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Abstract
Recent methods for estimating sparse undirected graphs forreal-valued data in high dimensional
problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaus-
sian copula—or “nonparanormal”—for high dimensional inference. Just as additive models extend
linear models by replacing linear functions with a set of one-dimensional smooth functions, the
nonparanormal extends the normal by transforming the variables by smooth functions. We derive a
method for estimating the nonparanormal, study the method’s theoretical properties, and show that
it works well in many examples.

Keywords: graphical models, Gaussian copula, high dimensional inference, sparsity,ℓ1 regular-
ization, graphical lasso, paranormal, occult

1. Introduction

The linear model is a mainstay of statistical inference that has been extendedin several important
ways. An extension to high dimensions was achieved by adding a sparsity constraint, leading to the
lasso (Tibshirani, 1996). An extension to nonparametric models was achieved by replacing linear
functions with smooth functions, leading to additive models (Hastie and Tibshirani, 1999). These
two ideas were recently combined, leading to an extension called sparse additive models (SpAM)
(Ravikumar et al., 2008, 2009a). In this paper we consider a similar nonparametric extension of
undirected graphical models based on multivariate Gaussian distributions in the high dimensional
setting. Specifically, we use a high dimensional Gaussian copula with nonparametric marginals,
which we refer to as a nonparanormal distribution.

If X is ap-dimensional random vector distributed according to a multivariate Gaussiandistribu-
tion with covariance matrixΣ, the conditional independence relations between the random variables
X1,X2, . . . ,Xp are encoded in a graph formed from the precision matrixΩ = Σ−1. Specifically, miss-
ing edges in the graph correspond to zeroes ofΩ. To estimate the graph from a sample of sizen, it
is only necessary to estimateΣ, which is easy ifn is much larger thanp. However, whenp is larger
thann, the problem is more challenging. Recent work has focused on the problem of estimating the
graph in this high dimensional setting, which becomes feasible ifG is sparse. Yuan and Lin (2007)
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Assumptions Dimension Regression Graphical Models

parametric
low linear model multivariate normal

high lasso graphical lasso

nonparametric
low additive model nonparanormal

high sparse additive model ℓ1-regularized nonparanormal

Figure 1: Comparison of regression and graphical models. The nonparanormal extends additive
models to the graphical model setting. Regularizing the inverse covariance leads to an
extension to high dimensions, which parallels sparse additive models for regression.

and Banerjee et al. (2008) propose an estimator based on regularized maximum likelihood using an
ℓ1 constraint on the entries ofΩ, and Friedman et al. (2007) develop an efficient algorithm for com-
puting the estimator using a graphical version of the lasso. The resulting estimation procedure has
excellent theoretical properties, as shown recently by Rothman et al. (2008) and Ravikumar et al.
(2009b).

While Gaussian graphical models can be useful, a reliance on exact normality is limiting. Our
goal in this paper is to weaken this assumption. Our approach parallels the ideas behind sparse
additive models for regression (Ravikumar et al., 2008, 2009a). Specifically, we replace the Gaus-
sian with a semiparametric Gaussian copula. This means that we replace the random variable
X = (X1, . . . ,Xp) by the transformed random variablef (X) = ( f1(X1), . . . , fp(Xp)), and assume that
f (X) is multivariate Gaussian. This semiparametric copula results in a nonparametric extension of
the normal that we call thenonparanormaldistribution. The nonparanormal depends on the func-
tions{ f j}, and a meanµ and covariance matrixΣ, all of which are to be estimated from data. While
the resulting family of distributions is much richer than the standard parametric normal (the para-
normal), the independence relations among the variables are still encoded inthe precision matrix
Ω = Σ−1. We propose a nonparametric estimator for the functions{ f j}, and show how the graphical
lasso can be used to estimate the graph in the high dimensional setting. The relationship between
linear regression models, Gaussian graphical models, and their extensionsto nonparametric and
high dimensional models is summarized in Figure 1.

Most theoretical results on semiparametric copulas focus on low or at leastfinite dimensional
models (Klaassen and Wellner, 1997; Tsukahara, 2005). Models with increasing dimension require
a more delicate analysis; in particular, simply plugging in the usual empirical distribution of the
marginals does not lead to accurate inference. Instead we use a truncated empirical distribution. We
give a theoretical analysis of this estimator, proving consistency results withrespect to risk, model
selection, and estimation ofΩ in the Frobenius norm.

In the following section we review the basic notion of the graph corresponding to a multivariate
Gaussian, and formulate different criteria for evaluating estimators of the covariance or inverse
covariance. In Section 3 we present the nonparanormal, and in Section 4we discuss estimation of
the model. We present a theoretical analysis of the estimation method in Section 5,with the detailed
proofs collected in an appendix. In Section 6 we present experiments with both simulated data and
gene microarray data, where the problem is to construct the isoprenoid biosynthetic pathway.
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2. Estimating Undirected Graphs

Let X = (X1, . . . ,Xp) denote a random vector with distributionP = N(µ,Σ). The undirected graph
G= (V,E) corresponding toP consists of a vertex setV and an edge setE. The setV hasp elements,
one for each component ofX. The edge setE consists of ordered pairs(i, j) where(i, j)∈ E if there
is an edge betweenXi and Xj . The edge between(i, j) is excluded fromE if and only if Xi is
independent ofXj given the other variablesX\{i, j} ≡ (Xs : 1≤ s≤ p, s, i, j), written

Xi ⊥⊥ Xj

∣∣∣ X\{i, j}. (1)

It is well known that, for multivariate Gaussian distributions, (1) holds if andonly if Ωi j = 0 where
Ω = Σ−1.

Let X(1),X(2), . . . ,X(n) be a random sample fromP, whereX(i) ∈ Rp. If n is much larger thanp,
then we can estimateΣ using maximum likelihood, leading to the estimateΩ̂ = S−1, where

S=
1
n

n

∑
i=1

(
X(i)−X

)(
X(i)−X

)T

is the sample covariance, withX the sample mean. The zeroes ofΩ can then be estimated by
applying hypothesis testing tôΩ (Drton and Perlman, 2007, 2008).

Whenp> n, maximum likelihood is no longer useful; in particular, the estimateΣ̂ is not positive
definite, having rank no greater thann. Inspired by the success of the lasso for linear models, several
authors have suggested estimatingΣ by minimizing

−ℓ(Ω)+λ ∑
j,k

|Ω jk|

where

ℓ(Ω) =
1
2

(log|Ω|− tr(ΩS)− plog(2π))

is the log-likelihood withS the sample covariance matrix. The estimatorΩ̂ can be computed ef-
ficiently using the glasso algorithm (Friedman et al., 2007), which is a block coordinate descent
algorithm that uses the standard lasso to estimate a single row and column ofΩ in each iteration.
Under appropriate sparsity conditions, the resulting estimatorΩ̂ has been shown to have good the-
oretical properties (Rothman et al., 2008; Ravikumar et al., 2009b).

There are several different ways to judge the quality of an estimatorΣ̂ of the covariance or
Ω̂ of the inverse covariance. We discuss three in this paper, persistency,norm consistency, and
sparsistency. Persistency means consistency in risk, when the model is not necessarily assumed
to be correct. Suppose the true distributionP has meanµ0, and that we use a multivariate normal
p(x;µ0,Σ) for prediction; we do not assume thatP is normal. We observe a new vectorX ∼ P and
define the prediction risk to be

R(Σ) = −E logp(X;µ0,Σ) = −
Z

logp(x;µ0,Σ)dP(x).

It follows that

R(Σ) =
1
2

(
tr(Σ−1Σ0)+ log|Σ|− plog(2π)

)
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whereΣ0 is the covariance ofX underP. If S is a set of covariance matrices, the oracle is defined
to be the covariance matrixΣ∗ that minimizesR(Σ) overS :

Σ∗ = arg minΣ∈SR(Σ).

Thusp(x;µ0,Σ∗) is the best predictor of a new observation among all distributions in{p(x;µ0,Σ) :
Σ ∈ S}. In particular, ifS consists of covariance matrices with sparse graphs, thenp(x;µ0,Σ∗) is, in
some sense, the best sparse predictor. An estimatorΣ̂n is persistentif

R(Σ̂n)−R(Σ∗)
P→ 0

as the sample sizen increases to infinity. Thus, a persistent estimator approximates the best estima-
tor over the classS , but we do not assume that the true distribution has a covariance matrix inS , or
even that it is Gaussian. Moreover, we allow the dimensionp = pn to increase withn. On the other
hand, norm consistency and sparsistency require that the true distribution is Gaussian. In this case,
let Σ0 denote the true covariance matrix. An estimator isnorm consistentif

‖Σ̂n−Σ‖ P→ 0

where‖ ·‖ is a norm. IfE(Ω) denotes the edge set corresponding toΩ, an estimator issparsistentif

P

(
E(Ω) , E(Ω̂n)

)
→ 0.

Thus, a sparsistent estimator identifies the correct graph consistently. Wepresent our theoretical
analysis on these properties of the nonparanormal in Section 5.

3. The Nonparanormal

We say that a random vectorX = (X1, . . . ,Xp)
T has anonparanormaldistribution if there exist

functions{ f j}p
j=1 such thatZ≡ f (X)∼ N(µ,Σ), wheref (X) = ( f1(X1), . . . , fp(Xp)). We then write

X ∼ NPN(µ,Σ, f ).

When thef j ’s are monotone and differentiable, the joint probability density function ofX is given
by

pX(x) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
( f (x)−µ)T Σ−1( f (x)−µ)

} p

∏
j=1

| f ′j(x j)|. (2)

Lemma 1 The nonparanormal distribution NPN(µ,Σ, f ) is a Gaussian copula when the fj ’s are
monotone and differentiable.

Proof By Sklar’s theorem (Sklar, 1959), any joint distribution can be written as

F(x1, . . . ,xp) = C{F1(x1), . . . ,Fp(xp)}

where the functionC is called a copula. For the nonparanormal we have

F(x1, . . . ,xp) = Φµ,Σ(Φ−1(F1(x1)), . . . ,Φ−1(Fp(xp)))
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whereΦµ,Σ is the multivariate Gaussian cdf andΦ is the univariate standard Gaussian cdf. Thus,
the corresponding copula is

C(u1, . . . ,up) = Φµ,Σ(Φ−1(u1), . . . ,Φ−1(up)).

This is exactly a Gaussian copula with parametersµ andΣ. If each f j is differentiable then the
density ofX has the same form as (2).

Note that the density in (2) is not identifiable; to make the family identifiable we demand that
f j preserve means and variances:

µj = E(Z j) = E(Xj) and σ2
j ≡ Σ j j = Var(Z j) = Var(Xj) . (3)

Note that these conditions only depend on diag(Σ) but not the full covariance matrix.
Let Fj(x) denote the marginal distribution function ofXj . Then

Fj(x) = P(Xj ≤ x) = P(Z j ≤ f j(x)) = Φ
(

f j(x)−µj

σ j

)

which implies that
f j(x) = µj +σ jΦ−1(Fj(x)) . (4)

The following basic fact says that the independence graph of the nonparanormal is encoded in
Ω = Σ−1, as for the parametric normal.

Lemma 2 If X ∼NPN(µ,Σ, f ) is nonparanormal and each fj is differentiable, then Xi ⊥⊥Xj |X\{i, j}
if and only ifΩi j = 0, whereΩ = Σ−1.

Proof From the form of the density (2), it follows that the density factors with respect to the graph
of Ω, and therefore obeys the global Markov property of the graph.

Next we show that the above is true for any choice of identification restrictions.

Lemma 3 Define
h j(x) = Φ−1(Fj(x)) (5)

and letΛ be the covariance matrix of h(X). Then Xj ⊥⊥ Xk |X\{ j,k} if and only ifΛ−1
jk = 0.

Proof We can rewrite the covariance matrix as

Σ jk = Cov(Z j ,Zk) = σ jσkCov(h j(Xj),hk(Xk)).

HenceΣ = DΛD and
Σ−1 = D−1Λ−1D−1,

whereD is the diagonal matrix with diag(D) = σ. The zero pattern ofΛ−1 is therefore identical to
the zero pattern ofΣ−1.
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Figure 2: Densities of three 2-dimensional nonparanormals. The component functions have the
form f j(x) = sign(x)|x|α j . Left: α1 = 0.9, α2 = 0.8; center:α1 = 1.2, α2 = 0.8; right
α1 = 2, α2 = 3. In each caseµ= (0,0) andΣ =

(1 .5
.5 1

)
.

Thus, it is not necessary to estimateµ or σ to estimate the graph.

Figure 2 shows three examples of 2-dimensional nonparanormal densities. In each case, the
component functionsf j(x) take the form

f j(x) = a jsign(x)|x|α j +b j

where the constantsa j andb j are set to enforce the identifiability constraints (3). The covariance in
each case isΣ =

(1 .5
.5 1

)
and the mean isµ = (0,0). The exponentα j determines the nonlinearity. It

can be seen how the concavity of the density changes with the exponentα, and thatα > 1 can result
in multiple modes.

The assumption thatf (X) = ( f1(X1), . . . , fp(Xp) is normal leads to a semiparametric model
where only one dimensional functions need to be estimated. But the monotonicity of the functions
f j , which map ontoR, enables computational tractability of the nonparanormal. For more general
functions f , the normalizing constant for the density

pX(x) ∝ exp

{
−1

2
( f (x)−µ)T Σ−1( f (x)−µ)

}

cannot be computed in closed form.
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4. Estimation Method

Let X(1), . . . ,X(n) be a sample of sizen whereX(i) = (X(i)
1 , . . . ,X(i)

p )T ∈ Rp. In light of (5) we define

ĥ j(x) = Φ−1(F̃j(x))

whereF̃j is an estimator ofFj . A natural candidate for̃Fj is the marginal empirical distribution
function

F̂j(t) ≡
1
n

n

∑
i=1

1{
X(i)

j ≤t
}.

Now, let θ denote the parameters of the copula. Tsukahara (2005) suggests takingθ̂ to be the
solution of

n

∑
i=1

φ
(

F̃1(X
(i)
1 ), . . . , F̃p(X

(i)
p ),θ

)
= 0

whereφ is an estimating equation and̃Fj(t) = nF̂j(t)/(n+ 1). In our case,θ corresponds to the
covariance matrix. The resulting estimatorθ̂, called a rank approximateZ-estimator, has excellent
theoretical properties. However, we are interested in the high dimensionalscenario where the di-
mensionp is allowed to increase withn; the variance of̂Fj(t) is too large in this case. Instead, we
use the following truncated orWinsorized1 estimator:

F̃j(x) =





δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1−δn

(1−δn) if F̂j(x) > 1−δn,

(6)

whereδn is a truncation parameter. Clearly, there is a bias-variance tradeoff in choosingδn. Essen-
tially the same estimator withδn = 1/n is studied by Klaassen and Wellner (1997) in the case of
bivariate Gaussian copula. In what follows we use

δn ≡
1

4n1/4
√

π logn
.

This provides the right balance so that we can achieve the desired rate ofconvergence in our estimate
of Ω and the associated undirected graphG in the high dimensional setting.

Given this estimate of the distribution of variableXj , we then estimate the transformation func-
tion f j by

f̃ j(x) ≡ µ̂j + σ̂ j h̃ j(x) (7)

where
h̃ j(x) = Φ−1

(
F̃j(x)

)

andµ̂j andσ̂ j are the sample mean and the standard deviation:

µ̂j ≡
1
n

n

∑
i=1

X(i)
j and σ̂ j =

√
1
n

n

∑
i=1

(
X(i)

j − µ̂j

)2
.

1. After Charles P. Winsor, whom John Tukey credited with converting himfrom topology to statistics Mallows 1990.
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Now, letSn( f̃ ) be the sample covariance matrix off̃ (X(1)), . . . , f̃ (X(n)); that is,

Sn( f̃ ) ≡ 1
n

n

∑
i=1

(
f̃ (X(i))−µn( f̃ )

)(
f̃ (X(i))−µn( f̃ )

)T
(8)

µn( f̃ ) ≡ 1
n

n

∑
i=1

f̃ (X(i)).

We then estimateΩ using Sn( f̃ ). For instance, the maximum likelihood estimator isΩ̂MLE
n =

Sn( f̃ )−1. Theℓ1-regularized estimator is

Ω̂n = arg min
Ω

{
tr
(

ΩSn( f̃ )
)
− log|Ω|+λ‖Ω‖1

}
(9)

whereλ is a regularization parameter, and‖Ω‖1 = ∑ j,k |Ω jk|. The estimated graph is then̂En =

{( j,k) : Ω̂ jk , 0}.
The nonparanormal is analogous to a sparse additive regression model(Ravikumar et al., 2009a),

in the sense that both methods transform the variables by univariate functions. However, while
sparse additive models use a regularized risk criterion to fit univariate transformations, our nonpara-
normal estimator uses a two-step procedure:

1. Replace the observations, for each variable, by their respective normal scores, subject to a
Winsorized truncation.

2. Apply the graphical lasso to the transformed data to estimate the undirected graph.

The first step is non-iterative and computationally efficient, with no tuning parameters; it also
makes the nonparanormal amenable to theoretical analysis.

Starting with the model in (2), another possibility would be to parametrize eachf j according to
some parametric class of monotone functions such as the Box-Cox family, andthen find the maxi-
mum likelihood estimates of (Ω, f1, ... fp) in that class. This might lead to estimates off j that depend
onΩ, and vice versa, and the estimation problem would not in general be convex. Alternatively, due
to (4), the marginal information could be used to estimate the parameters. Our nonparametric ap-
proach to estimating the transformations has the advantages of making few assumptions and being
easy to compute. In the following section we analyze the theoretical properties of this estimator.

5. Theoretical Results

In this section we present our theoretical results on risk consistency, model selection consistency,
and norm consistency of the covarianceΣ and inverse covarianceΩ. From Lemma 3, the estimate
of the graph does not depend onσ j , j ∈ {1, . . . , p} andµ, so we assume thatσ j = 1 andµ= 0. Our
key technical result is an analysis of the covariance of the Winsorized estimator defined in (6), (7),
and (8). In particular, we show that under appropriate conditions,

max
j,k

∣∣∣Sn( f̃ ) jk −Sn( f ) jk

∣∣∣= oP(1)

whereSn( f̃ ) jk denotes the( j,k) entry of the matrix. This result allows us to leverage the recent
analysis of Rothman et al. (2008) and Ravikumar et al. (2009b) in the Gaussian case to obtain
consistency results for the nonparanormal. More precisely, our main theorem is the following.
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Theorem 4 Suppose that p= nξ and let f̃ be the Winsorized estimator defined in(7) with δn =
1

4n1/4
√

π logn
. Define

CM ≡ 48√
π

(√
2M−1

)
(M +2). (10)

For some M≥ 2(ξ+1).

Then for anyε ≥CM

√
logplog2n

n1/2
and sufficiently large n, we have

P

(
max

jk

∣∣∣Sn( f̃ ) jk −Sn( f ) jk

∣∣∣> 2ε
)

≤ 1

2
√

π log(np)
+2exp

(
2logp− n1/2ε2

1232π2 log2n

)
+2exp

(
2logp− n1/2

8π logn

)
+o(1).

The proof of the above theorem is given in Section 7. The following corollary is immediate, and
specifies the scaling of the dimension in terms of sample size.

Corollary 5 Let M≥ max{15π,2ξ+1}. Then

P


max

jk

∣∣∣Sn( f̃ ) jk −Sn( f ) jk

∣∣∣> 2CM

√
logplog2n

n1/2


= o(1).

Hence,

max
j,k

∣∣∣Sn( f̃ ) jk −Sn( f ) jk

∣∣∣= OP



√

logplog2n

n1/2


 .

The following corollary yields estimation consistency in both the Frobenius norm and theℓ2-
operator norm. The proof follows the same arguments as the proof of Theorem 1 and Theorem 2
from Rothman et al. (2008), replacing their Lemma 1 with our Theorem 4.

For a matrixA = (ai j ), the Frobenius norm‖ · ‖F is defined as‖A‖F ≡
√

∑i, j a
2
i j . The ℓ2-

operator norm‖ · ‖2 is defined as the magnitude of the largest eigenvalue of the matrix,‖A‖2 ≡
max‖x‖2=1‖Ax‖2. In the following, we writean ≍ bn if there are positive constantsc andC indepen-
dent ofn such thatc≤ an/bn ≤C.

Corollary 6 Suppose that the data are generated as X(i) ∼ NPN(µ0,Σ0, f0), and letΩ0 = Σ−1
0 . If

the regularization parameterλn is chosen as

λn ≍ 2CM

√
logplog2n

n1/2

where CM is defined in Theorem 4. Then the nonparanormal estimatorΩ̂n of (9) satisfies

‖Ω̂n−Ω0‖F = OP



√

(s+ p)(logplog2n)

n1/2



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and

‖Ω̂n−Ω0‖2 = OP



√

s(logplog2n)

n1/2


 ,

where

s≡ Card({(i, j) ∈ {1, . . . , p}×{1, . . . , p}|Ω0(i, j) , 0, i , j})

is the number of nonzero off-diagonal elements of the true precision matrix.

To prove the model selection consistency result, we need further assumptions. We follow
Ravikumar (2009) and let thep2 × p2 Fisher information matrix ofΣ0 be Γ ≡ Σ0 ⊗Σ0 where⊗
is the Kronecker matrix product, and define the support setSof Ω0 = Σ−1

0 as

S≡ {(i, j) ∈ {1, . . . , p}×{1, . . . , p}|Ω0(i, j) , 0} .

We useSc to denote the complement ofS in the set{1, . . . , p}× {1, . . . , p}, and for any two
subsetsT andT ′ of {1, . . . , p}×{1, . . . , p}, we useΓTT′ to denote the sub-matrix with rows and
columns ofΓ indexed byT andT ′ respectively.

Assumption 1 There exists someα ∈ (0,1], such that
∥∥ΓScS(ΓSS)

−1
∥∥

∞ ≤ 1−α.

As in Ravikumar et al. (2009b), we define two quantitiesKΣ0 ≡ ‖Σ0‖∞ andKΓ ≡ ‖(ΓSS)
−1‖∞.

Further, we define the maximum row degree as

d ≡ max
i=1,...,p

Card({ j ∈ 1, . . . , p|Ω0(i, j) , 0}) .

Assumption 2 The quantities KΣ0 and KΓ are bounded, and there are positive constants C such that

min
( j,k)∈S

|Ω0( j,k)| ≥C

√
log3n

n1/2

for large enough n.

The proof of the following corollary uses our Theorem 4 in place of Equation (12) in the analysis
of Ravikumar et al. (2009b).

Corollary 7 Suppose the regularization parameter is chosen as

λn ≍ 2CM

√
logplog2n

n1/2

where C(M,n, p) is defined in Theorem 4. Then the nonparanormal estimatorΩ̂n satisfies

P

(
G
(

Ω̂n,Ω0

))
≥ 1−o(1)

whereG(Ω̂n,Ω0) is the event
{

sign
(

Ω̂n( j,k)
)

= sign(Ω0( j,k)) , ∀ j,k∈ S
}

.
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Our persistency (risk consistency) result parallels the persistency result for additive models
given in Ravikumar et al. (2009a), and allows model dimension that grows exponentially with sam-

ple size. The definition in this theorem uses the fact (from Lemma 11) that supx Φ−1
(

F̃j(x)
)
≤

√
2logn whenδn = 1/(4n1/4√π logn).

In the next theorem, we do not assume the true model is nonparanormal anddefine the popula-
tion and sample risks as

R( f ,Ω) =
1
2

{
tr
[
ΩE( f (X) f (X)T]− log|Ω|− plog(2π)

}

R̂( f ,Ω) =
1
2
{tr [ΩSn( f )]− log|Ω|− plog(2π)} .

Theorem 8 Suppose that p≤ enξ
for someξ < 1, and define the classes

Mn =
{

f : R→ R : f is monotone with‖ f‖∞ ≤C
√

logn
}

Cn =
{

Ω : ‖Ω−1‖1 ≤ Ln
}

.

Let Ω̂n be given by

Ω̂n = argmin
Ω∈Cn

{
tr
(

ΩSn( f̃ )
)
− log|Ω|

}
.

Then

R( f̃n,Ω̂n)− inf
( f ,Ω)∈M p

n ⊕Cn

R( f ,Ω) = OP

(
Ln

√
logn

n1−ξ

)
.

Hence the Winsorized estimator of( f ,Ω) with δn = 1/(4n1/4√π logn) is persistent overCn when

Ln = o
(

n(1−ξ)/2/
√

logn
)

.

The proofs of Theorems 4 and 8 are given in Section 7.

6. Experimental Results

In this section, we report experimental results on synthetic and real data sets. We mainly compare
theℓ1-regularized nonparanormal and Gaussian (paranormal) models, computed using the graphical
lasso algorithm (glasso) of Friedman et al. (2007). The primary conclusions are: (i) When the data
are multivariate Gaussian, the performance of the two methods is comparable;(ii) when the model
is correct, the nonparanormal performs much better than the graphical lasso in many cases; (iii) for
a particular gene microarray data set, our method behaves differently from the graphical lasso, and
may support different biological conclusions.

Note that we can reuse the glasso implementation to fit a sparse nonparanormal.In particular,
after computing the Winsorized sample covarianceSn( f̃ ), we pass this matrix to the glasso routine
to carry out the optimization

Ω̂n = arg min
Ω

{
tr
(

ΩSn( f̃ )
)
− log|Ω|+λn‖Ω‖1

}
.

2305



L IU , LAFFERTY, AND WASSERMAN

6.1 Neighborhood Graphs

We begin by describing a procedure to generate graphs as in (Meinshausen and B̈uhlmann, 2006),
with respect to which several distributions can then be defined. We generate ap-dimensional sparse
graphG ≡ (V,E) as follows: LetV = {1, . . . , p} correspond to variablesX = (X1, . . . ,Xp). We

associate each indexj with a point(Y(1)
j ,Y(2)

j ) ∈ [0,1]2 where

Y(k)
1 , . . . ,Y(k)

n ∼ Uniform[0,1]

for k = 1,2. Each pair of nodes(i, j) is included in the edge setE with probability

P

(
(i, j) ∈ E

)
=

1√
2π

exp

(
−‖yi −y j‖2

n

2s

)

whereyi ≡ (y(1)
i ,y(2)

i ) is the observation of(Y(1)
i ,Y(2)

i ) and‖ · ‖n represents the Euclidean distance.
Here,s= 0.125 is a parameter that controls the sparsity level of the generated graph.We restrict the
maximum degree of the graph to be four and build the inverse covariance matrix Ω0 according to

Ω0(i, j) =





1 if i = j
0.245 if (i, j) ∈ E
0 otherwise,

where the value 0.245 guarantees positive definiteness of the inverse covariance matrix.
GivenΩ0, n data points are sampled from

X(1), . . . ,X(n) ∼ NPN(µ0,Σ0, f0)

whereµ0 = (1.5, . . . ,1.5), Σ0 = Ω−1
0 . For simplicity, the transformation functions for all dimensions

are the same,f1 = . . .= fp = f . To sample data from the nonparanormal distribution, we also require
g≡ f−1; two different transformationsg are employed.

Definition 9 (Gaussian CDF Transformation)Let g0 be a one-dimensional Gaussian cumulative
distribution function with mean µg0 and the standard deviationσg0, that is,

g0(t) ≡ Φ
(

t −µg0

σg0

)
.

We define the transformation function gj = f−1
j for the j-th dimension as

g j(zj) ≡ σ j




g0(zj)−
Z

g0(t)φ
(

t−µj

σ j

)
dt

√
Z

(
g0(y)−

Z

g0(t)φ
(

t−µj

σ j

)
dt

)2

φ
(

y−µj

σ j

)
dy




+µj

whereσ j = Σ0( j, j).
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Figure 3: The power and cdf transformations. The densities are estimated using a kernel density
estimator with bandwidths selected by cross-validation.

Definition 10 (Symmetric Power Transformation)Let g0 be the symmetric and odd transformation
given by

g0(t) = sign(t)|t|α

whereα > 0 is a parameter. We define the power transformation for the j-th dimension as

g j(zj) ≡ σ j




g0(zj −µj)√
Z

g2
0(t −µj)φ

(
t−µj

σ j

)
dt


+µj .

These transformation are constructed to preserve the marginal mean and standard deviation. In
the following experiments, we refer to them as the cdf transformation and the power transforma-
tion, respectively. For the cdf transformation, we setµg0 = 0.05 andσg0 = 0.4. For the power
transformation, we setα = 3.

To visualize these two transformations, we sample 5000 data points from a one-dimensional nor-
mal distributionN(0.5,1.0) and then apply the above two transformations; the results are shown in
Figure 3. It can be seen how the cdf and power transformations map a univariate normal distribution
into a highly skewed and a bi-modal distribution, respectively.
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Figure 4: Regularization paths for the glasso and nonparanormal withn = 500 (top) andn = 200
(bottom). The paths for the relevant variables (nonzero inverse covariance entries) are
plotted as solid (black) lines; the paths for the irrelevant variables are plotted as dashed
(red) lines. For non-Gaussian distributions, the nonparanormal better separates the rele-
vant and irrelevant dimensions.

To generate synthetic data, we setp = 40, resulting in
(40

2

)
+ 40 = 820 parameters to be es-

timated, and vary the sample sizes fromn = 200 ton = 1000. Three conditions are considered,
corresponding to using the cdf transform, the power transform, or no transformation. In each case,
both the glasso and the nonparanormal are applied to estimate the graph.
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6.1.1 COMPARISON OFREGULARIZATION PATHS

We choose a set of regularization parametersΛ; for eachλ ∈ Λ, we obtain an estimatêΩn which
is a 40× 40 matrix. The upper triangular matrix has 780 parameters; we vectorize it to get a
780-dimensional parameter vector. A regularization path is the trace of these parameters over all
the regularization parameters withinΛ. The regularization paths for both methods are plotted in
Figure 4. For the cdf transformation and the power transformation, the nonparanormal separates the
relevant and the irrelevant dimensions very well. For the glasso, relevant variables are mixed with
irrelevant variables. If no transformation is applied, the paths for both methods are almost the same.

6.1.2 ESTIMATED TRANSFORMATIONS

For sample sizen = 1000, we plot the estimated transformations for three of the variables in Figure
5. It is clear that Winsorization plays a significant role for the power transformation. This is intuitive
due to the high skewness of the nonparanormal distribution in this case.

cdf power linear

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x1

f1

estimated
true

−5 0 5 10

−
2

0
2

4

x1

f1

estimated
true

−1 0 1 2 3 4 5

−
2

0
2

4

x1

g1

estimated
true

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x2

f2

estimated
true

−10 −5 0 5 10

−
2

0
2

4

x2

f2

estimated
true

−2 −1 0 1 2 3 4 5

−
2

0
2

4

x2

g2

estimated
true

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x3

f3

estimated
true

−5 0 5 10

−
2

0
2

4

x3

f3

estimated
true

−2 −1 0 1 2 3 4

−
2

0
2

4

x3

g3

estimated
true

Figure 5: Estimated transformations for the first three variables. Winsorization plays a significant
role for the power transformation due to its high skewness.

2309



L IU , LAFFERTY, AND WASSERMAN
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Figure 6: Boxplots of the oracle scores forn = 1000,500,200 (top, center, bottom).

6.1.3 QUANTITATIVE COMPARISON

To evaluate the performance for structure estimation quantitatively, we use false positive and false
negative rates. LetG= (V,E) be ap-dimensional graph (which has at most

(p
2

)
edges) in which there

are|E| = r edges, and let̂Gλ = (V, Êλ) be an estimated graph using the regularization parameterλ.
The number of false positives atλ is

FP(λ) ≡ number of edges in̂Eλ not inE

The number of false negatives atλ is defined as

FN(λ) ≡ number of edges inE not in Êλ.

The oracle regularization levelλ∗ is then

λ∗ = arg min
λ∈Λ

{FP(λ)+FN(λ)} .

The oracle score is FP(λ∗) + FN(λ∗). Figure 6 shows boxplots of the oracle scores for the two
methods, calculated using 100 simulations.
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To illustrate the overall performance of these two methods over the full paths, ROC curves are
shown in Figure 7, using

(
1− FN(λ)

r
,1− FP(λ)(p

2

)
− r

)
.

The curves clearly show how the performance of both methods improves withsample size, and that
the nonparanormal is superior to the Gaussian model in most cases.
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Figure 7: ROC curves for sample sizesn = 1000,500,200 (top, middle, bottom).

Let FPE≡ FP(λ∗) and FNE≡ FN(λ∗), Tables 1, 2, and 3 provide numerical comparisons of
both methods on data sets with different transformations, where we repeatthe experiments 100
times and report the average FPE and FNE values with the corresponding standard deviations. It’s
clear from the tables that the nonparanormal achieves significantly smaller errors than the glasso if
the true distribution of the data is not multivariate Gaussian and achieves performance comparable
to the glasso when the true distribution is exactly multivariate Gaussian.

Figure 8 shows typical runs for the cdf and power transformations. It’sclear that when the
glasso estimates the graph incorrectly, the mistakes include both false positives and negatives.

2311



L IU , LAFFERTY, AND WASSERMAN

Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 3.73 (2.3904) 7.24 (3.2910)

900 0.18 (0.5389) 0.16 (0.4197) 3.31 (2.4358) 8.94 (3.2808)

800 0.16 (0.5069) 0.23 (0.5659) 3.80 (2.9439) 9.91 (3.4789)

700 0.26 (0.6295) 0.43 (0.7420) 3.45 (2.5519) 12.26 (3.5862)

600 0.33 (0.6039) 0.41 (0.6371) 3.31 (2.8804) 14.25 (4.0735)

500 0.58 (0.9658) 1.10 (1.0396) 3.18 (2.9211) 17.54 (4.4368)

400 0.71 (1.0569) 1.52 (1.2016) 1.58 (2.3535) 21.18 (4.9855)

300 1.37 (1.4470) 2.97 (2.0123) 0.67 (1.6940) 23.14 (5.0232)

200 2.03 (1.9356) 7.13 (3.4514) 0.01 (0.1000) 24.03 (4.9816)

Table 1: Quantitative comparison on the data set using the cdf transformation. For both FPE and
FNE, the nonparanormal performs much better in general.

Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.27 (0.7086) 0.35 (0.6571) 2.89 (1.9482) 4.97 (2.9213)

900 0.38 (0.6783) 0.41 (0.6210) 2.98 (2.3697) 5.99 (3.0467)

800 0.25 (0.5751) 0.73 (0.8270) 4.10 (2.7834) 6.39 (3.3571)

700 0.69 (0.9067) 0.90 (1.0200) 4.42 (2.8891) 8.80 (3.9848)

600 0.92 (1.2282) 1.59 (1.5314) 4.64 (3.3830) 10.58 (4.2168)

500 1.17 (1.3413) 2.56 (2.3325) 4.00 (2.9644) 13.09 (4.4903)

400 1.88 (1.6470) 4.97 (2.7687) 3.14 (3.4699) 17.87 (4.7750)

300 2.97 (2.4181) 7.85 (3.5572) 1.36 (2.3805) 21.24 (4.7505)

200 2.82 (2.6184) 14.53 (4.3378) 0.37 (0.9914) 24.01 (5.0940)

Table 2: Quantitative comparison on the data set using the power transformation. For both FPE and
FNE, the nonparanormal performs much better in general.

6.1.4 COMPARISON IN THEGAUSSIAN CASE

The previous experiments indicate that the nonparanormal works almost aswell as the glasso in
the Gaussian case. This initially appears surprising, since a parametric method is expected to be
more efficient than a nonparametric method if the parametric assumption is correct. To manifest
this efficiency loss, we conducted some experiments with very smalln and relatively largep. For
multivariate Gaussian models, Figure 9 shows results with(n, p,s) = (50,40,1/8),(50,100,1/15)
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Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 0.09 (0.3208) 0.06 (0.2386)

900 0.24 (0.7537) 0.14 (0.4025) 0.22 (0.6447) 0.15 (0.4113)

800 0.17 (0.4277) 0.16 (0.3949) 0.16 (0.4431) 0.19 (0.4191)

700 0.25 (0.6871) 0.33 (0.8534) 0.29 (0.8201) 0.27 (0.7501)

600 0.37 (0.7740) 0.36 (0.7456) 0.36 (0.7722) 0.37 (0.6459)

500 0.28 (0.5874) 0.46 (0.7442) 0.25 (0.5573) 0.45 (0.6571)

400 0.55 (0.8453) 1.37 (1.2605) 0.47 (0.7713) 1.35 (1.2502)

300 1.24 (1.3715) 3.07 (1.7306) 0.98 (1.2058) 3.04 (1.8905)

200 1.62 (1.7219) 5.89 (2.7373) 1.55 (1.6779) 5.62 (2.6620)

Table 3: Quantitative comparison on the data set without any transformation.The two methods
behave similarly, the glasso is slightly better.

and(30,100,1/15). From the mean ROC curves, we see that nonparanormal does indeed behave
worse than the glasso, suggesting some efficiency loss. However, fromthe corresponding boxplots,
the efficiency reduction is relatively insignificant.

6.1.5 THE CASE WHEN p≫ n

Figure 10 shows results from a simulation of the nonparanormal using cdf transformations withn=
200, p = 500 and sparsity levels= 1/40. The boxplot shows that the nonparanormal outperforms
the glasso. A typical run of the regularization paths confirms this conclusion, showing that the
nonparanormal path separates the relevant and irrelevant dimensions very well. In contrast, with the
glasso the relevant variables are “buried” among the irrelevant variables.

6.2 Gene Microarray Data

In this study, we consider a data set based on Affymetrix GeneChip microarrays for the plantAra-
bidopsis thaliana, (Wille et al., 2004). The sample size isn = 118. The expression levels for each
chip are pre-processed by log-transformation and standardization. A subset of 40 genes from the
isoprenoid pathway are chosen, and we study the associations among themusing both the para-
normal and nonparanormal models. Even though these data are generallytreated as multivariate
Gaussian in the previous analysis (Wille et al., 2004), our study shows thatthe results of the non-
paranormal and the glasso are very different over a wide range of regularization parameters. This
suggests the nonparanormal could support different scientific conclusions.

6.2.1 COMPARISON OF THEREGULARIZATION PATHS

We first compare the regularization paths of the two methods, in Figure 11. Togenerate the paths,
we select 50 regularization parameters on an evenly spaced grid in the interval [0.16,1.2]. Although
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Figure 8: Typical runs for the two methods forn = 1000 using the cdf and power transformations.
The dashed (black) lines in the symmetric difference plots indicate edges found by the
glasso but not the nonparanormal, and vice-versa for the solid (red) lines.

the paths for the two methods look similar, there are some subtle differences. In particular, variables
become nonzero in a different order, especially when the regularizationparameter is in the range
λ ∈ [0.2,0.3]. As shown below, these subtle differences in the paths lead to different model selection
behaviors.

6.2.2 COMPARISON OF THEESTIMATED GRAPHS

Figure 12 compares the estimated graphs for the two methods at several values of the regularization
parameterλ in the range[0.16,0.37]. For eachλ, we show the estimated graph from the nonpara-
normal in the first column. In the second column we show the graph obtained by scanning the full
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Figure 9: For Gaussian models, comparison of boxplots of the oracle scores and ROC curves for
smalln and relatively largep. The ROC curves suggest some efficiency loss of the non-
paranormal; however, the corresponding boxplots indicate this loss is insignificant.
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Figure 10: For the cdf transformation withn = 200, p = 500,s= 1/40, comparison of the boxplots
and a typical run of the regularization paths. The nonparanormal paths separate the
relevant from the irrelevant dimensions well. For the glasso, the relevantvariables are
“buried” in irrelevant variables.

regularization path of the glasso fit and finding the graph having the smallestsymmetric difference
with the nonparanormal graph. The symmetric difference graph is shown inin the third column. The
closest glasso fit is different, with edges selected by the glasso not selected by the nonparanormal,
and vice-versa. Several estimated transformations are plotted in Figure 13, which are are nonlinear.
Interestingly, several of the differences between the fitted graphs arerelated to these variables.
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Figure 11: The regularization paths of both methods on the microarray data set. Although the paths
for the two methods look similar, there are some subtle differences.

7. Proofs

We assume, without loss of generality from Lemma 3, thatµj = 0 andσ j = 1 for all j = 1, . . . , p.
Thus, definẽf j(x) ≡ Φ−1(F̃j(x)) and f j(x) ≡ Φ−1(Fj(x)), and letg j ≡ f−1

j .

7.1 Proof of Theorem 4

We start with some useful lemmas; the first is from Abramovich et al. (2006).

Lemma 11 (Gaussian Distribution function vs. Quantile function) LetΦ andφ denote the distribu-
tion and density functions of a standard Gaussian random variable. Then

φ(t)
2t

≤ 1−Φ(t) ≤ φ(t)
t

if t ≥ 1

and

(Φ−1)′(η) =
1

φ(Φ−1(η))
.

Also, forη ≥ 0.99, we have

Φ−1(η) =

√

2log

(
1

1−η

)
− r(η) (11)

where r(η) ∈ [0,1.5].

Lemma 12 (Distribution function of the transformed random variable) For anyα ∈ (−∞,∞)

Φ−1
(

Fj

(
g j(α

√
logn)

))
= α

√
logn.
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Figure 12: The nonparanormal estimated graph for three values ofλ = 0.2448,0.2661,0.30857
(left column), the closest glasso estimated graph from the full path (middle) and the
symmetric difference graph (right).
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Figure 13: Estimated transformations for the microarray data set, indicating non-Gaussian
marginals. The corresponding genes are among the nodes appearing in the symmetric
difference graphs above.

Proof The statement follows from

Fj(t) = P(Xj ≤ t) = P(g j(Z j) ≤ t) = P(Z j ≤ g−1
j (t)) = Φ

(
g−1

j (t)
)

. (12)

which holds for anyt.
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Lemma 13 (Gaussian maximal inequality) Let W1, . . . ,Wn be identically distributed standard Gaus-
sian random variables (do not have to be independent). Then for anyα > 0

P

(
max
1≤i≤n

Wi >
√

α logn

)
≤ 1

nα/2−1
√

2πα logn
.

Proof Using Mill’s inequality, we have

P

(
max
1≤i≤n

Wi >
√

α logn

)
≤

n

∑
i=1

P

(
Wi >

√
α logn

)
≤ n

φ(
√

α logn)√
α logn

=
1

nα/2−1
√

2πα logn
,

from which the result follows.

Lemma 14 For anyα > 0 that satisfies1−δn−Φ
(√

α logn
)

> 0 for all n, we have

P

[
F̂j

(
g j

(√
α logn

))
> 1−δn

]
≤ exp

{
−2n

(
1−δn−Φ

(√
α logn

))2
}

. (13)

and

P

[
F̂j

(
g j

(
−
√

α logn
))

< δn

]
≤ exp

{
−2n

(
1−δn−Φ

(√
α logn

))2
}

. (14)

Proof Using Hoeffding’s inequality,

P

[
F̂j

(
g j

(√
α logn

))
> 1−δn

]

= P

[
F̂j

(
g j

(√
α logn

))
−Fj

(
g j

(√
α logn

))
> 1−δn−Fj

(
g j

(√
α logn

))]

≤ exp

{
−2n

(
1−δn−Fj

(
g j

(√
α logn

)))2
}

.

Equation (13) then follows from equation (12). The proof of equation (14) uses the same argument.

Now letM > 2 and setβ =
1
2

. We split the interval

[
g j(−

√
M logn),g j(

√
M logn)

]

into two parts, the middle

Mn ≡
(

g j

(
−
√

β logn
)

,g j

(√
β logn

))

and ends

En ≡
[
g j

(
−
√

M logn
)

,g j

(
−
√

β logn
)]

∪
[
g j

(√
β logn

)
,g j

(√
M logn

)]
.

The behaviors of the function estimates in these two regions are different, so we first establish
bounds on the probability that a sample can fall in the end regionEn.
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Lemma 15 Let A≡
√

2
π
(
√

M−
√

β). Then

P(X1 j ∈ En) ≤ A

√
logn

nβ , ∀ j ∈ {1, . . . , p}.

Proof Using Equation (12) and the mean value theorem, we have

P(X1 j ∈ En)

= P

(
X1 j ∈

[
g j(
√

β logn),g j(
√

M logn)
])

+P
(

X1 j ∈
[
g j(−

√
M logn),g j(−

√
β logn)

])

= Fj

(
g j(
√

M logn)
)
−Fj

(
g j(
√

β logn)
)

+Fj

(
g j(−

√
β logn)

)
−Fj

(
g j(−

√
M logn)

)

= 2
(

Φ(
√

M logn)−Φ(
√

β logn)
)

≤ 2φ
(√

β logn
)(√

M logn−
√

β logn
)

.

The result of the lemma follows directly.

We next bound the error of the Winsorized estimate of a component functionover the end region.

Lemma 16 For all n, we have

sup
t∈En

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣<

√
2(M +2) logn, ∀ j ∈ {1, . . . , p}.

Proof From Lemma 12 and the definition ofEn, we have

sup
t∈En

∣∣Φ−1(Fj(t))
∣∣ ∈
[
0,
√

M logn
]
.

Given the fact thatδn =
1

4n1/4
√

π logn
, we haveF̃j(t) ∈

(
1
n
,1− 1

n

)
. Therefore, from Equation

(11),

sup
t∈En

∣∣∣Φ−1
(

F̃j(t)
)∣∣∣ ∈

[
0,
√

2logn
)

.

The result follows from the triangle inequality and
√

M +
√

2≤
√

2(M +2).

Now for anyε > 0, we have

P

(
max

j,k

∣∣∣Sn( f̃ ) jk −Sn( f ) jk

∣∣∣> 2ε
)

= P

(
max

j,k

∣∣∣∣∣
1
n

n

∑
i=1

{
f̃ j(Xi j ) f̃k(Xik)− f j(Xi j ) fk(Xik)−µn( f̃ j)µn( f̃k)+µn( f j)µn( fk)

}∣∣∣∣∣> 2ε

)

≤ P

(
max

j,k

∣∣∣∣∣
1
n

n

∑
i=1

(
f̃ j(Xi j ) f̃k(Xik)− f j(Xi j ) fk(Xik)

)∣∣∣∣∣> ε

)

+ P

(
max

j,k

∣∣∣µn( f̃ j)µn( f̃k)−µn( f j)µn( fk)
∣∣∣> ε

)
.
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We only need to analyze the rate for the first term above, since the secondone is of higher order
(Cai et al., 2008). Let

∆i( j,k) ≡ f̃ j(Xi j ) f̃k(Xik)− f j(Xi j ) fk(Xik)

and

Θt,s( j,k) ≡ f̃ j(t) f̃k(s)− f j(t) fk(s).

We define the eventAn as

An ≡
{

g j

(
−
√

M logn
)
≤ X1 j , . . . ,Xn j ≤ g j

(√
M logn

)
, j = 1, . . . , p

}
.

Then, by Lemma 13, whenM ≥ 2(ξ+1), we have

P(Ac
n) ≤ P

(
max

i, j∈{1,...,n}×{1,...,p}
| f j(Xi j )| >

√
2log(np)

)
≤ 1

2
√

π log(np)
.

Therefore

P

(
max

j,k

∣∣∣∣∣
1
n

n

∑
i=1

∆i( j,k)

∣∣∣∣∣> ε

)
≤ P

(
max

j,k

∣∣∣∣∣
1
n

n

∑
i=1

∆i( j,k)

∣∣∣∣∣> ε,An

)
+ P(Ac

n)

≤ P
(

max
j,k

∣∣∣∣∣
1
n

n

∑
i=1

∆i( j,k)

∣∣∣∣∣> ε,An

)
+

1

2
√

π log(np)
.

Thus, we only need to carry out our analysis on the eventAn. On this event, we have the following
decomposition:

P

(
max

j,k

∣∣∣∣∣
1
n

n

∑
i=1

∆i( j,k)

∣∣∣∣∣> ε, An

)

≤ P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈Mn

|∆i( j,k)| > ε
4


+P

(
max

j,k

1
n ∑

Xi j∈En,Xik∈En

|∆i( j,k)| > ε
4

)

+ 2P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈En

|∆i( j,k)| > ε
4


 .

We now analyze each of these terms separately.

Lemma 17 On the eventAn, let β = 1/2 andε ≥CM

√
logplog2n

n1/2
, then

P

(
max

j,k

1
n ∑

Xi j∈En,Xik∈En

|∆i( j,k)| > ε
4

)
= o(1).

2320



THE NONPARANORMAL

Proof We define

θ1 ≡
nβ/2ε

8A
√

logn

with the same parameterA as in Lemma 15. Such aθ1 guarantees that

nε
4θ1

−nA

√
logn

nβ = nA

√
logn

nβ > 0.

By Lemma 15, we have

P

(
1
n

n

∑
i=1

1{Xi j∈En,Xik∈En} >
ε

4θ1

)
≤ P

(
n

∑
i=1

1{Xi j∈En} >
nε
4θ1

)

= P

(
n

∑
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
>

nε
4θ1

−nP(X1 j ∈ En)

)

≤ P

(
n

∑
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
>

nε
4θ1

−nA

√
logn

nβ

)
.

Using the Bernstein’s inequality, forβ =
1
2

,

P

(
1
n

n

∑
i=1

1{Xi j∈En,Xik∈En} >
ε

4θ1

)
≤ P

(
n

∑
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
> nA

√
logn

nβ

)

≤ exp

(
− c1n2−β logn

c2n1−β/2
√

logn+c3n1−β/2
√

logn

)
= o(1),

wherec1,c2,c3 > 0 are generic constants.
Therefore,

P

(
max

j,k

1
n ∑

Xi j∈En,Xik∈En

|∆i( j,k)| > ε
4

)

= P

(
max

j,k

1
n ∑

Xi j∈En,Xik∈En

|∆i( j,k)| > ε
4
,max

j,k
sup

t∈En,s∈En

|Θt,s( j,k)| > θ1

)

+P

(
max

j,k

1
n ∑

Xi j∈En,Xik∈En

|∆i( j,k)| > ε
4
,max

j,k
sup

t∈En,s∈En

|Θt,s( j,k)| ≤ θ1

)

≤ P

(
max

j,k
sup

t∈En,s∈En

|Θt,s( j,k)| > θ1

)
+P

(
1
n

n

∑
i=1

1{Xi j∈En,Xik∈En} >
ε

4θ1

)

= P

(
max

j,k
sup

t∈En,s∈En

|Θt,s( j,k)| > θ1

)
+o(1).
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Now, we analyze the first term

P

(
max

j,k
sup

t∈En,s∈En

|Θt,s( j,k)| > θ1

)
≤ p2

P

(
sup

t∈En,s∈En

|Θt,s( j,k)| > θ1

)

= p2
P

(
sup

t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > θ1

)
.

By adding and subtracting termsf j(t) and fs(t), we have

P

(
sup

t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > θ1

)

≤ P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
θ1

3

)

+ P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| >
θ1

3

)

+ P

(
sup

t∈En,s∈En

|( f̃k(s)− fk(s))| · | f j(t)| >
θ1

3

)
.

The first term can further be decomposed to be

P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
θ1

3

)

≤ P

(
sup
t∈En

|( f̃ j(t)− f j(t))| >
√

θ1

3

)
+P

(
sup
s∈En

|( f̃k(s)− fk(s))| >
√

θ1

3

)
.

Also, from the definition ofEn, we have

sup
t∈En

| f j(t)| = sup
t∈En

∣∣∣g−1
j (t)

∣∣∣≤
√

M logn.

Sinceε ≥CM

√
logplog2 n

n1/2 , we have

θ1

3
=

nβ/2ε
24A

√
logn

≥ CM

√
logplog2n

24A
√

logn
= 2(M +2) logn.

This implies that
√

θ1

3
≥
√

2(M +2) logn and
θ1

3
√

M logn
≥
√

2(M +2) logn.

Then, from Lemma 16, we get

P

(
sup
t∈En

|( f̃ j(t)− f j(t))| >
√

θ1

3

)
= 0
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and

P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| >
θ1

3

)
= 0.

The claim of the lemma then follows directly.

Remark 18 From the above analysis, we see that the data in the tails doesn’t affect the rate. Using
exactly the same argument, we can also show that

P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈En

|∆i( j,k)| > ε
4


= o(1).

Lemma 19 On the eventAn, let β = 1/2 andε ≥CM

√
logplog2n

n1/2
. We have

P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈Mn

|∆i( j,k)| > ε
4


≤ 2exp

(
2logp− n1/2ε2

1232π2 log2n

)
+2exp

(
2logp− n1/2

8π logn

)
.

Proof We have

P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈Mn

|∆i( j,k)| > ε
4


≤ p2

P

(
sup

t∈Mn,s∈Mn

| f̃ j(t) f̃k(s)− f j(t) fk(s)| >
ε
4

)

≤ p2
P

(
sup

t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
ε

12

)

+ 2p2
P

(
sup

t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))| · | fk(s)| >
ε

12

)
.

Further, since

sup
t∈Mn

| f j(t)| = sup
t∈Mn

∣∣∣g−1
j (t)

∣∣∣=
√

β logn

and sup
t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| is of higher order than supt∈Mn,s∈Mn
|( f̃ j(t)− f j(t))| ·

| fk(s)|, we only need to analyze the termP

(
supt∈Mn

|( f̃ j(t)− f j(t))| >
ε

12
√

β logn

)
.

Sinceδn =
1

4nβ/2
√

2πβ logn
, using Mill’s inequality we have

2δn =
φ(
√

β logn)

2
√

β logn
≤ 1−Φ(

√
β logn).
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This implies that

1−δn−Φ(
√

β logn) ≥ δn > 0.

Using Lemma 14, we have

p2
P

(
F̂j

(
g j

(√
β logn

))
> 1−δn

)
≤ p2exp

(
−2nδ2

n

)
= exp

(
2logp− n1−β

(16πβ logn)

)
(15)

and

p2
P

(
F̂j

(
g j

(
−
√

β logn
))

< δn

)
≤ exp

(
2logp− n1−β

(16πβ logn)

)
. (16)

Define an eventBn as

Bn ≡
{

δn ≤ F̂j

(
g j

(√
β logn

))
≤ 1−δn, j = 1, . . . , p

}
.

From (15) and (16), it is easy to see that

P(Bc
n) ≤ 2exp

(
2logp− n1/2

8π logn

)
.

From the definition of̃Fj , we have

p2
P

(
sup
t∈Mn

| f̃ j(t)− f j(t)| >
ε

12
√

β logn

)

≤ p2
P

(
sup
t∈Mn

∣∣∣Φ−1
(

F̃j(t)
)
−Φ−1(Fj(t))

∣∣∣>
ε

12
√

β logn
,Bn

)
+P(Bc

n) .

≤ p2
P

(
sup
t∈Mn

∣∣∣Φ−1
(

F̂j(t)
)
−Φ−1(Fj(t))

∣∣∣>
ε

12
√

β logn

)
+2exp

(
2logp− n1/2

8π logn

)
.

Define

T1n ≡ max
{

Fj

(
g j

(√
β logn

))
,1−δn

}
and T2n ≡ 1−min

{
Fj

(
g j

(
−
√

β logn
))

,δn

}
.

From Equation (12) and the fact that 1−δn ≥ Φ
(√

β logn
)

, we have that

T1n = T2n = 1−δn.

Thus, by the mean value theorem,

P

(
sup
t∈Mn

∣∣∣Φ−1
(

F̂j(t)
)
−Φ−1(Fj(t))

∣∣∣>
ε

12
√

β logn

)

≤ P

(
(Φ−1)′ (max{T1n,T2n}) sup

t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

ε
12
√

β logn

)

= P

(
(Φ−1)′ (1−δn) sup

t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

ε
12
√

β logn

)
.

2324



THE NONPARANORMAL

Finally, using the Dvoretzky-Kiefer-Wolfowitz inequality,

P

(
sup
t∈Mn

∣∣∣Φ−1
(

F̂j(t)
)
−Φ−1(Fj(t))

∣∣∣>
ε

12
√

β logn

)

≤ P

(
sup
t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

ε
(Φ−1)′ (1−δn)12

√
β logn

)

≤ 2exp

(
−2

nε2

144β logn[(Φ−1)′ (1−δn)]
2

)
.

Furthermore, by Lemma 11,

(Φ−1)′ (1−δn) =
1

φ(Φ−1(1−δn))
≤ 1

φ
(√

2log
1
δn

) =
√

2π
(

1
δn

)
= 8πnβ/2

√
β logn.

This implies that

p2
P

(
sup
t∈Mn

∣∣∣Φ−1
(

F̂j(t)
)
−Φ−1(Fj(t))

∣∣∣>
ε

12
√

β logn

)
≤ 2exp

(
2logp− n1/2ε2

1232π2 log2n

)
.

In summary, we have

P


max

j,k

1
n ∑

Xi j∈Mn,Xik∈En

|∆i( j,k)| > ε
4


≤ 2exp

(
2logp− n1/2ε2

1232π2 log2n

)
+2exp

(
2logp− n1/2

8π logn

)

This finish the proof.

The conclusion of Theorem 4 follows from Lemma 17 and Lemma 19.

7.2 Proof of Theorem 8

Proof First note that the population and sample risks are

R( f ,Ω) =
1
2

{
tr
[
ΩE( f (X) f (X)T]− log|Ω|− plog(2π)

}

R̂( f ,Ω) =
1
2
{tr [ΩSn( f )]− log|Ω|− plog(2π)} .

Therefore, for all( f ,Ω) ∈M p
n ⊕Cn, we have

|R̂( f ,Ω)−R( f ,Ω)| =
1
2

∣∣tr
[
Ω
(
E[ f f T ]−Sn( f )

)]∣∣

≤ 1
2
‖Ω‖1max

jk
sup

f j , fk∈Mn

|E( f j(Xj) fk(Xk)−Sn( f ) jk|

≤ Ln

2
max

jk
sup

f j , fk∈Mn

|E( f j(Xj) fk(Xk)−Sn( f ) jk|.
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Now, if F is a class of functions, we have

E

(
sup
g∈F

|µ̂(g)−µ(g)|
)

≤
CJ[ ](‖F‖∞ ,F )√

n
(17)

for someC > 0, whereF(x) = supg∈cF |g(x)|, µ(g) = E(g(X)) andµ̂(g) = n−1 ∑n
i=1g(Xi) (see Corol-

lary 19.35 of van der Vaart 1998). Here the bracketing integral is defined to be

J[ ](δ,F ) =
Z δ

0

√
logN[ ](u,F )du

where logN[ ](ε,F ) is the bracketing entropy. For the class of one dimensional, bounded and mono-
tone functions, the bracketing entropy satisfies

logN[ ](ε,M ) ≤ K

(
1
ε

)

for someK > 0 (van der Vaart and Wellner, 1996).
Now, letPn,p be the class of all functions of the formm(x) = f j(x j) fk(xk) for j,k∈ {1, . . . , p},

where f j ∈Mn for eachj. Then the bracketing entropy satisfies

logN[ ](C
√

logn,Pn,p) ≤ 2logp+K

(
1
ε

)

and the bracketing integral satisfiesJ[ ](C
√

logn,Pn,p) = O(
√

lognlogp). It follows from (17) and
Markov’s inequality that

max
jk

sup
f j , fk∈Mn

|Sn( f ) jk −E( f j(Xj) fk(Xk)| = OP

(√
lognlogp

n

)
= OP

(√
logn

n1−ξ

)
.

Therefore,

sup
( f ,Ω)∈M p

n ⊕Cn

|R̂( f ,Ω)−R( f ,Ω)| = OP

(
Ln

√
logn

n(1−ξ)/2

)
.

As a consequence, we have

R( f ∗,Ω∗) ≤ R( f̃n,Ω̂n)

≤ R̂( f̃n,Ω̂n)+OP

(
Ln

√
logn

n(1−ξ)/2

)

≤ R̂( f ∗,Ω∗)+OP

(
Ln

√
logn

n(1−ξ)/2

)

≤ R( f ∗,Ω∗)+OP

(
Ln

√
logn

n(1−ξ)/2

)

and the conclusion follows.
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8. Concluding Remarks

In this paper we have introduced the nonparanormal, a type of Gaussian copula with nonparametric
marginals that is suitable for estimating high dimensional undirected graphs. The nonparanormal
can be viewed as an extension of sparse additive models to the setting of graphical models. We
proposed an estimator for the component functions that is based on thresholding the tails of the
empirical distribution function at appropriate levels. A theoretical analysis was given to bound the
difference between the sample covariance with respect to these estimated functions and the true
sample covariance. This analysis was leveraged with the recent work of Ravikumar et al. (2009b)
and Rothman et al. (2008) to obtain consistency results for the nonparanormal. Computationally,
fitting a high dimensional nonparanormal is no more difficult than estimating a multivariate Gaus-
sian, and indeed one can exploit existing software for the graphical lasso. Our experimental results
indicate that the sparse nonparanormal can give very different results than a sparse Gaussian graph-
ical model. This suggests that it may be a useful tool for relaxing the normalityassumption, which
is often made only for convenience.
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