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Abstract

We introduce a framework for feature selection based onrmbigrece maximization between the
selected features and the labels of an estimation problgimg the Hilbert-Schmidt Independence
Criterion. The key idea is that good features should be figbbendent on the labels. Our ap-
proach leads to a greedy procedure for feature selectiorshe that a number of existing feature
selectors are special cases of this framework. Experin@ntsoth artificial and real-world data
show that our feature selector works well in practice.

Keywords: kernel methods, feature selection, independence measilivert-Schmidt indepen-
dence criterion, Hilbert space embedding of distribution

1. Introduction

In data analysis we are typically given a set of observatdns {xi,...,xn} € X which can be
used for a number of tasks, such as novelty detection, low-dimensigmabentation, or a range of
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supervised learning problems. In the latter case we also have a setleMabéyi,...,ym} C 9 at
our disposition. Tasks include ranking, classification, regressiomguesnice annotation. While not
always true in practice, we assume in the following that the HadadY are drawn independently
and identically distributed (i.i.d.) from some underlying distributio(xy).

We often want to reduce the dimension of the data (the humber of featwfesg lthe actual
learning (Guyon and Elisseeff, 2003); a larger number of featurebeassociated with higher data
collection cost, more difficulty in model interpretation, higher computationalfooshe classifier,
andsometimeslecreased generalization ability. In other words, there often exist rsativaeldition
to finding a well performing estimator. It is therefore important to select aorimditive feature
subset.

The problem of supervised feature selection can be cast as a comiaihapdimization prob-
lem. We have a full set of features, denoteddbfeach element is corresponds to one dimension
of the data). It is our aim to select a subgetC § such that this subset retains the relevant infor-
mation contained iXX. Suppose the relevance of a feature subset (to the outcome) is quantified
Q(T), and is computed by restricting the data to the dimensions. ifreature selection can then
be formulated as

To= argr;ncaéxQ(‘I) subject to|T| <t, Q)

where| - | computes the cardinality of a set ani$ an upper bound on the number of selected fea-
tures. Two important aspects of problem (1) are the choice of the crit&{@n) and the selection
algorithm.

1.1 Criteria for Feature Selection

A number of quality functional® (7') are potential candidates for feature selection. For instance,
we could use a mutual information-related quantity or a Hilbert Space-leasiedhtor. In any case,
the choice ofQ(7) should respect the underlying task. In the case of supervised leatinéngoal

is to estimate a functional dependerfc&om training data such thdt predicts well on test data.
Therefore, a good feature selection criterion should satisfy two conslition

I: Q(7)is capable of detecting desired (linear or nonlinear) functional depeedeetween the
data and the labels.

II: Q(7) is concentrated with respect to the underlying measure. This guaranitbeligh
probability that detected functional dependence is preserved in test data

While many feature selection criteria have been explored, not all of themthiake two conditions
explicitly into account. Examples of criteria that satisfy both conditions includdehve-one-out
error bound of SVM (Weston et al., 2000) and the mutual information &&@ifand Hutter, 2002).
Although the latter has good theoretical justification, it requires density estimatttich is prob-

lematic for high dimensional and continuous variables. We sidestep thdslempsoby employing
the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 200Bike the mutual in-

formation, HSIC is a nonparametric dependence measure, which takesootoné all modes of
dependence between the variables (not just linear correlation). Ulike popular mutual infor-
mation estimates, however, HSIC does not require density estimation as amsidiate step, being
based on the covariance between variables mapped to reproducimed IKébert spaces (RKHS).
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HSIC has good uniform convergence guarantees, and an unbiapédcal estimate. As we show
in Section 2, HSIC satisfies conditions | and Il required@T).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2008)ess the criterion is
easily decomposable or has properties which make approximate optimizatien asexample,
submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Manyithlgsrtransform (1) into
a continuous problem by introducing weights on the dimensions (Weston 20@0; Bradley and
Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These metbddsp well for linearly sep-
arable problems. For nonlinear problems, however, the optimisation useaiyries non-convex
and a local optimum does not necessarily provide good features. yzappdoaches, such as for-
ward selection and backward elimination, are often used to tackle problediréttly. Forward
selection tries to increas@(‘7) as much as possible for each inclusion of features, and backward
elimination tries to achieve this for each deletion of features (Guyon et al2)2@0dthough for-
ward selection is computationally more efficient, backward elimination providterifeatures in
general since the features are assessed within the context of all ptheent. See Section 7 for
experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employe@dture selection
using either a weighting scheme, forward selection or backward selegatiemen a mix of several
strategies. While the main focus of this paper is on the backward eliminationgsirate also
discuss the other selection strategies. As we shall see, several spegities of kernel function
will lead to well known feature selection and feature rating methods. Notbacltvard elimination
using HSIC (BAHSIC) is a filter method for feature selection. It selecttifea independent of a
particular classifier. Such decoupling not only facilitates subsequantrésinterpretation but also
speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regpasproblems.
Most other feature selection methods are only formulated either for bitesgification or regres-
sion. Multiclass extensions of these methods are usually achieved usiegve@us-the-rest strat-
egy. Still fewer methods handle classification and regression casessarteetime. BAHSIC, on
the other hand, accommodates all these caseainsupervised feature selection in a principled
way: by choosing different kernels, BAHSIC not only subsumes maistieg methods as special
cases, but also allows us to define new feature selectors. This versatlity i the generality of
HSIC. The current work is built on earlier presentations by Song e2@01b,a). Compared with
this earlier work, the present study contains more detailed proofs of thetherems, proofs of
secondary theorems omitted due to space constraints, and a number ohadlditgeriments.

Our paper is structured as follows. In Section 2, we introduce the Hilldmt&lt Indepen-
dence criterion. We provide both biased and unbiased empirical estimates|l as more efficient
approximate empirical estimates. In addition, we prove the empirical estimatergesvin prob-
ability, and provide its asymptotic distribution. Section 3 contains a brief descripf notation
for the remainder of the paper. Section 4 presents our two feature selafgmrithms, based re-
spectively on forward selection and backwards elimination. Section 8misea number of variants
of BAHSIC obtained via different kernel choices, with a focus on usirgappropriate kernel for
the underlying task (e.g., two-class classification, multiclass classificatiomegretssion). Section
6 gives an overview of a variety of feature selection approacheshvdaic be shown to employ
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particular variants of HSIC as their feature relevance criterion. Finadlgti@s 7—9 contain our ex-
periments, where we apply HSIC to a number of domains, including realrtifidial benchmarks,
brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and thamlgento the de-
tection of more general kinds of dependence. Consider space®? and9” c R!, on which we
jointly sample observation,y) from a distribution Px,y). Denote byG,y the covariance matrix

Cry = Exy [Xy—r} —Ex[X Ey [y—r} ) 2)

which contains all second order dependence between the randorblesriad statistic that effi-
ciently summarizes the degreelofear correlationbetweerx andy is the Frobenius norm afyy.
Given the singular values; of G,y the norm is defined as

2 . 2
1GollErob =Y 07 =tr Goy Gy
|

This quantity is zero if and only if there exists hioear dependencbetweerx andy. This statistic

is limited in several respects, however, of which we mention two: first, digrere can exist in
forms other than that detectable via covariance (and even when a seandelation exists, the
full extent of the dependence betweemandy may only be apparent when nonlinear effects are
included). Second, the restriction to subset®R6fexcludes many interesting kinds of variables,
such as strings and class labels. In the next section, we generalizetithie mocovariance to
nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In generalX and9” will be two domains from which we draw samplesy): these may be real val-
ued, vector valued, class labels, strings (Lodhi et al., 2002), gf&irter et al., 2003), dynamical
systems (Vishwanathan et al., 2007), parse trees (Collins and Dufiyl,) 20nages (Sabikopf,
1997), and any other domain on which kernels can be defined. Sé&tk&ohet al. (2004) and
Schblkopf and Smola (2002) for further references.

We define a (possibly nonlinear) mappipg X — % from eachx € X to a feature spacé§
(and an analogous majp: 9" — G wherever needed). In this case we may write the inner product
between the features via the positive definite kernel functions

K(x,X) := (@(x),@(x)) andl(y,y) := (W(y), W(y))-

The kernelsk and| are associated uniquely with respective reproducing kernel Hilbadesy
and G (although the feature magsandy may not be unique). For instance Xf=RY, then this
could be as simple as a set of polynomials of order up o the components af, with kernel
k(x,X') = ((x,x') 4 a)P. Other kernels, like the Gaussian RBF kernel correspond to infinitelg larg
feature spaces. We need never evaluate these feature represemgpiacitly, however.
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We may now define a cross-covariance opetab@tween these feature maps, in accordance
with Baker (1973) and Fukumizu et al. (2004): this is a linear oper@dpr G — F such that

Gy = Exy[(9(X) — L) @ (W(y) — Ly)] Wherepy = Ex[@(x)] andpy = Ey[@(y)].

Here® denotes the tensor product. We need to extend the notion of a Frobeniusmaoperators.
This leads us to the Hilbert-Schmidt norm, which is given by the trac{e();zfﬂy. For operators with
discrete spectrum this amounts to computing/theorm of the singular values. We use the square of
the Hilbert-Schmidt norm of the cross-covariance operator (H3IG)J|s as our feature selection
criterion Q (‘7). Gretton et al. (2005a) show that HSIC can be expressed in termsrefi&ers

HSIC(F, 6,P) = | Gyllfs 3
=By (KON 05 )] 4 B (KOO By 1 (9, )] = 2By B (KO, X) By (1 (Y )]

This allows us to compute a measure of dependence betxnaahy simply by taking expectations
over a set of kernel functiorisand| with respect to the joint and marginal distributionsxiandy
withoutthe need to perform density estimation (as may be needed for entropyrhatieatls).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote byZ = (X,Y) the set of observationSx1,y1),. .., (Xm,Ym)} Which are drawrid from
the joint distribution Pg. We denote byE; the expectation with respezt as drawn from Ry,

Moreover,K,L € R™™ are kernel matrices containing entriég = k(x;,x;) andLi; = I(y;,y;).
Finally, H = | —m~111 € R™™ is a centering matrix which projects onto the space orthogonal to
the vectorl.

Gretton et al. (2005a) derive estimators of HSIC G, Pr,y) which haveO(m~1) biasand they
show that this estimator is well concentrated by means of appropriate tailibokior completeness
we briefly restate this estimator and its properties below.

Theorem 1 (Biased estimator oHSIC Gretton et al., 2005a) The estimator
HSIC(¥,G,Z) == (m—1)"2trKHLH (4)
has bias @m™1), that is,HSIC(F, G, Pry) —Ez [HSICo(F, G,Z)] = O(m™1).

This bias arises from the self-interaction terms which are present in ¢;18iét is, we still have
O(m) terms of the formK;;L; andKjL,; present in the sum, which leads to t¢m=1) bias.
To address this, we now devise an unbiased estimator which removes tuisenal terms while
ensuring proper normalization. Our proposed estimator has the form
1TK117(1 2

tr(KL)+(m_l>(m_2)—m_leKLl , (5)

HSICL(T, G,2Z) = m(ml—3)

whereK ade: are related t& andL by Kij = (1-&;j)Kjj andL;j = (1—&;)L;j (i.e., the diagonal
entries ofK andL are set to zero).

1. We abuse the notation here by using the same subscript in the opggagsrin the covariance matrix of (2), even
though we now refer to the covariance between feature maps.
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Theorem 2 (Unbiased estimator oHSIC) The estimatorHSIC; is unbiased, that is, we have
Ez HSICL(F,G,Z)] =HSIC(F, G,Pry).

Proof We prove the claim by constructing unbiased estimators for each term iN@8. that we
have three types of expectations, naniglyE,, a partially decoupled expectatidiy EyEy/, and
ExEyExEy, which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we neeket@ase to avoid
using the same discrete indices more than once for independent randaliiesa In other words,
when taking expectations oveiindependent random variables, we neetdiples of indices where
each index occurs exactly once. We define thei§ttis be the collections of indices satisfying this
property. By simple combinatorics one can see that their cardinalities & lojvthe Pochhammer
symbols(m)p = == n), Jointly drawn random variables, on the other hand, share the same index

For the joint expectation over pairs we have

ExyBoy [k X1 (y,Y)] = (m)ElEZ{ > Kij'-ii} = (m); ‘Ez [trKL]. (6)
(i,)eiy
Recall that we seKj = Lj = 0. In the case of the expectation over three independent terms
ExyExEy [K(x,X)I(y,Y')] we obtain

1EZ[ Z K.,L.q] m)3 Bz [1TR(1 - trRL|. (7)
(i,j,a)€id

For four independent random variabBgE,Ex Ey [K(x,X)I (y,y')],

(M3'Bz| Y Kijlo| = (M3 Ez [17R117(1 - 417RE1+ 2R E . 8)
(i.jqney
To obtain an expression for HSIC we only need to take linear combinationg (8. Collecting
terms related to L, 1"KL1, and1"K11 L1 yields
1 L~ 1TK11'(1 2
HSI Pr)= —FEz |trKL —
SIF. 6B = im—3)"2 [r TmeDm-2 m-2

This is the expected value of HSICF, G, Z]. [ |

1T|ZE1] . (9)

Note that neither HSIgnor HSIG require any explicit regularization parameters, unlike earlier
work on kernel dependence estimation. Rather, the regularization is implitieiohoice of the
kernels. While in general the biased HSIC is acceptable for estimating diepes bias becomes a
significant problem for diagonally dominant kernels. These occur mairiheiicontext of sequence
analysis such as texts and biological data. Experiments on such datai@pt@dt al., 2009) show
that bias removal is essential to obtain good results.

For suitable kernels HSIFF, G,Pry) = 0 if and only if x andy are independent. Hence the
empirical estimate HSI{Ccan be used to design nonparametric tests of independence. A kegfeatur
is that HSIQ itself is unbiasedand its computation is simple. Compare this to quantities based
on the mutual information, which requires sophisticated bias correctiongigai@.g., Nemenman
et al., 2002).

Previous work used HSIC tmeasureindependence between two sets of random variables
(Feuerverger, 1993; Gretton et al., 2005a). Here we usesitlecta subsetZ from the first full
set of random variables. We next describe properties of HSIC which support its use as a éeatur
selection criterion.
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2.3 HSIC Detects Arbitrary Dependence (Property I)

Whenever? , G are RKHSs with characteristic kernédd (in the sense of Fukumizu et al., 2008;
Sriperumbudur et al., 2008, 2010), then HE¥C G,Pr,y) = 0 if and only if x andy are indepen-
dent? In terms of feature selection, a characteristic kernel such as the Ga&B¥akernel or the
Laplace kernel permits HSIC to detect any dependence betwesamd 9. HSIC is zero only if
features and labels are independent. Clearly we want to reach the oppssite namely strong
dependence between features and labels. Hence we try to selecedetitatr maximize HSIC.
Likewise, whenever we want to select a subset of features ¥ome will try to retain maximal
dependence betweehand its reduced version.

Note that non-characteristic and non-universal kernels can alssdx for HSIC, although
they may not guarantee that all dependence is detected. Differerikénaorporate distinctive
prior knowledge into the dependence estimation, and they focus HSICpemdence of a certain
type. For instance, a linear kernel requires HSIC to seek only seaded dependence, whereas a
polynomial kernel of degreb restricts HSIC to test for dependences of degree (up.t@learly
HSIC is capable of finding and exploiting dependence of a much moregersure by kernels on
graphs, strings, or other discrete domains. We return to this issue in SBctidrere we describe
the different kernels that are suited to different underlying classifica#isks.

2.4 HSIC is Concentrated (Property 1)

HSIC,, the estimator in (5), can be alternatively formulated using U-statistics (tHngff1948).
This reformulation allows us to derive a uniform convergence bounti&iC;. Thus for a given
set of features, the feature quality evaluated using H$8lGsely reflects its population counterpart
HSIC.

Theorem 3 (U-statistic of HSIC) HSIC; can be rewritten in terms of a U-statistic

HSICl(-[]:v g,Z) = (m>Zl Z h(la J7q7 r)v (10)
(i,j,ar)€iy

where the kernel h of the U-statistic is defined by

j.a.r)

h(, j,q,r) ? z stlbst+Luv—2L sy (11)
t,u,v
1 q 1 (Ijqr)
= é Z KSt“—St—’_ Luv] - TZ KStLSU‘ (12)
t),(u< (st,u)

Here the first sum represents all4!24 quadruplegs,t,u,v) which can be selected without re-
placement froni, j,q,r). Likewise the sum ovefs,t,u) is the sum over all triples chosen without
replacement. Finally, the sum oves < t), (u < v) has the additional condition that the order im-
posed by(i, j,q,r) is preserved. That i§,q) and(j,r) are valid pairs, wheregs,i) or (r,q) are
not.

2. This result is more general than the earlier result of Gretton et &5&0heorem 4), which states that wheng
are RKHSs with universal kerneksl in the sense of Steinwart (2001), on respectisenpactdomainsx and?”,
then HSIG ¥, G,Pryy) = 0 if and only ifx andy are independent. Universal kernels are characteristic on compact
domains, however characteristic kernels also exist on non-compagtids.
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Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

HSICU(F,G,Z) = (m);* Y (KijLij +KijLar— 2KijLig). (13)

(i,j,qr)ei]

In this form, however, the kerndil(i, j,q,r) = Kj;Lij + KjjLqr — 2KjjLiq is not symmetric in its
arguments. For instand#i, j,q,r) # h(q, j,r,i). The same holds for other permutations of the
indices. Thus, we replace the kernel with a symmetrized version, whictsyield

(i,j,ar)

.. 1
h(i, j,q,r) := 2 Z (Kstk st + Kstk uy — 2K stk sy) (14)
) (S,t,U,V)

where the sumin (14) represents all ordered quadryples, v) selected without replacement from
(i7 J 7q7 r)'

This kernel can be simplified, sinéée;; = Kis andL st = Ls. The first one only contains terms
LsiKst, hence the indice@u, v) are irrelevant. Exploiting symmetry we may impdsex< t) without
loss of generality. The same holds for the second term. The third term reoraihanged, which
completes the proof. |

We now show that HSIG ¥, G,Z) is concentrated and that it converges to HSICG, Pry) with
rate 1/\/m. The latter is a slight improvement over the convergence of the biased estimato
HSICy (¥, G,Z), proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume K are bounded almost everywhere hyand are
non-negative. Then for m 1 and alld > 0, with probability at leastl — 4 for all Pryy,

HSICL(¥F, G.Z) — HSIC(¥, G, I)?yr)‘ < 81/10g(2/8)/m.

Proof [Sketch] By virtue of (10) we see immediately that H$Ii€ a U-statistic of order 4, where
each term is contained ir-2,2]. Applying Hoeffding’s bound for U-statistics as in Gretton et al.
(2005a) proves the result. |

If kandl were just bounded by 1 in terms of absolute value the bound of Theoresald \we worse
by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 givesvorst casébounds on the deviation between HSIC and HSI@ many instances,
however, an indication of this difference fyppical cases is needed. In particular, we would like
to know the limiting distribution of HSIE for large sample sizes. We now show that HSIE
asymptotically normal, and we derive its variance. These results are &ifut sisce they allow us
to formulate statistics for a significance test.

Theorem 5 (Asymptotic Normality) If E[h?] < , and data and labels are not independ@tiaen
as m— o, HSIC; converges in distribution to a Gaussian random variable with mean

3. This is a subtle but important point: if the data and labels are indepetidenthe U-statistic is degenerate, and the
null distribution takes a different form. See Gretton et al. (2008) aed{8g, 1980, Section 5.5).
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HSIC(¥, G,Pry) and estimated variance

) 16 ) 1m . . 2
Ofisic, = — (R—HSIC]) where R= Z((m— Dym > N, J,q,r)> . (15)
m mi= (1ar)a\(i)

whereil'\ {i} denotes the set of all n-tuples drawn without replacement from. m} \ {i}.

Proof [Sketch] This follows directly from Serfling (1980, Theorem B, p. 19@)ich shows asymp-
totic normality of U-statistics. |

Unfortunately (15) is expensive to compute by means of an explicit summadi@m computing
the kernelh of the U-statistic itself is a nontrivial task. For practical purposes we aeeskpres-
sion which can exploit fast matrix operations. As we shall é@iq can be computed i®(m?),
given the matrice& andL. To do so, we first form a vectdr with its ith entry corresponding to
S (j.aneim iy (i, J,6,r). Collecting terms in (11) related to matricésandL, h can be written as

h=(m-22K o)1+ (m—2) ((trk[ 1-K[1- ERl) ~m(R1)o([1)

where o denotes elementwise matrix multiplication. ThBnn (15) can be computed d8 =
(4m)~1(m—1)32h"h. Combining this with the the unbiased estimator in (5) leads to the matrix
computation obgc, -

2.6 Computation

In this section, we first analyze the complexity of computing estimators for Hifbemmidt Inde-
pendence Criterion. We then propose efficient methods for approxinetelputing these estima-
tors which are linear in the number of examples.

2.6.1 EXACT COMPUTATION OFHSICy AND HSIC;

Note that both HSIgand HSIG are simple to compute, since only the kernel matri¢emdL are
needed, and no density estimation is involved. Assume that computing an eRtrgridL takes
constant time, then computing the full matrix takegr?) time. In term of the sample size, we
have the following analysis of the time complexity of Hgl&hd HSIG (by considering summation
and multiplication as atomic operations):

HSICo CenteringL takesO(n?) time. Since t(KHLH ) is equivalent tal” (K o HLH )1, it also
takesO(n?) time. Overall, computing HSIgtakesO(n?) time.

HSIC; Each of the three terms in HSjCnamely tKL), 1"K11"(1 and1"K (1, takesO(n?)
time. Overall, computing HSICalso takesO(n¥) time.
2.6.2 APPROXIMATE COMPUTATION OFHSICy AND HSIC;

Further speedup is also possible via a low rank approximation of the keatektes. Particularly,
using incomplete Cholesky decomposition, Gretton et al. (2005a) derigicient approximation
of HSIC,. Formally, it can be summarized as the following lemma:
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Lemma 6 (Efficient Approximation to HSIC ) LetK ~ AAT andL ~ BB, whereA ¢ R™dr
andB € R™%. ThenHSIC, can be approximated io(m(d? + d3)) time.

Note that in this case the dominant computation comes from the incomplete Chdlaskypo-
sition, which can be carried out i@(md?) and O(mcﬁ) time respectively (Fine and Scheinberg,
2000).

The three terms in HSICcan be computed analogously. Denotely = diag/AA ") and
D. = diag(BB ") the diagonal matrices of the approximating terms. The latter can be computed in
O(mdr) and O(md,) time respectively. We have

1"K1=1T(AAT —Dg)1=|1TA||?+1 Dk 1.

Computation require®(md; ) time. The same holds when computihglL1. To obtain the second
term we exploit that

1"K[1=1"(AAT —Dk)(BB" —Dk)1= ((A(AT1))—Dx1)"((B(B"1))—D_1).
This can be computed i@(m(ds +dg)). Finally, to compute the third term we use

trKL =tr(AAT —Dx)(BB™ —D.)
=||ATB||%,—trB"DkB —trATD_A +trDkDy .
This can be computed i®@(mdidgy) time. It is the most costly of all operations, since it takes all
interactions between the reduced factorizationk afhdL into account. Hence we may compute

HSIC, efficiently (note again that dominant computation comes from the incomplete skiyale-
composition):

Lemma 7 (Efficient Approximation of HSIC;) LetK ~ AAT andL ~ BB', whereA ¢ R™ds
andB € R™%. ThenHSIC; can be approximated id(m(d? + d2)) time.

2.6.3 VWARIANCE OF HSIC;

To compute the variance of HS{@Qve also need to deal witfK o L)1. For the latter, no imme-
diate linear algebra expansion is available. However, we may use of theviftdldecomposition.
Assume that andb are vectors irR™. In this case

((@aa")o(bb"))1= (aob)(ach)"1
which can be computed i@(m) time. Hence we may compute

df dy
(AAT)o(BBT)L=3 3 ((AioB))(Ai0B) )L
i=1]=1

which can be carried out i®(mdidy) time. To take care of the diagonal corrections note that
(AAT —Dg)oDL = 0. The same holds foB andDy. The remaining ternDx D, 1 is obviously
also computable i®(m) time.
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3. Notation

In the following sections, we will deal mainly with vectorial data. Whenevehese vectorial data,
we useX as a shorthand to denote the matrix of all vectorial observatioa®R? (theith row of X
corresponds t&;"). Likewise, whenever the labels can be bundled into a matix a vectoty (for
binary classification), we will use the latter for a more concise notation. Atsowill refer to the
jth column ofX andY asx,;j andy.; respectively as needed.

Furthermore, we denote the mean and standard deviation gfthhieature (dimension) by
Xj = 1 3™ ands; = (& y"(x; —Xj)?)Y/2 respectively; is the value of thgth feature of data).
For binary classification problems we denoterby andm_ the numbers of positive and negative
observations. Moreovek;, andX;_ correspond respectively to the means of the positive and
negative classes at thjeh feature (the corresponding standard deviationssareands;_). More
generally, lem, be the number of samples with class label equgl(tbis notation is also applicable
to multiclass problems). Finally, Idt, be a vector of all ones with lengthand0,, be a vector of all
zeros.

For non-vectorial or scalar data, we will use lower case letters to denae thlery often the
labels are scalars, we ugéo denote them. The mean and standard deviation of the labglsaace
sy respectively.

4. Feature Selection via HSIC

Having defined our feature selectigniterion, we now describalgorithmsthat conduct feature
selection on the basis of this dependence measure. Dengteheyfull set of features7 a subset
of features ¢ C 5). We want to find7 such that the dependence between features and the
labels is maximized. Moreover, we may choose between different feai@ation strategies, that s,
whether we would like to build up a catalog of features in an incremental fagtuovard selection)
or whether we would like to remove irrelevant features from a catalogk(zac selection). For
certain kernels, such as a linear kernel, both selection methods araleqtiithe objective function
decomposes into individual coordinates, and thus feature selectiorecdonie without recursion
in one go. Although forward selection is computationally more efficient, baottwlimination in
general yields better features (especially for nonlinear featuresk Hie quality of the features is
assessed within the context of all other features (Guyon and Elis2668).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a list” which contains the features in increasing degree of relevance.
At each steps” is appended by a feature frashwhich is not contained is' yet by selecting the
features which are least dependent on the reference seY (aethe full setX).

Once we perform this operation, the feature selection problem in (1) emoled by simply
taking the last elements froms™. Our algorithm produces™ recursively, eliminating the least
relevant features frons and adding them to the end sf at each iteration. For convenience, we
also denote HSIC as HS(G,.5), wheres are the features used in computing the data kernel matrix
K, ando is the parameter for the data kernel (for instance, this might be the size atisstan
kernelk(x,X) = exp(—a ||x — x'||?)).

Step 3 of the algorithm denotes a policy for adapting the kernel paramBtepgnding on the
availability of prior knowledge and the type of preprocessing, we exgltmnee types of policies
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1. If we have prior knowledge about the nature of the nonlinearity in ttee dee can use a fixed
kernel parameter throughout the iterations. For instance, we can wdgn@mial kernel of
fixed degree, for examplé(x,x’) + 1), to select the features for the XOR data set in Figure
2(a).

2. If we have no prior knowledge, we can optimize HSIC over a set ofdtgrarameters. In this
case, the policy corresponds to argmax HSIC(o,.5), where® is a set of parameters that
ensure the kernel is bounded. For instatcean be the scale parameter of a Gaussian kernel,
k(x,X') = exp(—a ||)x — X'||?). Optimizing over the scaling parameter allows us to adapt to the
scale of the nonlinearity present in the (feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. natieely we
can use a policy that produces approximate parameters in each iteratianstaace, if we
normalize each feature separately to zero mean and unit variance, weahatdhe expected
value of the distance between data poiiﬂ%@x — x’)z] , is 2d (d is the dimension of the data).
When using a Gaussian kernel, we can then use a policy that assigng/(2d) as the
dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the ¢aseadial
basis kernel on the observations and a linear kernel on binary labelsxdmple in Section 5.2 is
instructive: optimizing the bandwidth of the kerrkabn the observations corresponds to finding the
optimum lengthscale for which smooth functions may be found to maximizkntb&r covariance
with the labels. This optimum lengthscale will change as the dimensionality of trexvaltien
feature space changes (as feature selection progresses). labed descussion, see (Sriperumbudur
et al., 2009, Section 5): in this case, the kernel bandwidth which maximizesnelkdistance
measure between two distributioRandQ corresponds to the lengthscale at whitandQ differ.
WhenP is the joint distirbutionP = Pr(x,y), andQ the product of the marginal® = Pr(x) Pr(y),
the kernel distance measure in Sriperumbudur et al. (2009) cordspoi SIC (see Gretton et al.,
2007b, Section 7.3). Note further that when a radial basis kerneh @sithe Gaussian) is used,
the unbiased HSICis zero both for bandwidth zero, and as the bandwidth approaches infmity (
the former case, the off-diagonal kernel values are zero; in the lditeoff-diagonal kernel values
are all equal). Thus HSKOmust have a maximum between these two extremes in bandwidth, and
this maximum is bounded since the kernel is bounded. Again, see Sripetunddal. (2009) for a
related discussion when comparing arbitrary distributi®reedQ.

Algorithm 1 BAHSIC
Input: The full set of features
Output: An ordered set of features'

1. ST+ o

2: repeat

3 0+ =

4: I« argmay Y HSIC(o,5\{j}), ICS
5 S+ S\I

6 ST« (5,1

7. until S =9
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Step 4 of the algorithm is concerned with the selection of d sétfeatures to eliminate. While
one could choose a single elementSotthis would be inefficient when there are a large number of
irrelevant features. On the other hand, removing too many featureseatisks the loss of relevant
features. In our experiments, we found a good compromise betweeth apedeature quality was
to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matribL for the labels is fixed through the whole process. It can be
precomputed and stored for speedup if needed. Therefore, the naajgrutation comes from
repeated calculation of the kernel matkixfor the dimension-reduced data. If we remove & of
the data at every step and under the assumption that beyond computing gredict the actual
evaluation of an entry i requires only constant time irrespective of the dimension of the data, then
theith iteration of BAHSIC take®)(8'~1dn?) time: d is the total number of features, herfged
features remain aftér— 1 iterations and we have’ elements in the kernel matrix in total. If we
want to reduce the number of features tee need at most= logg(t/d) iterations. This brings the

total time complexity taD <11%%Tdmz> =0 (f%érr?) operations. When using incomplete Cholesky

factorization we may reduce computational complexity somewhat furth@r(t%:—ém(d?erg))
time. This saving is significant as long dsdy < m, which may happen, for instance whenever

is a binary label matrix. In this cagh = 1, hence incomplete factorizations may yield significant
computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it build®&féatures irdecreasing
degree of relevance. This is achieved by adding one feature at a time $ettloé featuress’
obtained so far using HSIC as a criterion for the quality of the so-addedriss. For faster selection
of features, we can choose a group of features (for instance,dafie@ortiony) at step 4 and add
them in one shot at step 6. The adaptation of kernel parameters in stbpuasftihe same policies
as those for BAHSIC. The feature selection problem in (1) can be sblyaimply taking theirst

t elements frons™.

Algorithm 2 FOHSIC
Input: The full set of features
Output: An ordered set of features’

1 ST o

2: repeat

33 0+ =

4 I+ argmay ¥, HSIC(o,sTu{j}), ICS
5 S+ S\I

6. ST (st 1)

7. until S =0

4.2.1 TiME COMPLEXITY
Under the same assumption as BAHSIC, itheteration of FOHSIC take®((1—y)'~*dn?) time.

The total number of iterationsto obtaint features i2 = [1— (1—y)'|d, that isT = %

1405



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

iterations. Performing steps will therefore takg!_5d(1—y)' =d(1— (1—y)")/y=t/yoperations.
This means that FOHSIC tak&4tn? /y) time to extract features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select featureswe decided to choose a certain family
of kernelsk,| to measure dependence between two sets of observations. We nowdtoats-
cussing a number of design choiceska@ndl. This will happen in two parts: in the current section
we discuss generic choices of kernels on data and labels. Various aiiabof such kernels will
then lead to new algorithms that aim to discover different types of depeadexween features and
labels (or between a full and a restricted data set we are interested ipeuvised feature selec-
tion). After that (in Section 6) we will study specific choices of kernels Witiorrespond to existing
feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, diffeenels will correspond to a
range of different assumptions on the type of dependence betweeanithemn variablex andy.
Hence different kernels induce distinctive similarity measure on the data.

5.1.1 LUNEAR KERNEL

The simplest choice fok is to take a linear kernéd(x,x’) = (x,x’). This means that we are just
using the underlying Euclidean space to define the similarity measure. Wdré¢hewlimensionality
d of x is very high, this may allow for more complexity in the function class than whatauédc
measure and assess otherwise. An additional advantage of this settirtighe tkernel decomposes
into the sum of products between individual coordinates. This meansthakaression of the type
trKM can be maximized with respect to the subset of available features via

d

.
D X jMx,j.
=

This means that the optimality criterion decomposes into a sum over the scaones/afual coor-
dinates. Hence maximization with respect to a subset of $&zgivial, since it just involves finding
thet largest contributors. Using (9) we can see that for H3hK@ matrixM is given by

L+ (227 -1) L2 (I:llT—diag(I:l))}

M= Mm-1)(m-2) m-2

=]

These terms are essentially rank-1 and diagonal updates which means that they can be com-
puted very efficiently. Note also that in this case FOHSIC and BAHSICrg¢méheoptimalfeature
selection with respect to the criterion applied.

5.1.2 POLYNOMIAL KERNEL

Clearly in some cases the use of linear features can be quite limiting. It is |gogkiugh, to use
higher order correlations between data for the purpose of featuretisale This is achieved by
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using a polynomial kernel
k(x,X) = ((x,x') +a)° for somea >0 andb € N,

This kernel incorporates all polynomial interactions up to dedréprovided thata > 0). For
instance, if we wanted to take only mean and variance into account, we wuyldeed to consider
b =2 anda= 1. Placing a higher emphasis on means is achieved by increasing the tofffsiin
a.

5.1.3 RaDIAL BASIS FUNCTION KERNEL

Note that polynomial kernels only map data intfirate dimensional space: while potentially huge,
the dimensionality of polynomials of bounded degree is finite, hence critésiagafrom such ker-
nels will not provide us with guarantees for a good dependence me&@unithe other hand, many
radial basis function kernels, such as the Gaussian RBF kerneknimap aninfinite dimensional
space. One may show that these kernels are in fact characteristiarffzuket al., 2008; Sriperum-
budur et al., 2008, 2010). That is, we use kernels of the form

k(x,X) = k(||x —X||) wherek (£) = exp(—&) ork (&) = exp(—&?)

to obtain Laplace and Gaussian kernels respectively. Since the sp@dttercorresponding matri-
ces decays rapidly (Bach and Jordan, 2002, Appendix C), it is eagyrpute incomplete Cholesky
factorizations of the kernel matrix efficiently.

5.1.4 SRING AND GRAPH KERNEL

One of the key advantages of our approach is that it is not limited to veotiatial For instance, we
can perform feature selection on documents or graphs. For manyituetions we have

k(x,X) = z Wata (X)#a(X ),

aCx

wherea C x is a substring ok (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar
decompositions can be made for graphs, where kernels on randomamalksths can be defined.
As before, we could use BAHSIC to remove or FOHSIC to generate a lisatiires such that only
relevant ones remain. That said, given that such kernels are addither features, we can use the
same argument as made above for linear kernels to determine meaningfté$aa one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on whipértes ofx (e.g., linear,
polynomial, or nonparametric) are relevant for estimation. We now desttrdbboeomplementary
part, namely a set of possible choices for kernels on labels. Note thatkbesels can be just as
general as those defined on the data. This means that we may apply oithaigao classification,
regression, Poisson models, ranking, etc., in the same fashion. This isifecaig difference to
previous approaches which only apply to specialized settings such ay biaasification. For
completeness we begin with the latter.
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5.2.1 BNARY CLASSIFICATION

The simplest kernel we may choose is
L(y,y') =yy wherey,y' € {£1}. (16)

In this case the label kernel matrix=yy' has rank 1 and it is simply the outer product of the
vector of labels. Note that we could transfolrhy adding a positive constant such as to obtain
I(y,y') = yy +cwhichyieldsl (y,y') = 28y, for c= 1. This transformation, however, is immaterial:
onceK has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: wedmayge the relative
weights of positive and negative classes. This is achieved by transfpymincyy. For instance,
we may pickc, = m; ! andc_ = ml. Thatis, we choose

.
y= <m;11Tm,m:11$L> which leads td (y,y') = m, *myy. (17)

That is, we give different weight to positive and negative class aatgito their sample size. As
we shall see in the next section, this corresponds to making the featurgseledependent of the
class size and it will lead to criteria derived from Maximum Mean Discrepastmators (Gretton
et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in ginar
classification, as required in Step 3 of Algorithms 1 and 2 (see Section 4nWlinear kernel is
used on the observations, HSIC is related to a number of well-establisheddince measures, as
we will establish in Section 6. Hence, we focus for the moment on the cage Wiesfeature space
F for the observations is nonlinear (eg, an RBF kernel), and we use tlax keenel (16) on the
labels. HSIC being the squared Hilbert-Schmidt norm of the covarianeeatgy between the fea-
ture spaced andg, it corresponds to the sum of the squared singular values of this operato
maximum singular value (COCO; see Gretton et al., 2005b) corresponds kargiest covariance
between the mappingf (X) andgi(Y) of X andY. Given a linear kernel is used on the labels,
01(Y) will be a linear function on the label space. The naturé;¢X) will depend on the choice of
observation kernék. For a Gaussian kernéll; (X) will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plotsluser-
vations, where one class has a bimodal distribution in feaXyneith cluster centres at1. The
second class has a single peak at the origin. The maximum singular ¥getgis shown in Figure
1(b), and is computed using a Gaussian kernel on the observation®ndacce with Gretton et al.
(2005b). The resulting mapped points in Figure 1(c) have a strong lie&dion with the labels
(which can only be linearly transformed). Thus, when a nonlinear kexnsed on the observations,
the features that maximize HSIC are those that can be smoothly mapped todtanggdinear cor-
relation with the labels. The family of smooth mappings is determined by the cholagrmdl on
the observations: as we see from Figure 1(b), too large or small al lkeermeesult in a mapping
that does not reflect the lengthscale of the underlying difference fartssa This demonstrates the
need for the kernel bandwidth selection step described in Section 4.
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Figure 1: Maximum eigenfunction of the covrariance operator. Figuag dgntains the original
data, where blue points have the lahel and red points are labeledl. The feature of
interest is plotted along theaxis, and an irrelevant feature on th@xis. Figure 1(b)
contains the largest eigefunction of the covariance operator on thamefeature alone,
for three different kernel sizes: the smallest kernel shows overfiting the largest is
too smooth. Figure 1(c) contains the mapped points for a “good” kermétetr = 0.1,
illustrating a strong linear relation between the mapped points and the labels for this
choice ofo.

5.2.2 MULTICLASS CLASSIFICATION

Here we have a somewhat larger choice of options to contend with. Clearlsirtiplest kernel
would be

I(y,Y') = ¢,y wherecy > 0. (18)

Forcy = ngl we obtain a per-class normalization. Clearly, foclasses, the kernel matrix can

be represented by the outer product of a ramkatrix, where each row is given h:;/ie;i , Whereeg,
denotes thg-th unit vector inR". Alternatively, we may adjust the inner product between classes
to obtain

L(y,y) = (W(y), w(y)) (19)

wherey(y) = g —zandz= ((m—my)%,...,(m—my)HT.

o m
my(m—my)

This corresponds to assigning a “one versus the rest” feature to &sshand taking the inner
product between them. As before in the binary case, note that we may fhmm the expansion,
since constant offsets do not change the relative values of HSI@dturke selection. In this case
we recover (18) witle, = mPm; ?(m—my) 2.

1409



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

5.2.3 REGRESSION

This is one of the situations where the advantages of using HSIC are cggdyent: we are able

to adjust our method to such situations simply by choosing appropriate ke@iekxly, we could

justuse a linear kerné{y,y’) = yy which would select simple correlations between data and labels.
Another choice is to use an RBF kernel on the labels, such as

1(v.y) = exp( =3 ly-Y/|*). (20)

This will ensure that we capture arbitrary nonlinear dependence betnaedy. The price is that
in this casd. will have full rank, hence computation of BAHSIC and FOHSIC are gpoadingly
more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special daBAsI81C by choosing appro-
priate preprocessing of data and kernels. We will directly relate thesaatitehe biased estimator
HSICy in (4). Given the fact that HSIEconverges to HSICwith rate O(m™?) it follows that the
criteria are well related. Additionally we can infer from this that by using€iShese other criteria
could also be improved by correcting their bias. In summary BAHSIC is dapalfinding and
exploiting dependence of a much more general nature (for instancendiepce between data and
labels with graph and string values).

6.1 Pearson Correlation

Pearson’s correlation is commonly used in microarray analysis (vanit &eal., 2002; Ein-Dor
et al., 2006). Itis defined as

m21<x.] _XJ> ( ;5 where (21)

-:—Zx”andy_ 213/.and§_—zix.,—xJ and§_—;(yi—37)2.

This means that all features are individually centeredkpynd scaled by their coordinate-wise
variancesy; as a preprocessing step. Performing those operations before appliinesar kernel
yields the equivalent HSIECformulation:

2
trKHLH = tr (XX THyy TH) = HHXTHyH (22)

HEED) g e

Hence HSIG computes the sum of the squares of the Pearson Correlation (pc) ieme#ficSince
the terms are additive, feature selection is straightforward by picking theflis¢st performing
features.
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6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative clasise$th feature(X; —x;_),

is useful for scoring individual features. With different normalizatidrite data and the labels,
many variants can be derived. In our experiments we compare a numbeesef variants. For
example, the centroid (lin) (Bedo et al., 2006}tatistic (t), signal-to-noise ratio (snr), moderated
t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. énféowing we
make those connections more explicit.

Centroid Bedo et al. (2006) usg := AXj — (1 —A)xj_ for A € (0,1) as the score for feature*
Features are subsequently selected according to the absolutqw@um experiments the
authors typlcally choosk =

ForA = 2 we can achieve the same goal by choosnng_ y'y' (i,yir € {£1}), in which
caseHLH =L, since the label kernel matrix is already centered Hence we have

m d d
Vivir T YiVirXij Xiv j
trKHLH = X' Xjr = (X; Xi
i,|Z:1mVim>"' e le<||21 my,my, ) JZ Sl

This proves that the centroid feature selector can be viewed as a syaesaailf BAHSIC in the
case of\ = 1. From our analysis we see that other values amount to effectively rescaling

the patterng; differentlyfor different classes, which may lead to undesirable features being

selected.

t-Statistic The normalization for thgth feature is computed as

1
ST
SR

YT (24)

Sj =

In this case we define thestatistic for thejth feature via; = (Xj+ —Xj_)/s;.

Compared to the Pearson correlation, the key difference is that nownwelipe each feature
not by the overall sample standard deviation but rather by a value whiekb &sich of the two
classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize

each feature bg; = sj, + sj_ instead. Subsequently tig;. —X;_)/s; are used to score
features.

Moderated t-score is similar tot-statistic and is used for microarray analysis (Smyth, 2004). Its

normalization for theth feature is derived via a Bayes approach as

m&? + moS3

I Tmrmo

wheres;j is from (24), ands; andmg are hyperparameters for the prior distributionspiall s;

are assumed to biel). s andmy are estimated using information from all feature dimensions.

4. The parameterization in Bedo et al. (2006) is different but it carhbess to be equivalent.
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This effectively borrows information from the ensemble of features to #idthve scoring of
an individual feature. More specificallsy andmgy can be computed as (Smyth, 2004)

mo = 2r' -1 (; i(zj ~72-r' (Z)) , (25)

J:

$-oo(z-r(3)+r () ()

wherefl (-) is the gamma functiori,denotes derivativez; = In(éjz) andz= %Z?:lzj.

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentiallyessed.
Lonnstedt and Speed (2002) and Smyth (2004) show that, for large nainfeatures, B-
statistic is given by

Bj::a+—df

where botha andb are constanty> 0), andf; is the moderatedistatistic for thejth feature.
Here we see thd; is monotonic increasing if), and thus results in the same gene ranking
as the moderatedstatistic.

The reason why these connections work is that the signal-to-noise ratiterated-statistic, and
B-statistic are three variants of theest. They differ only in their respective denominators, and are
thus special cases of HY@ we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classification, an alternative criterion for selecting features égheck whether the dis-
tributions P(x|y = 1) and P¢x|y = —1) differ and subsequently pick those coordinates of the data
which primarily contribute to the difference between the two distributions.

More specifically, we could use Maximum Mean Discrepancy (MMD) (Grettbal., 2007a),
which is a generalization of mean difference for Reproducing Kernel Hifgaces, given by

MMD = ||Ex[@(X)]y = 1] — Ex[o(x)]y = —1]||3,.

A biased estimator of the above quantity can be obtained simply by replaciegtakipns by av-
erages over a finite sample. We relate a biased estimator of MMD toH&j&n by settingn;1

as the labels for positive samples andh~! for negative samples. If we apply a linear kernel on
labels,L is automatically centered, that is] = 0 andHLH = L. This yields

trKHLH = trKL (26)

H
The quantity in the last line is an estimator of MMD with bi@gm~1) (Gretton et al., 2007a). This
implies that HSIG@ and the biased estimator of MMD are identical up to a constant factor. Siace th

bias of HSIG is alsoO(m™1), this effectively show that scaled MMD and HSI€onverges to each
other with rateO(m1).
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6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristiargtial., 2003) to test di-
rectly whether there exists any correlation between data and labels. KsTBelem used for feature
selection in this context. Formally it is defined a¥it ) /||K||||L ||, that is, as the normalized cosine
between the kernel matrix and the label matrix.

The nonlinear dependence Bnmakes it somewhat hard to optimize for. Indeed, for compu-
tational convenience the normalization is often omitted in practice (Neumann 20@%), which
leaves us with tKL , the corresponding estimator of MMDNote the key difference, though, that
normalization ofL according to label size does not occur. Nor does KTA take centerincaiito
count. Both normalizations are rather important, in particular when dealing \atdn wlith very
uneven distribution of classes and when using data that is highly collineeataré space. On the
other hand, whenever the sample sizes for both classes are approximatehed, such lack of
normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classification, selecting features that maxitikeslso maxi-
mizes MMD and KTA. Note that in general (multiclass, regression, or geberary classification)
this connection does not hold. Moreover, the use of HSIC offers imifmnvergence bounds on
the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2008)rpes feature ranking using
the differences from the class centroids to the centroid of all the datasthat

= N2, 7 a2
(Xj+ = X))+ (Xj— —X))7,

as a criterion to determine the relevance of a given feature. It alsosseach feature separately.

To show that this criterion is related to HSIC we need to devise an appropragiéor the labels
y. Consider the feature maj(y) with @(1) = (m;*,0)" andy(—1) = (0,m-%)". Clearly, when
applyingH to Y we obtain the following centered effective feature maps

P) = (mt-mt-mYHandp(-1) = (—mtmt-m?).

Consequently we may expres&iLH via
2
1w 1nm 1T
m & m& | & *ZX'
d 1 my 1 m 1 m_ 28
2 (m;x'rmlel) (w50-2gn))

trKHLH = 27)

5. The denominator provides a trivial constraint in the case where#teresare individually normalized to unit norm
for a linear kernel, since in this ca$i | = d: that is, the norm of the kernel matrix scales with the dimensiondlity
of remaining features iXX. The normalization in the denominator can have a more meaningful dff@eever, for
instance in the taxonomy fitting work of Blaschko and Gretton (2009), evtier quality-of-fit score could otherwise
be made arbitrarily large independent of the data.
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This is the information used by the shrunken centroid method, hence weateie ¢an be seen
to be a special case of HSIC when using a linear kernel on the data qmettificsfeature map on
the labels. Note that we could assign different weights to the two classét) wbuld lead to a
weighted linear combination of distances from the centroid. Finally, it is stifaigiard how this
definition can be extended to multiclass settings, simply by considering thgmap> m;lq,.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problegeptethat in this case the
labels are continuous variables. We could, in principle, use an RBFlkarsamilar on the labels
to address the feature selection issue. What we show now is that evarsifople linear kernel,
interesting results can be obtained. More to the point, we show that feafertien using ridge
regression can also be seen to arise as a special case of HSIC sedotmn. We assume here that
y is centered.

In ridge regression (Hastie et al., 2001), we estimate the ouypusing the design matri¥
and a parameter vectar by minimizing the following regularized risk functional

2 2
J=[ly = Vw|["+Aflwl}=.

Here the second term is known as the regularizer. If we chdes&X we obtain the family ofinear
models. In the general (nonlinear) casenay be an arbitrary matrix, where each row consists of
a set of basis functions, for example, a feature mp@g. One might conclude that small values of
J correspond to good sets of features, since thexevath small norm would still lead to a small
approximation error. It turns out thatis minimized forw = (V TV 4 Al)~ly. Hence the minimum

is given by

J=yy—y'VIVIV+A)VTy (29)
= constant- tr {V (VTV £l )*1VT} yy'.

Whenever we are only givet = V'V we have the following equality
J* = constant-tr [K(K +Al)1]yy".
This means that the matrices
K:=VV'V+A)"VT andK := K(K +Al)~?

are equivalent kernel matrices to be used in BAHSIC. Note that obvidgustgad of usingy ' as
a kernel on the labels we could use a nonlinear kerrialconjunctionwith the matrices arrived at
from feature selection by ridge regression. It also generalizes thegseftiastie et al. (2001) to
situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature setecThat is, he uses the
distance between the joint and the marginal distributionsamdy as a criterion for how dependent
the two distributions are:

l(x,y) = / / (Pr(x,y) — Pr(x) Pr(y))?dxdy. (30)
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In general, (30) is not efficiently computable. That said, when usingzeRavindows estimate of
the joint and the marginals, it is possible to evalugtey) explicitly. Since we only have a finite
number of observations, one uses the estimates

B0 = 13 KX ).
ply) = riiKy(yi -Y),
l m

p(x,y) = m ZLKX(Xi —X)Ky(Yi —Y).

Hereky andky are appropriate kernels of the Parzen windows density estimator. Dgnote b

Kij = /KX(Xi — X)Kx(Xj —x)dx and vjj; = /Ky(yi —Y)Ky(yj —y)dy
inner products between Parzen windows kernels. In this case we have
1B(%,y) — P(X) - Py)||? = m 2 [trkv — 21 kvl + lTKllTvl} = m 2KHVH.

In other words, we obtain the same criterion as what can be deriveddrbrased estimator of
HSIC. The key difference, though, is that this analogy only works wherk andv can be seen to
be arising from an inner product between Parzen windows kernel ésimEhis is not universally
true: for instance, for graphs, trees, or strings no simple density estigetdse found. This is a
serious limitation. Moreover, since we are using a plug-in estimate of the densigeinherit an
innate slow-down of convergence due to the convergence of the dessityators. This issue is
discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector iMestand to determine
the relevance of features by the size of the induced margin as a solutioa dbi#h optimization

problem (Guyon et al., 2002). While the connection to BAHSIC is somewhag teouous in this

context, it is still possible to recast this algorithm in our framework. Befoeeda so, we describe
the basic idea of the method, usmgp VM instead of plairC-SVMs: forv-SVM without a constant
offsetb we have the following dual optimization problem (Stkopf et al., 1999).

o1 .
mlnldmlzeéaT(K oL)a subjecttoa’1l=vmanda; € [0,1]. (31)

This problem is first solved with respectdofor the full set of features. Features are then selected
from (31) by removing coordinates such that the objective functionedses least (if at all). For
computational convenience,is not recomputed for a number of feature removals, since repeated
solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case @dIBAWhere now the
class of kernels, parameterized dys the one oftonformalkernels. Given a base kerriglx, x’)
Amari and Wu (1999) propose the following kernel:

k(x,x") = a(x)a(x)k(x,x") where a(x) > 0.
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It is easy to see that
a'(KolL)a =y [diaga]K [diaga]y =y Ky,

whereK is the kernel matrix arising from the conformal keriiék,x’). Hence for fixeda the
objective function is given by a quantity which can be interpreted as adhssion of HSIC.
Re-optimization with respect m is consistent with the kernel adjustment step in Algorithm 1. The
only difference being that here the kernel parameters are givenrbther than a kernel widtd.
That said, it is also clear from the optimization problem that this style of feaeleztion may not
be as desirable, since the choice of kernel parameters emphasizegiotdygose to the decision
boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of expddnidre current section
contains results on synthetic and real benchmark data, that is, datatadiin, $he UCI repository,
and data from the NIPS feature selection challenge. Sections 8 and 9sbassés applications to
biological data, namely brain signal analysis and feature selection for amies.

Since the number of possible choices for feature selection within the BAKEIQY is huge,
it is clearly impossible to investigate and compare all of them to all possible othteiréeselectors.
In the present section we pick the following three feature selectors esseggative examples. A
wider range of kernels and choices is investigated in Section 8 and 9 in titextof biomedical
applications.

In this section, we presents three concrete examples of BAHSIC whichsacdefor our later
experiments. We apply a Gaussian kerk@l, x') = exp(—al|x — X'||?) on data, while varying the
kernels on labels. These BAHSIC variants are dedicated respectivibly following settings:

Binary classification (BIN) Use the feature map in (17) and apply a linear kernel.
Multiclass classification (MUL) Use the feature map in (18) and apply a linear kernel.
Regression problem (REG) Use the kernel in (20), that is, a Gaussian RBF kernel on

For the above variants a further speedup of BAHSIC is possible bytimgdantries in the data kernel
matrix incrementally. We use the fact that distance computation of a RBF k#gnemposes into
individual coordinates, that is, we use that — xi[[2 = 39_; [|x;j — %/j|[%. Hence||x; — x; ||? needs
to be computed only once, and subsequent updates are effectediacsng||x;; — X | 2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in oyregiments.
We will refer to them commonly as BAHSIC since the exact meaning will be clepeidding on
the data sets encountered. Furthermore, we also instantiate FOHSIC esaagrib kernels as BIN,
MUL and REG, and we adopt the same convention when we refer to it inxperienents.

7.1 Atrtificial Data

We constructed 3 artificial data sets, as illustrated in Figure 2, to illustrate fleeedife between
BAHSIC variants with linear and nonlinear kernels. Each data set hasri&hdions—only the first
two dimensions are related to the prediction task and the rest are just Gangisia. These data
sets areij Binary XOR data: samples belonging to the same class have multimodal distributions;
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Figure 2: Artificial data sets and the performance of different methodswarying the number of
observationsThe first row contains plots for the first 2 dimension of the (a) binary (b)
multiclass and (c) regression data. Different classes are encodediffetierat colours.

The second rowplots the median rank (y-axis) of the two relevant features as a function
of sample size (x-axis) for the corresponding data sets in the firsfliosvthird row plots
median rank (y-axis) of the two relevant features produced in the firatid@ of BAHSIC

as a function of the sample size. (Blue circle: Pearson’s correlatiorenGreangle:
RELIEF; Magenta downward triangle: mutual information; Black triangle:HSIC;

Red square: BAHSIC. Note that RELIEF only works for binary clasaiiom.)

(i) Multiclass data: there are 4 classes but 3 of them are collineiir) Nonlinear regression
data: labels are related to the first two dimension of the datg byx; exp(—x2 — x3) + €, whereg

denotes additive Gaussian noise. We compare BAHSIC to FOHSIC dP&acerrelation, mutual
information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF workdydor binary problems).
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We aim to show that when nonlinear dependencies exist in the data, BAKigiGonlinear kernels
is very competent in finding them.

We instantiate the artificial data sets over a range of sample sizes (from @0)ta#d plot the
median rank, produced by various methods, for the first two dimensioteafata. All numbers
in Figure 2 are averaged over 10 runs. In all cases, BAHSIC showd gerformance. More
specifically, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the first two dimensions of ttie daen
for small sample sizes; while FOHSIC, Pearson’s correlation, and mutioaimation fail.
This is because the latter three evaluate the goodness of each featyrenisheiatly. Hence
they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct featurespae
tive of the size of the sample. Pearson’s correlation only works for Isageple size. The
collinearity of 3 classes provides linear correlation between the data atab#is, but due to
the interference of the fourth class such correlation is picked up byg®®arcorrelation only
for a large sample size.

Nonlinear Regression DataThe performance of Pearson’s correlation and mutual information is
slightly better than random. BAHSIC and FOHSIC quickly converge to theecbanswer as
the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is abikthearelevant features
(the first two dimensions) almost correctly in the first iteration. In the thirdebiigure 2, we show
the median rank of the relevant features produced in the first iteratiorieci@on of the sample
size. Itis clear from the pictures that BAHSIC effectively selects festim a single iteration when
the sample size is large enough. For the regression case, we also SBAHRIC with several
iterations, indicated by the red square in Figure 2(f), slightly improves theaoranking over
BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always betterttet with a linear
kernel, it illustrates the competence of BAHSIC in detecting nonlinear featdrais is obviously
useful in a real-world situations. The second advantage of BAHSIC it tsaeadily applicable to
both classification and regression problems, by simply choosing a diffezemel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-adstifeature selectors on a
large collection of public benchmark datasets. BAHSIC achieves thelblest performance in
three experimental settingse., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be cableato other state-of-
the-art feature selectors, namely SVM Recursive Feature Elimination)(&&FtEon et al., 2002),
RELIEF (Kira and Rendell, 1992}),9-norm SVM (o) (Weston et al., 2003), and R2W2 (Weston
et al.,, 2000). We used the implementation of these algorithms as given in the Smdhine
learning toolbox, since those were the only publicly available implementdtiénsthermore, we

6. The Spider toolbox can be foundkdtp://www.kyb.tuebingen.mpg.de/bs/people/spider
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also include filter methods, namely FOHSIC, Pearson’s correlation (P@)mautual information
(MI), in our comparisons.

7.2.2 DATA SETS

We used various real world data sets taken from the UCI repoditthry, Statlib repositor§,the
LibSVM website? and the NIPS feature selection challe§dor comparison. Due to scalability
issues in Spider, we produced a balanced random sample of size le0@tafor data sets with
more than 2000 samples.

7.2.3 EXPERIMENTAL PROTOCOL

We report the performance of an SVM using a Gaussian kernel onta@rdéesubset of size 5 and
10-fold cross-validation. These 5 features were selected per fold dgierent methods. Since
we are comparing the selected features, we used the same family of cladsifiail methods:
an SVM with a Gaussian kernel. To address issues of automatic bandwidttiee (after all,
we are interested in adjusting the function class to the data at hand) wecho$® the median
distance between points in the sample @kbpf and Smola, 2002) and we fixed the regularization
parameter t€ = 100. On classification data sets, we measured the performance usingttratey,
and on regression data sets we used the percentage of varatreelained (also known as-1r?).
The results for binary data sets are summarized in the first part of Tableo$e for multiclass and
regression data sets are reported respectively in the second anddhzatitsrof Table 1.

To provide a concise summary of the performance of various methods aryllata sets, we
measured how the methods compare with the best performing one in eacletdatdable 1. We
recorded the best absolute performancalbfeature selectors as the baseline, and computed the
distance of each algorithm to the best possible result. In this context it nsakeg to penalize
catastrophic failures more than small deviations. In other words, we wo@ddikave a method
which is at least almost always very close to the best performing onéngrdde/, distance achieves
this effect, by penalizing larger differences more heavily. It is also oal tp choose an algorithm
that performs homogeneously well across all data sets. (7 lustance scores are listed for the
binary data sets in Table 1. In general, the smaller/thdistance, the better the method. In this
respect, BAHSIC and FOHSIC have the best performance. We didrodupe the/, distance for
multiclass and regression data sets, since the limited number of such data swisalldw us to
draw statistically significant conclusions.

Besides using 5 features, we also plot the performance of the leamaffsiaction of the num-
ber of selected features for 9 data sets (covertype, ionosphei, satimage, segment, vehicle,
housing, bodyfat and abalone) in Figure 3. Generally speaking, thiesitie plotted number the
better the performance of the corresponding learner. For multiclassegression data sets, it is
clear that the curves for BAHSIC very often lie along the lower boundlohathods. For binary
classification, however, SVM-RFE as a member of our framework peddhe best in general.
The advantage of BAHSIC becomes apparent when a small perceffittageuses is selected. For
instance, BAHSIC is the best when only 5 features are selected fronsefaiaand 2. Note that

7. UCI repository can be found hitp://www.ics.uci.edu/ ~ mlearn/MLSummary.html
8. Statlib repository can be found ttp://lib.stat.cmu.edu/datasets/ .
9. LibSVM can be found atttp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/

10. NIPS feature selection challenge can be fourtdtat/clopinet.com/isabelle/Projects/NIPS2003/
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Data BAHSIC | FOHSIC PC Ml RFE RELIEF Lo R2W2
covertype | 26.3t1.5 | 37.9+:1.7 | 40.3:1.3 | 26.74+1.1 | 33.0£1.9 | 42.7+0.7 | 43.4:0.7 | 44.2t1.7
ionosphere | 12.3+1.7 | 12.8+1.6 | 12.3+1.5 | 13.1+1.7 | 20.2£2.2 | 11.A42.0 | 35.9+04 | 13.7+4+2.7

sonar 27.9+:3.1 | 25.0£2.3 | 25.5+2.4 | 26.941.9 | 21.6+:3.4 | 24.0+2.4 | 36.5:3.3 | 32.3+1.8

heart 14.8+2.4 | 14.4:2.4 | 16.7+2.4 | 15.2:25 | 21.9:3.0 | 21.943.4 | 30.742.8 | 19.3:2.6
breastcancer 3.8+0.4 3.86+0.4 4.0+0.4 3.5+0.5 3.4+0.6 3.1+0.3 | 32.742.3 3.4+0.4
australian | 14.3+1.3 | 14.3+1.3 | 145+1.3 | 145+1.3 | 14.8:1.2 | 145+1.3 | 35.9:1.0 | 14.5+1.3
splice 22.6+1.1 | 22.6+1.1 | 22.8:0.9 | 21.941.0 | 20.7+1.0 | 22.3+1.0 | 45.2:1.2 | 24.0+1.0
svmguide3 | 20.8+0.6 | 20.9+0.6 | 21.2+0.6 | 20.4+0.7 | 21.0+0.7 | 21.6+0.4 | 23.3t0.3 | 23.9+-0.2
adult 24.8-0.2 | 24.4+0.6 | 18.3:1.1 | 21.6+1.1 | 21.3+:0.9 | 24.4+0.2 | 24.7+-0.1 | 100.0+0.0
cleveland | 19.0+:2.1 | 20.5+1.9 | 21.941.7 | 19.5+2.2 | 20.94-2.1 | 22.4+2.5 | 25.2+0.6 | 21.5+-1.3
derm 0.3+0.3 | 0.3+0.3 0.3£0.3 | 0.3+0.3 | 0.3£0.3 | 0.3+0.3 | 24.3+:2.6 0.3+0.3
hepatitis 13.8+3.5 | 15.0+2.5 | 15.0+44.1 | 15.0:4.1 | 15.0£25 | 17.5+2.0 | 16.3:1.9 | 17.5+2.0
musk 29.9+25 | 29.6+£1.8 | 26.9:2.0 | 31.942.0 | 34.7+25 | 27.7+1.6 | 42.6:2.2 | 36.4:2.4
optdigits 0.5£0.2 | 0.5+0.2 0.5+0.2 | 3.4+0.6 | 3.0&£1.6 | 0.9+0.3 | 12.5+1.7 0.8+0.3
specft 20.0:2.8 | 20.0+2.8 | 18.8-3.4 | 18.8+-3.4 | 37.5+:6.7 | 26.3+-3.5 | 36.3+4.4 | 31.3:3.4
wdbc 5.3+0.6 5.3+0.6 5.3+0.7 | 6.7£05 | 7.7+1.8| 7.2+1.0 | 16.7+2.7 6.8+1.2
wine 1.7+1.1 1.7+1.1 1.7+1.1 17411 | 3.44+:14 | 42419 | 25.147.2 1.7+1.1
german 29.281.9 | 29.2+1.8 | 26.2:1.5 | 26.24+1.7 | 27.2:2.4 | 33.2+1.1 | 32.0:0.0 | 24.8+1.4
gisette 12.4+1.0 | 13.0+0.9 | 16.0+0.7 | 50.0:0.0 | 42.8+1.3 | 16.740.6 | 42.7+0.7 | 100.0+0.0*
arcene 22.0+£5.1 | 19.0£3.1 | 31.0£3.5 | 45.0+2.7 | 34.0:4.5 | 30.0+3.9 | 46.0:6.2 | 32.0£5.5
madelon 37.9-0.8 | 38.0+0.7 | 38.4-0.6 | 51.6+1.0 | 41.5+-0.8 | 38.6+0.7 | 51.3+1.1 | 100.0+0.0¢

lo 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3
satimage | 15.8+1.0 | 17.9+0.8 | 52.6+1.7 | 22.74-0.9 | 18.7+1.3 - 22.1+1.8 -
segment | 28.6+1.3 | 33.940.9 | 22.9+0.5 | 27.1+-1.3 | 24.5+0.8 - 68.7+7.1 -
vehicle 36.4-1.5 | 48.42.2 | 42.8:1.4 | 45.8:2.5 | 35.7+1.3 - 40.7+1.4 -

svmguide2 | 22.8+2.7 | 22.2£2.8 | 26.4+2.5 | 27.4+1.6 | 35.6+1.3 - 34.5+1.7 -
vowel 44.7+2.0 | 44.+2.0 | 48.14+2.0 | 45.4+2.2 | 51.9+2.0 - 85.6+1.0 -
usps 43.4-1.3 | 43.4+1.3 | 73.42.2 | 67.8:1.8 | 55.8+-2.6 - 67.0+2.2 -

housing 18.5+:2.6 | 18.9£3.6 | 25.3+2.5 | 18.9£2.7 - - - -
bodyfat 3.5+25 | 3.5£25 | 3.4+25| 3.4+25 - - - -
abalone 55.1+2.7 | 55.%+2.9 | 54.2£3.3 | 56.5+:2.6 - - - -

Table 1: Classification error (%) or percentage of variammeexplained (%). The best result, and
those results not significantly worse than it, are highlighted in bold (Matlabaigrtest
with 0.05 significance level). 100460.0"; program is not finished in a week or crashed. -:
not applicable.

in these cases, the performance produced by BAHSIC is very closettosing all features. In a
sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meahingfractice. Here
we use it to select a frequency band for a brain-computer interfac (Bfa set from the Berlin
BCI group (Dornhege et al., 2004). The data contains EEG signalsctidrghels, sampled at 100
Hz) from five healthy subjects (‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’) rezded during two types of motor
imaginations. The task is to classify the imagination for individual trials.
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Figure 3: The performance of a classifier or a regressor (vertiesl)as a function of the number
of selected features (horizontal axes). Note that the maximum of the htaizxes are
equal to the total number of features in each data set. (a-c) Balancedaterby a SVM
classifier on the binary data sets Covertype (1), lonosphere (2)arat &) respectively;
(d-f) balanced error rate by a one-versus-the-rest SVM clagsgifienulticlass data sets
Satimage (22), Segment (23) and Vehicle (24) respectively; (g-iepé&age of variance
not-explained by a SVR regressor on regression data set Housing @®y),f&t (26) and
Abalone (27) respectively.

Our experiment proceeds in 3 step: A Fast Fourier transformation (FFT) is performed on
each channel and the power spectrum is computijl Tlie power spectra from all channels are
averaged to obtain a single spectrum for each tri@). BAHSIC is used to select the top 5 discrim-
inative frequency components based on the power spectrum. The teddleguencies and their 4
nearest neighbours are used to reconstruct the temporal signals ljwaithes Fourier coefficients
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Figure 4: HSIC, encoded by the colour value for different freqydrands. The x-axis corresponds
to the upper cutoff and the y-axis denotes the lower cutoff (clearly n@kggm be found
where the lower bound exceeds the upper bound). Red correspaidsty dependence,
whereas blue indicates that no dependence was found. The figeifes subject (a) ‘aa’,
(b) ‘al’, (c) ‘av’, (d) ‘aw’ and (e) ‘ay’.

eliminated). The result is then passed to a normal CSP method (Dornhdge2604) for feature
extraction and then classified using a linear SVM.

Automatic filtering using BAHSIC is then compared to other filtering approaaiasnal CSP
method with manual filtering (8-40 Hz), the CSSP method (Lemm et al., 2005}hen@SSSP
method (Dornhege et al., 2006). All results presented in Table 2 are edtasing 50« 2-fold
cross-validation. Our method is very competitive and obtains the first auhdeplace for 4 of
the 5 subjects. While the CSSP and the CSSSP methodpeac@lizecembedded methods (w.r.t.
the CSP method) for frequency selection on BCI data, our method is entealrig. BAHSIC
decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of différemiency bands to motor
imagination. The horizontal and the vertical axes in each subfiguresestréhe lower and upper
bounds for a frequency band, respectively. HSIC is computed fdr ehthese bands. Dornhege
et al. (2006) report that thg rhythm (approx. 12 Hz) of EEG is most responsive to motor imagi-
nation, and that th@ rhythm (approx. 22 Hz) is also responsive. We expect that HSIC valte
a strong peak at thgrhythm and a weaker peak at tRehythm, and the absence of other respon-
sive frequency components will create block patterns. Both predictiensomfirmed in Figure 4.
Furthermore, the large area of the red region for subject ‘al’ indicaied gesponsiveness of his
rhythm. This also corresponds well with the lowest classification erroiraatdor him in Table 2.
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Method aa al av aw ay
CSP(8-40Hz)| 17.5+2.5| 3.1+1.2 | 32.14+2.5| 7.3+2.7| 6.0+1.6
CSSP 14.942.9 | 2.4+1.3 | 33.0+2.7 | 5.4+1.9| 6.2+1.5
CSSSP 12.2+2.1| 2.2+0.9 | 31.8t2.8 | 6.3+t1.8 | 12.7+2.0
BAHSIC 13.74+4.3| 1.9£1.3 | 30.5£3.3 | 6.1£3.8 | 9.0+£6.0

Table 2: Classification errors (%) on BCI data after selecting a frequamge.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create prolite applica-
tion, that is, it is not immediately clear which criteria we might want to choosee Mer provide
guidelines for choosing a specific member of the BAHSIC family by using getection as an
illustration.

9.1 Data Sets

While some past work focused on analysis cfpeecificsingle microarray data set we decided to
perform a large scale comparison of a raft of techniques on many datd&ézbelieve that this leads
to a more accurate description of the performance of feature selectersandur experiments on
28 data sets, of which 15 are two-class data sets and 13 are multiclasstdatélsse data sets
are assigned a reference number for convenience. Two-classtiatease a reference number less
than or equal to 15, and multiclass data sets have reference numberaraf 46ove. Only one data
set, yeast, has feature dimension less than 1000 (79 features). Aldatiaesets have dimensions
ranging from approximately 2000 to 25000. The number of samples vafegbn approximately
50 and 300 samples. A summary of the data sets and their sources is as:follows

e The six data sets studied in Ein-Dor et al. (2006). Three deal with bcaaser (van't Veer
et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numberedahd23), two with
lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, Spramavith hepatocellular
carcinoma (lizuka et al., 2003) (6). The B cell ymphoma data set (Raddratal., 2002) is
not used because none of the tested methods produce classificatigriamer than 40%.

e The six data sets studied in Warnat et al. (2005). Two deal with prostaterc@dhanasekaran
et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Grgebet al., 2001; West,
2003) (9, 10), and two with leukaemia (Bullinger et al., 2004; Valk et al. 42006, 17).

e Five commonly used bioinformatics benchmark data sets on colon cancer€dd., 1999)
(11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Getuth., 1999)(13), lym-
phoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19

¢ Nine data sets from the NCBI GEO database. The GDS IDs and referamdzers for this pa-
per are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 @RF968 (23), GDS1021
(24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454, @8d GDS1490 (15),
respectively.
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9.2 Classification Error and Robustness of Genes

We used stratified 10-fold cross-validation and SVMs to evaluate the pixedperformance of the
top 10 features selected by various members of BAHSIC. For two-cléases, a nonlinear SVM

with an Gaussian RBF kernéd(x,x') = exp(—%), was used. The regularization const@nt

and the kernel widtto were tuned on a grid 0f0.1,1,10,10?,10°} x {1,10,10% 10°}. Classifi-
cation performance is measured as the fraction of misclassified sampleswFiotass data sets,
all procedures are the same except that we used the SVM in a one-tieestest fashion. A new
BAHSIC member are also included in the comparison, with kerflets- x'|| +¢)~1 (dis; € is a
small positive number to avoid singularity) on the data.

The classification results for binary and multiclass data sets are reportedlim 3 and Table
4, respectively. In addition to error rate we also report the overlapdmtwhe top 10 gene lists
created in each fold. The multiclass results are presented separatel\sgineeolder members
of the BAHSIC family, and some competitors, are not naturally extensible to muttidias sets.
From the experiments we make the following observations:

When comparing the overall performance of various gene selectioritalgsy it is of primary
interest to choose a method which works veslerywhererather than one which sometimes works
well and sometimes performs catastrophically. It turns out that the lineaek@in) outperforms
all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the bestpadarne in each
data set in Tables 3 and 4. The deviation between algorithms is taken as #ne sfthe differ-
ence in performance. This measure is chosen because gene expdedais relative expensive to
obtain, and we want an algorithm to select the best genes from them. Ij@nittam selects genes
that are far inferior to the best possible among all algorithms (catastropééd,ave downgrade the
algorithm more heavily. Squaring the performance difference achieeeslethis effect, by penal-
ising larger differences more heavily. In other words, we want to ahaasalgorithm that performs
homogeneously well in all data sets. To provide a concise summary, we eskl dbviations over
the data sets and take the square root as the measure of goodnessscbines (called, distance)
are listed in Tables 3 and 4. In general, the smaller/thaistance, the better the method. It can
been seen that the linear kernel has the smaljedistance on both the binary and multiclass data
sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) providiehgenes for clas-
sification in three data sets from Table 4 (data sets 18 Alizadeh et al., 20G2S51319), and
28 (GDS1454)). These data sets all represent multiclass problem® atHeast two of the classes
are subtypes with respect to the same supertypeeally, the selected genes should contain infor-
mation discriminating the classes. To visualise this information, we plot in Figure &xfression
value of the top-ranked gene against that of a second gene rankedtoptth0. This second gene
is chosen so that it has minimal correlation with the first gene. We use c@adrshapes to dis-
tinguish data from different classes (data sets 18 and 28 each contkiss8s; therefore we use

11. For data set 18, the 3 subtypes are diffuse large B-cell lymphachéeakemia, follicular lymphoma, and chronic
lymphocytic leukemia; For data set 27, the 4 subtypes are various C kaxganutant embryos: wild type, pie-
1, pie-1+pal-1, and mex-3+skn-1; For data set 28, the 3 subtypesoamal cell, IgV unmutated B-cell, and IgV
mutated B-cell.
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3 different colour and shape combinations for them; data set 27 hasskg|a® we use 4 such
combinations).

We found that genes selected using nonlinear kernels provide betemagep between the
two classes that correspond to the same supertype (red dots and gmeends), while the genes
selected with the linear kernel do not separate these subtypes well. lagbetdata set 27, the
increased discrimination between red and green comes at the cost after gnember of errors in
another class (black triangle), however these mistakes are less sarethdlerrors made between
the two subtypes by the linear kernel. This eventually leads to better clagsifiparformance for
the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square cldssuiy separated
from the rest, while the difference between the two subtypes (red dotgraed diamonds) is
less clear. The first gene provides information that distinguishes the tplizeesclass, however it
provides almost no information about the separation between the two ssbffpe linear kernel
does not search for information complementary to the first gene, whawdisiear kernels are
able to incorporate complementary information. In fact, the second geneistiaguishes the two
subtypes (red dots and green diamonds) does not separate all.classeshis gene alone, the blue
square class is heavily mixed with other classes. However, combining thestves ¢pgether results
in better separation between all classes.
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Figure 5: Nonlinear kernels (MUL and dis) select genes that discrimindityes (red dots and
green diamonds) where the linear kernel fails. The two genes in theofivstne represen-
tative of those selected by the linear kernel, while those in the second eopr@ttuced
with a nonlinear kernel for the corresponding data sets. Differentgalod shapes rep-
resent data from different classes. (a,d) data set 18; (b,e) d&28;send (e,f) data set
27.
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9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kemiermed best in our
feature selection evaluation, yet also taking into account the existenanlear interaction be-
tween genes (as demonstrated in Section 9.3), we propose the followinglés@f thumb for gene
selection:

1. Always apply a linear kernel for general purpose gene selection.

2. Apply a Gaussian kernel if nonlinear effects are present, such kisnodality or comple-
mentary effects of different genes.

This result should come as no surprise, due to the high dimensionality of meyatata sets, but
we corroborate our claims by means of an extensive experimental evaludtiese experiments
also imply a desirable property of gene activity as a whole: it correlateswittlithe observed
outcomes. Multimodal and highly nonlinear situations exist, where a nonlieature selector is
needed (as can be seen in the outcomes on data sets 18, 27 and 28y gettir relatively rarely
in practice.

10. Conclusion

This paper provides anifyingframework for a raft of feature selection methods. This allows us to
give tail bounds and asymptotic expansions for feature selectors.oMarave are able to design
new feature selectors which work well in practice by means of the Hilbdnn®&it Independence
Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the featusesthiat maximises
the dependence between the data and labels. The absence of biapa@mdmeergence properties
of the empirical HSIC estimate provide a strong theoretical justification forgudiBIC in this
context. Although BAHSIC is a filter method, it still demonstrates good perfocmaompared
with more specialised methods in both artificial and real world data. It is alsoceenpetitive in
terms of runtime performandé.

A variant of BAHSIC can also be used to perform feature selectionritalbieled data. In this
case, we want to select a subgebf variables such that it is strongly correlated with the full data
set. In other words, we want to find a compressed representation chtadésklf in the hope that
it is useful for a subsequent learning tasks. BAHSIC readily accomtasdhis by simply using
the full data seX as the labels. Clearly, we want to maximize dependence between the selected
variables an& without adding many variables which are simply very much correlated to ¢aeh o
This ingredient is not yet explicitly formulated in the BAHSIC framework. W# investigate this
in the future.
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Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIClsarpiceed by
converting problem (1) into a continuous optimization problem. By adding alfyeon the number
of nonzero terms, such as a relax@d'norm” of a weight vector over the features we are able
to solve the problem with continuous optimization methods. Unfortunately, thisoagp does
not perform as well as the the backward elimination procedure proposée main text. For
completeness and since related methods are somewhat popular in the litedrauspproach is
described below.

We introduce a weightingr € R" on the dimensions of the datar— wo x, whereo denotes
element-wise product. Thus feature selection using HSIC becomes an ofitmizeoblem with
respect taw (for convenience we write HSIC as a functiorvafHSIC(w)). To obtain a sparse solu-
tion of the selected features, the zero “norjwi||o is also incorporated into our objective function
(clearly ||.||o is not a proper norm)/jw||o computes the number of non-zero entriesvirand the
sparsity is achieved by imposing heavier penalty on solutions with large nwhben-zero entries.
In summary, feature selection using HSIC can be formulated as:

w = arg rrJvaxHSIC(W) — A\ |lwl||; wherew € [0, )" (32)

The zero “norm” is not a continuous function. However, it can be agprated well by a concave
function (Fung et al., 2002(= 5 works well in practice):

[wllp = 1" (1—exp—aw). (33)

While the optimization problem in (32) is non-convex, we may use relatively raffi@ent opti-
mization procedures for the concave approximation of/fgheorm. For instance, we may use the
convex-concave procedure (CCCP) of Yuille and Rangarajan j2Fa$ a Gaussian kernel HSIC
can be decomposed into the sum of a convex and a concave function:

HSIC(w) — Allwlo ~ tr(K (I —m 111T)L (I —m~1117)) = A1T (1—e ).

Depending on the choice &f we need to assign all terms involving exp with positive coefficients
into the convex and all terms involving negative coefficients to the concanaion.

References

A. Alizadeh, M. Eisen, R. Davis, et al. Distinct types of diffuse largeebdgmphoma identified by
gene expression profilindNature 403:503-511, 2000.

U. Alon, N Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, andJALevine. Broad patterns
of gene expression revealed by clustering analysis of tumor and nootoal tissues probed by
oligo-nucleotide arrays. IRroc. Natl. Acad. Sci. USAages 6745-6750, 1999.

Shun-ichi Amari and S. Wu. An information-geometrical method for improyaegormance of
support vector machine classifiers. In D. Willshaw and A. Murray, eslitBroceedings of
ICANN'99 volume 1, pages 85-90. IEE Press, 1999.

N. Anderson, P. Hall, and D. Titterington. Two-sample test statistics for unegsdiscrepan-
cies between two multivariate probability density functions using kernelebdesasity estimates.
Journal of Multivariate Analysis50:41-54, 1994.

1428



FEATURE SELECTION VIA DEPENDENCEMAXIMIZATION

F. R. Bach and M. I. Jordan. Kernel independent component asalgsirnal of Machine Learning
Research3:1-48, 2002.

C. Baker. Joint measures and cross-covariance operdtarssactions of the American Mathemat-
ical Society 186:273-289, 1973.

J. Bedo, C. Sanderson, and A. Kowalczyk. An efficient alternatii&\M based recursive feature
elimination with applications in natural language processing and bioinformalic#rtificial
Intelligence 2006.

D. G. Beer, S. L. Kardia, S. L. Huang, et al. Gene-expressionlesgfiredict survival of patients
with lung adenocarcinomalat. Med, 8:816—-824, 2002.

A. Berchuck, E. Iversen, and J. Lancaster. Patterns of genessipn that characterize long-term
survival in advanced stage serous ovarian can€&is. Cancer Res.11:3686—-3696, 2005.

A. Bhattacharjee, W. G. Richards, W. G. Staunton, et al. Classificatibanmfin lung carcinomas
by mrna expression profiling reveals distinct adenocarcinoma subgld&se. Natl. Acad. Sci.
98:13790-13795, 2001.

M. Blaschko and A. Gretton. Learning taxonomies by dependence maxinmizatidAdvances in
Neural Information Processing Systems gages 153-160. MIT Press, 2009.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave mationiand support vector
machines. In J. Shavlik, editdProc. Intl. Conf. Machine Learningpages 82—-90, San Francisco,
California, 1998. Morgan Kaufmann Publishers. ftp://ftp.cs.wisc.edu/matAech-reports/98-
03.ps.Z.

M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M.e&t and D. Haussler.
Knowledge-based analysis of microarray gene expression data lgyaugiport vector machines.
Proc. Natl. Acad. Sci97:262-267, 2000.

L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. F. Schlenk, R. Tibahir H. Dohner, and J. R.
Pollack. Use of gene-expression profiling to identify prognostic subetais adult acute myeloid
leukemia.New England Journal of Medicin850(16):1605-1616, Apr 2004.

M. Collins and N. Duffy. Convolution kernels for natural language. 16T Dietterich, S. Becker,
and Z. Ghahramani, editor&dvances in Neural Information Processing Systempades 625—
632, Cambridge, MA, 2001. MIT Press.

N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On optirgikiarnel alignment.
Technical report, UC Davis Department of Statistics, 2003.

S. M. Dhanasekaran, T. R. Barrette, D. Ghosh, R. Shah, S. ValignitaKurachi, K. J. Pienta,
M. A. Rubin, and A. M. Chinnaiyan. Delineation of prognostic biomarkerprnstate cancer.
Nature 412(6849):822—-826, Aug 2001.

G. Dornhege, B. Blankertz, G. Curio, and KiiNer. Boosting bit rates in non-invasive EEG single-
trial classifications by feature combination and multi-class paraditgeiEE Trans. Biomed. Eng.
51:993-1002, 2004.

1429



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and/Killer. Optimizing spatio-
temporal filters for improving BCI. IMdvances in Neural Information Processing Systems 18
2006.

L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are ndedgeherate a robust gene
list for predicting outcome in cancdproc. Natl. Acad. Sci. USA03(15):5923-5928, Apr 2006.

Andrey Feuerverger. A consistent test for bivariate dependeimternational Statistical Review
61(3):419-433, 1993.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kiereygresentation. Technical
report, IBM Watson Research Center, New York, 2000.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction fipesvised learning with
reproducing kernel Hilbert space®urnal of Machine Learning Researchi73—99, 2004.

K. Fukumizu, A. Gretton, X. Sun, and B. Salkopf. Kernel measures of conditional dependence. In
Advances in Neural Information Processing System$ag@es 489-496, Cambridge, MA, 2008.
MIT Press.

G. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifi@dosirnal of Machine
Learning Researcl8:303-321, 2002.

T. Gartner, P.A. Flach, and S. Wrobel. On graph kernels: Hardnesksresw efficient alterna-
tives. In B. Schlkopf and M. K. Warmuth, editor®roc. Annual Conf. Computational Learning
Theory pages 129-143. Springer, 2003.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, JeBirbV, H. Coller, M. L.
Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Landewplktular classification
of cancer: Class discovery and class prediction by gene expressiotontg. Science 286
(5439):531-537, Oct 1999.

A. Gretton, O. Bousquet, A.J. Smola, and B. 8lkopf. Measuring statistical dependence with
Hilbert-Schmidt norms. In S. Jain, H. U. Simon, and E. Tomita, editBreceedings of the
International Conference on Algorithmic Learning Thegrgiges 63—77. Springer-Verlag, 2005a.

A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. AugathMirayama, J. Pauls,
B. Schdlkopf, and N. Logothetis. Kernel constrained covariance for dé@ece measurement.
In AISTATS 10pages 112-119, 2005b.

A. Gretton, K. Borgwardt, M. Rasch, B. Salkopf, and A. Smola. A kernel method for the two-
sample problem. IAdvances in Neural Information Processing Systemspafes 513-520,
Cambridge, MA, 2007a. MIT Press.

A. Gretton, K. Borgwardt, M. Rasch, B. Schlkopf, and A. Smola. A lketapproach to comparing
distributions. Proceedings of the 22nd Conference on Atrtificial Intelligence (AAAl-Pages
1637-1641, 2007b.

A. Gretton, K. Fukumizu, C.-H. Teo, L. Song, B. Sdkopf, and A. Smola. A kernel statistical
test of independence. ldvances in Neural Information Processing Systempages 585-592,
Cambridge, MA, 2008. MIT Press.

1430



FEATURE SELECTION VIA DEPENDENCEMAXIMIZATION

S. Gruvberger, M. Ringner, Y. Chen, S. Panavally, L. H. Saal, AgB®l. Ferno, C. Peterson, and
P. S. Meltzer. Estrogen receptor status in breast cancer is associtie@markably distinct
gene expression patternSancer Res61(16):5979-5984, Aug 2001.

C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placemegtussian processes. In
International Conference on Machine Learning ICML@®05.

I. Guyon and A. Elisseeff. An introduction to variable and feature selectlournal of Machine
Learning ResearctB:1157-1182, March 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection foceaglassification using
support vector machinesdlachine Learning46:389-422, 2002.

T. Hastie, R. Tibshirani, and J. Friedmaithe Elements of Statistical Learningpringer, New
York, 2001.

Wassily Hoeffding. A class of statistics with asymptotically normal distributidime Annals of
Mathematical Statistigsl9(3):293-325, 1948.

N. lizuka, M. Oka, H. Yamada-Okabe, et al. Oligonucleotide microaramypfediction of early
intrahepatic recurrence of hepatocellular carcinoma after curatieetres. Lancet 361:923—
929, 2003.

K. Kira and L. Rendell. A practical approach to feature selectionPrwr. 9th Intl. Workshop on
Machine Learningpages 249-256, 1992.

S. Lemm, B. Blankertz, G. Curio, and K.-R.Mler. Spatio-spectral filters for improving the
classification of single trial EEGEEE Trans. Biomed. Eng52:1541-1548, 2005.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernelS¥d protein clas-
sification. In S. Becker, S. Thrun, and K. Obermayer, editdsjances in Neural Information
Processing Systems Molume 15, Cambridge, MA, 2002. MIT Press.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. WatKlext classification using
string kernelsJournal of Machine Learning Resear@1419-444, February 2002.

Ingrid Lonnstedt and Terry Speed. Replicated microarray datttistica Sinical2:31-46, 2002.

Radford M. Neal. Assessing relevance determination methods using teNeural Networks and
Machine Learningpages 97-129. Springer, 1998.

I Nemenman, F Shafee, and W Bialek. Entropy and inference, revisitetlledmal Information
Processing Systemelume 14, Cambridge, MA, 2002. MIT Press.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approxinsat@mmaximizing sub-
modular set functiondlathematical Programmingl4:265—-294, 1978.

J. Neumann, C. Sclamr, and G. Steidl. Combined SVM-based feature selection and classificatio
Machine Learning61:129-150, 2005.

1431



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

N. Quadrianto, L. Song, and A. Smola. Kernelized sorting.Attvances in Neural Information
Processing Systems ,22009.

A. Rosenwald, G. Wright, G. Chan, et al. The use of molecular profilingedipt survival after
chemotherapy for diffuse large-b-cell lymphonta. Engl. J. Med.346:1937-1947, 2002.

B. Sclolkopf. Support Vector Learning R. Oldenbourg Verlag, Munich, 1997. Download:
http://www.kernel-machines.org.

B. Scholkopf, P. L. Bartlett, A. J. Smola, and R. C. Williamson. Shrinking the tubesva support
vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. AnCebitors, Advances in
Neural Information Processing Systems ftdges 330-336, Cambridge, MA, 1999. MIT Press.

B. Scholkopf, K. Tsuda, and J.-P. Vertkernel Methods in Computational BiologyMIT Press,
Cambridge, MA, 2004.

Bernhard Scblkopf and Alex SmolaLearning with KernelsMIT Press, Cambridge, MA, 2002.
R. Serfling.Approximation Theorems of Mathematical Statistdéley, New York, 1980.

G.K. Smyth. Linear models and empirical bayes methods for assessingudifédrexpressionin
microarray experimentsStatistical Applications in Genetics and Molecular Biolp8y2004.

L. Song, J. Bedo, K.M. Borgwardt, A. Gretton, and A.J. Smola. Genetafevia the BAHSIC
family of algorithms.Bioinformatics (ISMB)23(13):i490-i498, 2007a.

L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supenfisatdire selection via depen-
dence estimation. ICML, pages 823-830. Omnipress, 2007b.

B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B.&@kdbpf. Injective Hilbert space
embeddings of probability measures. Rroc. Annual Conf. Computational Learning Thepry
pages 111-122, 2008.

B. Sriperumbudur, K. Fukumizu, A. Gretton, G. Lanckriet, and B. Stitopd. Kernel choice
and classifiability for RKHS embeddings of probability distributions. Aldvances in Neural
Information Processing Systems, B&d Hook, NY, 2009. Curran Associates Inc.

B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B.d&bpf. Hilbert space em-
beddings and metrics on probability measudesirnal of Machine Learning Researctl:1517—
1561, 2010.

I. Steinwart. On the influence of the kernel on the consistency of stippotor machinesJournal
of Machine Learning ResearcB:67-93, 2001.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multipheeratypes by
shrunken centroids of gene expression. National Academy of Scienceslume 99, pages
6567—6572, 2002.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class predictiopdnest shrunken centroids,
with applicaitons to dna microarrayStat Sci18:104-117, 2003.

1432



FEATURE SELECTION VIA DEPENDENCEMAXIMIZATION

P.H.S. Torr. Solving Markov random fields using semidefinite programmingPréceedings of
International Workshop on Artificial Intelligence and Statisti2603.

P. J. Valk, R. G. Verhaak, M. A. Beijen, C. A. Erpelinck, S. Barjestah Waalwijk van Doorn-
Khosrovani, J. M. Boer, H. B. Beverloo, M. J. Moorhouse, P. & gar Spek, B. Lowenberg,
and R. Delwel. Prognostically useful gene-expression profiles iteanyeloid leukemiaNew
England Journal of Medicine850(16):1617-1628, Apr 2004.

M. J. van de Vijver, Y. D. He, L. J. van 't Veer, H. Dai, A. A. Hart, D..Woskuil, G. J. Schreiber,
J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Wigieva. Glas, L. Delahaye,
T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. HnHriand R. Bernards. A
gene-expression signature as a predictor of survival in breasecaNew England Journal of
Medicine 247:1999-2009, 2002.

L. J.van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart,&. Gene expression profiling
predicts clinical outcome of breast canddature 415:530-536, 2002.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tréghing. In S. Becker,
S. Thrun, and K. Obermayer, edito’sgdvances in Neural Information Processing Systems 15
pages 569-576. MIT Press, Cambridge, MA, 2003.

S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernmeliynamical systems and
its application to the analysis of dynamic scenkgernational Journal of Computer Visio73
(1):95-119, 2007.

Yixin Wang, Jan G M Kilijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Feing, Dmitri
Talantov, Mieke Timmermans, Marion E Meijer van Gelder, Jack Yu, Tim JatkteM J J
Berns, David Atkins, and John A Foekens. Gene-expression prififgedict distant metastasis
of lymph-node-negative primary breast candsancet 365(9460):671-679, February 2005.

P. Warnat, R. Eils, and B. Brors. Cross-platform analysis of canceoari@y data improves gene
expression based classification of phenotyB¥C Bioinformatics6:265, Nov 2005.

J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodag@: A. Moskaluk, J. r. Frier-
son HF, and G. M. Hampton. Analysis of gene expression identifies catedidarkers and
pharmacological targets in prostate can€ancer Res61(16):5974-5978, Aug 2001.

M. West. Bayesian factor regression models in the “lgggamalln” paradigm.Bayesian Statisti¢s
7:723-732, 2003.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Hagreature selection for
SVMs. InAdvances in Neural Information Processing Systempages 668—674, 2000.

J. Weston, A. Elisseeff, B. Sotkopf, and M. Tipping. Use of zero-norm with linear models and
kernel methodsJournal of Machine Learning Resear311439-1461, 2003.

A.L. Yuille and A. Rangarajan. The concave-convex procedNeural Computation15:915-936,
2003.

1433



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

M. Zaffalon and M. Hutter. Robust feature selection using distributionsiafual information.
In A. Darwiche and N. Friedman, editoBroceedings of the 18th International Conference on
Uncertainty in Artificial Intelligence (UAI-2002)pages 577-584, San Francisco, CA., 2002.
Morgan Kaufmann.

1434



