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Abstract

Recent methods for estimating sparse undirected graphsdbralued data in high dimensional

problems rely heavily on the assumption of normality. Wevgshow to use a semiparametric Gaus-
sian copula—or “nonparanormal’—for high dimensional infere. Just as additive models extend
linear models by replacing linear functions with a set of-diteensional smooth functions, the

nonparanormal extends the normal by transforming the aseby smooth functions. We derive a
method for estimating the nonparanormal, study the mesitbéoretical properties, and show that
it works well in many examples.

Keywords: graphical models, Gaussian copula, high dimensionalénfeg, sparsity); regular-
ization, graphical lasso, paranormal, occult

1. Introduction

The linear model is a mainstay of statistical inference that has been extiensiekral important
ways. An extension to high dimensions was achieved by adding a spans#iyaiat, leading to the
lasso (Tibshirani, 1996). An extension to nonparametric models was adhigvreplacing linear
functions with smooth functions, leading to additive models (Hastie and Tilbshirf899). These
two ideas were recently combined, leading to an extension called spaitieeadtbdels (SpAM)

(Ravikumar et al., 2008, 2009a). In this paper we consider a similar nemgdric extension of
undirected graphical models based on multivariate Gaussian distributions lmgi dimensional
setting. Specifically, we use a high dimensional Gaussian copula with reonpaiic marginals,
which we refer to as a nonparanormal distribution.

If X is ap-dimensional random vector distributed according to a multivariate Gaudisiaiou-
tion with covariance matri¥, the conditional independence relations between the random variables
X1,X2,...,Xp are encoded in a graph formed from the precision m&2rix >~1. Specifically, miss-
ing edges in the graph correspond to zeroeQ.ofo estimate the graph from a sample of sizé
is only necessary to estimafewhich is easy ih is much larger thap. However, whermp is larger
thann, the problem is more challenging. Recent work has focused on the prablestimating the
graph in this high dimensional setting, which becomes feasililasfsparse. Yuan and Lin (2007)
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Assumptions Dimension Regression Graphical Models
: low linear model multivariate normal
parametric _ _
high lasso graphical lasso
. low additive model nonparanormal
nonparametric _ N _
high sparse additive mode| ¢;-regularized nonparanormal

Figure 1: Comparison of regression and graphical models. The reompanal extends additive
models to the graphical model setting. Regularizing the inverse covariaad® tie an
extension to high dimensions, which parallels sparse additive models fessagn.

and Banerjee et al. (2008) propose an estimator based on regularixedumelikelihood using an

£1 constraint on the entries 61, and Friedman et al. (2007) develop an efficient algorithm for com-
puting the estimator using a graphical version of the lasso. The resulting #stimpeocedure has
excellent theoretical properties, as shown recently by Rothman et 88)20d Ravikumar et al.
(2009Db).

While Gaussian graphical models can be useful, a reliance on exactlitpisamiting. Our
goal in this paper is to weaken this assumption. Our approach parallels #sehbdbind sparse
additive models for regression (Ravikumar et al., 2008, 2009a). Sgabifiwe replace the Gaus-
sian with a semiparametric Gaussian copula. This means that we replace doenrsariable
X = (Xq,...,Xp) by the transformed random variabléxX) = (f1(X1),..., fp(Xp)), and assume that
f(X) is multivariate Gaussian. This semiparametric copula results in a nonparamégrisien of
the normal that we call theonparanormadistribution. The nonparanormal depends on the func-
tions{f;}, and a meap and covariance matrix, all of which are to be estimated from data. While
the resulting family of distributions is much richer than the standard parametricah¢the para-
normal), the independence relations among the variables are still encottedprecision matrix
Q=31 We propose a nonparametric estimator for the funct{dips, and show how the graphical
lasso can be used to estimate the graph in the high dimensional setting. Theseiativetween
linear regression models, Gaussian graphical models, and their extetsioosparametric and
high dimensional models is summarized in Figure 1.

Most theoretical results on semiparametric copulas focus on low or affieidstdimensional
models (Klaassen and Wellner, 1997; Tsukahara, 2005). Models witmisiog dimension require
a more delicate analysis; in particular, simply plugging in the usual empiricaibdigstn of the
marginals does not lead to accurate inference. Instead we use a tduegdigical distribution. We
give a theoretical analysis of this estimator, proving consistency resultsesipiect to risk, model
selection, and estimation &f in the Frobenius norm.

In the following section we review the basic notion of the graph correspgrd a multivariate
Gaussian, and formulate different criteria for evaluating estimators of diaariance or inverse
covariance. In Section 3 we present the nonparanormal, and in Seatierdécuss estimation of
the model. We present a theoretical analysis of the estimation method in Seatitim the detailed
proofs collected in an appendix. In Section 6 we present experiments @tfirsbmulated data and
gene microarray data, where the problem is to construct the isoprensighthetic pathway.
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2. Estimating Undirected Graphs

Let X = (Xq,...,Xp) denote a random vector with distributi®n= N(i, Z). The undirected graph
G = (V,E) corresponding t® consists of a vertex setand an edge s&. The se¥ hasp elements,
one for each component &f. The edge sdE consists of ordered pai(s j) where(i, j) € E if there
is an edge betweeX; andX;. The edge betwee(i, j) is excluded fromE if and only if X is
independent oK; given the other variables, ) = (Xs: 1<s<p, s#i,]), written

X AL X; ’ X\fi,j} - (1)

It is well known that, for multivariate Gaussian distributions, (1) holds if anly if Q;; = 0 where
Q=>1

Let X X®@ ... XM be arandom sample fromy whereXV € RP. If nis much larger tham,
then we can estimate using maximum likelihood, leading to the estimé&le- S1 where

12 N oo N T
S=33,00 %) (¢ -%)
is the sample covariance, witk the sample mean. The zeroes®fcan then be estimated by
applying hypothesis testing 10) (Drton and Perlman, 2007, 2008).
Whenp > n, maximum likelihood is no longer useful; in particular, the estinzienot positive
definite, having rank no greater thaninspired by the success of the lasso for linear models, several
authors have suggested estimatinigy minimizing

—f(Q)—I—)\ ‘ij‘
2

where 1
(Q) = ; (log|Q2| ~ tr(QS) - plog(2m)

is the log-likelihood withS the sample covariance matrix. The estima@can be computed ef-
ficiently using the glasso algorithm (Friedman et al., 2007), which is a blookdamate descent
algorithm that uses the standard lasso to estimate a single row and colunim @ach iteration.
Under appropriate sparsity conditions, the resulting estin@toas been shown to have good the-
oretical properties (Rothman et al., 2008; Ravikumar et al., 2009b).

There are several different ways to judge the quality of an estinkafrthe covariance or
Q of the inverse covariance. We discuss three in this paper, persistanoy, consistency, and
sparsistency. Persistency means consistency in risk, when the modeélnsaessarily assumed
to be correct. Suppose the true distribut®ias meany, and that we use a multivariate normal
p(X; o, %) for prediction; we do not assume tHais normal. We observe a new vectr~ P and
define the prediction risk to be

R(Z) = —Elogp(X;po, Z) = — / log p(x; po, ) dP(X).

It follows that

R(Z) = = (tr(Z '2o) +log|Z| — plog(2m))

NI
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whereXg is the covariance oX underP. If S is a set of covariance matrices, the oracle is defined
to be the covariance matrk, that minimizesR(%) over S:

Z, =argmin R(X).

Thus p(x; U, Z,) is the best predictor of a new observation among all distributiod®{®; po, X ) :
Z € S}. Inparticular, ifS consists of covariance matrices with sparse graphs, fifieio, Z, ) is, in
some sense, the best sparse predictor. An estiriatsmpersistenif

R(En) —R(E,) 20

as the sample siagincreases to infinity. Thus, a persistent estimator approximates the best-estima
tor over the class, but we do not assume that the true distribution has a covariance magjoin

even that it is Gaussian. Moreover, we allow the dimengienp, to increase witm. On the other
hand, norm consistency and sparsistency require that the true dismiBiGaussian. In this case,

let 2o denote the true covariance matrix. An estimatorasm consistenif

[P )
where|| - || is a norm. IfE(Q) denotes the edge set correspondin@t@n estimator isparsistentf
P(E(Q) + E(ﬁn)) )

Thus, a sparsistent estimator identifies the correct graph consistentlyprésent our theoretical
analysis on these properties of the nonparanormal in Section 5.

3. The Nonparanormal

We say that a random vectdt = (Xy,...,Xp)" has anonparanormaldistribution if there exist
functions{ f,-}f’:1 such thaZ = f(X) ~ N(W, Z), wheref (X) = (f1(X1),..., fp(Xp)). We then write

X ~NPN(, Z, f).

When thef;’s are monotone and differentiable, the joint probability density functioX & given
by

B 1 1 T P Iy
et BEIUC BTG I § ((CV

Lemma 1 The nonparanormal distribution NP(\, Z, f) is a Gaussian copula when thg'sfare
monotone and differentiable.

Proof By Sklar’s theorem (Sklar, 1959), any joint distribution can be written as
F(X1,...,Xp) = C{F1(x1),...,Fp(Xp)}
where the functio€ is called a copula. For the nonparanormal we have

F(X1,. .., Xp) = Pus (P (Fi(x1)),. .., P L (Fp(xp)))
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where®, 5 is the multivariate Gaussian cdf adais the univariate standard Gaussian cdf. Thus,
the corresponding copula is

C(ug, ..., Up) = Bys (@ H(uy),..., P H(up)).

This is exactly a Gaussian copula with parameteedz. If each f; is differentiable then the
density ofX has the same form as (2). |

Note that the density in (2) is not identifiable; to make the family identifiable we dé et
f; preserve means and variances:

W =E(Zj) =E(X)) and 0f = £j; = Var(Z;) = Var(X;). (3)
Note that these conditions only depend on @adout not the full covariance matrix.

Let Fj(x) denote the marginal distribution functionXf. Then

Fi00 = P(% £ = (2 < fi00) = & (L)

which implies that
fj(0) = W +0;07H (Fj(x)). 4)

The following basic fact says that the independence graph of the rammgranal is encoded in
Q=731 asforthe parametric normal.

Lemma 2 If X ~ NPN(, Z, f) is nonparanormal and each is differentiable, then XL Xj | X, (i j
if and only ifQ;j = 0, whereQ = 1.

Proof From the form of the density (2), it follows that the density factors witheesfo the graph
of Q, and therefore obeys the global Markov property of the graph. |

Next we show that the above is true for any choice of identification resmitio

Lemma 3 Define
hj(x) = ®~*(Fj(x)) (5)

and let/A be the covariance matrix of(X). Then X 1L X¢| X, if and only if/\j‘kl =0.
Proof We can rewrite the covariance matrix as
Zik =Cov(Zj,Z) = O'jO'kCOV(hj(Xj),hk(Xk)).

Hencez = DAD and
s1=DInID1?

whereD is the diagonal matrix with dig®) = 0. The zero pattern ok~ is therefore identical to
the zero pattern of 2. [ |
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Figure 2: Densities of three 2-dimensional nonparanormals. The compbmetions have the
form fj(x) = sign(x)|x|“i. Left: a; = 0.9, a, = 0.8; center:a; = 1.2, a» = 0.8; right
a1 =2,az = 3. In each casg = (0,0) andz = (3).

Thus, it is not necessary to estimater o to estimate the graph.
Figure 2 shows three examples of 2-dimensional nonparanormal densitieach case, the
component function$;(x) take the form

f;(x) = ajsign(x)|x|*i + b;

where the constantg andbj are set to enforce the identifiability constraints (3). The covariance in
each case i& = (15‘?) and the mean ip = (0,0). The exponenttj determines the nonlinearity. It
can be seen how the concavity of the density changes with the exporemd thati > 1 can result
in multiple modes.

The assumption that(X) = (f1(X1),..., fp(Xp) is normal leads to a semiparametric model
where only one dimensional functions need to be estimated. But the monotoittity foinctions
f;, which map ont®R, enables computational tractability of the nonparanormal. For more general
functionsf, the normalizing constant for the density

P Dexp{ 5 (109~ W72 (109 - 10}

cannot be computed in closed form.
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4. Estimation Method
LetXD, ... X" be a sample of sizewhereX® = (X" ... X7 € RP. In light of (5) we define

hj(x) = ®~L(Fj(x))

whereF; is an estimator ofj. A natural candidate foF; is the marginal empirical distribution

function
1 n

Fit) = ﬁ_;l{xjmg}-

Now, let 8 denote the parameters of the copula. Tsukahara (2005) suggestsﬁaidrtge the
solution of

_icp(ﬁl(xf”),...,ﬁp(xg”),e) =0

where@ is an estimating equation arﬁj(t) = nlfj (t)/(n+1). In our caseP corresponds to the

covariance matrix. The resulting estima@rcalled a rank approximaté-estimator, has excellent
theoretical properties. However, we are interested in the high dimensioeaério where the di-

mensionp is allowed to increase with; the variance offj (t) is too large in this case. Instead, we
use the following truncated a¥insorized estimator:

3n if Fj(x) < &n
F) =R if s <F(x) <1-8, (6)
(1-8n) if Fj(x) >1—3n,

wheredy is a truncation parameter. Clearly, there is a bias-variance tradeoff asictlyd,. Essen-
tially the same estimator with, = 1/n is studied by Klaassen and Wellner (1997) in the case of
bivariate Gaussian copula. In what follows we use

1
4nt/4 \/mlogn’

This provides the right balance so that we can achieve the desired catevergence in our estimate
of Q and the associated undirected gr&pim the high dimensional setting.

Given this estimate of the distribution of variablg we then estimate the transformation func-
tion f; by

oh =

f (%) =1 +5hj (%) 7
where B N
hj(x) = @ (F(x))
andf}; ando; are the sample mean and the standard deviation:
G=lex® ands = s (x0_g)?

1. After Charles P. Winsor, whom John Tukey credited with convertingfrom topology to statistics Mallows 1990.
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Now, letS,(f) be the sample covariance matrix&X(V)), ..., f(X(M); that is,

S0 = 53 (7)) (Tx) ()’ ®
w(f) = i: F(x0).

We then estimate using S,(f). For instance, the maximum likelihood estimatorQ¥LE —
Sn(f)*l. The/;-regularized estimator is

On = arngin{tr (Q&(F)) —Iog\Q]+AHQH1} 9)

whereA is a regularization parameter, afi@||; = ¥ ;. |Qj|. The estimated graph is théty =
{(Jvk) : Qlk # 0}

The nonparanormal is analogous to a sparse additive regression(Radidumar et al., 2009a),
in the sense that both methods transform the variables by univariate fumctidowever, while
sparse additive models use a regularized risk criterion to fit univariatsftnamations, our nonpara-
normal estimator uses a two-step procedure:

1. Replace the observations, for each variable, by their respectimeahscores, subject to a
Winsorized truncation.

2. Apply the graphical lasso to the transformed data to estimate the undireapgd g

The first step is non-iterative and computationally efficient, with no tuningrpeters; it also
makes the nonparanormal amenable to theoretical analysis.

Starting with the model in (2), another possibility would be to parametrize §aatcording to
some parametric class of monotone functions such as the Box-Cox familthemdind the maxi-
mum likelihood estimates of, f, ... fp) in that class. This might lead to estimated pthat depend
onQ, and vice versa, and the estimation problem would not in general bexcohiternatively, due
to (4), the marginal information could be used to estimate the parameters. @parametric ap-
proach to estimating the transformations has the advantages of making fewpdissis and being
easy to compute. In the following section we analyze the theoretical prapeftikis estimator.

5. Theoretical Results

In this section we present our theoretical results on risk consistency,| s@ldetion consistency,
and norm consistency of the covariarkand inverse covariand®. From Lemma 3, the estimate
of the graph does not dependop j € {1,..., p} andy, so we assume that = 1 andp= 0. Our
key technical result is an analysis of the covariance of the Winsorizadager defined in (6), (7),
and (8). In particular, we show that under appropriate conditions,

max Si(F) ik —S(f) k| =0p(1)

whereSn(fN)j;< denotes the j,k) entry of the matrix. This result allows us to leverage the recent
analysis of Rothman et al. (2008) and Ravikumar et al. (2009b) in thesausase to obtain

consistency results for the nonparanormal. More precisely, our mairetinds the following.
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Theorem 4 Suppose that p= n¢ and let f be the Winsorized estimator defined(i) with &, =

———— Defi
4nt/4 /mlogn eline
48
CMZF(\/z —1) (M+2). (10)
For some M>2(§ +1).
logplog?n

Then for anye > Cy and sufficiently large n, we have

/2
P <rr}|?x‘s1(fv)jk - &(f),-k’ > 28)

nl/2¢2 nl/2
2exp| 2logp— —————— | +2exp| 2logp — o(1).
Feexp| £logp 12322log?n eexp| <logp 8rlogn +o(1)

1
2 /Tlog(np)

The proof of the above theorem is given in Section 7. The following casoléammediate, and
specifies the scaling of the dimension in terms of sample size.

Corollary 5 Let M > max{15r, 2§ + 1}. Then
~ log plog®n
P(rr}kaxsq(f)jksq(f)jk(>ZCM gsl/z.g> =0(1).

Hence,

5 log plog®n
rrj]i_X‘Sq(f)jk_Sﬁ(f)jk‘ =0p ( grEJl/Zg) ’

The following corollary yields estimation consistency in both the Frobeniusiraord the/,-
operator norm. The proof follows the same arguments as the proof ofdineband Theorem 2
from Rothman et al. (2008), replacing their Lemma 1 with our Theorem 4.

For a matrixA = (g;j), the Frobenius nornf - [|¢ is defined ag|Al[r = /i ; aﬁ The /5-

operator norm| - ||2 is defined as the magnitude of the largest eigenvalue of the makiy, =
maX|y|,—1||AX[2. In the following, we writea, = by, if there are positive constantsaandC indepen-
dent ofn such that < a,/b, <C.

Corollary 6 Suppose that the data are generated &% X NPN(Lo, o, fo), and letQq = Zgl. If
the regularization parametey;, is chosen as

logplog?n

)\n = ZCM n1/2

where Gy is defined in Theorem 4. Then the nonparanormal estin@toof (9) satisfies

0 s+ p)(logplog®n
QnQOFop(\/( p)(nlslzp g ))
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and

~ s(logplog®n
I~ Qollo= Or ( P )

where

s=Card({(i,j) € {1,...,p} x{1,...,p}| Qo(i,]) £0, i #j})

is the number of nonzero off-diagonal elements of the true precisiorixmatr

To prove the model selection consistency result, we need further assomptitve follow
Ravikumar (2009) and let thp? x p? Fisher information matrix 0By be = 3o ® Zg where®
is the Kronecker matrix product, and define the supporsétQ = Zgl as

S={(,1) €{1,...,p} x{1,...,p}Q0(i, ) # O} .

We useS’ to denote the complement &in the set{1,...,p} x {1,...,p}, and for any two
subsetsT andT’ of {1,...,p} x {1,...,p}, we usel t1- to denote the sub-matrix with rows and
columns ofl” indexed byT andT’ respectively.

Assumption 1 There exists some € (0, 1], such thaf|Fgs(Fsg ||, < 1-a.

As in Ravikumar et al. (2009b), we define two quantiti@s = || Zo||» andKr = [|(T'sg) ™Y/«
Further, we define the maximum row degree as

d= max Card({J €1,...,p|Qo(i,j) #0}).

-----

Assumption 2 The quantities k and K- are bounded, and there are positive constants C such that
log®n
min |Qo(j,k)| >C
m in_[Qo(j, k)| = C /=175

The proof of the following corollary uses our Theorem 4 in place of Equd12) in the analysis
of Ravikumar et al. (2009b).

for large enough n.

Corollary 7 Suppose the regularization parameter is chosen as

logplog®n

where GM, n, p) is defined in Theorem 4. Then the nonparanormal estin@tosatisfies
P (g (ﬁn,Qo)) >1-0(1)
whereG(Qn, Qo) is the event

{sugn( n(], k)) =sign(Qo(j,k)), Vj,ke S}.
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Our persistency (risk consistency) result parallels the persistenait fes additive models
given in Ravikumar et al. (2009a), and allows model dimension that grepanentially with sam-

ple size. The definition in this theorem uses the fact (from Lemma 11) thgtbs&p(ﬁ-(x)) <
v2logn whend, = 1/(4nY/* \/milogn).

In the next theorem, we do not assume the true model is nonparanorndéfamel the popula-
tion and sample risks as

R(T.Q) = 3 {tr[QB(T(X)T(X)T] ~log|€| - plog(2m}

R(1,Q) = 3 {r[QS\(1)] - log|Q]| - plog(2m)}.

Theorem 8 Suppose that g e for someg, < 1, and define the classes

My = {f :R— R : f is monotone with f || gC\/Iogn}
G o= {Q: Q<L)

LetQ, be given by
Qn=arg min{tr <QS1(1‘~)) — Iog\Q]} :

QECn
Then
SO ) logn
R(fn,Qn) — inf R(f,Q)=0p | Lnt/— |.
(Tn, €n) (f.Q)eMPoc (f.9) P( " nlE)

Hence the Winsorized estimator (df, Q) with 8, = 1/(4n%* \/mlogn) is persistent ovet;, when
Lh=o0 (n(lff)/Z/ \/Iogn>.

The proofs of Theorems 4 and 8 are given in Section 7.

6. Experimental Results

In this section, we report experimental results on synthetic and real etataWWe mainly compare
the/1-regularized nonparanormal and Gaussian (paranormal) models, tamysing the graphical
lasso algorithm (glasso) of Friedman et al. (2007). The primary condisisite: (i) When the data
are multivariate Gaussian, the performance of the two methods is compdidlpkben the model
is correct, the nonparanormal performs much better than the graphsaliteshany cases; (iii) for
a particular gene microarray data set, our method behaves differentiytliegraphical lasso, and
may support different biological conclusions.

Note that we can reuse the glasso implementation to fit a sparse nonparariarpeticular,
after computing the Winsorized sample covariaﬁq:(efv), we pass this matrix to the glasso routine
to carry out the optimization

On = arngin{tr (Q&(f)) “log|Q| +)\n||Q||1}.
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6.1 Neighborhood Graphs

We begin by describing a procedure to generate graphs as in (Mesgshand Bhimann, 2006),
with respect to which several distributions can then be defined. Weaerap-dimensional sparse
graphG = (V,E) as follows: LetV = {1,...,p} correspond to variableX = (Xy,...,X,). We

associate each indgxwith a point(Yj(l),Yj(z)) ¢ [0,1]?> where

Y9, Y9 ~ Uniform(0, 1]

for k=1,2. Each pair of node§, ) is included in the edge s&twith probability

P((i, i) e E) _ \/lzTTGXp<_Hyi;gj”%)

wherey; = (yi(l)jyi(z)) is the observation o(I’Y )) and|| - |, represents the Euclidean distance.
Here,s=0.125 is a parameter that controls the sparsity level of the generated §vepbstrict the
maximum degree of the graph to be four and build the inverse covariance fR2ataccording to

1 ifi=]j
Qo(i,j)=4¢ 0.245 if(i,j) €E
0 otherwise

where the value @45 guarantees positive definiteness of the inverse covariance matrix.
GivenQo, n data points are sampled from

XXM~ NPN(po, Zo, fo)
wherepp = (1.5,...,1.5), %= Qal. For simplicity, the transformation functions for all dimensions

are the samefy = ... = f, = f. To sample data from the nonparanormal distribution, we also require
g= f~1; two different transformationg are employed.

Definition 9 (Gaussian CDF Transformatiohpt ¢y be a one-dimensional Gaussian cumulative
distribution function with meangland the standard deviationy,, that is,

Go(t) = @ <t_ugo> :

Ogo

We define the transformation functiop-g fj‘l for the j-th dimension as

0(z)) /go t “J
\// 90 /go t ”J dt) (P(yaf”)dy

1

whereg; = Zo(j, j).

2306



THE NONPARANORMAL

before transform Power transform CDF transform
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Figure 3: The power and cdf transformations. The densities are estimsiteglaikernel density
estimator with bandwidths selected by cross-validation.

Definition 10 (Symmetric Power Transformatiohgt gy be the symmetric and odd transformation
given by

Go(t) = sign(t)[t|*

wherea > 0 is a parameter. We define the power transformation for the j-th dimension as

Go(Zj — 1)
\//g%<t ~w)o (5 ) dt

These transformation are constructed to preserve the marginal meataadard deviation. In
the following experiments, we refer to them as the cdf transformation andoilwergransforma-
tion, respectively. For the cdf transformation, we ggt= 0.05 andog, = 0.4. For the power
transformation, we set = 3.

To visualize these two transformations, we sample 5000 data points fromdiroeasional nor-

+ 1.

gj(zj) = 0j

mal distributionN(0.5,1.0) and then apply the above two transformations; the results are shown in

Figure 3. It can be seen how the cdf and power transformations mapaiateé normal distribution
into a highly skewed and a bi-modal distribution, respectively.
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Figure 4: Regularization paths for the glasso and nonparanormahwitb00 (top) anch = 200
(bottom). The paths for the relevant variables (nonzero inverse iaoear entries) are
plotted as solid (black) lines; the paths for the irrelevant variables are ghlastelashed
(red) lines. For non-Gaussian distributions, the nonparanormal befiarages the rele-
vant and irrelevant dimensions.

To generate synthetic data, we get 40, resulting in(“z‘ﬂ + 40 = 820 parameters to be es-
timated, and vary the sample sizes from- 200 ton = 1000. Three conditions are considered,
corresponding to using the cdf transform, the power transform, or neftianation. In each case,
both the glasso and the nonparanormal are applied to estimate the graph.
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6.1.1 GOMPARISON OFREGULARIZATION PATHS

We choose a set of regularization paramefer$or eachA € A, we obtain an estimatén which

is a 40x 40 matrix. The upper triangular matrix has 780 parameters; we vectorize étta g
780-dimensional parameter vector. A regularization path is the trace & gagameters over all
the regularization parameters withih The regularization paths for both methods are plotted in
Figure 4. For the cdf transformation and the power transformation, theamanormal separates the
relevant and the irrelevant dimensions very well. For the glasso, reéleadables are mixed with
irrelevant variables. If no transformation is applied, the paths for bothadetare almost the same.

6.1.2 ESTIMATED TRANSFORMATIONS

For sample siza = 1000, we plot the estimated transformations for three of the variables ingFigur
5. Itis clear that Winsorization plays a significant role for the power faangation. This is intuitive
due to the high skewness of the nonparanormal distribution in this case.

cdf power linear

— estimated _.- - .
.= true " — estimated R
o .
34 < . < q | = tue

15

fl
0.0

-1.0 -05

0.5 1.0 15
I I

f2
0.0

-10 -05

1.0

3
00 05
Il

-10 -05
I

x3 x3 x3

Figure 5: Estimated transformations for the first three variables. Winsiarzglays a significant
role for the power transformation due to its high skewness.
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cdf power linear
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Figure 6: Boxplots of the oracle scores foe= 1000 500,200 (top, center, bottom).

6.1.3 QUANTITATIVE COMPARISON

To evaluate the performance for structure estimation quantitatively, wealssedfositive and false
negative rates. L&b = (V, E) be ap-dimensional graph (which has at m¢§} edges) in which there
are|E| =r edges, and le® = (V, @) be an estimated graph using the regularization pararheter
The number of false positives Ats

FP(A\) = number of edges i&” not inE
The number of false negativesiais defined as

FN(A) = number of edges i not inE*.
The oracle regularization leval is then

A" =argmin{FP(A) +FN(A)}.
AeN

The oracle score is KR*) + FN(A*). Figure 6 shows boxplots of the oracle scores for the two
methods, calculated using 100 simulations.
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To illustrate the overall performance of these two methods over the full fR@®E€ curves are
shown in Figure 7, using

1—

FN(A)

_ PP

r

1

(5) -

The curves clearly show how the performance of both methods improvesavitple size, and that

the nonparanormal is superior to the Gaussian model in most cases.
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Figure 7: ROC curves for sample sizes- 1000 500,200 (top, middle, bottom).

Let FPE= FP(A*) and FNE= FN(A*), Tables 1, 2, and 3 provide numerical comparisons of
both methods on data sets with different transformations, where we rémeakperiments 100
times and report the average FPE and FNE values with the correspotaiigusl deviations. It's
clear from the tables that the nonparanormal achieves significantly smaties than the glasso if
the true distribution of the data is not multivariate Gaussian and achievesrmarfce comparable
to the glasso when the true distribution is exactly multivariate Gaussian.

Figure 8 shows typical runs for the cdf and power transformations.clear that when the
glasso estimates the graph incorrectly, the mistakes include both false Eoaittv@egatives.
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Nonparanormal glasso
n FPE (sdFPE) FNE (sdFNE)) FPE (sdFPE) FNE (sdFNE))

1000 010 (0.3333 005 (02190 373 (23904 724 (3.2910
900 Q18 (05389 0.16 (04197 331 (243589 894 (3.2809
800 016 (05069 023 (05659 3.80 (29439 991 (3.4789
700 026 (0.6295 043 (0.7420 345 (25519 1226 (3.5862)
600 033 (0.6039 041 (0.6371) 331 (28804 1425 (4.0735
500 058 (0.9658 110 (1.0396 318 (29211 1754 (4.4369
400 Q71 (1.0569 152 (1.2016 158 (2.3535 2118 (4.9855
300 137 (14470 297 (20123 067 (1.6940 2314 (5.0232
200 203 (19356 7.13 (34514 001 (0.1000 2403 (4.9816

Table 1: Quantitative comparison on the data set using the cdf transform&toroth FPE and
FNE, the nonparanormal performs much better in general.

Nonparanormal glasso
n FPE (sdFPE) FNE (sdFNE)) FPE (sdFPE) FNE (sdFNE))

1000 027 (0.7086 035 (0.6571) 2.89 (1.9482 497 (2.9213
900 038 (0.6783 041 (0.6210 298 (23697 599 (3.0467)
800 025 (05751 073 (0.8270 4.10 (27834 639 (3.357))
700 Q69 (0.9067 090 (1.0200 442 (2.8891) 880 (3.9849
600 092 (1.2282 159 (15314 464 (33830 1058 (4.2169
500 117 (1.3413 256 (23325 4.00 (29644 1309 (4.4903
400 188 (16470 497 (27687 314 (34699 17.87 (4.7750
300 297 (24181 7.85 (35572 136 (2.3805 2124 (4.7505
200 282 (26184 1453 (4.3378 037 (09914 2401 (5.0940

Table 2: Quantitative comparison on the data set using the power transifornteor both FPE and
FNE, the nonparanormal performs much better in general.

6.1.4 GOMPARISON IN THE GAUSSIAN CASE

The previous experiments indicate that the nonparanormal works almaatllaas the glasso in
the Gaussian case. This initially appears surprising, since a parametricdnetixpected to be
more efficient than a nonparametric method if the parametric assumption istcofeemanifest
this efficiency loss, we conducted some experiments with very swaald relatively largep. For
multivariate Gaussian models, Figure 9 shows results ith, s) = (50,40,1/8),(50,100,1/15)
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Nonparanormal glasso
n FPE (sdFPE) FNE (sdFNE)) FPE (sdFPE) FNE (sdFNE))

1000 010 (0.3333 005 (0.2190 0.09 (0.3209 0.06 (0.2386)
900 024 (07537 0.14 (04025 0.22 (0.6447 0.15 (0.4113
800 017 (04277 016 (03949 016 (0.4431) 0.19 (0.419))
700 025 (0.6871) 0.33 (0.8534 029 (0.8201) 0.27 (0.750))
600 Q37 (0.7740 036 (0.7456 036 (0.7722 037 (0.6459
500 028 (05874 046 (0.7442 025 (05573 045 (0.6571)
400 055 (0.8453 137 (1.2605 047 (07713 135 (1.2502
300 124 (13715 307 (17306 098 (1.2058 3.04 (1.8905
200 162 (17219 589 (27373 155 (16779 562 (2.6620

Table 3: Quantitative comparison on the data set without any transformafioe.two methods
behave similarly, the glasso is slightly better.

and(30,100,1/15). From the mean ROC curves, we see that nonparanormal does indesa: be
worse than the glasso, suggesting some efficiency loss. Howeverilfeooorresponding boxplots,
the efficiency reduction is relatively insignificant.

6.1.5 THE CASEWHEN p>n

Figure 10 shows results from a simulation of the nonparanormal usingaedfftrmations witim =

200 p =500 and sparsity leved= 1/40. The boxplot shows that the nonparanormal outperforms
the glasso. A typical run of the regularization paths confirms this conclustoowing that the
nonparanormal path separates the relevant and irrelevant dimensigngell. In contrast, with the
glasso the relevant variables are “buried” among the irrelevant vasiable

6.2 Gene Microarray Data

In this study, we consider a data set based on Affymetrix GeneChip miaysaior the planira-
bidopsis thaliana(Wille et al., 2004). The sample sizeris= 118. The expression levels for each
chip are pre-processed by log-transformation and standardizationbgesof 40 genes from the
isoprenoid pathway are chosen, and we study the associations amongdgimgnboth the para-
normal and nonparanormal models. Even though these data are getreiyd as multivariate
Gaussian in the previous analysis (Wille et al., 2004), our study showshihaesults of the non-
paranormal and the glasso are very different over a wide rangejolfarization parameters. This
suggests the nonparanormal could support different scientific csionk

6.2.1 GOMPARISON OF THEREGULARIZATION PATHS

We first compare the regularization paths of the two methods, in Figure 1deferate the paths,
we select 50 regularization parameters on an evenly spaced grid in thalf@et6, 1.2]. Although
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Figure 8: Typical runs for the two methods for= 1000 using the cdf and power transformations.
The dashed (black) lines in the symmetric difference plots indicate edged fmyuthe
glasso but not the nonparanormal, and vice-versa for the solid (red) lin

the paths for the two methods look similar, there are some subtle differengaaticular, variables
become nonzero in a different order, especially when the regularizagicameter is in the range
A €[0.2,0.3]. As shown below, these subtle differences in the paths lead to differetelselection
behaviors.

6.2.2 OMPARISON OF THEESTIMATED GRAPHS

Figure 12 compares the estimated graphs for the two methods at seveeal @Blle regularization
parametei in the rangd0.16,0.37]. For each\, we show the estimated graph from the nonpara-
normal in the first column. In the second column we show the graph obtajneckinning the full
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Figure 9: For Gaussian models, comparison of boxplots of the oraclessaod ROC curves for
smalln and relatively largg. The ROC curves suggest some efficiency loss of the non-
paranormal; however, the corresponding boxplots indicate this loss isifisimt.
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Figure 10: For the cdf transformation with= 200 p = 500,s= 1/40, comparison of the boxplots
and a typical run of the regularization paths. The nonparanormal pefizsate the
relevant from the irrelevant dimensions well. For the glasso, the releeaiables are
“buried” in irrelevant variables.

regularization path of the glasso fit and finding the graph having the smajleshetric difference

with the nonparanormal graph. The symmetric difference graph is shawitia third column. The

closest glasso fit is different, with edges selected by the glasso notesklgcthe nonparanormal,
and vice-versa. Several estimated transformations are plotted in Figushit® are are nonlinear.
Interestingly, several of the differences between the fitted graphglated to these variables.
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Figure 11: The regularization paths of both methods on the microarrayeta@&lthough the paths
for the two methods look similar, there are some subtle differences.

7. Proofs
We assume, without loss of generality from Lemma 3, that 0 andoj =1forall j=1,...,p.
Thus, definefj(x) = ~(Fj(x)) and f;(x) = ®~}(Fj(x)), and letg; = f; .

7.1 Proof of Theorem 4
We start with some useful lemmas; the first is from Abramovich et al. (2006).

Lemma 11 (Gaussian Distribution function vs. Quantile function) kdeéind @ denote the distribu-
tion and density functions of a standard Gaussian random variable. Then

P 1o < ®W iz
and

Also, forn > 0.99, we have

_ / 1
®~H(n) = 2log<1_n> ~r(n) (11)

Lemma 12 (Distribution function of the transformed random variable) For any (—oo, )

®*(F (g/(a viogn)) ) = viogn

where 1(n) € [0,1.5].
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Figure 12: The nonparanormal estimated graph for three valuas=00.2448 0.2661,0.30857
(left column), the closest glasso estimated graph from the full path (middte}tre
symmetric difference graph (right).

8.0 85 9.0 9.510.010.511.0

L B e e e
6 7 8 9 10 20 25 3.0 35 40 45 50 55
x5 x8 x13

Figure 13: Estimated transformations for the microarray data set, indicatimgGaassian
marginals. The corresponding genes are among the nodes appeariagymiimetric
difference graphs above.

Proof The statement follows from
Fi(t) = P(Xj 1) = P(g;(Z)) <t) = B(Z; < g (1)) = @ (g *(1)). (12)

which holds for any. |
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Lemma 13 (Gaussian maximal inequality) Let\W. ., W, be identically distributed standard Gaus-
sian random variables (do not have to be independent). Then fooan®

1
\/ < )
F (1@%\/\',’ > alogn> ~ na/2-1,/2malogn

Proof Using Mill's inequality, we have

n
ol /aTogn) 1
P W | <V P(W | <n =
<m_ax f > m>_i; ( i > \/m)—r‘ Jalogn na/2-1, /2mlogn’

1<i<n

from which the result follows. [ |

Lemma 14 For anya > O that satisfied — 8, — @ (/alogn) > 0 for all n, we have

P[ﬁ,— (g,—(\/Wgn))n—an} gexp{—Zn(l—én—qn(\/M))z}. (13)
and
[ (o (- vaiogn)) <& <exp{ -2n(1-5,-o(Valoan))'}. a4

Proof Using Hoeffding’s inequality,

?[Fi (o veregn)) > 13,
= 27 (o vero)) - (o Varosr) ) > 18- o o))
< epf-2n(1-8-F (o (Vamoan)))'}.

Equation (13) then follows from equation (12). The proof of equati@) (es the same argument.
[ |

1 . .
Now letM > 2 and seff = > We split the interval

|0i(— v/Mlogn), gj( /Miogn)|

into two parts, the middle

36,= (g (~ vBlogn) .g; (v/Bloan))
and ends
Fn = {gj (- \/Wgn) 0j (— \/M)} U [gj (\/M) 0j (\/Wgnﬂ :

The behaviors of the function estimates in these two regions are diffeiemte girst establish
bounds on the probability that a sample can fall in the end re@jpon
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Lemma 15 Let A= \/E( VM — /B). Then

/lo ,
P(Xyj € En) <A ng Vie{l1,...,p}.

Proof Using Equation (12) and the mean value theorem, we have

P (X1 € En)
= P (X € |gi(V/Blogn), g;(v/Miogn)| ) +2 (Xs; € [g;(~ /Mlogn).,gj(~ v/Blogn)| )
= 7 (9;(v/Mlogn)) —F; (g;(v/Blogn)) +F; (g;(— v/Blogn) ) —F; ( v/Mlogn))
— 2(®(\/Mlogn) - ®(+/Blogn) )

2(p< \/Blogn> ( v/Mlogn— \/Blogn> .

The result of the lemma follows directly. |

IN

We next bound the error of the Winsorized estimate of a component furosté@rhe end region.
Lemma 16 For all n, we have

sup|®~1(Fj (1) — &L (F (1)) < V2(M+2)logn, Vj e {1.....p}.

tet,
Proof From Lemma 12 and the definition &f,, we have

sup| @ (Fj(t)| € [O, \/Mlogn} :
tet,

. 1 ~ 1 1 .
Given the fact thad, = a7 riogn’ we haveF;(t) € (n,l— n>' Therefore, from Equation
(11),

sup’d) (FJ )‘ [0 \/Zlogn)
tetn
The result follows from the triangle inequality ardM + /2 < /2(M + 2). |

Now for anye > 0, we have

P (I”TEX‘S{](?)JK —Sn(f)jk‘ > 28>

= P <"}i‘x ii{ﬂ(%j)ﬁ(xik) — £06}) (i) — b F )b Fc) + b f; )Un(fk)} > 25)
< P (n}ilx ii(?(x ) fil(XKic) — F(% )fk(x|k)> >5>
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We only need to analyze the rate for the first term above, since the seoend of higher order
(Cai et al., 2008). Let

81,0 = 06 i) = 1.(%) i)
and
O, K) = (1) T(s) — F (1) f(S)-
We define the evenl, as
2= {g; (- VMlogn) <Xuy,.... X <g; (v/Mlogn) i =1,....p}.

Then, by Lemma 13, wheM > 2(§ + 1), we have

1
P45 <P max fi(Xi)| > +/2log(n )<.
(An) < <i,j€{l,...,n}><{l,...,p}| i) gnp) ~ 2/mog(np)
Therefore
1 n
P{max|= ¥ A(j,k)|>¢e| <P max— Ai(j,k)| > e, + P4
(Jﬁ n 2,804 ) < 21 (I, ﬂln> (A7)
1
<P max— Ai(j,k)| > e, +
N ( 21 (0 ﬂn) 2 y/mlog(np)

Thus, we only need to carry out our analysis on the e¥gnOn this event, we have the following
decomposition:
- gn>

P (max — ZA. i,K)
1 . € 1 . €
< P(max z | i(],k)>) +P<max Z |Ai(1,k)|>)
ik 4 ik 4
Xij € M, Xik € Mn Xij € En, Xk € En

1 . €
+2P(max z | i(],k)>).
jk 4
Xij € Mn, Xik € En

We now analyze each of these terms separately.

logplog?n

2 then

Lemma 17 On the even#d,, let =1/2 ande > Cy

P(maxl 5 |Ai<j,k>r>j>:o<1>.

Ik nXijE'meikEZn
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Proof We define

nB/2g
91 =
8A./logn

with the same parametéras in Lemma 15. Such& guarantees that

Iogn Iogn
4—91 NA\/ —— =nA/ ——

By Lemma 15, we have

P}nl.. : >i <P n1.. >E
(ni; {Xij €En, XikEEn} 4el> = <|Zl {Xij €En} 491>
= P <i<l{x”€£n} —P(le € ﬂ)) > % —nP(le € %))
i= 1

n . ne |Ogn
g (,Zl (lmjefn} —B (X € fn)) > 8 A\/;>

. o : 1
Using the Bernstein’s inequality, f@= >

10 £
P <ni;1{>ﬁjezn,>qkezn} > 491> P <i

< exp

IN

3

(1{>qjez-ﬂ} P (X € fn

B cin®Plogn
cont-PB/2/logn+c3nt-P/2 . /logn

/M=

wherecy, ¢, c3 > 0 are generic constants.
Therefore,

1 €
P | max- IAi(J,k)|>>
( 1k nxijefn%kefn 4

= ]P(max1 > ALK > max sup [©s(j.K)| >61>

1k nXijE'En,-XikE'En I tegy set,
1 . € .
cp(macd S AR > Emax sup @ik <6y
LNy eErXe s, X tetnsetn

IN

170 €
P max su Gis(j,K)|>01 | +P[ = 1x. _ > =
( ik tezn,sgzn‘ t’s(J ) 1) (ni; {Xij €En, Xk EEn} 491>

= P|max sup [Os(j,K)|>61]+0(1).
1K teE, e,
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Now, we analyze the first term

P(max sup ’et,s(jvk)‘>el) < p2P< sup ‘@t7s(j’k)|>el>
Ik ter, sz, teEn,seEn

= p2P< sup \ﬂ(t)ﬂ(s)—f,-(t)fk(s)|>el>.

tE€En,SCEn

By adding and subtracting ternig(t) and fs(t), we have
P ( sup |j(t) (s) — F; (1) fu(9)] > el>
teEn,seEn
- ~ 0
< P ( sup [(j(t) = (1) (T(s) — Tu(s))| > ;)
teEn, s En

+p( sup |<ﬂ<t>—fj<t>>|-|fk<s>l>eé)

tEFn,SEFn
= 0
+P( sup |<fk<s>—fk<s>>|-|fj<t>|>;>.
tEFn,SEFn
The first term can further be decomposed to be
~ ~ 0,
P sup |(fj(t) = (1)) (f(s) = ()] > 7
teEn,sc®n

- 0 ~ 0
< P<tsel£|(fj(t)—fj(t))|>\/E>+P<;L£\(fk(s)—fk(s))|> ;>.

Also, from the definition ofE,, we have

sup| f; ()| :tsi;n)‘gj—l(t)} < /Mlogn.
S

teE,

. 2
Sincee > Cy \/'ogr‘]’l#, we have

6 nPl% - Cu Vlogplogin )
3 24A./ogn — 24A.fogn

(M+2)logn.
This implies that

\/% > v/2(M+2)logn and

Then, from Lemma 16, we get

01
3 JMTogn ~ V2(M+2)logn

P(sup\(f]-(t)— B 9;) -0

teEn
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and
- 0,
P sup |(fj(t) = f;W))-[k(s)] > 5 | =0.
t€En, s En
The claim of the lemma then follows directly. |

Remark 18 From the above analysis, we see that the data in the tails doesn't affecttthdising
exactly the same argument, we can also show that

P (maxl Z 1A (],K)| > Z) =0(1).

K
s nXijEMn,Xikan

[logplog?
Lemma 19 On the even#d,, letf =1/2 ande > Cy %. We have

P ! ALK > &) <2exp| 21 /22 2exp| 21 n'/2
max= i(j,K)|>=] <2ex ogp— ————— | +2ex ogp— .
Ik nxijgg\{%qk@'l{nm ) 4 P{~o9P 12322log?n P 1o9pP 8rilogn

Proof We have

e n Xij € Mn,Xik € Mn tEMn, S Mn

P(maxl 3 Ai<j,k>>j)<p2P< sup |ﬂ<t>?k<s>—fj<t>fk<s>r>j)

< IOZP( sup |(fj(t) — (1)) (Fi(s) — fi(s))| > 8)

teMn,se My 12

+2p2P< sup |<ﬂ(t>—fj<t>>|~|fk<s>>f2>.
te My, se M,

Further, since

sup| (1) = sup|g; (1) = /Blogn
tE n

te M,

and sup [(fj(t) — fj(t))(fu(s) — f(s))| is of higher order than sypy, scas |(Fj(t) — f;(1)]-

te My, se My
~ €
fk(s)|, we only need to analyze the teiffr| su fi(t)—fi(t))| > ————|.
Sinced, = 1 , using Mill's inequality we have

4nP/2 \ /2mBlogn

_ ®(y/Blogn) _ .
20, = 2 /Blogn <1-—d(+/Blogn).
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This implies that
1—-&,—®(+/Blogn) > &, > 0.

Using Lemma 14, we have

~ 17[3
o2 (£, (g (V/Blogn) ) > 1-5,) < pPexp(—2nd?) - exp(zlogp— (m,g)) (15)
and
pZP (Fj (gj (— \/M)) < 6n) <exp (2|ng_ (16.:::[3|09n)> : (16)
Define an even, as

%= {8, < F () ( VBlogn) ) <1-8&,j=1,....p}.

From (15) and (16), it is easy to see that

nl/2
P(BS) <2exp| 2logp— Sriogn |

From the definition of;, we have

2 Tt f £

< pP <sup1¢—1 (Fi) - oL (F(v) +B(B).
teM,

€
> ——"
12./Blogn n)

1/2
< | sup|ot(E@) -0t (F 1) > ——— | +2exp| 2logp— — .
=P (temfg‘ ( i )) (Fil ))‘ 12,/Blogn P ap 8rtlogn

Define
Tin= max{Fj (gj (x/BIogn)) ,1—6n} and Ton = 1—min{Fj (gj (— \/Blogn>> ,6n}.

From Equation (12) and the fact that B, > ® ( \/Blogn), we have that

Tln - T2n — l— 6n.

Thus, by the mean value theorem,

N

€
12\/[3Iogn>

P ((ch)' (Max{Tun, Tan}) sup|F; (1) — Fi (1)

€
> J—
teMy 12\/Blogn>

_ ~1y/ (1 E (1) — F €
- P((cb ) (1) sup| 1) F‘(t)’>1zm>'
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Finally, using the Dvoretzky-Kiefer-Wolfowitz inequality,

“1(Em)) _o-1(F &
P(til;l‘EQJ (F,(t)) ® (F,(t))‘>12\/w>

N €
= (élif:‘ﬁ O-Fo|> (©-1) (1 &) 12\/[3'09“)
ne?
< 2exp| -2 5 |-
( 144Blogn((®~1) (1 —0n)] )
Furthermore, by Lemma 11,
“1vigq . 1 1 _ i B B/2
(@) (1—8n) = O @ 1(1-5)) < < . 1) = x/ﬁ(én> =8m®? \/Blogn.
¢ 096n

This implies that

P°E SUp‘q)_l(ﬁ(t))_q’_l(F'(t))‘>; <2exp 2|ogp—ﬂ
e | J 12./Blogn/ ~ 1232%log?n )’

In summary, we have

P | max: NGLK)| > 5| <2exp| 21 e’ 2exp| 2 n?
max- i(i,k)| > = | <2exp|2logp— —————— | +2exp| 2logp—
-k nxijeM%leZn' (1K= 7 P\ 99P 123210g7n | T <P\ “°9P griogn

This finish the proof. |

The conclusion of Theorem 4 follows from Lemma 17 and Lemma 19.

7.2 Proof of Theorem 8

Proof First note that the population and sample risks are
R(f,Q) = % {tr [QE(f(X)f(X)"] —log|Q| — plog(2m) }
R(1,Q) = 2 {tr[QS(f)] ~log|Q| - plog(2m)}.
Therefore, for all f,Q) € MY @ Gy, we have

RILQ)-REQ)| = S[r[Q(ET]-5()]]

IN

1
5 19Qllsmax sup [B(f;(X}) fi(Xi) = Sn(T) |
K feeat,

L
E"m.ax sup [E(fj (X)) fk(Xe) — Sa(f) jkl-
Jk fj,kaMn

IN
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Now, if F is a class of functions, we have

E(gs:}p!u(g) u(g)!>é 7 (17)

for someC > 0, whereF (X) = supyeqe [9(X)[, (9) = E(9(X)) andii(g) = n-1s",9(X) (see Corol-
lary 19.35 of van der Vaart 1998). Here the bracketing integral is eleéfin be

o)
3@.5)= [ /loghy (u ) du

where log\;j (¢, ¥ ) is the bracketing entropy. For the class of one dimensional, bounded ara mo
tone functions, the bracketing entropy satisfies

1

logN;)(e, M) <K <s>

for someK > 0 (van der Vaart and Wellner, 1996).
Now, let ?, , be the class of all functions of the form(x) = f;(x;) f(%) for j, ke {1,...,p},
wheref; € M, for eachj. Then the bracketing entropy satisfies

logN;)(C v/logn, P, p) < 2logp+K (i)

and the bracketing integral satisfi#ggC \/logn, #, p) = O( v/lognlogp). It follows from (17) and
Markov’s inequality that

e 2(1,06) 001 - s /291998 o ', floan
Wﬂﬂ%ﬁmmEm%mmﬁo%¢”)_%<““>

Therefore,

sup  |R(f,Q)—R(f,Q)| = Op ("” V'°9”>.

(f>Q)€an€BCn n(lfa)/z

As a consequence, we have

R(f*,Q%) < R(fn,Qn)
PPURSN Ln/Togn
< R( fn,Qn) JrOP <I’](1_E)/2
P Lh+/logn
. o~ Lnh+/logn
and the conclusion follows. [ |
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8. Concluding Remarks

In this paper we have introduced the nonparanormal, a type of Gausgiataavith nonparametric
marginals that is suitable for estimating high dimensional undirected graplesndrtparanormal
can be viewed as an extension of sparse additive models to the settingobifcgianodels. We
proposed an estimator for the component functions that is based ondldiaghthe tails of the
empirical distribution function at appropriate levels. A theoretical analyas given to bound the
difference between the sample covariance with respect to these estimat#idris and the true
sample covariance. This analysis was leveraged with the recent workviuRnar et al. (2009b)
and Rothman et al. (2008) to obtain consistency results for the nonparalncComputationally,
fitting a high dimensional nonparanormal is no more difficult than estimating a rauidtte Gaus-
sian, and indeed one can exploit existing software for the graphical |@ss experimental results
indicate that the sparse nonparanormal can give very differeritséisan a sparse Gaussian graph-
ical model. This suggests that it may be a useful tool for relaxing the nornaatymption, which
is often made only for convenience.
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