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Abstract

We consider the problem of parsing human poses and recognizing their actions in static images
with part-based models. Most previous work in part-based models only considers rigid parts (e.g.,
torso, head, half limbs) guided by human anatomy. We argue that this representation of parts is not
necessarily appropriate. In this paper, we introduce hierarchical poselets—a new representation for
modeling the pose configuration of human bodies. Hierarchical poselets can be rigid parts, but they
can also be parts that cover large portions of human bodies (e.g., torso + left arm). In the extreme
case, they can be the whole bodies. The hierarchical poselets are organized in a hierarchical way
via a structured model. Human parsing can be achieved by inferring the optimal labeling of this
hierarchical model. The pose information captured by this hierarchical model can also be used as a
intermediate representation for other high-level tasks. We demonstrate it in action recognition from
static images.

Keywords: human parsing, action recognition, part-based models, hierarchical poselets, max-
margin structured learning

1. Introduction

Modeling human bodies (or articulated objects in general) in images is a long-lasting problem in
computer vision. Compared with rigid objects (e.g., faces and cars) which can be reasonably mod-
eled using several prototypical templates, human bodies are much more difficult to model due to the
wide variety of possible pose configurations.

A promising solution for dealing with the pose variations is to use part-based models. Part-based
representations, such as cardboard people (Ju et al., 1996) or pictorial structure (Felzenszwalb and
Huttenlocher, 2005), provide an elegant framework for modeling articulated objects, such as human
bodies. A part-based model represents the human body as a constellation of a set of rigid parts (e.g.,
torso, head, half limbs) constrained in some fashion. The typical constraints used are tree-structured
kinematic constraints between adjacent body parts, for example, torso-upper half-limb connection,
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or upper-lower half-limb connection. Part-based models consist of two important components: (1)
part appearances specifying what each body part should look like in the image; (2) configuration
priors specifying how parts should be arranged relative to each other.Part-based models have been
used extensively in various computer vision applications involving humans, such as human parsing
(Felzenszwalb and Huttenlocher, 2005; Ramanan, 2006), kinematic tracking (Ramanan et al., 2005),
action recognition (Yang et al., 2010) and human-object interaction (Yao and Fei-Fei, 2010).

Considerable progress has been made to improve part-based models. Forexample, there has
been a line of work on using better appearance models in part-based models. A representative exam-
ple is the work by Ramanan (2006), who learns color histograms of parts from an initial edge-based
model. Ferrari et al. (2008) and Eichner and Ferrari (2009) further improve the part appearance
models by reducing the search space using various tricks, for example, the relative locations of part
locations with respect to a person detection and the relationship between different part appearances
(e.g., upper-arm and torso tend to have the same color), Andriluka et al. (2009) build better edge-
based appearance models using the HOG descriptors (Dalal and Triggs,2005). Sapp et al. (2010b)
develop efficient inference algorithm to allow the use of more expensive features. There is also
work (Johnson and Everingham, 2009; Mori et al., 2004; Mori, 2005;Srinivasan and Shi, 2007)
on using segmentation as a pre-processing step to provide better spatial support for computing part
appearances.

Another line of work is on improving configuration priors in part-based models. Most of them
focus on developing representations and fast inference algorithms thatby-pass the limitations of
kinematic tree-structured spatial priors in standard pictorial structure models. Examples include
common-factor models (Lan and Huttenlocher, 2005), loopy graphs (Jiang and Martin, 2008; Ren
et al., 2005; Tian and Sclaroff, 2010; Tran and Forsyth, 2010), mixtures of trees (Wang and Mori,
2008). There is also work on building spatial priors that adapt to testing examples (Sapp et al.,
2010a).

Most of the previous work on part-based models use rigid parts that are anatomically meaning-
ful, for example, torso, head, half limbs. Those rigid parts are usually represented as rectangles
(e.g., Andriluka et al. 2009; Felzenszwalb and Huttenlocher 2005; Ramanan 2006; Ren et al. 2005;
Sigal and Black 2006; Wang and Mori 2008) or parallel lines (e.g., Ren et al. 2005). However, as
pointed out by some recent work (Bourdev and Malik, 2009; Bourdev et al., 2010), rigid parts are
not necessarily the best representation since rectangles and parallel lines are inherently difficult to
detect in natural images.

In this paper, we introduce a presentation of parts inspired by the early work of Marr (1982).
The work in Marr (1982) recursively represents objects as generalized cylinders in a coarse-to-fine
hierarchical fashion. In this paper, we extend Marr’s idea for two problems in the general area of
“looking at people”. The first problem is human parsing, also known as human pose estimation. The
goal is to find the location of each body part (torso, head, limbs) of a person in a static image. We
use a part-based approach for human parsing. The novelty of our work is that our notion of “parts”
can range from basic rigid parts (e.g., torso, head, half-limb), to large pieces of bodies covering
more than one rigid part (e.g., torso + left arm). In the extreme case, we have “parts” corresponding
to the whole body. We propose a new representation called “hierarchicalposelets” to capture this
hierarchy of parts. We infer the human pose using this hierarchical representation.

The hierarchical poselet also provides rich information about body poses that can be used in
other applications. To demonstrate this, we apply it to recognize human action instatic images.
In this application, we use hierarchical poselets to capture various pose information of the human
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body, this information is further used as some intermediate representation to infer the action of the
person.

A preliminary version of this work appeared in Wang et al. (2011). We organize the rest of the
paper as follows. Section 2 reviews previous work in human parsing and action recognition. Section
3 introduces hierarchical poselet, a new representation for modeling human body configurations.
Section 4 describes how to use hierarchical poselets for human parsing.Section 5 develops variants
of hierarchical poselets for recognizing human action in static images. We present experimental
results on human parsing and action recognition in Section 6 and conclude in Section 7.

2. Previous Work

Finding and understanding people from images is a very active area in computer vision. In this
section, we briefly review previous work in human parsing and action recognition that is most
related to our work.

Human parsing:Early work related to finding people from images is in the setting of detecting
and tracking people with kinematic models in both 2D and 3D. Forsyth et al. (2006) provide an
extensive survey of this line of work.

Recent work has examined the problem in static images. Some of these approaches are exemplar-
based. For example, Toyama and Blake (2001) track people using 2D exemplars. Mori and Malik
(2002) and Sullivan and Carlsson (2002) estimate human poses by matchingpre-stored 2D tem-
plates with marked ground-truth 2D joint locations. Shakhnarovich et al. (2003) use local sensitive
hashing to allow efficient matching when the number of exemplars is large.

Part-based models are becoming increasingly popular in human parsing. Early work includes
the cardboard people (Ju et al., 1996) and the pictorial structure (Felzenszwalb and Huttenlocher,
2005). Tree-structured models are commonly used due to its efficiency. But there are also methods
that try to alleviate the limitation of tree-structured models, include common-factor models (Lan
and Huttenlocher, 2005), loopy graphs (Jiang and Martin, 2008; Ren et al., 2005; Tian and Sclaroff,
2010; Tran and Forsyth, 2010), mixtures of trees (Wang and Mori, 2008).

Many part-based models use discriminative learning to train the model parameters. Examples
include the conditional random fields (Ramanan and Sminchisescu, 2006; Ramanan, 2006), max-
margin learning (Kumar et al., 2009; Wang et al., 2011; Yang and Ramanan,2011) and boosting
(Andriluka et al., 2009; Sapp et al., 2010b; Singh et al., 2010). Previous approaches have also ex-
plored various features, including image segments (superpixels) (Johnson and Everingham, 2009;
Mori et al., 2004; Mori, 2005; Sapp et al., 2010a,b; Srinivasan and Shi, 2007), color features (Ra-
manan, 2006; Ferrari et al., 2008), gradient features (Andriluka etal., 2009; Johnson and Evering-
ham, 2010; Wang et al., 2011; Yang and Ramanan, 2011).

Human action recognition:Most of the previous work on human action recognition focuses on
videos. Some work (Efros et al., 2003) uses global template for action recognition. A lot of recent
work (Dollár et al., 2005; Laptev et al., 2008; Niebles et al., 2006) uses bag-of-words models. There
is also work (Ke et al., 2007; Niebles and Fei-Fei, 2007) using part-based models.

Compared with videos, human action recognition from static images is a relativelyless-studied
area. Wang et al. (2006) provide one of the earliest examples of action recognition in static images.
Recently, template models (Ikizler-Cinbis et al., 2009), bag-of-words models(Delaitre et al., 2010),
part-based models (Delaitre et al., 2010; Yang et al., 2010) have all beenproposed for static-image
action recognition. There is also a line of work on using contexts for action recognition in static
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images, including human-object context (Desai et al., 2010; Gupta et al., 2009; Yao and Fei-Fei,
2010) and group context (Lan et al., 2010; Maji et al., 2011).

3. Hierarchical Poselets

Our pose representation is based on the concept of “poselet” introduced in Bourdev and Malik
(2009). In a nutshell, poselets refer to pieces of human poses that are tightly clustered in both
appearance and configuration spaces. Poselets have been shown to be effective at person detection
(Bourdev and Malik, 2009; Bourdev et al., 2010).

In this paper, we propose a new representation calledhierarchical poselets. Hierarchical pose-
lets extend the original poselets in several important directions to make them more appropriate for
human parsing. We start by highlighting the important properties of our representation.

Beyond rigid “parts”: Most of the previous work in part-based human modeling are based on
the notion that the human body can be modeled as a set of rigid parts connected in some way. Almost
all of them use a natural definition of parts (e.g., torso, head, upper/lower limbs) corresponding to
body segments, and model those parts as rectangles, parallel lines, or other primitive shapes.

As pointed out by Bourdev and Malik (2009), this natural definition of “parts” fails to acknowl-
edge the fact that rigid parts are not necessarily the most salient features for visual recognition. For
example, rectangles and parallel lines can be found as limbs, but they can also be easily confused
with windows, buildings, and other objects in the background. So it is inherently difficult to build
reliable detectors for those parts. On the other hand, certain visual patterns covering large portions
of human bodies, for example, “a torso with the left arm raising up” or “legsin lateral pose”, are
much more visually distinctive and easier to identify. This phenomenon was observed even prior to
the work of poselet and was exploited to detect stylized human poses and build appearance models
for kinematic tracking (Ramanan et al., 2005).

Multiscale hierarchy of “parts”: Another important property of our representation is that we
define “parts” at different levels of hierarchy to cover pieces of human poses at various granularity,
ranging from the configuration of the whole body, to small rigid parts. In particular, we define 20
parts to represent the human pose and organize them in a hierarchy shown in Figure 1. To avoid
terminological confusion, we will use “part” to denote one of the 20 parts in Figure 1 and use
“primitive part” to denote rigid body parts (i.e., torso, head, half limbs) from now on.

In this paper, we choose the 20 parts and the hierarchical structure in Figure 1 manually. Of
course, it is possible to define parts corresponding to other combinations of body segments, for
example, left part of the whole body. It may also be possible to learn the connectivity of parts au-
tomatically from data, for example, using structure learning methods (Koller and Friedman, 2009).
We would like to leave these issues as future work.

We use a procedure similar to Yang et al. (2010) to select poselets for each part. First, we cluster
the joints on each part into several clusters based on their relativex andy coordinates with respect
to some reference joint of that part. For example, for the part “torso”, we choose the middle-top
joint as the reference and compute the relative coordinates of all the otherjoints on the torso with
respect to this reference joint. The concatenation of all those coordinates will be the vector used for
clustering. We run K-means clustering on the vectors collected from all training images and remove
clusters that are too small. Similarly, we obtain the clusters for all the other parts. In the end, we
obtain 5 to 20 clusters for each part. Based on the clustering, we crop the corresponding patches
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Figure 1: An illustration of the hierarchical pose representation. The black edges indicate the con-
nectivity among different parts.

from the images and form a set of poselets for that part. Figure 2 shows examples of two different
poselets for the part “legs”.

Our focus is the new representation, so we use standard HOG descriptors (Dalal and Triggs,
2005) to keep the feature engineering to the minimum. For each poselet, we construct HOG fea-
tures from patches in the corresponding cluster and from random negative patches. Inspired by the
success of multiscale HOG features (Felzenszwalb et al., 2010), we use different cell sizes when
computing HOG features for different parts. For example, we use cells of12×12 pixel regions for
poselets of the whole body, and cells of 2× 2 for poselets of the upper/lower arm. This is moti-
vated by the fact that large body parts (e.g., whole body) are typically well-represented by coarse
shape information, while small body parts (e.g., half limb) are better represented by more detailed
information. We then train a linear SVM classifier for detecting the presence of each poselet. The
learned SVM weights can be thought as a template for the poselet. Examples ofseveral HOG tem-
plates for the “legs” poselets are shown as the last columns of Figure 2. Examples of poselets and
their corresponding HOG templates for other body parts are shown in Figure 3.

A poselet of a primitive part contains two endpoints. For example, for a poselet of upper-left leg,
one endpoint corresponds to the joint between torso and upper-left leg, the other one corresponds
to the joint between upper/lower left leg. We record the mean location (with respect to the center
of the poselet image patch) of each endpoint. This information will be used in human parsing when
we need to infer the endpoints of a primitive part for a test image.

4. Human Parsing

In this section, we describe how to use hierarchical poselets in human parsing. We first develop an
undirected graphical model to represent the configuration of the human pose (Section 4.1). We then
develop the inference algorithm for finding the best pose configuration inthe model (Section 4.2)
and the algorithm for learning model parameters (Section 4.3) from training data.

4.1 Model Formulation

We denote the complete configuration of a human pose asL = {l i}K
i=1, whereK is the total number

of parts (i.e.,K = 20 in our case). The configuration of each partl i is parametrized byl i = (xi ,yi ,zi).
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Figure 2: Examples of two poselets for the part “legs”. Each row corresponds to a poselet. We
show several patches from the poselet cluster. The last column shows the HOG template
of the poselet.

large partswhole body rigid parts

Figure 3: Visualization of some poselets learned from different body parts on the UIUC people data
set, including whole body, large parts (top to bottom: torso+left arm, legs, torso+head,
left arm), and rigid parts (top to bottom: upper/lower left arm, torso, upper/lower left leg,
head). For each poselet, we show two image patches from the corresponding cluster and
the learned SVM HOG template.
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Here (xi ,yi) defines the image location, andzi is the index of the corresponding poselet for this
part, that is,zi ∈ {1,2, ...,Pi}, wherePi is the number of poselets for thei-th part. In this paper, we
assume the scale of the person is fixed and do not search over multiple scales. It is straightforward
to augmentl i with other information, for example, scale and foreshortening.

The complete poseL can be represented by a graphG = {V ,E}, where a vertexi ∈ V denotes
a part and an edge(i, j) ∈ E captures the constraint between partsi and j. The structure ofG is
shown in Figure 1. We define the score of labeling an imageI with the poseL as:

F(L, I) = ∑
i∈V

φ(l i ; I)+ ∑
(i, j)∈E

ψ(l i , l j). (1)

The details of the potential functions in Equation 1 are as follows.
Spatial prior ψ(l i , l j): This potential function captures the compatibility of configurations of

part i and partj. It is parametrized as:

ψ(l i , l j) = α⊤
i; j;zi ;zj

bin(xi −x j ,yi −y j)

=
Pi

∑
a=1

P j

∑
b=1

1a(zi)1b(zj)α⊤
i; j;a;bbin(xi −x j ,yi −y j).

Similar to Ramanan (2006), the function bin(·) is a vectorized count of spatial histogram bins. We
use1a(·) to denote the function that takes 1 if its argument equalsa, and 0 otherwise. Hereαi; j;zi ;zj

is a model parameter that favors certain relative spatial bins when poseletszi andzj are chosen for
partsi and j, respectively. Overall, this potential function models the (relative) spatialarrangement
and poselet assignment of a pair(i, j) of parts.

Local appearanceφ(l i ; I): This potential function captures the compatibility of placing the pose-
let zi at the location(xi ,yi) of an imageI . It is parametrized as:

φ(l i ; I) = β⊤
i;zi

f (I(l i)) =
Pi

∑
a=1

β⊤
i;a f (I(l i)) ·1a(zi),

whereβi;zi is a vector of model parameters corresponding to the poseletzi and f (I(l i)) is a feature
vector corresponding to the image patch defined byl i . We definef (I(l i)) as a lengthPi +1 vector
as:

f (I(l i)) = [ f1(I(l i)), f2(I(l i)), ..., fPi(I(l i)),1].

Each elementfr(I(l i)) is the score of placing poseletzr at image location(xi ,yi). The constant 1
appended at the end of vector allows us to learn the model with a bias term. In other words, the
score of placing the poseletzi at image location(xi ,yi) is a linear combination (with bias term) of the
responses all the poselet templates at(xi ,yi) for part i. We have found that this feature vector works
better than the one used in Yang et al. (2010), which definesf (I(l i)) as a scalar of a single poselet
template response. This is because the poselet templates learned for a particular part are usually not
independent of each other. So it helps to combine their responses as the local appearance model.

We summarize and highlight the important properties of our model and contextualize our re-
search by comparing with related work.

Discriminative “parts”: Our model is based on a new concept of “parts” which goes beyond the
traditional rigid parts. Rigid parts are inherently difficult to detect. We insteadconsider parts cov-
ering a wide range of portions of human bodies. We use poselets to capturedistinctive appearance
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patterns of various parts. These poselets have better discriminative powers than traditional rigid part
detectors. For example, look at the examples in Figure 2 and Figure 3, the poselets capture various
characteristic patterns for large parts, such as the “A”-shape for the legs in the first row of Figure 2.

Coarse-to-fine granularity:Different parts in our model are represented by features at varying
levels of details (i.e., cell sizes in HOG descriptors). Conceptually, this multi-level granularity can
be seen as providing an efficient coarse-to-fine search strategy. However, it is very different from
the coarse-to-fine cascade pruning in Sapp et al. (2010b). The methodin Sapp et al. (2010b) prunes
the search space of small parts (e.g., right lower arm) at the coarse levelusing simple features and
apply more sophisticated features in the pruned search space. However, we would like to argue that
at the coarse level, one should not even consider small parts, since theyare inherently difficult to
detect or prune at this level. Instead, we should focus on large body parts since they are easy to
find at the coarse level. The configurations of large pieces of human bodies will guide the search
of smaller parts. For example, an upright torso with arms raising up (coarse-level information) is a
very good indicator of where the arms (fine-level details) might be.

Structured hierarchical model:A final important property of our model is that we combine
information across different parts in a structured hierarchical way. The original work on poselets
(Bourdev and Malik, 2009; Bourdev et al., 2010) uses a simple Hough voting scheme for person
detection, that is, each poselet votes for the center of the person, and the votes are combined to-
gether. This Hough voting might be appropriate for person detection, butit is not enough for human
parsing which involves highly complex and structured outputs. Instead, wedevelop a structured
model that organize information about different parts in a hierarchical fashion. Another work that
uses hierarchical models for human parsing is the AND-OR graph in Zhu etal. (2008). But there are
two important differences. First, the appearance models used in Zhu et al.(2008) are only defined
on sub-parts of body segments. Their hierarchical model is only used to put all the small pieces to-
gether. As mentioned earlier, appearance models based on body segmentsare inherently unreliable.
In contrast, we use appearance models associated with parts of varying sizes. Second, the OR-nodes
in Zhu et al. (2008) are conceptually similar to poselets in our case. But the OR-nodes in Zhu et al.
(2008) are defined manually, while our poselets are learned.

Our work on human parsing can be seen as bridging the gap between two popular schools
of approaches for human parsing: part-based methods, and exemplar-based methods. Part-based
methods, as explained above, model the human body as a collection of rigid parts. They use local
part appearances to search for those parts in an image, and use configuration priors to put these
pieces together in some plausible way. But since the configuration priors in these methods are
typically defined as pairwise constraints between parts, these methods usually lack any notion that
captures what a person should look like as a whole. In contrast, exemplar-based methods (Mori
and Malik, 2002; Shakhnarovich et al., 2003; Sullivan and Carlsson, 2002) search for images with
similar whole body configurations, and transfer the poses of those well-matched training images
to a new image. The limitation of exemplar-based approaches is that they require good matching
of the entire body. They cannot handle test images of which the legs are similar to some training
images, while the arms are similar to other training images. Our work combines the benefits of both
schools. On one hand, we capture the large-scale information of human pose via large parts. On the
other hand, we have the flexibility to compose new poses from different parts.
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4.2 Inference

Given an imageI , the inference problem is to find the optimal pose labelingL∗ that maximize the
scoreF(L, I), that is,L∗ = argmaxL F(L, I). We use the max-product version of belief propagation
to solve this problem. We pick the vertex corresponding to part “whole body” as the root and pass
messages upwards towards this root. The message from parti to its parentj is computed as:

mi(l j) = max
l i

(u(l j)+ψ(l i , l j)), (2)

u(l j) = φ(l j)+ ∑
k∈kidsj

mk(l j).

Afterwards, we pass messages downward from the root to other vertices in a similar fashion. This
message passing scheme is repeated several times until it converges. If we temporarily ignore the
poselet indiceszi andzj and think ofl i = (xi ,yi), we can represent the messages as 2D images and
pass messages using techniques similar to those in Ramanan (2006). The imageu(l j) is obtained
by summing together response images from its child partsmk(l j) and its local response imageφ(l j).
φ(l j) can be computed in linear time by convolving the HOG feature map with the template ofzj .
The maximization in Equation 2 can also be calculated in time linear to the size ofu(l j). In practice,
we compute messages on each fixed(zi ,zj) and enumerate all the possible assignments of(zi ,zj)
to obtain the final message. Note that since the graph structure is not a tree,this message passing
scheme does not guarantee to find the globally optimal solution. But empirically,we have found
this approximate inference scheme to be sufficient for our application.

The inference gives us the image locations and poselet indices of all the 20parts (both primitive
and non-primitive). To obtain the final parsing result, we need to compute thelocations of the two
endpoints for each primitive part. These can be obtained from the mean endpoint locations recorded
for each primitive part poselet (see Sec. 3).

Figure 4 shows a graphical illustration of applying our model on a test image.For each part
in the hierarchy, we show two sample patches and the SVM HOG template corresponding to the
poselet chosen for that part.

4.3 Learning

In order to describe the learning algorithm, we first write Equation 1 as a linear function of a single
parameter vectorw which is a concatenation of all the model parameters, that is:

F(L, I) = w⊤Φ(I ,L), where

w= [αi; j;a;b;βi;a], ∀i, j,a,b,

Φ(I ,L) = [1a(zi)1b(zj)bin(xi −x j ,yi −y j); f (I(l i))1a(zi)], ∀i, j,a,b.

The inference scheme in Section 4.2 solvesL∗ = argmaxL w⊤Φ(I ,L). Given a set of training
images in the form of{In,Ln}N

n=1, we learn the model parametersw using a form of structural SVM
(Tsochantaridis et al., 2005) as follows:

min
w,ξ

1
2
||w||2+C∑

n
ξn, s.t. ∀n, ∀L : (3)

w⊤Φ(In,Ln)−w⊤Φ(In,L)≥ ∆(L,Ln)−ξn. (4)
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Figure 4: A graphical illustration of applying our model on a test image. For each part (please refer
to Figure 1), we show the inferred poselet by visualizing two sample patchesfrom the
corresponding poselet cluster and the SVM HOG template.

Consider a training imageIn, the constraint in Equation 4 enforces the score of the true labelLn to
be larger than the score of any other hypothesis labelL by some margin. The loss function∆(L,Ln)
measures how incorrectL is compared withLn. Similar to regular SVMs,ξn are slack variables
used to handle soft margins. This formulation is often called margin-rescalingin the SVM-struct
literature (Tsochantaridis et al., 2005).

We use a loss function that decomposes into a sum of local losses defined on each part∆(L,Ln)=

∑K
i=1 ∆i(Li ,Ln

i ). If the i-th part is a primitive part, we define the local loss∆i(Li ,Ln
i ) as:

∆i(Li ,L
n
i ) = λ ·1(zi 6= zn

i )+d((xi ,yi),(x
n
i ,y

n
i )), (5)

where1(·) is an indicator function that takes 1 if its argument is true, and 0 otherwise. The intuition
of Equation 5 is as follows. If the hypothesized poseletzi is the same as the ground-truth poselet
zn
i for the i-th part, the first term of Equation 5 will be zero. Otherwise it will incur a lossλ (we

chooseλ = 10 in our experiments). The second term in Equation 5,d((xi ,yi),(xn
i ,y

n
i )), measures the

distance (we usel1 distance) between two image locations(xi ,yi) and(xn
i ,y

n
i ). If the hypothesized

image location(xi ,yi) is the same as the ground-truth image location(xn
i ,y

n
i ) for thei-th part, no loss

is added. Otherwise a loss proportional to thel1 distance of these two locations will be incurred.
If the i-th part is not a primitive part, we simply set∆(Li ,Ln

i ) to be zero. This choice is based on
the following observation. In our framework, non-primitive parts only serve as some intermediate
representations that help us to search for and disambiguate small primitive parts. The final human
parsing results are still obtained from configurationsl i of primitive parts. Even if a particular hy-
pothesizedL gets one of its non-primitive part labeling wrong, it should not be penalizedas long as
the labelings of primitive parts are correct.

The optimization problem in Equations (3,4) is convex and can be solved usingthe cutting plane
method implemented in the SVM-struct package (Joachims et al., 2008). However we opt to use a
simpler stochastic subgradient descent method to allow greater flexibility in termsof implementa-
tion.
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dancing playing golf running sitting walking

athletics badminton baseball gymnastics parkour soccer tennis volleyball

Figure 5: Human actions in static images. We show some sample images and their annotations on
the two data sets used in our experiments (see Section 6). Each image is annotated with
the action category and joints on the human body. It is clear from these examples that
static images convey a lot of information about human actions.

First, it is easy to show that Equations (3,4) can be equivalently written as:

min
w

1
2
||w||2+C∑

n
R n(L),

where R n(L) = max
L

(

∆(L,Ln)+w⊤Φ(In,L)−w⊤Φ(In,Ln)
)

.

In order to do gradient descent, we need to calculate the subgradient∂wR n(L) at a particularw.
Let us define:

L⋆ = argmax
L

(

∆(L,Ln)+w⊤Φ(In,L)
)

. (6)

Equation 6 is called loss-augmented inference (Joachims et al., 2008). It can be shown that the
subgradient∂wR n(L) can be computed as∂wR (L) = Φ(In,L⋆)−Φ(In,Ln). Since the loss function
∆(L,Ln) can be decomposed into a sum over local losses on each individual part,the loss-augmented
inference in Equation 6 can be solved in a similar way to the inference problemin Section 4.2. The
only difference is that the local appearance modelφ(l i ; I) needs to be augmented with the local loss
function∆(Li ,Ln

i ). Interested readers are referred to Joachims et al. (2008) for more details.

5. Action Recognition

The hierarchical poselet is a representation general enough to be used in many applications. In this
section, we demonstrate it in human action recognition from static images.

Look at the images depicted in Figure 5. We can easily perceive the actions of people in those
images, even though only static images are given. So far most work in human action recognition
has been focusing on recognition from videos. While videos certainly provide useful cues (e.g.,
motion) for action recognition, the examples in Figure 5 clearly show that the information conveyed
by static images is also an important component of action recognition. In this paper, we consider the
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problem of inferring human actions from static images. In particular, we areinterested in exploiting
the human pose as a source of information for action recognition.

Several approaches have been proposed to address the problem ofstatic image action recog-
nition in the literature. The first is a standard pattern classification approach, that is, learning a
classifier based on certain image feature representations. For example, Ikizler-Cinbis et al. (2009)
learn SVM classifiers based on HOG descriptors. The limitation with this approach is that it com-
pletely ignores the pose of a person. Another limitation is that SVM classifiers implicitly assume
that images from the same action category can be represented by a canonical prototype (which are
captured by the weights of the SVM classifier). However, the examples in Figure 5 clearly show
that humans can have very varied appearances when performing the same action, which are hard to
characterize with a canonical prototype.

Another approach to static image action recognition is to explicitly recover the human pose, then
use the pose as a feature representation for action recognition. For example, Ferrari et al. (2009)
estimate the 2D human pose in TV shots. The estimated 2D poses can be used to extract features
which in turn can be used to retrieve TV shots containing people with similar poses to a query. As
point out in Yang et al. (2010), the problem with this approach is that 2D human pose estimation
is still a very challenging problem. The output of the state-of-the-art poseestimation system is
typically not reliable enough to be directly used for action recognition.

The work in Yang et al. (2010) is the closest to ours. It uses a representation based on human
pose for action recognition. But instead of explicitly recovering the precise pose configuration, it
represents the human pose as a set of latent variables in the model. Their method does not require
the predicted human pose to be exactly correct. Instead, it learns which components of the pose are
useful for differentiating various actions.

The pose representation in Yang et al. (2010) is limited to four parts: upperbody, left/right arm,
and legs. Learning and inference in their model amounts to infer the best configurations of these
four parts for a particular action. A limitation of this representation is that it does not contain pose
information about larger (e.g., whole body) or smaller (e.g., half-limbs) parts. We believe that pose
information useful for discerning actions can vary depending on different action categories. Some
actions (e.g.,running) have distinctive pose characteristics in terms of both the upper and lower
bodies, while other actions (e.g.,pointing) are characterized by only one arm. The challenge is how
to represent the pose information at various levels of details for action recognition.

In this section, we use hierarchical poselets to capture richer pose information for action recog-
nition. While a richer pose representation may offer more pose information (less bias), it must also
be harder to estimate accurately (more variance). In this paper, we demonstrate that our rich pose
representation (even with higher variance) is useful for action recognition.

5.1 Action-Specific Hierarchical Poselets

Since our goal is action recognition, we choose to use an action-specific variant of the hierarchical
poselets. This is similar to the action-specific poselets used in Yang et al. (2010). The difference
is that the action-specific poselets in Yang et al. (2010) are only defined interms of four parts—
left/right arms, upper-body, and legs. These four parts are organized in a star-like graphical model.
In contrast, our pose representation captures a much wider range of information across various
pieces of the human body. So ours is a much richer representation than Yang et al. (2010).
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Figure 6: Examples of poselets for “playing golf”. For each poselet, we visualize several patches
from the corresponding cluster and the SVM HOG template. Notice the multi-scalenature
of the poselets. These poselets cover various portions of the human bodies, including the
whole body (1st row), both legs (2nd row), one arm (3nd row), respectively.

The training images are labeled with ground-truth action categories and joints on the human
body (Figure 5). We use the following procedure to select poselets for aspecific part (e.g.,legs) of
a particular action category (e.g.,running). We first collect training images of that action category
(running). Then we cluster the joints on the part (legs) into several clusters based on their relative
(x,y) coordinates with respect to some reference joint. Each cluster will correspond to a “running
legs” poselet. We repeat this process for the part in other action categories. In the end, we obtain
about 15 to 30 clusters for each part. Figures 6 and 7 show examples of poselets for “playing golf”
and “running” actions, respectively.

Similarly, we train a classifier based on HOG features (Dalal and Triggs, 2005) to detect the
presence of each poselet. Image patches in the corresponding poseletcluster are used as positive
examples and random patches as negative examples for training the classifier. Similar to the model
in Sec. 4, we use different cell sizes when constructing HOG features for different parts. Large cell
sizes are used for poselets of large body parts (e.g., whole body and torso), while small cell sizes
are used for small body parts (e.g., half limbs). Figure 6 and Figure 7 showsome examples of the
learned SVM weights for some poselets.

5.2 Our Model

Let I be an image containing a person,Y ∈Y be its action label whereY is the action label alphabet,
L be the pose configuration of the person. The complete pose configurationis denoted asL= {l i}K

i=1
(K = 20 in our case), wherel i = (xi ,yi ,zi) represents the 2D image location and the index of the
corresponding poselet cluster for thei-th part. The complete poseL can be represented by a graph
G = {V ,E} shown in Figure 1. A vertexi ∈V denotes thei-th part and an edge(i, j)∈E represents
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Figure 7: Examples of poselets for “running”. For each poselet, we visualize several patches from
the corresponding cluster and the SVM HOG template. Similar to Figure 6, these poselets
cover various portions of the human bodies

the spatial constraint between thei-th and thej-th parts. We define the following scoring function
to measure the compatibility of the triple(I ,L,Y):

F(I ,L,Y) = ωY(I)+ ∑
i∈V

φY(I , l i)+ ∑
i, j∈E

ψY(l i , l j). (7)

Here we use the subscript to explicitly emphasize that these functions are specific for a particular
action labelY. The details of the potential functions in Equation 7 are as follows.

Root appearanceωY(I): This potential function models the compatibility of the action labelY
and the global appearance of an imageI . It is parametrized as:

ωY(I) = α⊤
Y · f (I). (8)

Here f (I) is a feature vector extracted from the whole imageI without considering the pose. In
this paper, we use the HOG descriptor (Dalal and Triggs, 2005) ofI as the feature vectorf (I). The
parametersαY can be interpreted as a HOG template for the action categoryY. Note that if we
only consider this potential function, the parameters{αY}Y∈Y can be obtained from the weights
of a multi-class linear SVM trained with HOG descriptorsf (I) alone without considering the pose
information.

Part appearanceφY(I , l i): This potential function models the compatibility of the configuration
l i of the i-th part and the local image patch defined byl i = (xi ,yi ,zi), under the assumption that the
action label isY. Since our goal is action recognition, we also enforce that the poseletzi should
comes from the actionY. In other words, if we defineZY

i as the set of poselet indices for thei-th
part corresponding to the action categoryY, this potential function is parametrized as:

φY(I , l i) =

{

β⊤
i,Y · f (I , l i) if zi ∈ ZY

i ;

−∞ otherwise.
(9)
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Here f (I , l i) is the score of placing the SVM HOG templatezi at location(xi ,yi) in the imageI .
Pairwise part constraintψ(l i , l j): This potential function models the compatibility of the con-

figurations between thei-th and thej-th parts, under the assumption that the action label isY. We
parametrize this potential function using a vectorized counts of spatial histogram bins, similar to
Ramanan (2006); Yang et al. (2010). Again, we enforce poseletszi andzj to come from actionY as
follows:

ψY(l i , l j) =

{

γ⊤i,Y ·bin(l i − l j) if zi ∈ ZY
i ,zj ∈ ZY

j ;

−∞ otherwise.
(10)

Here bin(·) is a vector all zeros with a single one for the occupied bin.
Note that if the potential functions and model parameters in Equations(7,8,9,10)do not depend

on the action labelY, the part appearanceφ(·) and pairwise part constraintψ(·) exactly recover the
human parsing model in Section 4.

5.3 Learning and Inference

We define the score of labeling an imageI with the action labelY as follows:

H(I ,Y) = max
L

F(I ,L,Y). (11)

Given the model parametersΘ = {α,β,γ}, Equation 11 is a standard MAP inference problem in
undirected graphical models. We can approximately solve it using message passing scheme similar
to that in Section 4.2. The predicted action labelY∗ is chosen asY∗ = argmaxY H(I ,Y).

We adopt the latent SVM (Felzenszwalb et al., 2010) framework for learning the model parame-
ters. First, it is easy to see that Equation 7 can be written as a linear function of model parameters as
F(I ,L,Y) = Θ⊤Φ(I ,L,Y), whereΘ is the concatenation of all the model parameters (i.e.,α, β and
γ) andΦ(I ,L,Y) is the concatenation of the corresponding feature vectors. Given a setof training
examples in the form of{In,Ln,Yn}N

n=1, the model parameters are learned by solving the following
optimization problem:

min
Θ,ξ

1
2
||Θ||2+C∑

n
ξn, s.t. ∀n, ∀Y : (12)

H(In,Yn)−H(In,Y)≥ ∆(Y,Yn)−ξn. (13)

It is easy to show that Equations (12,13) can be equivalently written as:

min
Θ

1
2
||Θ||2+C∑

n
R n, (14)

where R n = max
Y,L

(

∆(Y,Yn)+Θ⊤ ·Φ(In,Y)
)

−max
L

Θ⊤ ·Φ(In,L,Yn).

The problem in Equation 14 is not convex, but we can use simple stochastic sub-gradient descent
to find a local optimum. Let us define:

(Y∗,L∗) = argmax
Y,L

(∆(Y,Yn)+Θ⊤ ·Φ(In,L,Y)),

L′ = argmax
L

(Θ⊤ ·Φ(In,L,Yn)).
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head + upper arm head + lower arm

Buffy UIUC people sport images Buffy UIUC people sport images

Figure 8: Scatter plots of heads (red) and upper/lower arms (blue and green) with respect to fixed
upper body position on three data sets.

Then the gradient of Equation 14 can be computed as:

Θ+C∑
n

(

Φ(In,L∗,Y∗)−Φ(In,L′,Yn)
)

.

To initialize the parameter learning, we first learn a pose estimation model using the labeled
(In,Ln) collected from training examples with class labelY. The parameters of these pose estimation
models are used to initializeβY andγY. The parametersαY are initialized from a linear SVM model
based on HOG descriptors without considering the poses.

6. Experiments

In this section, we present our experimental results on human parsing (Section 6.1) and action
recognition (Section 6.2).

6.1 Experiments on Human Parsing

There are several data sets popular in the human parsing community, for example, Buffy data set
(Ferrari et al., 2008), PASCAL stickmen data set (Eichner and Ferrari, 2009). But these data sets
are not suitable for us for several reasons. First of all, they only contain upper-bodies, but we are
interested in full-body parsing. Second, as pointed out in Tran and Forsyth (2010), there are very
few pose variations in those data sets. In fact, previous work has exploited this property of these data
sets by pruning search spaces using upper-body detection and segmentation (Ferrari et al., 2008), or
by building appearance model using location priors (Eichner and Ferrari, 2009). Third, the contrast
of image frames of the Buffy data set is relatively low. This issue suggests that better performance
can be achieved by engineering detectors to overcome the contrast difficulties. Please refer to the
discussion in Tran and Forsyth (2010) for more details. In our work, wechoose to use two data sets1

containing very aggressive pose variations. The first one is the UIUC people data set introduced in
Tran and Forsyth (2010). The second one is a new sport image data setwe have collected from the
Internet which has been used in Wang et al. (2011). Figure 8 shows scatter plots of different body
parts of our data sets compared with the Buffy data set (Ferrari et al., 2008) using a visualization
style similar to Tran and Forsyth (2010) . It is clear that the two data sets usedin this paper have
much more variations.

1. Both data sets can be downloaded fromhttp://vision.cs.uiuc.edu/humanparse.
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Ours PS IIP Ours PS IIP Ours PS IIP

Figure 9: Examples of human body parsing on the UIUC people data set. We compare our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative image pars-
ing (IIP) (Ramanan, 2006). Notice the large pose variations, cluttered background, self-
occlusions, and many other challenging aspects of the data set.

6.1.1 UIUC PEOPLEDATA SET

The UIUC people data set (Tran and Forsyth, 2010) contains 593 images(346 for training, 247 for
testing). Most of them are images of people playing badminton. Some are imagesof people playing
Frisbee, walking, jogging or standing. Sample images and their parsing results are shown in the first
three rows of Figure 9. We compare with two other state-of-the-art approaches that do full-body
parsing (with published codes): the improved pictorial structure by Andriluka et al. (2009), and the
iterative parsing method by Ramanan (2006). The results are also shown inFigure 9.

To quantitatively evaluate different methods, we measure the percentage of correctly localized
body parts. Following the convention proposed in Ferrari et al. (2008), a body part is considered
correctly localized if the endpoints of its segment lies within 50% of the ground-truth segment length
from their true locations. The comparative results are shown in Table 1(a). Our method outperforms
other approaches in localizing most of body parts. We also show the result(3rd row, Table 1(a)) of
using only the basic-level poselets corresponding to the rigid parts. It is clear that our full model
using hierarchical poselets outperforms using rigid parts alone.

Detection and parsing:An interesting aspect of our approach is that it produces not only the
configurations of primitive parts, but also the configurations of other larger body parts. These pieces
of information can potentially be used for applications (e.g., gesture-basedHCI) that do not require
precise localizations of body segments. In Figure 10, we visualize the configurations of four larger
parts on some examples. Interestingly, the configuration of the whole body directly gives us a person
detector. So our model can be seen as a principled way of unifying human pose estimation, person
detection, and many other areas related to understanding humans. In the first row of Table 2, we
show the results of person detection on the UIUC people data set by running our human parsing
model, then picking the bounding box corresponding to the part “whole body” as the detection. We
compare with the state-of-the-art person detectors in Felzenszwalb et al.(2010) and Andriluka et al.
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Method Torso Upper leg Lower leg Upper arm Forearm Head
Ramanan (2006) 44.1 11.7 7.3 25.5 25.1 11.3 10.9 25.9 25 30.8

Andriluka et al. (2009) 70.9 37.3 35.6 23.1 22.7 22.3 30.0 9.7 10.5 59.1
Our method (basic-level) 79.4 53.8 53.4 47.8 39.7 17.8 21.1 11.7 16.6 65.2
Our method (full model) 86.6 58.3 54.3 53.8 46.6 28.3 33.2 23.1 17.4 68.8

(a) UIUC people data set
Method Torso Upper leg Lower leg Upper arm Forearm Head

Ramanan (2006) 28.7 7.4 7.2 17.6 20.8 8.3 6.6 20.2 21 12.9
Andriluka et al. (2009) 71.5 44.2 43.1 30.7 31 28 29.6 17.3 15.3 63.3

Our method (basic-level) 73.3 45.0 47.6 40.4 39.9 19.4 27.0 13.3 9.9 47.5
Our method (full model) 75.3 50.1 48.2 42.5 36.5 23.3 27.1 12.2 10.2 47.5

(b) Sport image data set

Table 1: Human parsing results by our method and two comparison methods (Ramanan, 2006; An-
driluka et al., 2009) on two data sets. The percentage of correctly localized parts is shown
for each primitive part. If two numbers are shown in one cell, they indicate theleft/right
body parts. As a comparison, we also show the results of using only rigid parts (basic-
level).

Figure 10: Examples of other information produced by our model. On each image, we show bound-
ing boxes corresponding to the whole body, left arm, right arm and legs.The size of each
bounding box is estimated from its corresponding poselet cluster.

(2009). Since most images contain one person, we only consider the detection with the best score on
an image for all the methods. We use the metric defined in the PASCAL VOC challenge to measure
the performance. A detection is considered correct if the intersection over union with respect to the
ground truth bounding box is at least 50%. It is interesting to see that our method outperforms other
approaches, even though it is not designed for person detection.

Our method Felzenszwalb et al. (2010) Andriluka et al. (2009)
UIUC people 66.8 48.58 50.61
Sport image 63.94 45.61 59.94

Table 2: Comparison of accuracies of person detection on both data sets.In our method, the con-
figuration of the poselets corresponding to the whole body can be directly used for person
detection.
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Ours PS IIP Ours PS IIP Ours PS IIP

Figure 11: Examples of human body parsing on the sport image data set. We compare our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative image parsing
(IIP) (Ramanan, 2006).

6.1.2 SPORT IMAGE DATA SET

The UIUC people data set is attractive because it has very aggressivepose and spatial variations.
But one limitation of that data set is that it mainly contains images of people playing badminton.
One might ask what happens if the images are more diverse. To answer thisquestion, we have
collected a new sport image data set from more than 20 sport categories, including acrobatics,
American football, croquet, cycling, hockey, figure skating, soccer, golf and horseback riding. There
are in total 1299 images. We randomly choose 649 of them for training and therest for testing.
The last three rows of Figure 9 show examples of human parsing results, together with results of
Andriluka et al. (2009) and Ramanan (2006) on this data set. The quantitative comparison is shown
in Table 1(b). We can see that our approach outperforms the other two onthe majority of body parts.

Similarly, we perform person detection using the poselet corresponding tothe whole body. The
results are shown in the second row of Table 2. Again, our method outperforms other approaches.

6.1.3 KINEMATIC TRACKING

To further illustrate our method, we apply the model learned from the UIUC people data set for
kinematic tracking by independently parsing the human figure in each frame. In Figure 12, we show
our results compared with applying the method in Ramanan (2006). It is clear from the results that
kinematic tracking is still a very challenging problem. Both methods make mistakes. Interestingly,
when our method makes mistakes (e.g., figures with blue arrows), the output still looks like a valid
body configuration. But when the method in Ramanan (2006) makes mistakes (e.g., figures with
red arrows), the errors can be very wild. We believe this can be explained by the very different
representations used in these two methods. In Ramanan (2006), a human body is represented by
the set of primitive parts. Kinematic constraints are used to enforce the connectivity of those parts.
But these kinematic constraints have no idea what a person looks like as a whole. In the incorrect
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Figure 12: Examples of kinematic tracking on the baseball and figure skatingdata sets. The 1st and
3rd rows are our results. The 2rd and 4th rows are results of Ramanan (2006). Notice
how mistakes of our method (blue arrows) still look like valid human poses, whilethose
of Ramanan (2006) (red arrows) can be wild.

results of Ramanan (2006), all the primitive parts are perfectly connected. The problem is their
connectivity does not form a reasonable human pose as a whole.

In contrast, our model uses representations that capture a spectrum ofboth large and small
body parts. Even in situations where the small primitive parts are hard to detect, our method can
still reason about the plausible pose configuration by pulling information from large pieces of the
human bodies.

6.2 Experiments on Action Recognition

We test our approach on two publicly available data sets: the still images data set(Ikizler et al.,
2008) and the Leeds sport data set (Johnson and Everingham, 2010). Both data sets contain images
of people with ground-truth pose annotations and action labels.

6.2.1 STILL IMAGE DATA SET

We first demonstrate our model on the still image data set collected in Ikizler et al. (2008). This
data set contains more than 2000 static images from five action categories: dancing, playing golf,
running, sitting, and walking. Sample images are shown in the first two rows ofFigure 5. Yang et al.
(2010) have annotated the pose with 14 joints on the human body on all the images in the data set.
Following Yang et al. (2010), we choose 1/3 of the images from each category to form the training
data, and the remaining ones as the test data.2

2. A small number of images/annotations we obtained from the authors of Yang et al. (2010) are somehow corrupted
due to some file-system failure. We have removed those images from the data set.
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method overall avg per-class

Our approach 65.15 70.77
Yang et al. (2010)∗ 63.49 68.37

SVM mixtures 62.8 64.05
Linear SVM 60.32 61.5

Table 3: Performance on the still image data set. We report both overall andaverage per-class
accuracies.∗The results are based on our own implementation.

dancing playing golf running

sitting walking

Figure 13: Visualization of some inferred poselets on the still image data set. These test images
have been correctly recognized by our model. For a test image, we show three poselets
that have high responses. Each poselet is visualized by showing several patches from its
cluster.

We compare our approach with two baseline method. The first baseline is a multi-class SVM
based on HOG features. For the second baseline, we use mixtures of SVMmodels similar to that
in Felzenszwalb et al. (2010). We set the number of mixtures for each class to be the number of
whole-body poselets. From Table 3, we can see that our approach outperforms the baseline by a
large margin. Our performance is also better than the reported results in Yang et al. (2010). However,
the accuracy numbers are not directly comparable since the training/testing data sets and features
are not completely identical. In order to do a fair comparison, we re-implemented the method in
Yang et al. (2010) by only keeping the parts used in Yang et al. (2010).Our full model performs
better.

In Figure 13, we visualize several inferred poselets on some examples whose action categories
are correctly classified. Each poselet is visualized by showing severalpatches from the correspond-
ing poselet cluster.
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athletics badminton baseball

soccer tennis volleyball

Figure 14: Visualization of some inferred poselets on the Leeds sport dataset. These test images
have been correctly recognized by our model. For a test image, we show three poselets
that have high responses. Each poselet is visualized by showing several patches from its
cluster.

method overall avg per-class

Our approach 54.6 54.6
SVM mixtures 52.7 49.13
Linear SVM 52.7 52.93

Table 4: Performance on the Leeds sport data set. We report both overall and average per-class
accuracies.

6.2.2 LEEDSSPORTDATA SET

The Leeds sport data set (Johnson and Everingham, 2010) contains 2000 images from eight different
sports: athletics, badminton, baseball, gymnastics, parkour, soccer, tennis, volleyball. Each image
in the data set is labeled with 14 joints on the human body. Sample images and the labeled joints
are shown in the last four rows of Figure 5. This data set is very challenging due to very aggressive
pose variations.

We choose half of the images for training, and the other half for testing. Theperformance
is shown in Table 4. Again, we compare with the HOG-based SVM and SVM mixtures as the
baselines. We can see that our method still outperforms the baseline. Similarly,we visualize the
inferred poselets on some examples in Figure 14.
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American football→dancing croquet→playing golf field hockey→running

Figure 15: Visualization of inferred poses on unseen actions. Here the actions of the test im-
ages (American football, croquetand field hockey) are not available during training.
Our model recognizes these examples asdancing, playing golf, running, respectively.
Some of the results (e.g.,croquet→ golfing) make intuitive sense. Others (e.g.,foot-
ball→dancing) might not be intuitive at first. But if we examine the poselets carefully,
we can see that various pieces of the football player are very similar to those found in
the dancing action.

6.2.3 UNSEENACTIONS

An interesting aspect of our model is that it outputs not only the predicted action label, but also some
rich intermediate representation (i.e., action-specific hierarchical poselets) about the human pose.
This information can potentially be exploited in various contexts. As an example,we apply the
model learned from the still image data set todescribeimages from sports categories not available
during training. In Figure 15, we show examples of applying the model learned from the still image
data set to images with unseen action categories. The action categories (American football, croquet
andfield hockey) for the examples in Figure 15 are disjoint from the action categories of the still
image data set. In this situation, our model obviously cannot correctly predict the action labels (since
they are not available during training). Instead, it classifies those images using the action labels it
has learned. For example, it classifies “American football” as “dancing”,“croquet” as “playing
golf”, “field hockey” as “running”. More importantly, our model outputs poselets for various parts
which support its prediction. From these information, we can say a lot about “American football”
even though the predicted action label is wrong. For example, we can say itis closer to “dancing”
than “playing golf” because the pose of the football player in the image is similarto certain type of
dancing legs, and certain type of dancing arms.

7. Conclusion and Future Work

We have presented hierarchical poselets, a new representation for modeling human poses. Different
poselets in our representation capture human poses at various levels of granularity. Some poselets
correspond to the rigid parts typically used in previous work. Others can correspond to large pieces
of the human bodies. Poselets corresponding to different parts are organized in a structured hier-
archical model. The advantage of this representation is that it infers the human pose by pulling
information across various levels of details, ranging from the coarse shape of the whole body, to
the fine-detailed information of small rigid parts. We have demonstrate the applications of this rep-
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resentation in human parsing and human action recognition from static images. Recently, similar
ideas (Sun and Savarese, 2011) have been applied in other applications, such as object detection.

As future work, we would like to explore how to automatically construct the parts and the
hierarchy using data-driven methods. This will be important in order to extend hierarchical poselets
to other objects (e.g., birds) that do not have obvious kinematic structures.We also like to apply the
hierarchical poselet representation to other vision tasks, such as segmentation.
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