Z qulalj (1)
eV (i,))eE
The details of the potential functions in Equation 1 are as follows.
Spatial prior (l;,1;): This potential function captures the compatibility of configurations of
parti and partj. Itis parametrized as:

(i, 1j) = |Jazb'n(xi_xiayi_yi)
7P
= z Z 11a(zi)]lb(zj)C‘i—;l—j;a;bbin(xi —Xj, Vi _yj)-
a=1b=1
Similar to Ramanan (2006), the function binis a vectorized count of spatial histogram bins. We
usella(-) to denote the function that takes 1 if its argument eqaadsd O otherwise. Her@.j.z;
is a model parameter that favors certain relative spatial bins when pogedetz; are chosen for
partsi and j, respectively. Overall, this potential function models the (relative) spatiahgement
and poselet assignment of a p@irj) of parts.
Local appearancey(li;1): This potential function captures the compatibility of placing the pose-
let z at the locatiorn(x;,y;) of an imagd. It is parametrized as:

(|.,|) |3|z. z|3|a ()7

wheref;.; is a vector of model parameters corresponding to the pogeded f (I (l;)) is a feature
vector corresponding to the image patch definedi bWwe definef (I(l;)) as a length® + 1 vector
as:

FL()) = [F(1(10)), f200(1)), - £ (1(1)), 1].

Each elemenf,(I(l;)) is the score of placing poselgt at image locatior(x;,yi). The constant 1
appended at the end of vector allows us to learn the model with a bias ternthelinveords, the
score of placing the poselgtat image locatiortx;, y;) is a linear combination (with bias term) of the
responses all the poselet templateg<aty; ) for parti. We have found that this feature vector works
better than the one used in Yang et al. (2010), which defiig$i)) as a scalar of a single poselet
template response. This is because the poselet templates learned fondgrguréit are usually not
independent of each other. So it helps to combine their responses asahadpearance model.

We summarize and highlight the important properties of our model and coalegwur re-
search by comparing with related work.

Discriminative “parts”: Our model is based on a new concept of “parts” which goes beyond the
traditional rigid parts. Rigid parts are inherently difficult to detect. We insteansider parts cov-
ering a wide range of portions of human bodies. We use poselets to cdfgtinetive appearance
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patterns of various parts. These poselets have better discriminativesitae traditional rigid part
detectors. For example, look at the examples in Figure 2 and Figure 3,4bkefsocapture various
characteristic patterns for large parts, such as the “A’-shape fordiarighe first row of Figure 2.

Coarse-to-fine granularityDifferent parts in our model are represented by features at varying
levels of detalils (i.e., cell sizes in HOG descriptors). Conceptually, this muti-granularity can
be seen as providing an efficient coarse-to-fine search strategyevdq it is very different from
the coarse-to-fine cascade pruning in Sapp et al. (2010b). The matBagp et al. (2010b) prunes
the search space of small parts (e.g., right lower arm) at the coarseitgnglsimple features and
apply more sophisticated features in the pruned search space. Howeweould like to argue that
at the coarse level, one should not even consider small parts, sincarthamherently difficult to
detect or prune at this level. Instead, we should focus on large batty $iace they are easy to
find at the coarse level. The configurations of large pieces of humarswail guide the search
of smaller parts. For example, an upright torso with arms raising up (céarskinformation) is a
very good indicator of where the arms (fine-level details) might be.

Structured hierarchical modelA final important property of our model is that we combine
information across different parts in a structured hierarchical wag drfginal work on poselets
(Bourdev and Malik, 2009; Bourdev et al., 2010) uses a simple Houtghgzecheme for person
detection, that is, each poselet votes for the center of the person, endtds are combined to-
gether. This Hough voting might be appropriate for person detectioit,ibutot enough for human
parsing which involves highly complex and structured outputs. Insteadjewelop a structured
model that organize information about different parts in a hierarchisdlion. Another work that
uses hierarchical models for human parsing is the AND-OR graph in Z&lu(@008). But there are
two important differences. First, the appearance models used in Zhu20@8) are only defined
on sub-parts of body segments. Their hierarchical model is only usad #ilphe small pieces to-
gether. As mentioned earlier, appearance models based on body segraéniterently unreliable.
In contrast, we use appearance models associated with parts of vargiegSecond, the OR-nodes
in Zhu et al. (2008) are conceptually similar to poselets in our case. ButRheddes in Zhu et al.
(2008) are defined manually, while our poselets are learned.

Our work on human parsing can be seen as bridging the gap between putapechools
of approaches for human parsing: part-based methods, and exdrap&-methods. Part-based
methods, as explained above, model the human body as a collection of nitgd Pplaey use local
part appearances to search for those parts in an image, and uses@itfigpriors to put these
pieces together in some plausible way. But since the configuration priorese tmethods are
typically defined as pairwise constraints between parts, these methodly lestlaany notion that
captures what a person should look like as a whole. In contrast, exebgsdad methods (Mori
and Malik, 2002; Shakhnarovich et al., 2003; Sullivan and Carlsda®)search for images with
similar whole body configurations, and transfer the poses of those welhgthtecaining images
to a new image. The limitation of exemplar-based approaches is that theyerggoid matching
of the entire body. They cannot handle test images of which the legs arerdindame training
images, while the arms are similar to other training images. Our work combinesrtetitbef both
schools. On one hand, we capture the large-scale information of hursarvigdarge parts. On the
other hand, we have the flexibility to compose new poses from differets. pa
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4.2 Inference

Given an imagé, the inference problem is to find the optimal pose labelihghat maximize the
scoreF (L, ), that is,L* = argmax F(L,l). We use the max-product version of belief propagation
to solve this problem. We pick the vertex corresponding to part “whole’baslyhe root and pass
messages upwards towards this root. The message fromtpats parentj is computed as:

m(l,-):mliax(u(l,-)+q1(li,|,-)), 2
u(lj) = <P(|j)+ke%sj”k(|j)~

Afterwards, we pass messages downward from the root to other eeirtigesimilar fashion. This
message passing scheme is repeated several times until it convergestethporarily ignore the
poselet indiceg; andz; and think ofl; = (x;,yi), we can represent the messages as 2D images and
pass messages using techniques similar to those in Ramanan (2006). Thei(hjaigeobtained
by summing together response images from its child payth ) and its local response imagd ).
@(lj) can be computed in linear time by convolving the HOG feature map with the templage of
The maximization in Equation 2 can also be calculated in time linear to the sigf pfin practice,
we compute messages on each fixadz;) and enumerate all the possible assignment&;of;)

to obtain the final message. Note that since the graph structure is not thisemessage passing
scheme does not guarantee to find the globally optimal solution. But empiria&lipave found
this approximate inference scheme to be sufficient for our application.

The inference gives us the image locations and poselet indices of all er@Qboth primitive
and non-primitive). To obtain the final parsing result, we need to computedh&ons of the two
endpoints for each primitive part. These can be obtained from the mepniahkbcations recorded
for each primitive part poselet (see Sec. 3).

Figure 4 shows a graphical illustration of applying our model on a test imkgeeach part
in the hierarchy, we show two sample patches and the SVM HOG template cordasg to the
poselet chosen for that part.

4.3 Learning

In order to describe the learning algorithm, we first write Equation 1 as & lineetion of a single
parameter vectar which is a concatenation of all the model parameters, that is:

F(L,1)=w'®(l,L), where
W= [aiij;aib; Bi;a]> \V/|, jaa7 ba
®(1,L) = [1a(2)1o(z))bin(x — xj, ¥ = ¥j); F(1(11))La(2)], i, ]j,a,b.
The inference scheme in Section 4.2 solies= argmaxw' ®(I,L). Given a set of training

images in the form of ", L”}r'}'zl, we learn the model parameteavsising a form of structural SVM
(Tsochantaridis et al., 2005) as follows:

1
min Z||w|[*+CS &", s.t.vn, VL: 3
nin Sl +CY & ©

w oI L") —w (1" L) > AL, L") —&". (4)
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Figure 4: A graphical illustration of applying our model on a test image. &ohn @art (please refer
to Figure 1), we show the inferred poselet by visualizing two sample pafobmsthe
corresponding poselet cluster and the SVM HOG template.

Consider a training image', the constraint in Equation 4 enforces the score of the true Labtel
be larger than the score of any other hypothesis Ialil some margin. The loss functidxiL, L")
measures how incorrettis compared withL.". Similar to regular SVMs§, are slack variables
used to handle soft margins. This formulation is often called margin-resaalithge SVM-struct
literature (Tsochantaridis et al., 2005).

We use aloss function that decomposes into a sum of local losses defieadropar\ (L, L") =
K 1 0i(Li, LM). If thei-th part is a primitive part, we define the local laséL;, L") as:

Ai(LiaLP):)\']l(zi#ﬁ)""d((xivyi)v(xinvyin))’ 5)

wherel(-) is an indicator function that takes 1 if its argument is true, and 0 otherwiseintiition

of Equation 5 is as follows. If the hypothesized poselas the same as the ground-truth poselet
Z" for thei-th part, the first term of Equation 5 will be zero. Otherwise it will incur a lagsve
choose\ = 10 in our experiments). The second term in Equaticah( 65, Vi), (X', yi')), measures the
distance (we ush distance) between two image locatidms y;) and (X, y!"). If the hypothesized
image locatior(x;, y;) is the same as the ground-truth image locatighy;") for thei-th part, no loss

is added. Otherwise a loss proportional to thdistance of these two locations will be incurred.

If the i-th part is not a primitive part, we simply s&{L;, L") to be zero. This choice is based on
the following observation. In our framework, non-primitive parts onlyseas some intermediate
representations that help us to search for and disambiguate small primitise Plae final human
parsing results are still obtained from configuratibnsf primitive parts. Even if a particular hy-
pothesized. gets one of its non-primitive part labeling wrong, it should not be penalzddng as
the labelings of primitive parts are correct.

The optimization problem in Equations (3,4) is convex and can be solvedthirgtting plane
method implemented in the SVM-struct package (Joachims et al., 2008). Howewopt to use a
simpler stochastic subgradient descent method to allow greater flexibility in tdrimgplementa-
tion.
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Figure 5: Human actions in static images. We show some sample images and tb&tiana on
the two data sets used in our experiments (see Section 6). Each image isehnitia
the action category and joints on the human body. It is clear from these e@thpt
static images convey a lot of information about human actions.

First, it is easy to show that Equations (3,4) can be equivalently written as:
min 2| wi[2+C'y (L)
w 2 4 ’
where R"(L) = mLax<A(L, L") +w (1", L) —w (", L”)).

In order to do gradient descent, we need to calculate the subgragi®A{L) at a particulam.
Let us define:

L* = arg mLa><<A(L,L”) +WT¢(|“,L)). (6)

Equation 6 is called loss-augmented inference (Joachims et al., 200&n hecshown that the
subgradiend,,® "(L) can be computed &R (L) = ®(I",L*) — d(I",L"). Since the loss function
A(L,L") can be decomposed into a sum over local losses on each individughpdass-augmented
inference in Equation 6 can be solved in a similar way to the inference probl8ection 4.2. The
only difference is that the local appearance maglgl 1) needs to be augmented with the local loss
functionA(L;, L}"). Interested readers are referred to Joachims et al. (2008) for rataiésd

5. Action Recognition

The hierarchical poselet is a representation general enough to déusany applications. In this
section, we demonstrate it in human action recognition from static images.

Look at the images depicted in Figure 5. We can easily perceive the acfipesple in those
images, even though only static images are given. So far most work in hustian eecognition
has been focusing on recognition from videos. While videos certainlyigeauseful cues (e.g.,
motion) for action recognition, the examples in Figure 5 clearly show that theniraition conveyed
by static images is also an important component of action recognition. In thes, pegconsider the
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problem of inferring human actions from static images. In particular, wengegested in exploiting
the human pose as a source of information for action recognition.

Several approaches have been proposed to address the probdtsticofmage action recog-
nition in the literature. The first is a standard pattern classification apprda&his, learning a
classifier based on certain image feature representations. For exakiglés;Cinbis et al. (2009)
learn SVM classifiers based on HOG descriptors. The limitation with this aplprisahat it com-
pletely ignores the pose of a person. Another limitation is that SVM classifiergitlypassume
that images from the same action category can be represented by a ehpariictype (which are
captured by the weights of the SVM classifier). However, the examples ind-ky clearly show
that humans can have very varied appearances when performingribeastion, which are hard to
characterize with a canonical prototype.

Another approach to static image action recognition is to explicitly recover tin@ahpose, then
use the pose as a feature representation for action recognition. Foplexd-errari et al. (2009)
estimate the 2D human pose in TV shots. The estimated 2D poses can be usedctofeatures
which in turn can be used to retrieve TV shots containing people with similasgosequery. As
point out in Yang et al. (2010), the problem with this approach is that 2Dampose estimation
is still a very challenging problem. The output of the state-of-the-art peienation system is
typically not reliable enough to be directly used for action recognition.

The work in Yang et al. (2010) is the closest to ours. It uses a rapasmn based on human
pose for action recognition. But instead of explicitly recovering the pegpise configuration, it
represents the human pose as a set of latent variables in the model. Theid mieds not require
the predicted human pose to be exactly correct. Instead, it learns winghooents of the pose are
useful for differentiating various actions.

The pose representation in Yang et al. (2010) is limited to four parts: Uqmaisy left/right arm,
and legs. Learning and inference in their model amounts to infer the beftjwations of these
four parts for a particular action. A limitation of this representation is that isam contain pose
information about larger (e.g., whole body) or smaller (e.g., half-limbs) pdéftsbelieve that pose
information useful for discerning actions can vary depending on éifteaction categories. Some
actions (e.g.running have distinctive pose characteristics in terms of both the upper and lower
bodies, while other actions (e.@ginting) are characterized by only one arm. The challenge is how
to represent the pose information at various levels of details for actiogmé@won.

In this section, we use hierarchical poselets to capture richer poseition for action recog-
nition. While a richer pose representation may offer more pose informatiss iflas), it must also
be harder to estimate accurately (more variance). In this paper, we deaterkat our rich pose
representation (even with higher variance) is useful for action rétogn

5.1 Action-Specific Hierarchical Poselets

Since our goal is action recognition, we choose to use an action-spexiénof the hierarchical
poselets. This is similar to the action-specific poselets used in Yang et a)(Z0ke difference

is that the action-specific poselets in Yang et al. (2010) are only defingstrirs of four parts—

left/right arms, upper-body, and legs. These four parts are orghimzestar-like graphical model.
In contrast, our pose representation captures a much wider rangeoghation across various
pieces of the human body. So ours is a much richer representation thgretyain (2010).

3086



DISCRIMINATIVE HIERARCHICAL PART-BASED MODELS

Figure 6: Examples of poselets for “playing golf”. For each poselet, isgalize several patches
from the corresponding cluster and the SVM HOG template. Notice the multisatle
of the poselets. These poselets cover various portions of the humais bdadiading the
whole body (1st row), both legs (2nd row), one arm (3nd row), éesypely.

The training images are labeled with ground-truth action categories and jairiteechuman
body (Figure 5). We use the following procedure to select poseletsdpedific part (e.glegs of
a particular action category (e.gunning). We first collect training images of that action category
(running). Then we cluster the joints on the padd9 into several clusters based on their relative
(x,y) coordinates with respect to some reference joint. Each cluster will pmmesto a “running
legs” poselet. We repeat this process for the part in other action categtm the end, we obtain
about 15 to 30 clusters for each part. Figures 6 and 7 show exampleseiéts for “playing golf”
and “running” actions, respectively.

Similarly, we train a classifier based on HOG features (Dalal and Trigdi5)20 detect the
presence of each poselet. Image patches in the corresponding mhsetet are used as positive
examples and random patches as negative examples for training thealaSsifiilar to the model
in Sec. 4, we use different cell sizes when constructing HOG featareffferent parts. Large cell
sizes are used for poselets of large body parts (e.g., whole body @), twhile small cell sizes
are used for small body parts (e.g., half limbs). Figure 6 and Figure 7 sbowe examples of the
learned SVM weights for some poselets.

5.2 Our Model

Let| be animage containing a persdhng 9 be its action label wherg' is the action label alphabet,

L be the pose configuration of the person. The complete pose configusatiemoted ak = {I; }K

(K =20 in our case), wherk = (x,Vi,z) represents the 2D image location and the index of the
corresponding poselet cluster for théh part. The complete podecan be represented by a graph
G ={%,E} shownin Figure 1. A vertee 7’ denotes théth partand an edgg, j) € E represents
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Figure 7: Examples of poselets for “running”. For each poselet, waliriseveral patches from
the corresponding cluster and the SVM HOG template. Similar to Figure 6, tbestefs
cover various portions of the human bodies

the spatial constraint between thth and thej-th parts. We define the following scoring function
to measure the compatibility of the trip{e,L,Y):

FOLLY)=av(D+ Y ev(11)+ 3 wr(lily). ()
ic? i,JEE
Here we use the subscript to explicitly emphasize that these functionsemiicsfor a particular
action label. The details of the potential functions in Equation 7 are as follows.
Root appearancey (1): This potential function models the compatibility of the action label
and the global appearance of an imagk is parametrized as:

(1) =ay - £(1). (8)

Here f(1) is a feature vector extracted from the whole imégeithout considering the pose. In
this paper, we use the HOG descriptor (Dalal and Triggs, 200bgasfthe feature vectdt(l). The
parametersty can be interpreted as a HOG template for the action categoryote that if we
only consider this potential function, the parametgus }yco can be obtained from the weights
of a multi-class linear SVM trained with HOG descriptdid ) alone without considering the pose
information.

Part appearancepy (1,1;): This potential function models the compatibility of the configuration
i of thei-th part and the local image patch definediby (x,Yi,z), under the assumption that the
action label isY. Since our goal is action recognition, we also enforce that the pagedabuld
comes from the actiol. In other words, if we definaY as the set of poselet indices for thth
part corresponding to the action categ¥rythis potential function is parametrized as:

L BN it ze Z
)= {—00 otherwise ©)

3088



DISCRIMINATIVE HIERARCHICAL PART-BASED MODELS

Here f(1,1;) is the score of placing the SVM HOG templatet location(x;,y;) in the imagd .

Pairwise part constraintp(li,l;): This potential function models the compatibility of the con-
figurations between thieth and thej-th parts, under the assumption that the action lab¥l igve
parametrize this potential function using a vectorized counts of spatial fastoins, similar to
Ramanan (2006); Yang et al. (2010). Again, we enforce posglatsiz; to come from actiorY as
follows:

T .bin(l —1:)  if z Y . Y.
wyai,lj):{yw Prlih) A e E €4 (10)
—oo otherwise

Here bir(-) is a vector all zeros with a single one for the occupied bin.

Note that if the potential functions and model parameters in Equations(7,8¢® 1@t depend
on the action labeY, the part appearangg-) and pairwise part constraigt(-) exactly recover the
human parsing model in Section 4.

5.3 Learning and Inference

We define the score of labeling an imdgeith the action labeY as follows:

H(1,Y) = maxF (1, L,Y). (11)

Given the model paramete®= {a,3,y}, Equation 11 is a standard MAP inference problem in
undirected graphical models. We can approximately solve it using mesaagiag scheme similar
to that in Section 4.2. The predicted action la¥éis chosen a¥* = argmax H(l,Y).

We adopt the latent SVM (Felzenszwalb et al., 2010) framework for ilegthe model parame-
ters. First, it is easy to see that Equation 7 can be written as a linear funttimsdel parameters as
F(I,L,Y) =0"®(I,L,Y), where@ is the concatenation of all the model parameters (el and
y) and®(l,L,Y) is the concatenation of the corresponding feature vectors. Givencd aining
examples in the form ofI",L" Y"}N_  the model parameters are learned by solving the following
optimization problem:

1

min Z||®|°+CY&", s.t.Vn, VY: 12

nin SO +C Y & (12)

HAMY™ —HI")Y) > A(Y,Y™) —&". (13)

It is easy to show that Equations (12,13) can be equivalently written as:

-1 5 n

- 14

min 5 |G| +C;R, (14)

where ®" = nerilx(A(Y,Y”) +or. q:(l”,Y)) —max@’ - o(1I"LY").

The problem in Equation 14 is not convex, but we can use simple stochastgradient descent
to find a local optimum. Let us define:

(Y*,L7) = argmaxA(Y,Y") + 0" - (1", L,Y)),

L' = arg rrla>(OT (I, L,YM).
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head + upper arm head + lower arm

Buffy UIUC people sportimages Buffy UIUC people sportimages

Figure 8: Scatter plots of heads (red) and upper/lower arms (blue aed)gwith respect to fixed
upper body position on three data sets.

Then the gradient of Equation 14 can be computed as:
O+CY (o™ L*Y*) - L' YN ).
> )

To initialize the parameter learning, we first learn a pose estimation model usrightbled
(I",L") collected from training examples with class lalbelThe parameters of these pose estimation
models are used to initialiZ& andyy,. The parametersy are initialized from a linear SVM model
based on HOG descriptors without considering the poses.

6. Experiments

In this section, we present our experimental results on human parsioto{sé.1) and action
recognition (Section 6.2).

6.1 Experiments on Human Parsing

There are several data sets popular in the human parsing communityafoplex Buffy data set

(Ferrari et al., 2008), PASCAL stickmen data set (Eichner and Fe2@09). But these data sets
are not suitable for us for several reasons. First of all, they onlyatonipper-bodies, but we are
interested in full-body parsing. Second, as pointed out in Tran ang/thof@010), there are very

few pose variations in those data sets. In fact, previous work has exploiseproperty of these data
sets by pruning search spaces using upper-body detection and setiomg(frerrari et al., 2008), or

by building appearance model using location priors (Eichner and Ee&@@9). Third, the contrast

of image frames of the Buffy data set is relatively low. This issue suggestbdéiter performance

can be achieved by engineering detectors to overcome the contrastliiéffic Please refer to the
discussion in Tran and Forsyth (2010) for more details. In our worlghve®se to use two data skets
containing very aggressive pose variations. The first one is the URd@lp data set introduced in
Tran and Forsyth (2010). The second one is a new sport image data bate collected from the

Internet which has been used in Wang et al. (2011). Figure 8 shaitesplots of different body

parts of our data sets compared with the Buffy data set (Ferrari et 8B) 2@ing a visualization

style similar to Tran and Forsyth (2010) . It is clear that the two data setsimsk paper have

much more variations.

1. Both data sets can be downloaded fiarhp: / / vi si on. ¢s. ui uc. edu/ humanpar se.
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“ours PS  IIP ours PS 1P ours PS P

Figure 9: Examples of human body parsing on the UIUC people data setoM{gace our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative ameays-
ing (IIP) (Ramanan, 2006). Notice the large pose variations, cluttergdybaund, self-
occlusions, and many other challenging aspects of the data set.

6.1.1 UIUC FEoPLEDATA SET

The UIUC people data set (Tran and Forsyth, 2010) contains 593 injad@g$or training, 247 for
testing). Most of them are images of people playing badminton. Some are iofgusEsple playing
Frisbee, walking, jogging or standing. Sample images and their parsiritsrasaishown in the first
three rows of Figure 9. We compare with two other state-of-the-art appes that do full-body
parsing (with published codes): the improved pictorial structure by Andrit al. (2009), and the
iterative parsing method by Ramanan (2006). The results are also sh&iguie 9.

To quantitatively evaluate different methods, we measure the percerftageectly localized
body parts. Following the convention proposed in Ferrari et al. (2008pdy part is considered
correctly localized if the endpoints of its segment lies within 50% of the grdwut-segment length
from their true locations. The comparative results are shown in TableQ(e)method outperforms
other approaches in localizing most of body parts. We also show the (8slitow, Table 1(a)) of
using only the basic-level poselets corresponding to the rigid parts. lkas that our full model
using hierarchical poselets outperforms using rigid parts alone.

Detection and parsingAn interesting aspect of our approach is that it produces not only the
configurations of primitive parts, but also the configurations of otheeldvgdy parts. These pieces
of information can potentially be used for applications (e.g., gesture-tb#S8dhat do not require
precise localizations of body segments. In Figure 10, we visualize thegooations of four larger
parts on some examples. Interestingly, the configuration of the whole liadylgd gives us a person
detector. So our model can be seen as a principled way of unifying huosgngstimation, person
detection, and many other areas related to understanding humans. Irsthewiof Table 2, we
show the results of person detection on the UIUC people data set by guonirhuman parsing
model, then picking the bounding box corresponding to the part “wholg’taithe detection. We
compare with the state-of-the-art person detectors in Felzenszwall§22H0) and Andriluka et al.
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Method Torso| Upperleg | Lowerleg | Upperarm | Forearm | Head
Ramanan (2006) 44,1 | 11,7 7.3 | 255 251|113 109|259 25| 30.8
Andriluka et al. (2009) | 70.9 | 37.3 35.6| 23.1 22.7| 22.3 30.0| 9.7 10.5| 59.1
Our method (basic-level) 79.4 | 53.8 53.4| 47.8 39.7| 17.8 21.1| 11.7 16.6| 65.2
Our method (full model)| 86.6 | 58.3 54.3| 53.8 46.6| 28.3 33.2| 23.1 17.4| 68.8
(a) UIUC people data set
Method Torso| Upperleg | Lowerleg | Upperarm| Forearm | Head
Ramanan (2006) 287 | 74 721|176 208 83 6.6 202 21| 129
Andriluka et al. (2009) | 71.5 | 442 43.1| 30.7 31| 28 29.6|17.3 15.3| 63.3
Our method (basic-level) 73.3 | 45.0 47.6| 40.4 39.9| 194 27.0| 13.3 99| 475
Our method (full model)| 75.3 | 50.1 48.2| 425 36.5| 23.3 27.1| 12.2 10.2| 47.5
(b) Sport image data set

Table 1: Human parsing results by our method and two comparison methodsn&sr2806; An-
driluka et al., 2009) on two data sets. The percentage of correctly lodgdents is shown
for each primitive part. If two numbers are shown in one cell, they indicatéeftieght
body parts. As a comparison, we also show the results of using only rigisl {teasic-
level).

wﬁ LT
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Figure 10: Examples of other information produced by our model. On eadeima show bound-
ing boxes corresponding to the whole body, left arm, right arm and lgssize of each
bounding box is estimated from its corresponding poselet cluster.

(2009). Since mostimages contain one person, we only consider théaeteith the best score on
an image for all the methods. We use the metric defined in the PASCAL VOC cpaltermeasure
the performance. A detection is considered correct if the intersectiaruoi@n with respect to the
ground truth bounding box is at least 50%. It is interesting to see that dhooheutperforms other
approaches, even though it is not designed for person detection.

Our method| Felzenszwalb et al. (201Q) Andriluka et al. (2009)
UIUC people 66.8 48.58 50.61
Sport image 63.94 45.61 59.94

Table 2: Comparison of accuracies of person detection on both datdrsets. method, the con-
figuration of the poselets corresponding to the whole body can be diresgtty/for person
detection.
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ours PS P ours PS  IIP ours PS P

Figure 11: Examples of human body parsing on the sport image data seoriig@aiee our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative enagsing
(IIP) (Ramanan, 2006).

6.1.2 ORTIMAGE DATA SET

The UIUC people data set is attractive because it has very aggressieeand spatial variations.
But one limitation of that data set is that it mainly contains images of people plagidigninton.
One might ask what happens if the images are more diverse. To answguésson, we have
collected a new sport image data set from more than 20 sport categodkslifig acrobatics,
American football, croquet, cycling, hockey, figure skating, soca#famd horseback riding. There
are in total 1299 images. We randomly choose 649 of them for training aneshéor testing.
The last three rows of Figure 9 show examples of human parsing resgigshéo with results of
Andriluka et al. (2009) and Ramanan (2006) on this data set. The quastitatinparison is shown
in Table 1(b). We can see that our approach outperforms the other tthe omajority of body parts.

Similarly, we perform person detection using the poselet correspondthg tehole body. The
results are shown in the second row of Table 2. Again, our method oatperther approaches.

6.1.3 KINEMATIC TRACKING

To further illustrate our method, we apply the model learned from the UlUsplpedata set for
kinematic tracking by independently parsing the human figure in each frarkégure 12, we show
our results compared with applying the method in Ramanan (2006). It is cteattlie results that
kinematic tracking is still a very challenging problem. Both methods make mistakesestingly,

when our method makes mistakes (e.qg., figures with blue arrows), the otiidabks like a valid

body configuration. But when the method in Ramanan (2006) makes mistaesfigures with

red arrows), the errors can be very wild. We believe this can be exdldipehe very different
representations used in these two methods. In Ramanan (2006), a hudyais bepresented by
the set of primitive parts. Kinematic constraints are used to enforce thecivity of those parts.
But these kinematic constraints have no idea what a person looks like asl@ winthe incorrect
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Figure 12: Examples of kinematic tracking on the baseball and figure skitagets. The 1st and
3rd rows are our results. The 2rd and 4th rows are results of Ramaf@@s)( Notice
how mistakes of our method (blue arrows) still look like valid human poses, Wike
of Ramanan (2006) (red arrows) can be wild.

results of Ramanan (2006), all the primitive parts are perfectly connedted problem is their
connectivity does not form a reasonable human pose as a whole.

In contrast, our model uses representations that capture a spectrinothofarge and small
body parts. Even in situations where the small primitive parts are hard tatdeteanethod can
still reason about the plausible pose configuration by pulling informatian fewge pieces of the
human bodies.

6.2 Experiments on Action Recognition

We test our approach on two publicly available data sets: the still images ddt&izer et al.,
2008) and the Leeds sport data set (Johnson and Everingham, Boi®)ata sets contain images
of people with ground-truth pose annotations and action labels.

6.2.1 SILL IMAGE DATA SET

We first demonstrate our model on the still image data set collected in Ikizlér (@088). This
data set contains more than 2000 static images from five action categomesglglaying golf,
running, sitting, and walking. Sample images are shown in the first two rofigofe 5. Yang et al.
(2010) have annotated the pose with 14 joints on the human body on all thesiinahe data set.
Following Yang et al. (2010), we choosg¢3lof the images from each category to form the training
data, and the remaining ones as the test Hlata.

2. A small number of images/annotations we obtained from the authorargf ¥t al. (2010) are somehow corrupted
due to some file-system failure. We have removed those images fromttheet.
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] method | overall | avg per-class

Our approach 65.15 70.77
Yang et al. (2010) | 63.49 68.37
SVM mixtures 62.8 64.05
Linear SVM 60.32 61.5

Table 3: Performance on the still image data set. We report both overabhardge per-class
accuraciesiThe results are based on our own implementation.
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Figure 13: Visualization of some inferred poselets on the still image data seseThst images
have been correctly recognized by our model. For a test image, we shemvpbselets
that have high responses. Each poselet is visualized by showingiseathes from its
cluster.

We compare our approach with two baseline method. The first baseline is actagfiiSVM
based on HOG features. For the second baseline, we use mixtures of®d®ls similar to that
in Felzenszwalb et al. (2010). We set the number of mixtures for each tddse the number of
whole-body poselets. From Table 3, we can see that our approactrfoutps the baseline by a
large margin. Our performance is also better than the reported resultsgretah (2010). However,
the accuracy numbers are not directly comparable since the training/teatmgets and features
are not completely identical. In order to do a fair comparison, we re-implemhénéemethod in
Yang et al. (2010) by only keeping the parts used in Yang et al. (2020).full model performs
better.

In Figure 13, we visualize several inferred poselets on some examptesewalation categories
are correctly classified. Each poselet is visualized by showing seetcies from the correspond-
ing poselet cluster.
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Figure 14: Visualization of some inferred poselets on the Leeds sporsdatd hese test images
have been correctly recognized by our model. For a test image, we shesvpbselets
that have high responses. Each poselet is visualized by showingiseathes from its
cluster.

| method | overall | avg per-classg
Our approach| 54.6 54.6
SVM mixtures| 52.7 49.13
Linear SVM 52.7 52.93

Table 4. Performance on the Leeds sport data set. We report bothllaued average per-class
accuracies.

6.2.2 LEEDSSPORTDATA SET

The Leeds sport data set (Johnson and Everingham, 2010) cor@@s2ages from eight different
sports: athletics, badminton, baseball, gymnastics, parkour, socads, teolleyball. Each image
in the data set is labeled with 14 joints on the human body. Sample images and thd jalmte
are shown in the last four rows of Figure 5. This data set is very chafigmiye to very aggressive
pose variations.

We choose half of the images for training, and the other half for testing. pEn@rmance
is shown in Table 4. Again, we compare with the HOG-based SVM and SVM retas the
baselines. We can see that our method still outperforms the baseline. Simianysualize the
inferred poselets on some examples in Figure 14.
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Figure 15: Visualization of inferred poses on unseen actions. Herectitngs of the test im-
ages American football croquetand field hockey are not available during training.
Our model recognizes these exampleslascing playing golf running respectively.
Some of the results (e.gcroquet— golfing make intuitive sense. Others (e.fpot-
ball—dancing might not be intuitive at first. But if we examine the poselets carefully,
we can see that various pieces of the football player are very similar te fbaad in
the dancing action.

6.2.3 UINSEENACTIONS

An interesting aspect of our model is that it outputs not only the predictezhdabel, but also some
rich intermediate representation (i.e., action-specific hierarchical pgsaleist the human pose.
This information can potentially be exploited in various contexts. As an examgeapply the
model learned from the still image data setiEscribeimages from sports categories not available
during training. In Figure 15, we show examples of applying the modeldeiiinom the still image
data set to images with unseen action categories. The action categaniesdan footballcroquet
andfield hockey for the examples in Figure 15 are disjoint from the action categories oftithe s
image data set. In this situation, our model obviously cannot correctly pthdiaction labels (since
they are not available during training). Instead, it classifies those imagg tine action labels it
has learned. For example, it classifies “American football” as “dancitgggquet” as “playing
golf”, “field hockey” as “running”. More importantly, our model outputegelets for various parts
which support its prediction. From these information, we can say a lott&American football”
even though the predicted action label is wrong. For example, we canisagtdser to “dancing”
than “playing golf” because the pose of the football player in the image is sitoizgrtain type of
dancing legs, and certain type of dancing arms.

7. Conclusion and Future Work

We have presented hierarchical poselets, a new representation felimgdtliman poses. Different
poselets in our representation capture human poses at various levedsofagity. Some poselets
correspond to the rigid parts typically used in previous work. Others @arspond to large pieces
of the human bodies. Poselets corresponding to different parts apizeg in a structured hier-
archical model. The advantage of this representation is that it infers tharhpose by pulling
information across various levels of details, ranging from the coarggeshiathe whole body, to
the fine-detailed information of small rigid parts. We have demonstrate the afpptis of this rep-
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resentation in human parsing and human action recognition from static imagesentfy, similar
ideas (Sun and Savarese, 2011) have been applied in other applicsticmas object detection.

As future work, we would like to explore how to automatically construct thespand the
hierarchy using data-driven methods. This will be important in order taoneMteerarchical poselets
to other objects (e.g., birds) that do not have obvious kinematic strucivieealso like to apply the
hierarchical poselet representation to other vision tasks, such asrsagjore
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